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Abstract
Existing benchmarks for evaluating long video

understanding falls short on two critical aspects,
either lacking in scale or quality of annotations.
These limitations arise from the difficulty in col-
lecting dense annotations for long videos, which
often require manually labeling each frame. In
this work, we introduce an automated Annota-
tion and Video Stream Alignment Pipeline (ab-
breviated ASAP). We demonstrate the generality
of ASAP by aligning unlabeled videos of four
different sports with corresponding freely avail-
able dense web annotations (i.e. commentary).
We then leverage ASAP’s scalability to create
LCric, a large-scale long video understanding
benchmark, with over 1000 hours of densely an-
notated long Cricket videos (with an average
sample length of ∼50 mins) collected at virtually
zero annotation cost. We benchmark and analyze
state-of-the-art video understanding models on
LCric through a large set of compositional multi-
choice and regression queries. We establish a
human baseline that indicates significant room
for new research to explore. Our human studies
indicate that ASAP can align videos and anno-
tations with high fidelity, precision, and speed.
The dataset along with the code for ASAP and
baselines will be publicly released.

1 Introduction

Humans learn and master skills (e.g. playing guitar)
by associating and reasoning over episodic memories
captured over days, months, and years of failed and
successful attempts (Byrne, 2008). Thus, building
systems capable of understanding and reasoning over
very long streams of visual data is a long-standing and
crucial problem in Computer Vision.

Long-horizon Video Understanding (LVU) is the
problem of reasoning over a long stream of video
data, such as understanding the plot of a movie or

analyzing the performance of a player in a lengthy
game. Progress toward LVU has been greatly limited
by the lack of densely annotated data. Creating an
LVU benchmark requires manually annotating videos
frame-by-frame, which is incredibly tedious and hard
to scale. This constraint has limited the length of ex-
isting densely-annotated video understanding bench-
marks (Table 1) from a few seconds (Jang et al., 2017;
Sigurdsson et al., 2016; Gupta et al., 2021; Xu et al.,
2016) to a few minutes (Krishna et al., 2017; Wu
and Krahenbuhl, 2021; Zhou et al., 2018; Gella et al.,
2018; Bain et al., 2020).

A line of previous works (Huang et al., 2020;
Tapaswi et al., 2016; Lei et al., 2018) in LVU have
used readily available subtitles of TV shows or en-
tire movies as dense annotations. While these videos
are sufficiently long, manual annotations are still re-
quired to build non-trivial queries to evaluate LVU
skills (Tapaswi et al., 2016; Lei et al., 2018), which
greatly limits their scale. Another work (Wu and Kra-
henbuhl, 2021) addresses this problem by extracting
supervision from easily accessible YouTube metadata
of nearly ∼30K movie clips spanning 1− 3 minutes.
However, the annotated clips are short, and the pro-
posed prediction tasks rely on noisy (and obscure)
attributes (e.g. YouTube views, like-to-dislike ratio,
and so on).

Sports matches are a rich source of long videos
(e.g. a one-day Cricket match lasts nearly 8 hours) and
usually have a brief scorecard embedded in the screen
(shown in Figure 1) that tracks the state of the match.
Most sports matches also have dense annotations from
experts available online (sports commentary describ-
ing major events in the game e.g. (ESPN, 2022a,b)).
However, the annotations or the videos are not helpful
individually unless they are aligned with each other.

Therefore, we introduce ASAP, an automated an-
notation and video stream alignment pipeline, to auto-
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Figure 1: Overview. We propose the ASAP pipeline
for sports to align unlabelled sports videos (above)
with structured annotations (below) publicly avail-
able on the web using an OCR based module. These
newly aligned annotations can help compose struc-
tured queries that test long-horizon video understand-
ing skills.

matically generate video datasets with frame-aligned
dense annotations (i.e natural language commentary/-
major events) for arbitrarily long sports matches that
have commentary freely available on the web (ESPN,
2022a,b)). Web annotations have an associated time
marker like a game clock, which we call the match
state, that ASAP extracts from sports match videos
using an OCR detector (Google, 2022) for frame-
by-frame annotation. To demonstrate the general-
ity of ASAP, we align unlabeled videos of four dis-
tinct sports (Cricket, Football/Soccer, Basketball, and
American Football) with their corresponding unaligned
web annotations, with an average of 95% of the an-
notations being aligned within ±1 second of their
occurrence in the video.

We then leverage ASAP’s scalability to create
LCric, a large-scale LVU benchmark with 1008 hours
of densely annotated Cricket videos at virtually zero
annotation cost, by auto-labeling 131 cricket matches
of average length 7.5 hours, containing nearly 475
timestamp recordings (balls per match) on average.
To our knowledge, LCric is the first automatically la-
beled sports video dataset that contains play-by-play
annotations that span entire matches. To comprehen-
sively evaluate LVU on LCric, we automatically cu-
rate multiple-choice (binary and N -way) and regres-
sion queries through simple composition with boolean
operations, which require varying lengths of context
to answer. These queries are complex and require
context aggregation ranging anywhere from 5 min-

utes to an hour of continuous playtime (video). In
the past, such compositional query building has been
leveraged in popular vision and language datasets (e.g.
CLEVR (Johnson et al., 2017), GQA (Hudson and
Manning, 2019)).

We benchmark two recent state-of-the-art LVU
models, TQN (Zhang et al., 2021) and MemViT (Wu
et al., 2022), on LCric, and find that their performance
is significantly worse than the human baseline (∼38%
drop on query reasoning accuracy when evaluated
on long clips containing ∼50 minutes of playtime),
demonstrating significant room for new research to
explore. In summary, we make the following contri-
butions:

• We propose ASAP, an automated and scalable
video labeling pipeline for aligning videos of
sports matches of four different sports (Cricket,
Football, Basketball, and American Football)
with dense web annotations.

• Using ASAP, we create LCric, a large-scale
LVU benchmark with 1008 hours of densely
annotated Cricket videos with virtually zero an-
notation cost.

• We benchmark the performance of two recent
video understanding models on our dataset, pro-
vide ablations, and establish a human baseline
on LCric.

2 Related Work

Existing benchmarks for LVU. The paper Wu and
Krahenbuhl (2021) introduces the large-scale LVU
benchmark built on movie clips and metadata publicly
available on YouTube. However, the videos only range
from 1-3 minutes, and the annotations are limited due
to their dependence on YouTube metadata. Other
benchmarks for LVU include Oh et al., which col-
lected 29 hours of surveillance footage and bounding
box annotations of major events but only have clips of
length up to 3 minutes. Similarly, Corona et al. (2021)
collected 144 hours of surveillance footage by hiring
actors to enact predefined scripts but only has clips of
length up to 5 minutes. The Li et al. (2020) benchmark
collected 430 videos, each 15 minutes long, and dense
bounding box information for 80 different atomic ac-
tions. Although their videos are relatively long, the an-
notated videos are only up to 15 minutes long, which
is shorter than our annotated videos which are up
to 45 minutes long, and are generated with no addi-
tional cost. Additionally, Cheng-Yang Fu and Berg
(2017) collected the LoL dataset comprising 230 clips
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Dataset Average clip length # Annotations # Hours Auto labelled
VidSitu Gupta et al. (2021) 10 secs 145K 81 ✗
VideoStory Gella et al. (2018) 18 secs 123K 396 ✓
MSR-VTT Xu et al. (2016) 20 secs 200K 41 ✗
Charades Sigurdsson et al. (2016) 30 secs 28K 82 ✗
TGIF Jang et al. (2017) 30 secs 126K 86 ✓
TVQA Lei et al. (2018, 2020) 75 secs 152K 460 ✗
VTW Zeng et al. (2016) 90 secs 45K 213 ✓
MovieClips Bain et al. (2020) 120 secs 30K 1270 ✓
LVU Wu and Krahenbuhl (2021) 120 secs 11K 1270 ✓
YouCook II Zhou et al. (2018) 316 secs 15K 176 ✗
ActNet Captions Krishna et al. (2017) 180 secs 100K 849 ✗

LCric (ours) 2778 secs 62K 1008 ✓

Table 1: Dataset Comparison. Different annotated datasets for benchmarking video description and video
understanding methods. LCric has an average clip length of ∼2800 seconds, which is almost ten times longer
than any previous work.

from the League of Legends video game, with each
clip ranging from 30 to 50 minutes. However, they
collected video highlight annotations based on very
noisy and unreliable audience chat statistics. Video
games also tend to have easy visual cues before major
highlights that incentivize models to learn spurious
correlations. In contrast, our tasks, by construction,
force models to reason over a long horizon of events
in a match.

Collecting dense annotations for videos. Anno-
tating video datasets is extremely expensive. Prior
works (Xu et al., 2016; Gupta et al., 2021; Sigurds-
son et al., 2016) have collected expensive annotations
through Amazon Mechanical Turks (AMT) to label
their clips with an associated text description, which
greatly limits their scale (Table 1). Another line of
work bootstraps from pre-existing annotations to gen-
erate new annotations. Other prior works bootstrap
from pre-existing annotations to generate new anno-
tations. For example, Bain et al. (2020) use existing
captions on YouTube and IMDb metadata to label
30000 movie clips, but assume these labels span the
entirety of their clips. Similarly, Zeng et al. (2016)
take user-generated titles as labels for 18100 user-
generated clips, but again assume that these labels
span the entirety of their clips. While Gella et al.
(2018) temporally align sentences from paragraph cap-
tions to social media videos to form annotated clips.
In contrast, our dataset is densely annotated by tem-
porally aligning publicly available sports annotations,
which offer more structure than text descriptions and
are therefore hierarchically composable, enabling the
creation of queries that require large but dense context.

