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Abstract

Molecular Dynamics (MD) simulations are essen-
tial for understanding the atomic-level behavior of
molecular systems, giving insights into their tran-
sitions and interactions. However, classical MD
techniques are limited by the trade-off between ac-
curacy and efficiency, while recent deep learning-
based improvements have mostly focused on
single-domain molecules, lacking transferability
to unfamiliar molecular systems. Therefore, we
propose Unified Simulator (UniSim), which lever-
ages cross-domain knowledge to enhance the un-
derstanding of atomic interactions. First, we em-
ploy a multi-head pretraining approach to learn a
unified atomic representation model from a large
and diverse set of molecular data. Then, based on
the stochastic interpolant framework, we learn the
state transition patterns over long timesteps from
MD trajectories, and introduce a force guidance
module for rapidly adapting to different chemical
environments. Our experiments demonstrate that
UniSim achieves highly competitive performance
across small molecules, peptides, and proteins.

1. Introduction
Molecular Dynamics (MD) simulations, an in silico method
used to comprehend the time evolution of molecular sys-
tems in given environments, serve as a fundamental and
essential tool in various fields like computational chem-
istry, pharmacology, material design, and condensed mat-
ter physics (Van Gunsteren & Berendsen, 1990; Lindorff-
Larsen et al., 2011; Hollingsworth & Dror, 2018; Lau et al.,
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Figure 1. UniSim enables time-coarsened dynamics simulations of
small molecules, peptides, and proteins over a long timestep τ .

2018). One of the MD’s core objectives is to generate
trajectories of molecular states that adhere to underlying
physics constraints over a period of time, given the initial
state of the molecular system and environment configura-
tions (Allen et al., 2004). To achieve this end, classical
MD methods (van Gunsteren & Oostenbrink, 2024) update
the next step of motion by numerically integrating Newton
equations or Langevin dynamics (Langevin, 1908), with the
potential energy and atomic forces calculated based on the
current molecular state. It should be noted that the stability
of the numerical integration requires an extremely small
timestep ∆t ≈ 10−15s during MD simulations (Plimpton,
1995).

In terms of how energy is calculated, classical MD meth-
ods can be divided into Quantum Mechanics (QM) meth-
ods (Griffiths & Schroeter, 2019) and empirical force field
methods (Pearlman et al., 1995; Vanommeslaeghe et al.,
2010). On the one hand, QM methods provide highly ac-
curate energy calculations, while their great computational
complexity makes it prohibitively expensive for accurate
transition path sampling on a long time scale, like protein
folding (Lindorff-Larsen et al., 2011). On the other hand,
empirical force field methods are faster but less accurate. To
accelerate the sampling of conformation transition pathways,
some MD methods based on reinforcement learning (Shin
et al., 2019), adaptive sampling (Markwick et al., 2011; Botu
& Ramprasad, 2015a), as well as enhanced sampling (Bal &
Neyts, 2015; M. Sultan & Pande, 2017; Wang et al., 2021;
Célerse et al., 2022) have been proposed, yet achieving a
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qualitative improvement in efficiency while maintaining the
accuracy remains challenging.

Recently, a surge of deep learning methods have been pro-
posed to boost MD simulations from different aspects (Noé
et al., 2019; Köhler et al., 2023; Lu et al., 2024; Klein
et al., 2024; Schreiner et al., 2024; Wang et al., 2024a;b; Yu
et al., 2024). Specifically, a series of methods categorized
as time-coarsened dynamics aim to accelerate simulations
by learning the push forward from X⃗t to X⃗t+τ with a much
larger timestep τ ≫ ∆t, where X⃗t denotes the molecular
state at the wall-clock time t (Klein et al., 2024; Schreiner
et al., 2024; Yu et al., 2024). Although these methods can in
principle achieve rapid long-time sampling, several issues
arise in practical applications: 1) Almost all previous works
are restricted to a single molecular domain (e.g., peptides or
proteins) within a fixed environment, lacking the transfer-
ability across different scenarios. 2) Some models leverage
hand-crafted representations on specific domains (e.g., γ-
carbons in leucines), which significantly impair their ability
to recognize unfamiliar molecules, such as proteins with
unnatural amino acids (Link et al., 2003).

Taking all these into consideration, we propose a pre-
trained model for Unified full-atom time-coarsened dynam-
ics Simulation (UniSim), which is transferable to small
molecules, peptides as well as proteins, and can be easily
adapted to various chemical environments by parameter-
efficient training. An illustration for one-step simulation
performed by UniSim is displayed in Figure 1. Firstly, ow-
ing to the scarcity of MD trajectory datasets, we propose
to pretrain a unified atomic representation model on multi-
domain 3D molecular datasets under different chemical en-
vironments and equilibrium states. Based on the pretrained
model, we then leverage the stochastic interpolants gener-
ative framework (Albergo et al., 2023) to learn the push
forward from X⃗t to X⃗t+τ , with a predefined long timestep
τ . Finally, in order to better adapt to specific chemical envi-
ronments with different force conditions (temperatures, pres-
sures, solvents etc.), we follow FBM (Yu et al., 2024) and
introduce force guidance to regulate the sampling process of
molecular trajectories. In summary, our contributions are:

• To our best knowledge, UniSim is the first deep
learning-based generative model that tailored for trans-
ferable time-coarsened dynamics on cross-domain
molecular systems.

• We employ a multi-task pretraining approach to learn
a unified atomic representation model from cross-
domain molecular data, leveraging novel techniques to
tackle unbalanced molecular scales and provide fine-
grained atomic representations.

• Based on the stochastic interpolant framework, we
learn the state transition patterns over long-time steps

from MD trajectories, and introduce a force guidance
module for rapidly adapting to different chemical envi-
ronments.

2. Related Work
3D Molecular Pretraining Given the success of the pre-
training paradigm in the fields of NLP, some recent works
have proposed pretraining methods based on 3D molecular
structures (Zaidi et al., 2023; Luo et al., 2022; Zhang et al.,
2023; Gao et al., 2022; Jiao et al., 2023; Zhou et al., 2023;
Feng et al., 2024; Jiao et al., 2024; Zhang et al., 2024).
Considering the scarcity of labeled molecular data, the
NoisyNode (Zaidi et al., 2023) method proposes the denois-
ing regularization paradigm for self-supervised pretraining
on equilibrium conformations. Correspondingly, machine
learning forcefields (Botu & Ramprasad, 2015b; Chmiela
et al., 2017; 2018; 2023) explore the off-equilibrium con-
formation space by force-centric training. Furthermore,
ET-OREO (Feng et al., 2024) proposes a novel pretrain-
ing method for learning unified representations encompass-
ing both equilibrium and off-equilibrium conformations.
EPT (Jiao et al., 2024) adopts the denoising pretraining on
coarse-grained blocks and extends to learn representations
of multi-domain molecules. Additionally, DPA-2 (Zhang
et al., 2024) adapts to diverse chemical and materials sys-
tems by leveraging multi-task approach for different data
sources. In this work, we propose a novel pretraining ap-
proach that is scalable to multi-domain biomolecules and
adopts the multi-task approach to distinguish different force-
fields and equilibrium states.