Although (Liang et al., 2010b,a; Xu et al., 2006) also
align sports videos to online commentary information,
they use heuristic methods that are not as accurate and
do not scale well for generating longer and more video
matches.

Video datasets based on sports. Recent inter-
est in using computer vision to drive sports analyt-
ics (Tuyls et al., 2021) suggests the importance of a
dense annotation pipeline for sports videos. Current
methods for producing sports datasets involve some
form of manual annotations like in Safdarnejad et al.
(2015), where they manually label 4100 sports clips
based on the given action. Several works (Voeikov
et al., 2020; Andriluka et al., 2018; Kazemi and Sulli-
van, 2012) have used automatically generated, densely
labeled pose annotations for sports videos but are not
easily scalable because they run computationally ex-
pensive, frame-level models to generate their annota-
tions. Larger datasets such as Soomro et al. (2012);
Karpathy et al. (2014) exist but primarily focus on
action recognition over a single clip, rather than a full
sports video. Our dataset focuses on producing play-
by-play annotations spanning entire sports match. Our
general annotation pipeline can be easily extended to
creation of video datasets for other sports.

Video understanding models. Processing long
videos is challenging, as it requires aggregating con-
text over long horizons with limited computational
and memory budgets. In SlowFast networks Feichten-
hofer et al. (2019), they use a dual pathway operating
at a low and high frame rate to enable the aggrega-
tion of context over longer horizons while capturing
low-level visual attributes. Meanwhile, Feichtenhofer
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(2020) introduce a simple technique for progressive
architecture expansion (along axes such as temporal,
depth, width, etc.), inspired by feature selection in
machine learning to achieve efficient models. Tak-
ing advantage of the implicit nature of transformers
to handle long-range data Bertasius et al. (2021) pro-
poses to adapt the standard transformer architecture
for videos by enabling spatiotemporal feature learning
directly from a sequence of frame-level patches. In
MeMViT (Wu et al., 2022), they introduce a memory-
augmented multi-scale vision Transformer, greatly im-
proves temporal support with minimal memory over-
head, and achieves state-of-the-art performance on a
variety of video understanding benchmarks. While
the trend shows the model’s capacity to handle longer
and longer video clips more efficiently, the absence
of a truly long-horizon dataset inhibits a fair com-
parison between these baselines and also inhibits the
model’s transferability to real-world video understand-
ing tasks.

Automated annotation pipelines. Automating
annotation pipelines, even partially, is critical to de-
veloping large-scale datasets. For example, the SBU
dataset (NeurIPS, 2011) for image-text retrieval pruned
and paired Flickr queries with a set of images, the
Conceptual Captions dataset (Sharma et al., 2018) for
image captioning leveraged the “Alt-text" HTML at-
tribute in web images, and the RedCaps dataset (Desai
et al., 2021) harvested 12 million image-text pairs
from curated subreddits. Meanwhile, Pont-Tuset et al.
(2020) partially automate their annotation pipeline
and collect multi-modal image annotations by asking
annotators to describe an image through audio while
simultaneously hovering their mouse over the region
they are describing. We hope that our fully automated
pipeline, ASAP, will help create long and densely
annotated video datasets at an unprecedented scale.

3 ASAP: Annotation and Video Stream
Alignment Pipeline

Sports matches provide an abundant source of long
videos, along with a rich source of corresponding
play-by-play annotations (i.e. expert commentary of
major events in the match) easily accessible on the
web (ESPN, 2022a,b). These play-by-play annota-
tions are, however, not useful standalone as they are
not aligned with the video of the match. More for-
mally, given a video with a set of frames F , a set of
events A, and an associated set of match state’s T ,

web annotations can be described as a known bijection
w : T → A. To align these annotations frame-by-
frame means learning the mapping a : F → A, which
is a composition a = (w ◦o), where o : F → T is the
unknown frame-to-match state alignment function.

Our framework, which we call ASAP, automat-
ically learns the alignment function o : F → T by
parsing match state on each video frame (Sec. 3.1)
using an Optical Character Recognition (OCR) detec-
tor after pre-processing noisy and occluded frames,
as seen in Figure 3. We then use the match state and
the known web annotations w : T → A (Sec. 3.2)
to assign an event annotation to each frame (Refer to
Appendix A.1 for a list of events). This multi-stage ap-
proach, as well tricks to reduce OCR calls, allows us
to efficiently learn the alignment mapping a : F → A.
We note that sports were a powerful use-case of ASAP
because scorecards are an intuitive match state with
existing web annotation w : T → A. Thus, ASAP
enables the creation of long video datasets with un-
precedented scale at virtually zero annotation cost. We
describe the different stages of ASAP in more detail
below.

3.1 Stage 1: Match State Extraction

Extracting Match State. In a sports video contain-
ing N video frames [f1, ..., fN ], we intuit that score-
cards tend to have a fixed position on each frame, so
we search for a tight bounding box containing the
match state by first sampling a few frames uniformly
throughout the video and running OCR on them. Next,
we determine the bounding box where text changes
gradually across frames (i.e the bounding box con-
taining the scorecard) and crop every frame with this
bounding box to reduce the complexity future OCR
calls. Using these bounding boxes, we apply OCR
over every frame to learn the function o : F → T that
maps a frame ft ∈ [f1, ..., fN ] to a match state. The
choice of match state varies based on the available
annotations: in Cricket, the match state is the ball
that is currently being delivered (e.g. "30.5"), while
in Football, the match state is the corresponding half
and game clock (e.g. first half, 38 : 23). We show
example cropped scorecards in Figure 2.
Non-triviality of applying OCR. Under ideal circum-
stances, simply applying OCR over cropped video
frames and scraping web annotations would make
ASAP a complete pipeline. However, we find that
in practice, locating the scorecard across frames, as
well as extracting the correct match state is non-trivial
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…

Time T=3000s Time T=3001s Time T=3039s

……

OCR call

Time T = 3000s to 3039s T = 3040s to end

……

match state is overs in Cricket

…
T = start to 2999s

Football American Football Basketball

match state is game clock in time-based sports 

Figure 2: Match States used by ASAP for different sports. ASAP finds and stores the sequence of frames
corresponding to each possible match state, which is necessary to temporally align web annotation data to
its exact occurrence. For example, in Cricket, ASAP uses the overs number as the match state. For other
sports like American Football, Football, and Basketball, ASAP uses the onscreen timer as match state. More
generally, any temporal marker can be used as match state.

Match state 
bounding box 

detector

…
…

Filter dupes, 
occlusions, run 

OCR

49.5

49.5

50.0

…
…

match state = 50.0

match state = 0.1

match state = 0.2

duplicates

0.1

match state = 0.3

Raw Frames

match state = 49.5

0.2

occlusion

…
…

Stage 1: Match State Extraction Stage 2: Aligning Annotations

Web Commentary

match state = 59.2 0.2OCR error

Figure 3: Match State Extraction and Alignment. To extract the match state we begin by detecting scorecard
bounding box across all video frames, and cropping its content out. We then process all frames, filtering
duplicates and outliers using an L1 distance metric, and finally run batched OCR calls to assign a match state
to each frame for alignment with web commentary.

due to the dynamic and noisy elements that occlude,
vary, or otherwise affect the long videos. Firstly,
many sports matches contain advertisements, render-
ing glitches, and other occlusions that make the match
state unreadable. To address these issues, ASAP ex-
tracts a reference scorecard before processing the
whole video, which is a template image containing an
un-occluded crop of the scorecard that the user can
verify. We compare this reference image against all
cropped scorecards in the video using a L1 distance

metric, and throw out frames based on a heuristic
thresholding value. Furthermore, OCR often makes
mistakes due to noise or color variations in certain
frames, so ASAP uses the temporally ordered nature
of the match state to assign noticably incorrect map-
pings to the aligned match state of the previous frame.
Finally, running OCR calls for every frame of hours of
video footage running at 30 FPS can be prohibitively
expensive. To reduce the costs many-fold, we stitch
multiple scorecards into a single image to annotate
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hundreds of frames with a single OCR call. We also
skip redudant frames that contain the same match state
as an older frame by detecting changes in the score-
card between consecutive frames using an L1 distance
metric similar to the reference image trick.

3.2 Stage 2: Aligning dense annotations with
videos

Dense play-by-play annotations of the form w : T →
A (i.e expert commentary, major events, etc.) are
often easily available on the web (ESPN, 2022a,b).
Since these play-by-play annotations are indexed by
the match state, we map annotations based on their
match state to their exact timestamps found in the
first stage of ASAP (the function o : F → T ), which
is precisely the function composition a = (w ◦ o)
that describes a perfect mapping of each frame to an
associated annotation.