Time-Coarsened Dynamics To overcome the constraints
of numerical integration stability of classical MD simula-
tions, a series of deep learning-based methods (Fu et al.,
2023; Klein et al., 2024; Li et al., 2024; Jing et al., 2024;
Schreiner et al., 2024; Hsu et al., 2024; Klein & Noe, 2024;
Du et al., 2024; Yu et al., 2024) learn the push forward from
X⃗t to X⃗t+τ over long timesteps τ to enable rapid state tran-
sitions, which can be classified as time-coarsened dynamics.
Various generative frameworks have been leveraged to learn
the all-atom dynamics from data pairs of trajectories, in-
cluding augmented normalizing flows (Klein et al., 2024),
score-based diffusion (Hsu et al., 2024; Schreiner et al.,
2024), flow matching (Klein & Noe, 2024) and stochastic
interpolants (Du et al., 2024; Yu et al., 2024). On the con-
trary, F3low (Li et al., 2024) and MDGen (Jing et al., 2024)
learn dynamics of proteins with coarse-grained representa-
tions. Notably, FBM (Yu et al., 2024) introduces the force
guidance to comply with the underlying Boltzmann distri-
bution, achieving state-of-the-art performance on peptides.
According to FBM, we first learn a unified vector field based
on the stochastic interpolants framework, then we leverage
the force guidance for parameter-efficient fine-tuning to
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diverse chemical environments and forcefields.

3. Method
We present the overall workflow of UniSim in this section
with an illustration in Figure 2. In § 3.1, we will define
the task formulation with necessary notations. In § 3.2, we
will propose novel techniques for obtaining a unified atomic
representation model by pretraining on diverse datasets of
multi-domain biomolecules. Afterwards, we will introduce
the regimen of learning time-coarsened dynamics based
on the stochastic interpolant in § 3.3. Finally, we will in-
corporate the force guidance technique to adapt to diverse
chemical environments and present the scheme of parameter-
efficient fine-tuning in § 3.4. All proofs of propositions are
provided in § B.

3.1. Task Formulation

We assume that there are m datasets {D1, · · · ,Dm} con-
sisting of 3D molecular conformations and l datasets
{T1, · · · , Tl} consisting of MD trajectories. Each molecule
is represented as G = (Z, X⃗), where Z ∈ RN denotes the
atomic types of N atoms, X⃗ ∈ RN×3 denotes the atomic
positions. If the molecular conformation is off-equilibrium,
we denote ε : RN×3 → R as the MD potential function
and F⃗ = −∇ε(X⃗) ∈ RN×3 as its MD forces, otherwise
F⃗ = 0. Our goals are listed below:

1. We first obtain a unified atomic representation model
φ pretrained on the datasets {D1, · · · ,Dm}. Formally,
the pretrained model is defined as:

H, V⃗ = φ(t̄,Z, X⃗), (1)

where t̄ ∈ {0, 1} is set for the compatibility to the
generation framework, H ∈ RN×H denotes atomic
representations of H channels, and V⃗ ∈ RN×3×H

denotes SO(3)-equivariant vectors of all atoms.

2. Given the coarsened timestep τ and training data
pairs {(Gt,Gt+τ )} randomly sampled from a trajec-
tory dataset Ti (1 ≤ i ≤ l), we train a vector field
model ϕ with the pretrained φ serving as a graph en-
coder, which learns the push forward from X⃗t to X⃗t+τ

based on the stochastic interpolant framework.

3. For adapting to diverse chemical environments (e.g.,
solvation), we train a force guidance kernel ζ on the
corresponding trajectory dataset Tj (1 ≤ j ≤ l), which
incorporates underlying physics principles into genera-
tion (Yu et al., 2024). The parameters of networks φ, ϕ
are kept frozen, serving as reusable backbones.

3.2. Unified Pretraining

In this section, we will introduce the techniques applied for
pretraining UniSim on multi-domain 3D molecular datasets.
Please note that, to comply with the symmetry properties
of 3D molecules, we leverage the SO(3)-equivariant graph
neural network TorchMD-NET (Pelaez et al., 2024) as the
model architecture.

Gradient-Environment Subgraph A crucial challenge
in training unified representation models arises from the
vast scale discrepancy between molecular systems: small
molecules typically contain tens of atoms, while pro-
teins often comprise hundreds or thousands atoms. Most
of previous works that construct molecular graphs using
KNN (Kong et al., 2023) or radius cutoff (Schreiner et al.,
2024) neglect the scale discrepancy, which may inhibit
the transferability across molecular domains. To prop-
erly address the issue, we propose the so-called gradient-
environment subgraph method to bridge the gap in scales of
cross-domain molecules.

Specifically, for each macromolecule G with more than
1,000 atoms, we randomly select an atom c with Cartesian
coordinates x⃗c ∈ R3. Given the predefined thresholds
0 ≤ δmin < δmax, the gradient subgraph Gg and the
environment subgraph Ge are constructed as follows:

Gg = {j|j ∈ G, ||x⃗j − x⃗c||2 < δmin}, (2)
Ge = {j|j ∈ G, ||x⃗j − x⃗c||2 < δmax}. (3)

It is easy to show that Gg ⊆ Ge. Moreover, for each atom
in Gg, the distance to any other atom in G \ Ge should be
at least δmax − δmin. Therefore, as long as δmax − δmin is
set to be large enough, interactions between atoms outside
of Ge and those in Gg can be neglected, which is consistent
with physics principles.

Afterwards, the environment subgraph Ge rather than the
whole graph G will serve as the input to the model. Edges
between atoms are constructed based on a predefined cutoff
rcut. It should be noted that only the atoms within Gg

participate in the calculation of the training objective, since
the contribution of the truncated atoms of the original graph
G to the atoms within Ge \ Gg cannot be shielded.

Atomic Embedding Expansion In addition to the scale
discrepancy, the molecular specificity is another key factor
hindering the development of a unified atomic representa-
tion. In domains like proteins, atoms of the same type ex-
hibit different but regular patterns (e.g., CA and CB), while
wet lab experiments (Rossmann & Arnold, 2001) elucidate
that atoms of the same pattern probably share consistent
properties like bond lengths. Due to the hard constraints on
bond lengths and angles, these patterns exhibit discrete char-
acteristics, which 3D GNNs tailored for continuous features
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Figure 2. Illustration for the overall workflow of UniSim. a. The unified atomic representation model φ is pretrained on multi-domain
3D molecules, where data from different chemical environments are fed to the corresponding output head. b. Based on the stochastic
interpolant framework, vector field models v, ηz are trained on MD trajectories to learn the push forward from X⃗t to X⃗t+τ with timestep
τ . c. To adapt to different chemical environements, additional networks Ψ, ψ are trained to fit the intermediate forcefield ∇εt, with other
parameters frozen. d. Given an initial state, inference is performed by iteratively solving an SDE with the diffusion time t from 0 to 1.

may struggle to capture.

This implies that an effective embedding approach must
capture these patterns. Using only the periodic table as vo-
cabulary would yield low-resolution representations, miss-
ing those domain-specific regularities. Instead, we propose
the atomic embedding expansion technique, extending el-
ements of the periodic table to multiple discrete patterns
that serve as the expanded vocabulary. Given the molecular
graph, the model automatically maps each atom to the most
possible pattern of the element based on its neighbors, thus
simplifying the understanding of complex but highly regular
structures.

Specifically, We first define a basic atomic vocabulary Ab ∈
RA×H as well as an expanded atomic vocabulary Ae ∈
RA×D×H based on all possible element types that appear
in the datasets, where A represents the number of element
types, D represents the number of regular patterns for each
element. Next, for any atom i of the constructed molecular
graph G and its neighbors Ni, we compute the expanded
weight vector wi as follows:

ni =
∑
j∈Ni

rbf(dij)⊙Ab[j] ∈ RH , (4)

wi = softmax (lin(Ab[i],ni)) ∈ [0, 1]D, (5)

where ⊙ represents the element-wise multiplication opera-
tor, lin denotes the linear layer, rbf denotes the radial basis
function, Vb[i] represents the atomic embedding of atom i,
dij denotes the Euclidean distance between atom i and j.
The vector wi is further considered as the probability that
atom i appears in one of the D possible regular chemical
environments. To allow for back-propagation, we calculate

the expanded embedding of atom i as follows:

zi = lin(Ab[i],w
⊤
i Ae[i],ni) ∈ RH . (6)

Then Z ∈ RN×H is the concatenation of the expanded
embeddings zi for all atoms i.

Unified Multi-Head Pretraining With the graph topol-
ogy and the atomic representation well prepared, we pro-
pose the technique for unified pretraining on multi-domain
molecules. First of all, following Feng et al. (2024), all
molecular data can be preliminarily classified into equilib-
rium and off-equilibrium categories. For the off-equilibrium
molecular conformations X⃗ with real MD forces F⃗ , we use
the following objective for self-disciplined pretraining:

Lo = ||∇X⃗(
∑
i

Hout[i]) + F⃗ ||22, (7)

with
Hout, V⃗out = GVP(H, V⃗ ), (8)

where H, V⃗ are obtained by the representation model φ
based on Eq. (1), GVP is the Geometric Vector Perceptron
(GVP) layer first introduced by Jing et al. (2021) and further
updated by Jiao et al. (2024).

For the equilibrium molecular conformations, we adopt the
denoising pretraining method. Specifically, we first add a
Gaussian noise to the equilibrium conformation:

X⃗ ′ = C(X⃗ + σeϵ), ϵ ∼ N (0, I), (9)

where C(·) is the centering operator to ensure translational
neutrality, σe is the hyperparameter to control the noise
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scale. Following Eqs. (1) and (8), we obtain H ′
out ∈ RN by

using X⃗ ′ as the input. Then the training objective is given
by:

Le = ||∇X⃗(
∑
i

H ′
out[i])−

X⃗ ′ − X⃗

σe
||22. (10)

However, different datasets may have calculated MD forces
under varying conditions (e.g., solvation), leading to mis-
alignment between data distributions. To address the issue,
DPA-2 (Zhang et al., 2024) proposes the multi-head pretrain-
ing technique, introducing the unified descriptor for atomic
representations and the fitting network that is updated exclu-
sively with the specific pretraining dataset. Similarly, we use
a series of GVP heads in Eq. (8) with non-shared weights to
process data with force labels calculated in different force-
fields. For convenience, we denote the training objective
in Eq. (7) calculated by the k-th (1 ≤ k ≤ K) head as
L(k)
o , where K represents the number of forcefields across

the pretraining datasets. The ultimate training objective for
unified multi-head pretraining is given by:

Lp = LeI(F⃗ = 0) + L(k)
o I(F⃗ ̸= 0), (11)

where I(·) is the indicator function, k is the identifier for
distinguishing different chemical environments.

3.3. Vector Field Model for Dynamics

In this section, we will present the generative framework of
UniSim, named as the vector field model, to learn the push
forward from X⃗t to X⃗t+τ of MD trajectories with a prede-
fined long timestep τ . For compatibility to the generative
framework, we will denote the initial state as X⃗0 and the
terminal state as X⃗1 for each training data pair.

Here we leverage the stochastic interpolant (Albergo et al.,
2023) as our generative framework. Given two probability
density functions q0, q1 : Rd → R≥0, a stochastic inter-
polant between q0 and q1 is a stochastic process X⃗t defined
as:

X⃗t = I(t, X⃗0, X⃗1) + γ(t)Z⃗, (12)

where the pair (X⃗0, X⃗1) is drawn from the probability mea-
sure ν that marginalizes on q0 and q1, Z⃗ ∼ N (0, I), t ∈
[0, 1] denotes the diffusion time, I(·) : [0, 1]× Rd × Rd →
Rd and γ(·) : [0, 1] → R are mapping functions that should
satisfy certain properties.