In addition to aligning the annotations with the
video, ASAP also processes the sequence of play-by-
play annotations into a sequence of discrete events,
which we refer to as an event chain. While some
sports (Cricket and Football) already contain discrete
events (e.g. ‘foul’, ’wicket’, ‘boundary’ etc.) in their
annotations, for other sports (American Football and
Basketball), we use string-matching to parse the com-
mentary and assign each play to a fixed event that we
define (e.g. ‘incomplete pass’). These extracted event
chains can then be used as ground truth for evaluating
LVU models. Models can be queried on different seg-
ments of the event chain of varying lengths – to test
both short and long-horizon reasoning. We discuss
the use of event chains for evaluation in Section 4.2.
Finally, we demonstrate ASAP’s generality by anno-
tating other sports (Appendix A and Appendix B.5).

4 Generating the LCric dataset with
ASAP

In this section, we describe how we leverage ASAP to
build a long video understanding (LVU) dataset from
Cricket videos. The ASAP pipeline takes in videos of
Cricket matches along with play-by-play commentary
annotations from the web1 to aligh them together. Us-
ing the frame-aligned annotations produced by ASAP,
we describe a scalable approach for generating struc-
tured and compositional queries in Section 4.2 to eval-
uate LVU. Our LCric dataset is a collection of Cricket

1. https://www.espncricinfo.com/

videos with play-by-play annotations and a set of auto-
generated queries. See Appendix B.1 for more details
on the rules of Cricket.

4.1 LCric: Overview

Using ASAP’s scalability, we create LCric, a large-
scale LVU benchmark with 1008 hours of densely
annotated Cricket videos at virtually zero annotation
cost, by auto-labeling 131 cricket matches of average
length ∼7.5 hours, containing nearly 475 timestamp
recordings (balls per match) on average. ASAP au-
tomatically labels all the balls in a match with 1 of
12 events to generate a sequence of events (i.e event
chain) for a cricket match. We then generate anno-
tated video clips by segmenting the videos along with
the aligned event chain into a contiguous sequence of
10-over (∼50 minutes) clips.

4.2 LCric: Testing LVU via compositional queries

In an LVU task, the evaluated model is given a very
long video clip, from a sports match of nearly 50
mins in our case, and it is tasked to answer a question
(query) about it, e.g. “how many times did a wide
ball occur in this video?”. An LVU system needs to
possess two types of skills: a) the ability to reliably
detect local (short-term) events – e.g., classifying an
atomic event in Cricket (say wide, wicket, or run), and
b) the ability to aggregate information across these
local events given a task (which we refer to as a query)
– e.g., counting the total number of runs scored by the
batting team in an arbitrarily long video. We evaluate
these LVU skills on LCric, by automatically gener-
ating binary, multiple-choice, and regression queries,
and evaluating them on long video segments. Details
on each type of query and how they were generated
can be found in Appendix B.3.

4.3 LCric: Statistics and Dataset Splits

Statistics. LCric currently includes 1008 hours of
cricket match videos across 131 unique matches (aver-
age length of 7.5 hours), along with 61957 ball-by-ball
annotations. All the videos are preprocessed at a res-
olution of 360p and we provide links to the source
videos of higher resolution.
Dataset splits To effectively test generalization, we
split all the matches in LCric into train, validation, and
test splits and ensure a 3:1:1 ratio of the number of
hours in each split. Due to a limited compute availabil-
ity, we present ablations on a subset of LCric and refer
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Model Training Binary
Acc. ↑ Multiple

Acc. ↑ Regression
L1 Norm ↓

TQN Mixed 57.68% 19.05% 17.21
MeMViT Mixed 54.31% 16.71% 21.79

TQN Homog. 60.74% 20.19% 10.63
MeMViT Homog. 56.53 % 17.79% 11.95

Human 96.34 % 96.29% 0.215

Table 2: Baseline performance on the full LCric
split with 10 over clips. TQN outperforms MeMViT
in different training schemes across different query
types. We find that training models under the Homo-
geneous (Homog.) training scheme improves perfor-
mance, especially for the regression query.

to this as LCric-Mini, which has around 420 hours
of labeled Cricket matches, and enables us to train
ablations experiments in a shorter duration (2-3 days
per experiment). We generate splits for LCric-Mini
identically to LCric.

5 Experimental Setup and Results on
LCric

Our preprocessing follows the process in (Zhang et al.,
2021) by sampling videos at a lower frame rate to
make training over long videos feasible. We process
our longest clips (containing 10 overs of the match) at
0.1 FPS, and process clips of 2-8 overs at 0.5 FPS. We
remove the scorecard from all frames to prevent an-
notation leakage and process frames at a resolution of
128 x 128. We compute following evaluation metrics:
1) Classification accuracy for binary (Binary Accu-
racy) and multi-choice (Multiple Accuracy) queries 2)
Average L1 norm for regression queries (Regression
L1 Norm).

5.1 Baselines and Training Scheme

Previous works (Fan et al., 2021; Feichtenhofer et al.,
2019; Feichtenhofer, 2020) in LVU use pretrained
CNNs (LeCun and Bengio, 1998) and Transform-
ers (Vaswani et al., 2017) paired with explicit memory
modules for modeling long contexts. However, none
of these methods can scale to video clips longer than
a few minutes. Since our query set requires reasoning
over contexts ranging up to an hour, we choose two
state-of-the-art video understanding models:
Memory-augmented Multiscale Vision Transformer
(MeMViT) (Wu et al., 2022) applies a memory caching

Model Clip
Segments

Binary
Accuracy ↑ Multiple

Accuracy ↑ Regression
L1 Norm ↓

TQN GT 80.34% 36.32% 6.89
TQN Uniform 60.29% 15.18% 19.31

Human 96.34 % 96.29% 0.215

Table 3: Both localization and detection of events
are important. Using ground truth (GT) clip seg-
ments (aligned by ASAP) for event prediction leads to
significant performance gain (Rows 1 vs 2). Improv-
ing event detection within clips can further improve
performance (Rows 2 vs 3).

strategy by processing videos in an online fashion, al-
lowing the model to efficiently store context to reason
over long horizon. MeMViT builds upon ViT (Doso-
vitskiy et al., 2021) by using a novel pooling method
and a dynamic patch resolution approach to reduce
computational costs while processing long clips. We
adapt MeMViT to handle our multi-query setting by
leveraging the multi-query head used in TQN.

For both of these baselines, we employ two dif-
ferent training schemes – 1) Homogeneous training
where we train different models for the three different
types of queries (binary, multi-choice, and regression)
and 2) Mixed training where we train a single model
for all three types of queries.

Human Baseline. To quantify the room for model-
ing improvements on LCric, we measure the accuracy
of human annotators through AMT (Crowston, 2012).
We provide annotators with video clips from LCric
and ask them to predict the sequence of ball-by-ball
events (Section 4). To compute human performance
on our queries, we assume that given an event chain,
humans can answer these queries by applying logical
operators without mistakes. We detail our AMT setup
in Appendix B.5.

5.2 Key Results

Performance of both TQN and MeMViT degrades
rapidly for very long clips. To understand the impact
of length of the videos on task performance, we train
different baseline models for clips with over-lengths
ranging from 2 overs (∼10 minutes) to 10 overs (∼50
minutes). Figure 4 shows that performance rapidly de-
creases with increasing clip length and approaches the
random baseline for binary and multi-choice queries.
This result, in addition to the strong human baseline,
shows significant room for modeling improvements.
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Figure 4: Performance drops as video length (# of overs) increase. We plot the accuracy achieved by
our baseline models for binary, multiple-choice, and regression queries across clips varying from 2-10 overs
(length). LVU models severely degrade in performance with longer time horizons and perform much worse
than humans.

Models need to localize and detect events accu-
rately to perform well on LCric. To understand
the importance of localizing and detecting events for
LVU models, we first train a TQN ‘event classifier’
model to predict 1 of 12 events (Section 4) in a video
clip. The model is trained on ground truth annota-
tions from LCric-Mini and has a fairly high test accu-
racy of 84.79%. We then divide the clips into a con-
tiguous sequence of ‘event segments’ by either using
ground truth segmentations from LCric-Mini (labeled
‘Ground Truth’ in Table 3) or by uniformly dividing
the clips into 60 contiguous segments (labeled ‘Uni-
form’ in Table 3), as each 10-over clip contains 60
events. Finally, we leverage the learned ‘event classi-
fier’ model to generate event chains by sequentially
predicting events on the ‘event segments’ and eval-
uating different queries on these event chains. We
report performance in Table 3 and make two obser-
vations – 1) Access to ground truth event segments
leads to ∼ 20% improvement over uniformly gener-
ated segments on binary queries and therefore shows
the importance of event localization. 2) While ac-
cess to ground truth event segments leads to better
performance, as it aids the event classifier in mak-
ing more accurate predictions, the performance is
still ∼ 16% worse than the human baseline on bi-
nary queries. Therefore, even with perfect event lo-
calization, models need performant event detection
capabilities.