To obtain training objectives, we first define the velocity v
and the denoiser ηz as:

v(t, X⃗) = E[∂tI(t, X⃗0, X⃗1)|X⃗t = X⃗], (13)

ηz(t, X⃗) = E[Z⃗|X⃗t = X⃗], (14)

where the expectation is taken over the data pairs (X⃗0, X⃗1).
It can be further proved that the stochastic process X⃗t, ve-

locity v and denoiser ηz are linked by an SDE:

dX⃗t = b(t, X⃗t) dt−
ϵ(t)

γ(t)
ηz(t, X⃗t) dt+

√
2ϵ(t) dBt,

(15)
where b(t, X⃗) = v(t, X⃗) + γ̇(t)ηz(t, X⃗), ϵ(t) is a prede-
fined function with regard to t, and Bt denotes the standard
Wiener process.

Note that different choices of I(·) and γ(·) can induce infi-
nite SDEs. As a well-studied case, we follow the setting of
Yu et al. (2024):

I(t, X⃗0, X⃗1) = tX⃗1 + (1− t)X⃗0, γ(t) =
√
t(1− t)σs,

(16)
where σs ∈ R+ is a hyperparameter to control the perturba-
tion strength. Substituting them into Eqs. (13) and (14), the
training objectives are given by:

Lv = E[||v(t, X⃗t)− (X⃗1 − X⃗0)||22 + ||ηz(t, X⃗t)− Z⃗||22],
(17)

where v and ηz are implemented as neural networks, the
expectation is taken over the diffusion time t following the
uniform distribution on [0, 1], training data pairs (X⃗0, X⃗1)

and the intermediate state X⃗t following Eq. (12).

Here we introduce the implementation details of networks
v and ηz . First, the pretrained network φ is initialized as
a graph encoder, which now takes the diffusion time t ∈
[0, 1] instead of t̄ ∈ {0, 1} as input. The invariant and
equivariant outputs of φ, H and V⃗ , are further fed to two
GVP layers with non-shared weights as the output heads
of v and ηz , respectively. Considering different scales of
labels, an additional Vector LayerNorm (VLN) is stacked
before each GVP layer, defined as as:

VLN(V⃗ ) = ϑ · V⃗

std1(V⃗ )
∈ RN×3×H , (18)

where ϑ is a learnable parameter, stdi(·) represents calcu-
lating the standard value along dimension i of the tensor.

3.4. Force Guidance Kernel for Finetuning

In this section, we will introduce the network ζ, named as
the force guidance kernel, which provides the mobility
to different chemical environments by learning an “virtual”
force defined on X⃗t and incorporating into generation. In-
spired by Wang et al. (2024a); Yu et al. (2024), we hope the
marginal distribution pt generated by ζ satisfies:

pt(·) ∝ qt(·) exp(−αεt(·)), ε0(·) = ε1(·) = ε(·), (19)

where qt represents the marginal distribution generated by
the vector field model ϕ, α is the hyperparameter of guid-
ance strength, and εt(·) denotes an intermediate potential
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defined on X⃗t, which is continuous with the MD potential
ε at two endpoints. Therefore, any change of MD potentials
owing to different chemical environments will reflect on
the change of generated marginal distributions based on ζ,
serving as the guidance of underlying physics principles.

For simplification, we assume that the stochastic interpolant
that generates pt shares the same form as in Eq. (16), im-
plying that pt(X⃗t|X⃗0, X⃗1) = qt(X⃗t|X⃗0, X⃗1). According
to Yu et al. (2024), the closed-form of the intermediate
forcefield ∇εt(·) is given by:

∇εt(X⃗t) =
E[qt(X⃗t|X⃗0, X⃗1)g(X⃗0, X⃗1)h(X⃗0, X⃗1, X⃗t)]

αE[qt(X⃗t|X⃗0, X⃗1)g(X⃗0, X⃗1)]
,

(20)
where g(X⃗0, X⃗1) = exp(−α(ε(X⃗0) + ε(X⃗1))) and
h(X⃗0, X⃗1, X⃗t) = ∇ log qt(X⃗t) − ∇ log qt(X⃗t|X⃗0, X⃗1).
According to Albergo et al. (2023), −γ−1(t)ηz(t, X⃗t)

is an unbiased estimation of ∇ log qt(X⃗t), and
∇ log qt(X⃗t|X⃗0, X⃗1) has a closed-form solution based
on Eqs. (12) and (16), thus all terms of Eq. (20) can be
calculated during training without any approximation.

Further, Proposition 3.1 reveals the closed-form of SDE that
generates pt:

Proposition 3.1. Assume that marginals qt and pt are gen-
erated by b(t, X⃗), ηz(t, X⃗) and b′(t, X⃗), η′z(t, X⃗) based on
Eq. (15), respectively. Given the probability measure ν of
data pairs satisfying ν(X⃗0, X⃗1) = ν(X⃗1, X⃗0), we have the
following equalities hold:

b′(t, X⃗) = b(t, X⃗), (21)

η′z(t, X⃗) = ηz(t, X⃗) + αγ(t)∇εt(X⃗). (22)

Finally, we introduce the implementation of the force guid-
ance kernel ζ . Keeping the parameters of the representation
model φ and the vector field model ϕ = {v, ηz} frozen,
we use another TorchMD-NET Ψ as the graph encoder of
ζ, which is initialized with the same hyperparameters of φ.
To leverage the unified atomic representation, we adopt the
residual mechanism, where the invariant output H of φ will
be added to that of Ψ during both training and inference.

After the invariant and equivariant features are obtained
from Ψ, we construct the network ψ to fit the intermediate
forcefield ∇εt(·) in the same interpolation form as in Yu
et al. (2024):

ψ(·) = (1− t)ψ0(·) + tψ1(·) + t(1− t)ψ2(·), (23)

where networks ψi (i ∈ {0, 1, 2}) are implemented as the
same architecture of v, and ψ0, ψ1 are used to fit MD force-
fields at two endpoints t = 0, 1, respectively. Therefore, the

training objective of the force guidance kernel is given by:

Lf = E[||ψ0(t, X⃗t) + F⃗0||22 + ||ψ1(t, X⃗t) + F⃗1||22

+ ||ψ(t, X⃗t)−
g(X⃗0, X⃗1)h(X⃗0, X⃗1, X⃗t)

αE[qt(X⃗t|X⃗0, X⃗1)g(X⃗0, X⃗1)]
||22],

(24)
where F⃗0, F⃗1 correspond to MD forces of X⃗0, X⃗1, respec-
tively, and the expectation in the denominator term is taken
over all training data pairs of a mini-batch.