6 Conclusion
In this work, we introduce ASAP, a fully automated
annotation and video stream alignment pipeline for
sports matches. ASAP automatically aligns unla-
beled videos of sports matches with corresponding
dense annotations (i.e. commentary) freely available
on the web. We demonstrate the generality of ASAP
by aligning unlabeled matches of four very different
sports with their corresponding annotations on the
web. ASAP is highly accurate (as judged by human
annotators), and is robust to varying visual attributes,
number of events, and length of plays. We then demon-
strate ASAP’s potential to generate large-scale video
datasets with no additional annotation cost by gener-
ating LCric, a large-scale long video understanding
benchmark with over 1000 hours of densely annotated
long Cricket videos (having an average sample length
of ∼50 minutes). We extensively benchmark state-of-
the-art LVU models and establish a human baseline
on LCric. Our strong human baseline, coupled with
the poor performance of state-of-the-art models, val-
idates LCric as an effective benchmark for the next
generation of LVU models. We hope that future work
extends, improves, and leverages ASAP to generate
annotated video datasets at an unprecedented scale and
cost efficiency. We also include a Datasheet adhering
to Gebru et al. (2021) in Appendix C.2.
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7 Reproducibility Report

ASAP Code: An anonymized version of our code-
base for our ASAP pipeline described in the main
paper, along with the related setup instructions can
be found at the link here: https://github.com/asap-
benchmark/asap-pipeline. The repository contains
other details for running different parts of the pipeline
on different sports.

LCric Dataset: We have provided a downloader for
the LCric dataset, including both the related videos
and annotations: https://github.com/asap-benchmark/lcric-
downloader. Further implementation details and also
details about LCric can be found in Appendix B.

Baseline Experiments: We also provide implemen-
tations used for running our baseline experiments here:
https://github.com/asap-benchmark/lcric-baseline. The
training schemes and experimental settings can be
seen in Section 5.
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Appendix A. ASAP

Accuracy and Speed of ASAP

Figure 5: Accuracy of ASAP. Our human studies
indicate ASAP alignment to be highly accurate, aver-
agely 95% of the annotations are correctly aligned to
the corresponding video events (±1 second) across 4
different sports.

To verify ASAP’s ability to align dense annota-
tions on the web with videos of sports matches, we
conduct a study with human annotators on Amazon
Mechanical Turk (AMT). We randomly sample clips
from sports matches corresponding to 6 contiguous
events in the event chain generated by ASAP. For
all the generated clips, we ask human annotators to
provide timestamps for all 6 events and then check
whether the provided timestamps belong to the inter-
vals generated for those events by ASAP. We plot
the resulting accuracy of the timestamps in Figure 5
and find that ASAP is highly accurate, with an av-
erage accuracy of 95.3% across four very different
sports, each differing in visual attributes, number of
events, and length of plays. The drop in accuracy for
American football annotations can be explained by the
inconsistency in the timestamps provided by ESPN.
For regular plays, the timestamp indicates when the
play begins; however, for ‘touchdowns’, the times-
tamp indicates when the team scored and not when
the play begins. Additionally, penalties may affect the
game clock, which we use to align our annotations,
sometimes leading to slight alignment issues, which
we detail below. ASAP generates annotations with
very high speed requiring just 10 minutes to align and
process around 7 hours of video at 30FPS on a single
machine.
Alignment Verification We verify the accuracy of
annotations made by ASAP by providing human anno-
tators with a clip containing a contiguous sequence of
events, and asking them to provide the timestamps in
the video for when each event occurred. Additionally,

all scorecard information is masked in each provided
clip.

Verification of different sports For cricket, we built
an AMT interface and asked annotators to provide
both the timestamps and events that occurred in a clip
for over 1200 events to verify that both the ASAP
alignment process and video quality were sufficient,
which we discuss more in Appendix B. For verifying
and demonstrating the generality of ASAP pipeline,
we annotate three different sports, namely, American
football, football, and basketball, and verify it using a
similar interface. Due to the limited mturk budget, we
used two of the in-house annotators for the verifica-
tion of these three sport’s annotations by providing the
humans with clips from 6 hours of match footage for
each sport and had them verify (by annotating) 240
events for each sport.

American Football Alignment Issues We note that
the reason why the verification accuracy for American
football in Figure 5 is lower than the other sports is
because for most standard plays, the timestamps pro-
vided are for when the play started. However, when
a team scores or is given a penalty, the timestamp
provided for the next play is either the end of the
play, or when it happened. We were only able to have
ASAP account for the touchdown instances, but not
the penalty instances, which is generally what was
marked incorrect during our verification process.

A.1 Annotation Event Details

Events for Different Sports In this section, we de-
scribe the events that we considered for each sport.

• Cricket: Each legal delivery was considered
a valid event, where features such as the num-
ber of runs and the occurrence of a wide/out
ball were marked as well. See Appendix B for
further details.

• American Football: Each play was consid-
ered a valid event, so we considered punts, field
goals, complete passes, incomplete passes, run-
plays, sacks, penalties, and spikes as distinct.

• Football/Soccer: There are no distinct, sequen-
tial plays in football, so we based our events off
of online commentary. We mark shots off tar-
get, shots on target, shots on woodwork, goals,
fouls, substitutions, yellow cards, red cards, cor-
ner kicks, free kicks, offsides, handballs, and
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saved/blocked balls as distinct events to be an-
notated and aligned.

• Basketball: Like football/soccer, there are no
distinct plays that happen, so we mark fouls,
jumper shots, layups, dunks, free throws, and
regular shots as distinct events that we annotate
and align.

Granularity of Annotations Because the aligned an-
notations for different sports rely on the timestamps
provided by the online commentary source, we ob-
serve that different sports are annotated with varying
levels of granularity. Thus, when we verify the accu-
racy of an aligned annotation, we account for these
differing levels of granularity with different margins
for error. For example, in football, annotations are
provided at a minute-level, so if the human annota-
tor marks the event as occurring anywhere outside
that range, we consider the annotation to be incorrect;
however, for sports like basketball, where annotation
timestamps are given by the second, we provide a mar-
gin of error of ±1 second to the timestamp marked
by the human. Similar to football, in cricket, an event
lasts for 30-40 seconds, so if a human annotator is
able to mark the event as occurring anywhere inside
that range, we consider the annotation to be correct.

A.2 Raw Videos Source

All of the videos that we ran ASAP through were
found across YouTube. For cricket we used 131 videos,
and for all other three sports we annotated 3 videos
each. The average video length of a cricket match is
7.5 hrs while for the other sports it is 1.5 hrs. We also
provide the links to all the videos annotated with the
supplementary document.

A.3 Examples of Frames filtered by ASAP

Some of the examples of frames being rejected by
ASAP pipeline can be seen in Figure 6. As can be seen
in most of these cases either the scorecard information
is obstructed by some other text or some random data
is present in its location.

A.4 Limitations of ASAP

ASAP focuses specifically on sports videos due to the
nature of sports matches and the abundance of web
annotations. Thus, it is difficult, though not impos-
sible, to find online videos that satisfy the properties
discussed in Section 3. Furthermore, the accuracy of
ASAP’s annotations depend on the accuracy and gran-

ularity of the web annotations and associated match
states provided. In the case of sports videos, we have
found that the time markers and annotations provided
by sites like ESPN are extremely accurate, but this
may not be the case for other domains. Finally, ASAP
works the best for videos where the visible match
state exhibits consistent visual properties throughout
the video (e.g. a scorecard looks the same and does
not move throughout the video). In instances where
the match state is not in a fixed position throughout the
video or has changing visual features, ASAP requires
some manual effort.

Appendix B. LCric

B.1 Primer on Cricket [Video]

In this section we further extend our primer to Cricket
provided in Section 4 by describing the Batting/Bowl-
ing phases, as well as the primary objective of the
game. A brief overview video for the game explaining
the game can be found in here.

Introduction to Cricket Cricket is a sport played by
two teams of 11 players each that alternate between
batting and fielding throughout the game. The batting
team aims to score runs by hitting a ball bowled by the
fielding team out of the playing field. Meanwhile, the
fielding team aims to prevent the batting team from
scoring runs and dismiss all players in the batting
team by taking their wickets. Each exchange where
the fielding team bowls a valid ball and the batting
team attempts to hit the ball to score runs is called a
ball (or delivery) and a sequence of 6 balls is called
an over. Each ball is an atomic event and there are
12 distinct possible events. Those are: having the
batting team score n runs (n ∈ {0, ..., 9}), a wicket
is taken and the current batsman is dismissed, and a
wide (invalid) ball is bowled giving the batting team
an extra run and another ball. The game is played in
an inning-format, where one team is batting, and the
other team is fielding. We describe the two phases
below.
Bowling Phase When a team is in the bowling phase,
all 11 players stay on the field. One of the players is
designated as the bowler, and their job is to deliver the
ball to the batter (hitter) on the batting team. If the
ball is struck by the batsman, the remaining players,
called fielders, try to prevent the ball from reaching
the boundary of the field and return the ball back to
the pitch area. A single over consists of six deliveries
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Figure 6: Some examples of frames rejeced by ASAP. In all of these frames the scorecard information either
get obstructed by screen overlays or shifted from their usual position.

bowled by the same player, and each team delivers
a set number of overs depending on the tournament
type in their bowling phase.

Batting Phase When is team is in the batting phase,
only two players on the team stay on the field at a
time. The batsman’s job is to score runs and defend
their wickets. A single run is scored when the bats-
man hits the ball and runs from one end of the pitch
to another. Another way to score runs is to hit the
ball to the boundary of the field, which is called the
’boundary’, giving 4 or 6 runs to the batting team. In
total, each batting team has 10 wickets.

Objective During an inning, the batting team wants
to score as many runs as possible, while the bowling
team wants to take as many wickets as possible to
stop the batting team from scoring. In most single-
day matches, the bowling team will bowl for 50 overs
before the teams switch roles for the second half of
the game. At this point, the goal of the new batting
team is to outscore the previous team in runs before
50 overs or before losing all of their wickets.