3.5. Inference

During inference, the SDE of Eq. (15) will be discretized
into T equidistant steps for generation, where T is a hy-
perparameter. Given the initial state as X⃗0, a new state
X⃗1 is generated through the T -step discrete Markov pro-
cess, which completes one inference iteration. Subsequently,
the newly generated state serves as the initial state for the
next iteration, by which UniSim is able to autoregressively
generate trajectories for any given chain length.

Empirically, we find that performing inference without
post-processing leads to unstable conformation generation.
Therefore, after each iteration, we add a conformation re-
finement step for peptides and proteins. Details and related
analysis can be found in § C.2 and § E.2, respectively.

4. Experiments
4.1. Experimental Setup

Datasets Firstly, the pretraining datasets Di (1 ≤ i ≤ m)
are listed as follows: 1) PCQM4Mv2 (Hu et al., 2021), a
quantum chemistry dataset with around 3M small molecules
of equilibrium conformations optimized by DFT. 2) ANI-
1x (Smith et al., 2020), a small organic molecule dataset
consisting of 5M DFT calculations for QM properties like
energies, atomic forces, etc. 3) PepMD (Yu et al., 2024), a
peptide dataset including peptides of 3-10 residues with the
sequence identity threshold of 60%, where we perform MD
simulations using OpenMM (Eastman et al., 2017) to gen-
erate MD trajectories of 283 peptides. We adopt the same
test set split of 14 peptides as in the original paper. 4) Pro-
tein monomers processed by Jiao et al. (2024), a subset of
PDB (Berman et al., 2000) including protein monomer crys-
tal structures. 5) ATLAS (Vander Meersche et al., 2024), a
protein dataset gathering all-atom MD simulations of protein
structures, which is chosen for structural diversity by ECOD
domain classification (Schaeffer et al., 2017). Following
Cheng et al. (2024), We selected proteins from the dataset
of 2024.09.21 with no more than 500 residues and a coil
percentage not exceeding 50%, resulting in a total of 834
data entries. We then apply the sequence clustering with the
threshold of 30% by MMseq2 (Steinegger & Söding, 2017),
obtaining 790/14 as the train/test splits. 6) Solvated Protein
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Fragments (SPF) (Unke & Meuwly, 2019), a dataset prob-
ing many-body intermolecular interactions between protein
fragments and water molecules. We randomly split the
above pretraining datasets for training and validation by 4:1.

Secondly, we will validate the transferability of UniSim
across three molecular domains: 1) MD17 (Chmiela et al.,
2017) and MD22 (Chmiela et al., 2023) used for training and
evaluation respectively, serving as representatives for small
molecules. 2) PepMD as introduced above for peptides and
3) ATLAS for proteins. More details of pretraining datasets,
trajectory datasets and MD simulation setups are shown in
§ D.

Baselines Considering computational resource limitations,
we compare UniSim with baseline models on peptides and
with MD trajectories on other molecular domains. Specifi-
cally, we select the following deep learning-based models
as our baselines: 1) FBM (Yu et al., 2024), the current state-
of-the-art model based on bridge matching, learning time-
coarsened dynamics on peptides with steerable force guid-
ance. 2) Timewarp (Klein et al., 2024), a generative model
leveraging the augmented normalizing flow and MCMC
techniques, exhibiting transferability to small peptide sys-
tems. 3) ITO (Schreiner et al., 2024), a conditional diffusion
model tailored for learning dynamics on varying time res-
olutions. 4) Score Dynamics (SD) (Hsu et al., 2024), a
score matching diffusion model that captures transitions of
collective variables of interest.

Metrics We employ the same metrics in Yu et al. (2024)
to comprehensively evaluate the distributional similarity,
validity and flexibility of generated ensembles. Briefly, the
metrics are listed below: 1) The proportion of conforma-
tions with neither bond break nor bond clash, termed as
VAL-CA (Lu et al., 2024). 2) The root mean square er-
ror of contact maps between generated ensembles and MD
trajectories, termed as CONTACT (Janson et al., 2023).
3) The Jensen-Shannon (JS) distance on projected feature
spaces of Pairwise Distances (PWD), Radius-of-Gyration
(RG), the slowest two Time-lagged Independent Compo-
nents (TIC) (Pérez-Hernández et al., 2013) as well as their
joint distribution, termed as TIC-2D. The mean value of JS
distances along each dimension is reported.

4.2. Evaluation on Peptides

Based on the unified atomic representation model φ ob-
tained through pretraining, we train on PepMD to derive
a unified vector field model ϕ. The rationale behind the
choice is that peptides have moderate scales and exhibit
high structural flexibility, making it suitable for transferring
to other molecular domains subsequently. For fair compari-
son, all baselines are trained from scratch on PepMD until
convergence, and sample trajectories of each test peptide for

a chain length of 103. The evaluation results on all 14 test
peptides of PepMD are shown in Table 1, where UniSim/g
refers to the version that performs inference using only the
vector field model ϕ without force guidance.

Based on Table 1, we first observe that UniSim outperforms
the baselines on nearly all metrics, particularly when com-
pared to FBM that uses a similar framework, demonstrating
the effectiveness of our pretraining techniques. Moreover,
by introducing the force guidance, UniSim shows a signif-
icant improvement in validity while maintaining the same
level of distribution similarity, which reveals a deeper com-
prehension of the underlying physics constraints.

Table 1. Results on the test set of PepMD. Values of each metric
are shown in mean/std of all 14 test peptides. The best result for
each metric is shown in bold and the second best is underlined.

MODELS
JS DISTANCE (↓) VAL-CA (↑) CONTACT (↓)

PWD RG TIC TIC-2D
FBM 0.361/0.165 0.411/0.224 0.510/0.124 0.736/0.065 0.539/0.111 0.205/0.105
TIMEWARP 0.362/0.095 0.386/0.120 0.514/0.110 0.745/0.061 0.028/0.020 0.195/0.051
ITO 0.367/0.077 0.371/0.131 0.495/0.126 0.748/0.055 0.160/0.186 0.174/0.099
SD 0.727/0.089 0.776/0.087 0.541/0.113 0.782/0.042 0.268/0.266 0.466/0.166

UniSim/g 0.332/0.135 0.332/0.161 0.510/0.115 0.738/0.064 0.505/0.112 0.162/0.076
UniSim 0.328/0.149 0.330/0.189 0.510/0.124 0.731/0.074 0.575/0.139 0.157/0.088

For a more intuitive understanding, we provide the visualiza-
tion of the metrics for the two test cases in Figure 3. UniSim
exhibits a close alignment with MD trajectories with regard
to pairwise distances and residue contact rates. Further-
more, UniSim shows a good recovery of known metastable
states, with samples located mainly in high-density regions.
Though fully reproducing the free energy landscape may re-
quire longer trajectory lengths, UniSim still demonstrates a
basic understanding of the intrinsic Boltzmann distribution.