B.2 Training and Implementation Details

We use consistent training schemes for both TQN Zhang
et al. (2021) and MeMViT Wu et al. (2022) to provide
a fair comparison between the two baselines. Both
models were trained for 50 epochs on 4 V100 GPUs
with a batch size of 4. We used a base learning rate
of LR = 0.01 with the Adam optimizer and default
hyperparameters.

Baseline Implementations For setting up TQN as a
baseline, we used the official code provided by the
authors with some minor modifications to the output
heads for answering LCric queries. For MeMViT,
since there is no official implementation released at

the time of writing, we implemented our own version
using the same implementation details as the main pa-
per. Our implementation is built on top of the official
implementation of MViT Fan et al. (2021), which is
the base model used to create MeMViT.

Human Baseline Details To measure human perfor-
mance, we conducted an AMT study on our LCric
test set where we gave the annotators a set of possi-
ble events in Cricket (which is also what we give to
the video understanding baselines), and asked them to
both annotate the timestamps of these events and anno-
tate the event that occurred (see supplementary). We
assumed that humans possess near-perfect aggregation
skills (i.e. if we ask a human to count the number of
goals in a clip, and the human recognizes that a goal
occurred in two different parts of the clip, the human
can reasonably infer that a total of two goals occurred)
and therefore we aggregated their answers on the clips
to the queries generated for LCric.

B.3 LCric Queries

The following section describes the different types of
queries automatically generated for the LCric dataset.
Min-Max occurrence query. To test a model’s ability
to detect and remember events, we construct queries
such as “for a given video, did a wide ball (an event)
occur between 3 and 5 times inclusive?". We gener-
ate these queries by sampling an atomic event from
the set of all possible events, and then sampling two
numbers, omin and omax, to denote the minimum and
the maximum number of occurrences needed for this
query to be true.
Binary queries by chaining occurrence queries. To
increase query diversity and complexity, we sample
nchain different min-max occurrence queries and com-
bine them using [and]/[or] operators. For example, for
a given video spanning 10 overs (∼50 mins), “did a
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wide ball occur between 3 to 5 times [and] did a ball
with 2 runs scored occur 1 to 3 times?". All binary
queries in LCric are formed by chaining 1-5 different
min-max occurrence queries.
Multiple-choice queries by counting occurrences.
We expand upon the binary occurrence queries by gen-
erating multiple-choice occurrence queries, which ask
models to directly predict the number of occurrences
rather than predicting membership in a range. An ex-
ample of such a query is – given a video, how many
times did a wide ball occur after a ball with 4 runs?
We note that these events are sequential, but not neces-
sarily contiguous. As most non-trivial multiple-choice
events in LCric occur between 0-9 times in a given
clip, we use {0, ..., 9} as our answer choices.
Filtering unbalanced queries. We can compose
many LVU multiple-choice and binary queries using
the above formulation, however, not all queries are
balanced. Due to the rarity of certain events occur-
ring in Cricket, some queries are far easier to guess
correctly than others. For example, in a 45 minutes
clip (spanning ∼ 10 overs), the query – “did a ball
with 2 runs occur between 0 to 10 times" is true with
a probability of 87%. We filter such queries based on
the probability of their occurrence in training matches
and ensure the average probability of occurrence of
the selected queries to be between 0.45−0.55 to avoid
bias.
Regression query for counting runs. Lastly, we also
experiment with a single regression query that asks
the model to predict the number of runs scored as a
regression output for a given video sequence.
Query Set Generation Algorithm We describe our
query set generation process in Algorithm 1, where
we use logical operators and a set of possible atomic
events form form different combinations of queries.

Binary Query Statistics For our 10-over experiments,
we formed a balanced set of 32 queries by taking
queries from the set formed by Algorithm 1 and prun-
ing them down so that given a random 10-over clip
sampled uniformly from LCric, there would be a
0.5± 0.05 probability that the query would hold true
on that clip. We list the set of all such queries and
their corresponding probabilities in Table 4.

Multi-Choice Query Statistics We also generated
a set of multi-choice queries for our 10-over experi-
ments. These queries include a mix of common and
less common event chains that generally occur be-
tween 0-9 (inclusive) times within any 10-over clip.

Algorithm 1: Query Set Generation
1 # The set of atomic events:

[0,1,2,...,9,W,w]
2 Set of atomic events: Ae

3 # The number of queries for the query set
4 Size of the query set: nq

5 query_set = []
6 for i in range(nq) do
7 # Step A: getting raw operators and

combinators choice
8 num_joins∼ [1,5]
9 # total length for operators set being

sampled
10 for determining the query length
11 ops = random.choices([atleast(),

atmost(), inrange()], num_joins) #
sampling list of operators

12 combine_op = random.choices([and, or], 1)
# sampling the combination operator

13 # Step B: instantiating a query for
query set for matching

14 query = []
15 for op in ops do
16 # specify lower bound for

atleast/inrange ops
17 occ_min∼ [1,10]
18 # specify upper bound bound for

atmost/inrange ops
19 occ_max∼ [occ_min,10]
20 # sample atomic events in query
21 atomic_event∼ [Ae]
22 # Using the above variables for

defining an occurrence pattern for
atomic_event

23 instanced_op = op(occ_min, occ_max,
atomic_event)
query.append(instanced_op)

24 final_query = join_op(query)
25 query_set.append(final_query)
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The frequency of occurrence of these clips within our
train set is provided in Figure 12.

B.4 LCric Statistics

We also plot additional statistics for LCric in Fig-
ure 7 and Figure 8. Figure 7 shows the distribution of
occurrence of various clip lengths for 1-over, 5-over
and 10-over. We clearly see the 10-over mark having
more clips in 2000-3000 secs time range while the
1-over mark has more clips in 200-300 time range.
Figure 8 also shows the number of clips for different
over marks.
B.5 AMT Interface

We built an AMT interface for verifying ASAP’s align-
ment of cricket annotations to videos, with the full
instructions and interface provided in Figure 9.

Instruction Details Each annotator is given a set of
instructions to read prior to beginning the main anno-
tation task, called a HIT (Human Intelligence Task).
For each task, the annotator is given a video clip from
a sports match. The task is to classify each legal de-
livery/ball that occurred in the video, as well as the
timestamp at which the annotator was able to gather
enough information to answer this question. Addi-
tionally, we provide a set of examples for what each
event looks like to the annotators, as well as a fully
annotated example and video, as shown in Figure 10,
11.

Task Interface Details Each HIT contains a 1-over
video and 6 rows, each corresponding to a legal deliv-
ery that occurred in the video. Each row consists of
a dropdown for inputting the number of runs scored
in that delivery, a checkbox for indicating an out ball
occurred, a checkbox for indicating a wide ball oc-
curred, and a field for writing the timestamp at which
this information can be found. Figure 9 shows what
the annotators initially see, as well as an example of
how to fill it out.

LCric Annotation Verification A total of 205 overs
with 1230 events spanning ∼1000 minutes were la-
beled by human annotators and compared to ground
truth annotations from ESPNCricinfo. For each ball,
we consider an event annotation to be correct if it was
classified completely correctly. The timestamp annota-
tion is marked as correct if it occurred anytime within
the timestamp range specified by the ground truth ±1

seconds.

LCric Annotation Statistics We found that in total,
1185/1230(96.34%) of balls were classified correctly,
while 1213/1230(98.62%) of ball timestamps were
marked correctly. Additionally, assuming human an-
notators can aggregate and reason easily with logic,
we aggregate their annotations to answer queries in
our test set, which provides our human baseline. We
find that the human annotations achieve an accuracy of
5541/5740(96.53%) on the test query set – exceeding
the TQN and MemViT baselines by a large margin.

Queries GT probability
atmost 7 1’s 0.451
atleast 4 4’s 0.523
atleast 5 1’s AND atleast 3 4’s 0.528
atleast 2 2’s AND atleast 3 4’s 0.452
atleast 4 4’s AND atmost 5 o’s 0.452
atleast 4 4’s AND atmost 3 5’s 0.456
atleast 4 2’s OR atmost 2 4’s 0.539
atleast 4 3’s OR atmost 3 4’s 0.544
atleast 5 2’s OR atleast 4 4’s 0.526
atleast 3 2’s OR atleast 2 w’s 0.485
atmost 3 4’s AND atmost 2 6’s 0.529
atmost 3 4’s AND atmost 3 7’s 0.544
atmost 2 0’s OR atmost 3 4’s 0.544
2 inrange [1, 6] AND 4 inrange [1, 4] 0.539
4 inrange [1, 6] AND o inrange [1, 4] 0.555
1 inrange [2, 7] OR 2 inrange [4, 5] 0.506
1 inrange [1, 2] OR 2 inrange [2, 3] 0.458
atleast 2 1’s AND atleast 2 2’s AND atleast 2 4’s 0.542
atleast 4 4’s OR atleast 4 o’s OR atleast 4 w’s 0.493
atleast 5 2’s OR atleast 4 4’s OR atleast 3 6’s 0.535
atmost 4 3’s AND atmost 3 4’s AND atmost 2 5’s 0.544
atmost 4 2’s AND atleast 3 4’s AND atmost 4 w’s 0.546
atmost 5 1’s OR atleast 5 3’s OR atmost 2 4’s 0.504
atmost 3 0’s OR atleast 5 3’s OR atmost 3 4’s 0.544
atmost 3 0’s OR atmost 4 1’s OR atmost 2 4’s 0.472
atmost 2 0’s OR atmost 5 1’s OR atmost 2 4’s 0.504
1 inrange [2, 6] OR 2 inrange [3, 4] OR 3 inrange [6, 7] 0.528
atleast 4 0’s AND atleast 3 1’s AND atleast 2 2’s AND atleast
2 4’s

0.52

atleast 4 4’s OR atleast 2 5’s OR atleast 2 6’s OR atleast 4 o’s 0.518
atmost 3 2’s AND atmost 4 4’s AND atmost 3 6’s AND atmost
5 w’s

0.539

6 inrange [1, 7] OR 8 inrange [2, 4] OR o inrange [2, 3] OR w
inrange [6, 7]

0.494

1 inrange [1, 6] OR 5 inrange [1, 2] OR o inrange [3, 6] OR w
inrange [4, 6]

0.511

Table 4: The binary choice query set used for 10 over ex-
periments and their associated ground truth (GT) probability
of occurrence in the LCric train set.
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Figure 7: Occurrence frequency of various clip lengths. Here we plot the distribution of occurrences of
various clips lengths (in seconds) that were extracted for LCric.

Figure 8: Number of clips for different overs. We
plot the distribution of the number of clips for different
over lengths in LCric.
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 Strongly recommended to know the game of Cricket/aware of the rules. 

 Description 

 Help us annotate cricket matches by filling in the events happening per ball in a clip. 

 Instructions 

 For each cricket match video, there will be up to 6 deliveries that you will need to label. For each delivery, you will need to report: 

 1.  the  number of runs scored  in the delivery 
 2.  whether or not there  was a wide ball or out ball (or neither)  in that delivery 
 3.  when in seconds  did the batsman play the delivery? 

 Apart from this, at the very end there is also last question prompt inquiring whether the clip given is sufficient for answering the given set of questions. 
 Please answer it Yes/No accordingly. 

 Note: If a ball is wide, the ball subsequent to it will also be considered as a part of the same delivery. Also, please do not consider the wide towards the 
 run tally. For instance, if during the second delivery, a bowler bowls a wide ball, then the batter gets 2 runs on the next ball, check “Wide?” and select “2” 
 for the number of runs. 

 Please find the  timestamp info  for filling out the timestamp related question just above the clip in  red  color. 

 We request you to watch the full video carefully on a laptop or a computer to precisely answer the questions. The video player has a playback speed 
 option which can be used to alter the playback speed up to 2x. 

 Please find the detailed instructions below where we cover the process with an example. 

 We provide an example video with a set of fully labeled annotations. We also walk through how we got each of the annotations labels. 

 We provide a fully annotated set of labels below for the video above. 

 Within a document, navigate to File > Page setup to switch between pages (the default format) and pageless (the new format). Changes to this setting are 
 document-specific: everyone who interacts with your document will see it, but changing the setting for one document won’t impact other documents you 
 own. 

 For annotating the above match the thinking used is as follows: 

 1.  In the  first  delivery, the batsman hits the ball and begins running, resulting in two runs,  so we mark down 2 in the dropdown "Runs?".  We note 
 that no out-balls or wide-balls occurred, so we  do not check either box labelled "Wide?" or "Out?".  We then pause the video at the point when 
 the batsman hit the ball and started running and read the  red timer on the top left of the video  that shows the current time we are paused on, and 
 mark that time down in seconds [63.7]  in the right-most blank (  do a rough estimate of the time the batsman hit the ball to the best of your ability  ). 

 2.  In the  second  delivery, the batsman hits the ball and scores a single run,  so we mark down 1 in the dropdown "Runs?".  We note that no out-balls 
 or wide-balls occurred, and  write down the time [99.0]  that the batsman hit the ball. 

 3.  *In the  third  delivery, the batsman is first thrown a wide ball. So we check off the  wide-ball  label. Since the batsman was thrown a wide ball, we 
 count the subsequent ball as part of the same delivery. In the next ball, the batsman scores 0 runs,  so we mark down 0 in the dropdown 
 "Runs?".  We then  mark the time that the batsman hit the ball [171.7]  (you can mark either when the batsman was thrown the wide ball, or when 
 the batsman hit/missed the subsequent ball). 

 4.  In the  fourth  delivery, the batsman misses and scores no runs,  so we mark down 0 in the dropdown "Runs?".  We then  mark the time that the 
 batsman swung at the ball [206.0]. 

 5.  In the  fifth  delivery, the batsman hits the ball and scores a single run,  so we mark down 1 in the dropdown "Runs?".  We note that no out-balls or 
 wide-balls occurred, and  write down the time [247.8]  that the batsman hit the ball. 

 6.  In the  sixth  delivery, the batsman hits the ball and scores no runs,  so we mark down 0 in the dropdown "Runs?".  We note that no out-balls or 
 wide-balls occurred, and  write down the time [283.0]  that the batsman hit the ball. 

 Finally, we scroll down and answer the last question. Because we were able to answer all of the given questions using the video, we answer "Yes". 

Figure 9: AMT instructions page given to annotators prior to starting the task.
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 Examples of various different kinds of balls 

 Below we provide some example snippets of various different kinds of balls that can be seen in the video snippets for our task. 

 1.  Dot ball (where run scored is 0): 

 As can be seen from the clip, the runs scored in the ball is 0. By definition, this can happen either if the batsman does not hit the ball or if he/she 
 hits the ball but is not able to run from one end of the pitch to another. 

 2.  1 Run Scored: 

 As can be seen from the clip, the runs scored in the ball is 1. By definition, if a batsman is able to hit the ball and run from one end of the pitch to 
 another, their team is awarded one run. Similarly, a player can score other possibilities of runs such as 2,3, etc. 

 3.  4 Run (boundary) Scored: 

 As can be seen from the clip, the runs scored in the ball is 4. By definition, it happens if the batsman hits the ball and the ball hits the ground before 
 reaching the stadium boundary. 
 ̀ 

 4.  6 Run (boundary) Scored: 

Figure 10: Instructions page for AMT interface for Cricket. Each of the 12 events is described in gif format.
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 As can be seen from the clip, the runs scored in the ball is 6. By definition, it happens if the batsman hits the ball and the ball reaches the stadium 
 boundary without hitting the ground. 

 5.  Out ball 

 As can be seen from the clip, the ball leads to the player getting out. By definition, an out can happen on multiple accounts. 
 ○  Leg Before Wicket: If a ball delivery hits any part of the body and is adjusted to have been hitting the stumps. 
 ○  Run Out: A batsman is deemed run out if a member of the fielding team puts down the wicket while the batsman is out of their 

 crease/ground. 
 ○  Bowled Out: A batsman is considered bowled out if a delivery strikes their wicket and puts it down. 
 ○  Caught: If a ball is hit by the batsman is caught by the opposing team before it hits the ground, it is considered an out ball as well. 

 For this task of annotation, we request you to consider the ball where an Out occurs as one where runs scored is also 0. 

 6.  Wide ball 

 As can be seen from the clip, the ball is a wide one. By definition, a ball is considered wide if it is bowled too wide to be played by a batsman. Also, 
 a wide ball leads to another ball being played on the same ball number and 1 run also being awarded. 

Figure 11: Instructions page for AMT interface for Cricket. Each of the 12 events is described in gif format.
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Figure 12: Ground truth output frequencies to some of the queries used in multi-choice query type questions
in the train set of LCric for 2-over, 4-over, 8-over and 10-over clips.
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Appendix C. Basketball Dataset
(LBasketball)

We use the ASAP pipeline for annotating a new
dataset, named LBasketball comprising of basketball
dataset. The overall pipeline for the same is similar to
one we utilized for creating LCric and mentioned in
detail in Section 3.

The atomic events utilized for this are as follows:
foul, shot point and shot miss. We annotate these
events based on the description provided by ESPNInfo.
The “shot miss” refers to when a player attempts to
score by shooting the ball, but the ball misses the
basket. The “shot point” refers to when a player scores
by shooting the ball. A “foul” refers to any type of
foul that a player makes, and it is clear by watching
the referee and the players that a foul has occurred.

C.1 Statistics and Dataset Splits

Statistics. LBasketball currently includes 80+ hours
of basketball videos across 50 unique matches (av-
erage length of 1.5 hours). For processing in video
understanding models we create clips of 2-3 mins aver-
age length comprising of 6 consecutive atomic events.
All the videos are preprocessed at a resolution of 360p
and we provide links to the source videos of higher
resolution.

Dataset splits To maintain similar test setup with
LCric, we split all matches in LBasketball into train,
validation, and test splits and ensure a 3:1:1 ratio of
the number of hours in each split.

C.2 LBasketball Queries

Similar to LCric, we also form compositional queries
for LBasketball and form three different query sets,
namely binary, multiple choice and regression queries
(in a similar fashion as mentioned in Section 4.2).
Some of the example queries we utilized for forming
this set are as follows:
[Binary Choice Question] Did a foul occur at-least
2 times AND Did a shot point occur at-most 3 times.
Answer: Yes/No
[Multiple Choice Question] How many times did a
foul occur just after a shot miss Answer Option: 0, 1,
2, 4
[Regression Question] How many points were over-
all scored in this video segment Answer: 10
We also balance the queries just like we did in LCric
and curate a set of 20 queries for binary-choice ques-
tions and 6 queries for multiple-choice questions.