Figure 3. The visualization of comprehensive metrics on peptide
1i7u C (upper) and 1ar8 0 (lower). The left column shows the
joint distribution of pairwise distances. The middle column demon-
strates the residue contact map, where data in the lower and upper
triangle are obtained from UniSim and MD, respectively. The right
column displays TIC-2D plots for the slowest two components,
where contours indicate the kernel density estimated on MD tra-
jectories and the generated conformations are shown in scatter.
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4.3. Transferability to Small Molecules

We further investigate the performance of UniSim on small
molecules. Keeping parameters of the atomic representation
model φ and the vector field model ϕ frozen, we train on
MD17 to obtain a force guidance kernel ζ and evaluate on 5
organic molecules of MD22. Here we use the relative dis-
tances between all heavy atom pairs as the projected feature
to compute TIC and TIC-2D metrics. The ablation results
comparing UniSim with UniSim/g are shown in Table 2.
Apparently, the force guidance kernel helps the model trans-
fer to a new chemical environment with better distributional
similarity in overall.

Table 2. Results on the test set of MD22. Values of each metric are
shown in mean/std of all 5 test molecules. The best result for each
metric is shown in bold.

MODELS
JS DISTANCE (↓)

TIC TIC-2D

UniSim/g 0.408/0.111 0.791/0.044
UniSim 0.368/0.132 0.765/0.063

To better understand how the force guidance kernel works,
we provide visualizations on Ac-Ala3-NHMe and DHA in
Figure 4. It shows that the force guidance greatly helps com-
prehend the free energy landscape, enabling more accurate
transitions between metastable states. Accordingly, samples
generated by UniSim are more likely concentrated in high-
density regions, which complies with physics constraints of
the specific chemical environment.

Figure 4. TIC and TIC-2D plots of UniSim (left) and UniSim/g
(right) on a. Ac-Ala3-NHMe and b. DHA. The first row displays
the free energy projection on TIC 1, and the second row demon-
strates TIC plots for the slowest two components.

4.4. Exploration of Proteins

In this section, we explore the transferability of UniSim
to proteins. Considering the complexity and specificity of
protein structures, we first finetune the vector field model
ϕ on ATLAS with a learning rate of 1e-4. Next, the force

guidance kernel corresponding to the protein domain is
trained on ATLAS subsequently.

Afterwards, the models are evaluated on the test set of AT-
LAS and the results are displayed in Table 3. Evidently,
UniSim significantly outperforms the baselines across all
metrics, especially in terms of validity, achieving an im-
provement from 5% (ITO) to 8%. Meanwhile, the introduc-
tion of force guidance leads to modest improvements over
most metrics as well.

Table 3. Results on the test set of ATLAS. Values of each metric
are shown in mean/std of all 14 test protein monomers. The best
result for each metric is shown in bold.

MODELS
JS DISTANCE (↓) VAL-CA (↑) CONTACT (↓)

PWD RG TIC
FBM 0.519/0.023 0.597/0.121 0.621/0.152 0.012/0.007 0.252/0.039
ITO 0.588/0.027 0.775/0.042 0.624/0.121 0.052/0.008 0.428/0.020
SD 0.604/0.020 0.762/0.060 0.605/0.128 0.001/0.000 0.235/0.033

UniSim/g 0.508/0.021 0.569/0.146 0.543/0.141 0.071/0.029 0.171/0.031
UniSim 0.506/0.021 0.554/0.149 0.542/0.159 0.079/0.033 0.173/0.031

Moreover, to intuitively demonstrate the simulation effi-
ciency of UniSim on large proteins, we present the TIC-2D
visualizations of the first 200 generated conformations for
two protein test cases, as shown in Figure 5. Notably, al-
though long-term stable simulations for large proteins still
proves to be challenging, UniSim is able to cross the energy
barrier and explore distinct metastable states with only a
few inference iterations, which shows the potential to take
the place of traditional MD in terms of efficiency.

Figure 5. TIC-2D plots of the first 200 generated conformations
for a. 3bn0 A and b. 4b6i D. Contours indicate the kernel density
estimated on MD trajectories, the generated conformations are
shown in scatter, and the blue dashed arrows represent the order in
which the conformations are generated.

4.5. Case Study: Alanine-Dipeptide

To further validate the stability and applicability of UniSim
in long-timescale simulations, we conduct additional experi-
ments on a well-studied molecular system, alanine-dipeptide
(AD), consisting of only 22 atoms while exhibiting compre-
hensive free energy landscapes.
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Specifically, following the task setup in Timewarp (Klein
et al., 2024), we attempt to finetune UniSim trained on
PepMD to AD before performing long-timescale simu-
lations. Firstly, we obtain three independently sampled
MD trajectories of AD with the simulation time of 250
ns from mdshare1, which are assigned as the train-
ing/validation/test trajectories. The coarsened timestep τ is
set to 100 ps, with 200,000 data pairs randomly sampled
for training and validation from corresponding trajectories,
respectively. UniSim is then finetuned on the curated AD
dataset with the learning rate of 1e-4 for 300 epochs.

After we obtain the best checkpoint of UniSim evaluated on
the validation set, we perform long-timescale simulations
for a chain length of 100,000 to explore the metastable states
of AD. We show the Ramachandran and TIC-2D plots of
UniSim and the test MD trajectory in Figure 6. Building
upon previous research (Wang et al., 2014), UniSim has
demonstrated robust performance in long-timescale sim-
ulations by effectively exploring key metastable states of
AD, including C5, C7eq, α′

R, αR as well as αL. Moreover,
the relative weights of generated conformation ensembles
across different metastable states show good agreement with
MD, indicating that UniSim is basically capable of repro-
ducing the free energy landscape.
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Figure 6. Visualization of Ramachandran plots (the first row) and
TIC-2D plots (the second row) of UniSim and MD on alanine-
dipeptide.