# Model Binary
Accuracy ↑ Multiple

Accuracy ↑ Regression
L1 Norm ↓

1 TQN 57.68% 19.05% 17.21
2 MovieChat 60.21% 20.31% 28.34

3 Human 96.34 % 96.29% 0.215

Table 5: Additional Results on the LCric dataset for
10-over clips. MovieChat outperforms TQN on binary
and multi-choice query types while underperforming
on the regression query.

Appendix D. Additional Results

Here, we outline some more results on LCric and also
on our newly created basketball dataset. We specifi-
cally utilize 10 over clips for our LCric experiments
and also have the same experimental setup as men-
tioned in section 5 in the main paper. For basketball
dataset, we process clips at 2 fps (because of shorter
clips lengths compared to cricket). We remove the
scorecard from all frames to prevent annotation leak-
age and process frames at a resolution of 128 x 128.
We compute following evaluation metrics: 1) Classi-
fication accuracy for binary (Binary Accuracy) and
multi-choice (Multiple Accuracy) queries 2) Average
L1 norm for regression queries (Regression L1 Norm)

We also use a new baseline, namely MovieChat Song
et al. (2023). The paper utilizes a memory mechanism
inspired by Atkinson-Shiffrin memory model, and
develop a long-form and short-form memory. Addi-
tionally, they also utilize ways to reduce the visual to-
kens and use a sliding windows approach to efficiently
process the video. For querying, an LLM model is
utilized on top of this to present a coherent answer
taking into account the query and the video segment
in question. This framework helps to efficiently query
on top of really long videos.

D.1 Key Results

New Baseline for LCric Table 5 shows the perfor-
mance of the new baseline MovieChat Song et al.
(2023) and a comparison with the already present
TQN and human baseline. While we clearly see a
substantial improvement in binary and multi-choice
questions using MovieChat, there is still considerable
gap when compared to human performance. This im-
provement can clearly be attributed to better memory
storing mechanism leading to better understanding
over longer videos. We also see a dip in the regression
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# Model Binary
Accuracy ↑ Multiple

Accuracy ↑ Regression
L1 Norm ↓

1 TQN 69.43% 25.88% 5.39
2 MovieChat 75.12% 26.83% 8.89

3 Human 97.15 % 97.67% 0.582

Table 6: Results on Basketball dataset. Even with
shorter clip lengths, we still see substantial perfor-
mance gap between the video understanding baselines
and the human evaluation.

# Model Binary
Accuracy ↑ Multiple

Accuracy ↑ Regression
L1 Norm ↓

1 1 fps, 128*128 64.87% 21.56% 14.74
2 1 fps, 192*192 64.93% 21.68% 14.75

3 0.5 fps, 128*128 62.19% 20.52% 14.83

Table 7: Additional ablations on LCric dataset using
TQN model for 2-over clips. We see improvements
when using higher FPS and some minor gain when
increasing the frame size as well.

performance. We believe this can be further improved
a bit using better prompts and also other hyperparam-
eter tuning of the model. Due to the limited time, we
were not able to run further experiments ablating on
these.

Results on LBasketball Table 6 shows the two
baselines being run on the newly curated LBasketball.
We also ran a small scale human study for our new
basketball dataset as seen in the table. We see higher
numbers overall for both the baselines as compared
to LCric which can be attributed to the shorter clip
lengths (2-3 mins) in LBasketball in comparison to
the longer clips (50 mins) we used for LCric. Similar
trends of MovieChat performing better can also be
seen in our LBasketball evaluation as well.

Changing FPS and frame size Table 7 shows
some results when we modify frame size and fps from
our base hyperparams (0.5 FPS, 128*128). We see
a clear improvement when increasing the frame rate,
and also a slight improvement when using a better
frame size. This was expected considering this leads
to better localization of events. This further proves
that better caching mechanisms and memory modules
for more efficient computations are key for long-form
video understanding.
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Appendix E. LCric Datasheet

E.1 Motivation For Datasheet Creation

Datasheet as described in Gebru et al. (2021). Some
questions were re-ordered to different sections, but the
content remains the same.

Why was the datasheet created? (e.g., was there
a specific task in mind? was there a specific gap that
needed to be filled?)

Long-horizon Video Understanding (LVU) is the
problem of reasoning over a long stream of video
data, such as understanding the plot of a movie or
analyzing the performance of a player in a lengthy
game. Progress toward LVU has been greatly limited
by the lack of dmensely annotated data. Creating an
LVU benchmark requires manually annotating videos
frame-by-frame, which is incredibly tedious and hard
to scale. This constraint has limited the length of ex-
isting densely-annotated video understanding bench-
marks from a few seconds to a few minutes. Thus, we
created LCric, a dataset containing over 131 publicly
available cricket matches (on YouTube) with 1000+
hours of match footage aligned with publicly avail-
able web annotations. LCric serves as a simple yet
unsolved benchmark for long-horizon video under-
standing that evaluates a model’s ability to localize
and aggregate contextual information in long videos.

Has the dataset been used already? If so, where
are the results so others can compare (e.g., links to
published papers)?

Yes, see the results in Section 4 of the main paper.

What (other) tasks could the dataset be used for?

LCric can also be used for short-form video un-
derstanding and action recognition tasks as well, but
the primary focus and value of the benchmark is for
long-horizon video understanding.

Who funded the creation of this dataset?

The project was supported by University of Toronto,
Princeton, and Digital Research Alliance of Canada
in providing us with resources for data collection and
experimentation.

Any other comment?

We have curated an additional dataset on 50 pub-
licly available NBA basketball games on YouTube
(totally 80+ hours of footage). The following discus-
sions on ethics and impacts of LCric similarly apply
to this basketball dataset.

E.2 Datasheet Composition

What are the instances?(that is, examples; e.g., docu-
ments, images, people, countries) Are there multiple
types of instances? (e.g., movies, users, ratings; peo-
ple, interactions between them; nodes, edges)

The instances are videos of professional sports
matches (primarily cricket) that were once broadcasted
on TV for entertainment purposes and are now avail-
able on YouTube for public viewing. They primarily
contain footage of professional, contracted athletes
playing sports. While these matches sometimes con-
tain cameras panning to audience members, our an-
notation pipeline used to collect these videos, ASAP,
filters out frames that do not show the sports match.
Furthermore, in all of the cricket matches used, there
are no visible people other than the players on the
field.

How many instances are there in total (of each
type, if appropriate)?

LCric consists of 131 unique professional cricket
matches, totally over 1000 hours of raw match footage.
All matches are publicly available on YouTube.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images)? Features/at-
tributes? Is there a label/target associated with in-
stances? If the instances related to people, are subpop-
ulations identified (e.g., by age, gender, etc.) and what
is their distribution?

Each instance consists of several hours of continu-
ous footage from a professional sports match. Further-
more, there is an associated set of annotations stored
as a JSON that contains a range of timestamps, as well
as corresponding labelled events for these timestamps.
Each event corresponds to an action in the game. For
Cricket, this is specifically the batting team hitting the
ball for a certain number of runs, hitting out, or hitting
a ball. Finally, all sports matches are of male athletes,
but in the instance of a video understanding bench-
mark where the labels correspond to in-game actions,
we believe that this distribution is not harmful.

Is there a label or target associated with each in-
stance? If so, please provide a description.

Each frame of LCric is labelled with an associated
event, as described in the section above. The event
is generally a text description of some general action
that occurred in the game.

Is any information missing from individual in-
stances? If so, please provide a description, explaining
why this information is missing (e.g., because it was
unavailable). This does not include intentionally re-
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moved information, but might include, e.g., redacted
text.

There are no spectators or non-players that can
be seen in any LCric matches because there are none
in the raw match footage. In the basketball dataset,
any scenes focusing on audience members are filtered
out by our ASAP pipeline because there is also no
relevant game information in these scenes.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? If so, please describe how these relation-
ships are made explicit.

The teams playing in each match and the players
on each team are made explicit by their jerseys, but
this is all public information.

Does the dataset contain all possible instances or
is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then
what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was vali-
dated/verified. If it is not representative of the larger
set, please describe why not (e.g., to cover a more
diverse range of instances, because instances were
withheld or unavailable).

This dataset represents a subset of all publicly
available professional cricket matches on the web.
However, we believe that the choice of which matches
are included in the dataset would not affect the rea-
soning ability of a video understanding model, and is
therefore representative of the larger set.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please provide
a description of these splits, explaining the rationale
behind them.

The recommended data splits used in our baseline
experiments were 60% of the matches for train, 20%
for validation, and the remaining 20% for test.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a description.

Because we aligned web annotations to each video
using an automatic annotation pipeline (ASAP), there
may exist errors in the labelling of certain events to
certain frames. However, we have also conducted a
crowdsourced study on the accuracy of our annotation
pipeline on LCric.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on ex-
ternal resources, a) are there guarantees that they will
exist, and remain constant, over time; b) are there of-

ficial archival versions of the complete dataset (i.e.,
including the external resources as they existed at the
time the dataset was created); c) are there any restric-
tions (e.g., licenses, fees) associated with any of the
external resources that might apply to a future user?
Please provide descriptions of all external resources
and any restrictions associated with them, as well as
links or other access points, as appropriate.