Furthermore, we provide a more intuitive illustration of the
accuracy in generating conformations of metastable states.
Based on Ramachandran plots, we apply the K-means (Mac-
Queen, 1967) algorithm to obtain 5 clusters from MD trajec-
tories, and select the centroid of each cluster as the represen-
tative conformation of the corresponding metastable state.
Subsequently, we identify the conformation with the lowest

1https://markovmodel.github.io/mdshare/ALA2/#alanine-
dipeptide

root-mean-square deviation (RMSD) to each representative
conformation from trajectories generated by UniSim, which
are illustrated in Figure 7. It can be observed that UniSim
consistently exhibits an excellent recovery of metastable
states with negligible deviation.

Figure 7. Comparison of representative conformations of AD be-
tween UniSim (blue) and MD (yellow), including: a. C5, b. C7eq,
c. αL, d. α′

R and e. αR. The RMSD values of each representative
pair over heavy atoms are shown in brackets.

5. Conclusion and Future Work
In this work, we present a novel architecture called UniSim,
the first deep learning-based model tailored for performing
time-coarsened dynamics on biomolecules of diverse do-
mains. To accommodate molecular inputs of different sizes
and types, we obtain a unified atomic representation model
by pretraining on multi-domain 3D molecular datasets with
novel techniques. Afterwards, we leverage the stochastic
interpolant framework to construct a vector field model that
learns time-coarsened dynamics on MD trajectories. Con-
sidering the impact of different chemical environments in
applications, we further introduce the force guidance kernel,
which adjusts the expectation of observables by incorporat-
ing “virtual” forces into the stochastic process. Experiments
conducted on small molecules, peptides and proteins have
fully verified the superiority of UniSim in distribution sim-
ilarity compared to MD trajectories and transferability to
out-of-distribution molecular domains.

In addition, we believe this work can be advanced in the
following aspects: 1) Influenced by cumulative prediction
errors, the validity of the samples generated by UniSim
is not fully reliable, especially for macromolecules like
proteins. Efficient cross-domain structure optimization de-
serves further exploration. 2) The generated trajectories for
evaluation in our experiment are relatively short, which may
hinder the model from discovering more possible metastable
states. The dynamics pattern of biomolecules over longer
time scales is worth investigating.
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Steinegger, M. and Söding, J. Mmseqs2 enables sensi-
tive protein sequence searching for the analysis of mas-
sive data sets. Nature biotechnology, 35(11):1026–1028,
2017.

Unke, O. T. and Meuwly, M. Physnet: A neural network for
predicting energies, forces, dipole moments, and partial
charges. Journal of chemical theory and computation, 15
(6):3678–3693, 2019.

Van Gunsteren, W. F. and Berendsen, H. J. Computer simu-
lation of molecular dynamics: methodology, applications,
and perspectives in chemistry. Angewandte Chemie Inter-
national Edition in English, 29(9):992–1023, 1990.

van Gunsteren, W. F. and Oostenbrink, C. Methods for
classical-mechanical molecular simulation in chemistry:
Achievements, limitations, perspectives. Journal of
Chemical Information and Modeling, 64(16):6281–6304,
2024.

Vander Meersche, Y., Cretin, G., Gheeraert, A., Gelly, J.-C.,
and Galochkina, T. Atlas: protein flexibility description
from atomistic molecular dynamics simulations. Nucleic
acids research, 52(D1):D384–D392, 2024.

Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S.,
Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes,
P., Vorobyov, I., et al. Charmm general force field: A
force field for drug-like molecules compatible with the
charmm all-atom additive biological force fields. Journal
of computational chemistry, 31(4):671–690, 2010.
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A. Reproducibility
Our code is available at https://github.com/yaledeus/UniSim.

B. Proofs of Propositions

Proof of Proposition 3.1. Firstly, denote the marginal score of the vector field model ϕ as s(t, X⃗), which is given by:

s(t, X⃗) = E[∇ log qt(X⃗|X⃗0, X⃗1)|X⃗t = X⃗] (25)

=

∫∫
∇ log qt(X⃗|X⃗0, X⃗1)qt(X⃗0, X⃗1|X⃗) dX⃗0 dX⃗1 (26)

=
1

qt(X⃗)

∫∫
∇qt(X⃗|X⃗0, X⃗1)q(X⃗0, X⃗1) dX⃗0 dX⃗1 (27)

=
1

qt(X⃗)
∇
∫∫

qt(X⃗|X⃗0, X⃗1)q(X⃗0, X⃗1) dX⃗0 dX⃗1 (28)

=
∇qt(X⃗)

qt(X⃗)
= ∇ log qt(X⃗), (29)

where in the second equality we use the Bayesian rule, and the third equality is justified by assuming the integrands satisfy
the regularity conditions of the Leibniz Rule. q(X⃗0, X⃗1) denotes the joint distribution of training data pairs.

Further, according to Albergo et al. (2023), we have the following inference:

s(t, X⃗) = −γ−1(t)ηz(t, X⃗). (30)

Based on the assumption of Eq. (19), we have:

∇ log pt(X⃗) = ∇ log qt(X⃗)− α∇εt(X⃗). (31)

According to the above derivation, by replacing ∇ log pt(X⃗),∇ log qt(X⃗) with −γ−1(t)η′z(t, X⃗),−γ−1(t)ηz(t, X⃗), respec-
tively, we show that η′z(t, X⃗) = ηz(t, X⃗) + αγ(t)∇εt(X⃗) holds.

Secondly, we denote the following two terms on the probability path qt:

uf (t, X⃗) = E[
X⃗1 − X⃗

1− t
|X⃗t = X⃗], ur(t, X⃗) = E[

X⃗− X⃗0

t
|X⃗t = X⃗]. (32)

Similarly, we define u′f (t, X⃗) and u′r(t, X⃗) on the probability path pt in the same form. Based on Eqs. (13), (14) and (16),
we have:

v(t, X⃗) = E[∂tI(t, X⃗0, X⃗1)|X⃗t = X⃗] = E[X⃗1 − X⃗0|X⃗t = X⃗], (33)

ηz(t, X⃗) = E[Z⃗|X⃗t = X⃗] = E[
X⃗− tX⃗1 − (1− t)X⃗0√

t(1− t)σs
|X⃗t = X⃗]. (34)

Combining the connection of b(t, X⃗) = v(t, X⃗) + γ̇(t)ηz(t, X⃗), we have:

b(t, X⃗) = E[X⃗1 − X⃗0 +
(1− 2t)σs

2
√
t(1− t)

· X⃗− tX⃗1 − (1− t)X⃗0√
t(1− t)σs

|X⃗t = X⃗] (35)