The videos we collected for LCric are from pub-
licly available videos on YouTube, generally from
the official source. Furthermore, the web annotations
for almost all professional cricket matches are avail-
able publicly on the website ESPNCricinfo.com. We
currently have scraped versions of the videos with
links to the original, but if the original were to be
removed for whatever reason, we would remove the
corresponding video. Furthermore, the benefit of our
ASAP pipeline is that it becomes easier to align newly
available matches/videos for use in training.

Any other comments?
N/A

E.3 Collection Process

What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?
How were these mechanisms or procedures validated?

Both the cricket matches and web commentary/an-
notation data were scraped using a video downloader
or a simple scraping software. The scraping was veri-
fied manually.

How was the data associated with each instance
acquired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other
data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects
or indirectly inferred/derived from other data, was the
data validated/verified? If so, please describe how.

The data associated with each instance was first
scraped from ESPNCricinfo.com, then aligned frame-
by-frame with each video using the ASAP pipeline.
The data is directly observable on the web.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, proba-
bilistic with specific sampling probabilities)?

Videos were chosen by searching for publicly
available cricket matches on YouTube, preferably from
official sources. Furthermore, these matches had to
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have associated play-by-play match statistics available
on ESPNCricinfo.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and how
were they compensated (e.g., how much were crowd-
workers paid)?

We paid crowdworkers through Amazon Mechan-
ical Turk (AMT) to verify a randomly sampled sub-
set of clips of our annotated Cricket matches. Each
clip was roughly 5 minutes and could be answered
instantly upon viewing the clip, and we paid each
crowdworker $1.50 per clip. This roughly equates
to $18 per hour, which is well above the minimum
wage in any country in the world (although we limited
our crowdsourcing to India and New Zealand, where
cricket is more popular).

Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the
data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the time-
frame in which the data associated with the instances
was created.

The data was collected over the last two years.

E.4 Data Preprocessing

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? If
so, please provide a description. If not, you may skip
the remainder of the questions in this section.

Removal of non-sport elements of each video was
done automatically with ASAP. Essentially, if there
was no scorecard information on the screen, then the
frames were removed by ASAP, as they are not rele-
vant to the video understanding benchmark.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or
other access point to the “raw” data.

The raw data is saved on YouTube, as all matches
are publicly available for viewing. We have included
links to each corresponding video that was used.

Is the software used to preprocess/clean/label the
instances available? If so, please provide a link or
other access point.

The software used, ASAP, is described in the main
paper. It will be made available with the release of the
full paper.

Does this dataset collection/processing procedure
achieve the motivation for creating the dataset stated
in the first section of this datasheet? If not, what are
the limitations?

This dataset collection process achieves the mo-
tivation of creation a long-horizon video benchmark
described in the first section. However, there are some
limitations of ASAP that we would like to address.
Firstly, ASAP requires free, publicly available videos
and web annotation data with some kind of identifier
(e.g. match state) that can be aligned to the videos.
Thus, sports videos are the ideal candidate, but it is
therefore difficult to apply ASAP to other domains
of videos. Secondly, ASAP is an automatic pipeline
for long videos that relies on pre-existing annotations,
and hence it relies on the accuracy of these annota-
tions. Furthermore, while we can verify the accuracy
of ASAP using crowdworkers, we cannot afford to do
this for 1000+ hours of footage.

We should point out that our goal in this work was
to present a preliminary long-horizon video bench-
mark for video understanding models that should be
quite simple to solve if the video understanding model
exhibits basic localization and aggregation abilities.
In other words, a video understanding model that can
solve a more complex video understanding benchmark
should also be able to solve our long-horizon sports
benchmark. Thus, we believe that extending ASAP to
other scenes/domains becomes important after video
understanding baselines can solve the simple sports
benchmark.

Any other comments
N/A

E.5 Dataset Distribution

How will the dataset be distributed? (e.g., tarball on
website, API, GitHub; does the data have a DOI and
is it archived redundantly?)

We have a list of all of the relevant YouTube videos
and their links, as well as a Python script for down-
loading and using the videos in GitHub. This way,
if a video is taken down in the future, the script will
be unable to use it, preventing the distribution of non-
publicly available material. Furthermore, the script
can be easily updated to include other publicly avail-
able sports matches. Also, we have provided a Google
Drive link with the scraped and frame-aligned annota-
tions as well. This link is provided in the same GitHub
repository.
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When will the dataset be released/first distributed?
What license (if any) is it distributed under?

The dataset will be released as soon as this work
is published. The dataset as a whole and the frame-
aligned annotations will be released under the ODC-
By 1.0 license. Individual videos are subject to the
licenses by the owners of these videos (sports organi-
zations), and users need to assess these licenses based
on downstream use cases.

Are there any copyrights on the data?
The frame-aligned annotation data is not copy-

righted, but the videos are. This is why we provide
the annotation data, but not the YouTube videos, and
only offer a downloader for use of the videos in train-
ing and inference. We do not own the rights to the
professional sports matches.

Are there any fees or access/export restrictions?
There are no fees. All data is publicly available on

both YouTube and ESPNCricinfo, both of which are
well supported. Users must follow the license of the
content with which the original files were distributed
and the terms of service for each platform.

Any other comments? N/A

E.6 Dataset Maintenance

Who is supporting/hosting/maintaining the dataset?
The authors of the dataset will maintain the dataset

for the forseeable .
Will the dataset be updated? If so, how often and

by whom?
The dataset will not be updated, unless there is a

severe issue with regards to the availability of videos
in the dataset.

How will updates be communicated? (e.g., mail-
ing list, GitHub)

Updates will be communicated through our GitHub
organization and repositories.

If the dataset becomes obsolete how will this be
communicated?

It will be communicated through our GitHub orga-
nization and repositories.

Is there a repository to link to any/all papers/sys-
tems that use this dataset?

We may update our GitHub repository with a list
of works using this dataset.

If others want to extend/augment/build on this
dataset, is there a mechanism for them to do so? If so,
is there a process for tracking/assessing the quality of
those contributions. What is the process for communi-
cating/distributing these contributions to users?

Yes, the purpose of the ASAP pipeline is to be
able to easily gather more annotated data for the long-
horizon video understanding task.

E.7 Legal and Ethical Considerations

Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide
a description of these review processes, including the
outcomes, as well as a link or other access point to
any supporting documentation.

Institutional review boards were not involved in
the collection of the dataset.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctorpatient confidentiality, data that
includes the content of individuals non-public com-
munications)? If so, please provide a description.

To our knowledge, this dataset does not contain
any data that might be considered confidential.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe
why

To our knowledge, this dataset does not contain
any data that might be considered offensive or insult-
ing.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.

Yes, the dataset contains professional athletes play-
ing their sport.

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these
subpopulations are identified and provide a description
of their respective distributions within the dataset.

All games present in the dataset are of male ath-
letes. However, this is primarily due to the abundance
of web annotations and publicly available games. Fur-
thermore, this does not affect the annotations or bench-
mark in any way.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indirectly (i.e.,
in combination with other data) from the dataset? If
so, please describe how.

In most instances, the players are too small to see
detailed facial or body features. However, in some
instances a player’s jersey is clear enough to see their
last name and team number.

Does the dataset contain data that might be con-
sidered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, religious
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beliefs, political opinions or union memberships, or
locations; financial or health data; biometric or ge-
netic data; forms of government identification, such
as social security numbers; criminal history)? If so,
please provide a description.

To our knowledge, this dataset does not contain
any data that might be considered sensitive.

Did you collect the data from the individuals in
question directly, or obtain it via third parties or other
sources (e.g., websites)?

We collected the data from the sports organiza-
tions that broadcast these matches on YouTube.

Were the individuals in question notified about
the data collection? If so, please describe (or show
with screenshots or other information) how notice was
provided, and provide a link or other access point
to, or otherwise reproduce, the exact language of the
notification itself.

No, individuals were not notified about the collec-
tion of the dataset.

Did the individuals in question consent to the col-
lection and use of their data? If so, please describe
(or show with screenshots or other information) how
consent was requested and provided, and provide a
link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.

No, but professional athletes do consent to being
recorded and broadcasted for their professional sports
games. Furthermore, gathering statistics through pub-
licly available videos is a common and legal practice
in sports.

If consent was obtained, were the consenting in-
dividuals provided with a mechanism to revoke their
consent in the future or for certain uses? If so, please
provide a description, as well as a link or other access
point to the mechanism (if appropriate).

N/A
Has an analysis of the potential impact of the

dataset and its use on data subjects (e.g., a data pro-
tection impact analysis)been conducted? If so, please
provide a description of this analysis, including the
outcomes, as well as a link or other access point to
any supporting documentation.

No analysis has been conducted.
Any other comments?
Potential negative societal impacts. We ac-

knowledge that there are few potential negative soci-
etal impacts of ASAP and LCric. Firstly, the availabil-
ity of a tool for aligning web annotations to videos
may cause misuse of copyrighted and/or private prop-
erty. Secondly, our use of online sports videos, which

are copyrighted material, may lead to misuse and ille-
gal distribution of these materials. Finally, while the
limitations on the type of data that may be aligned by
ASAP prevents the extension of the tool to potentially
harmful and invasive applications, we acknowledge
that it may be possible in some instances for ASAP to
extend harmful forms of video footage such as surveil-
lance.
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