= E[
(1− 2t)X⃗+ tX⃗1 − (1− t)X⃗0

2
√
t(1− t)

|X⃗t = X⃗] (36)

=
1

2
(uf (t, X⃗) + ur(t, X⃗)). (37)

Similarly, b′(t, X⃗) = 1
2 (u

′
f (t, X⃗) + u′r(t, X⃗)). According to Yu et al. (2024), it has been proven that u′r(t, X⃗)− ur(t, X⃗) =

uf (t, X⃗)− u′f (t, X⃗) given the probability measure ν of training data pairs satisfying ν(X⃗0, X⃗1) = ν(X⃗1, X⃗0). Therefore,
we can derive that b′(t, X⃗) = b(t, X⃗).
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C. Training and Inference Details
C.1. Normalization of Potential and Force Labels

Previous works Wang et al. (2024a); Yu et al. (2024) have mentioned the numerical instability of potential energies across
different molecular systems. To ensure the stability of the training process, the potential labels are normalized during
pre-processing. Specifically, For each trajectory of one molecular system, we denote the concatenation of unnormalized
potential labels of all conformations as E ∈ RM , where M represents the trajectory length. The normalized potentials are
given by:

Ê =
E −max(E)

max(E)−min(E)
∈ [−1, 0]M , (38)

where max(·) and min(·) denote the maximum and minimum element of the vector. Based on the technique, all potential
energy labels are normalized to [−1, 0] without manipulating the energy distribution of each ensemble.

For atomic force labels which are comparably more stable, we unify them into MJ/(mol·nm), whose scale is close to
standard Gaussian distributions empirically.

C.2. Conformation Refinement

In practice, we found that small prediction errors in the autoregressive generation process would accumulate over time,
resulting in unreasonable conformations especially for proteins. Following Wang et al. (2024a); Yu et al. (2024), after
generating a new conformation, we introduce an energy minimization step using OpenMM (Eastman et al., 2017) with
harmonic constraints for local structure refinement. Specifically, independent harmonic constraints are first added on all
heavy atoms with spring constant of 10 kcal/mol·Å2 in case of altering the overall conformation. The minimization tolerance
is set to be 2.39 kcal/mol·Å2 without maximal step limits. Afterwards, the energy minimization step will be applied for
peptides or proteins, while small molecules will not undergo any additional treatment.

C.3. Hyperparameters

The hyperparameters of UniSim for model constructing, training and inference are shown in Table 4.

D. Experimental Details
D.1. Dataset Details

Dataset Curation All peptides of PepMD are simulated by OpenMM (Eastman et al., 2017) with the implicit solvation
model GB-OBC I (Onufriev et al., 2004), where we show MD simulation setups in Table 5. Moreover, we use the same
forcefield to obtain MD potential and force labels of protein conformations in ATLAS. The pretraining dataset details are
shown in Table 6, and we summarize the trajectory datasets in Table 7.

Test Set Molecules of each test set are listed below, where peptides or protein monomers are named as
“{PDB id} {chain id}”:

• MD22: AT-AT-CG-CG, AT-AT, DHA, stachyose, Ac-Ala3-NHMe.

• PepMD: 1hhg C, 1k8d P, 1k83 M, 1bz9 C, 1i7u C, 1gxc B, 1ar8 0, 2xa7 P, 1e28 C, 1gy3 F, 1n73 I, 1fpr B, 1aze B,
1qj6 I.

• ATLAS: 1chd A, 2nnu A, 2bjq A, 2ov9 C, 1r9f A, 7rm7 A, 4adn B, 3bn0 A, 3eye A, 1h2e A, 1jq5 A, 4b6i D,
2znr A, 1huf A.

E. Additional Experimental Results
E.1. Ablation Study

Hyperparameter Sensitivity In order to investigate the hyperparameter sensitivity, we conduct ablation studies of SDE
steps T and the guidance strength α on PepMD test set, where the ablation results are shown in Table 8. From the table, we
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Table 4. Hyperparameters of UniSim.

Hyperparameters Values

Model

Hidden dimension H 256
FFN dimension 512
RBF dimension 64
Expand embed dimension D 32
# attention heads 8
# layers of atomic representation model 4
# layers of force guidance kernel 4
Gradient subgraph threshold δmin 8Å
Environment subgraph threshold δmax 20Å
Cutoff threshold rcut 5Å
Pretraining noise scale σe 0.04
SDE perturbation strength σs 0.2

Training

Learning rate 5e-4
Optimizer Adam
Warm up steps 1,000
Warm up scheduler LamdaLR
Training scheduler ReduceLRonPlateau(factor=0.8, patience=5, min lr=1e-7)

Inference

SDE steps T [15,25,50]
Guidance strength α [0.05,0.06,0.07]

Table 5. MD simulation setups using OpenMM.

Property Value

Forcefield AMBER-14
Integrator LangevinMiddleIntegrator
Integration time step 1fs
Frame spacing 1ps
Friction coefficient 0.5ps−1

Temperature 300K
Solvation model GB-OBC I
Electrostatics CutoffNonPeriodic
Cutoff 2.0nm
Constraints HBonds

Table 6. Pretraining dataset details.

Domain Dataset # Items Equilibrium Off-equilibrium Traj. Forcefields

small molecule PCQM4Mv2 ∼3M ✓ × × -
ANI-1x ∼5M ✓ ✓ × DFT

peptide PepMD ∼1M ✓ ✓ ✓ AMBER-14/GB-OBC I

protein
PDB ∼200K ✓ × × -
ATLAS ∼500K ✓ ✓ ✓ AMBER-14/GB-OBC I
SPF ∼2M × ✓ × revPBE-D3(BJ)/def2-TZVP
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Table 7. Details of the trajectory datasets.

Properties MD17&22 PepMD ATLAS

Frame spacing 0.5fs 1ps 10ps
Simulation time per traj not fixed 100ns 10ns
Coarsened time τ 100ps 10ps 100ps
# Training trajs 8 269 790
# Training pairs per traj 5,000 5,000 500
# Valid pairs per traj 500 500 100
# Test trajs 5 14 14

can summarize two key observations:

1. Within the tested range, the validity metric improves significantly as α increases, while other metrics generally exhibit
deteriorating trends. This suggests that the force guidance kernel enhances the comprehension of physical priors,
thereby facilitating higher-quality sample generation, but may simultaneously constrain the exploration breadth of the
state space to some extent.

2. As T increases, most metrics show varying degrees of degradation. This is likely because excessive discretization of
the SDE process leads to greater error accumulation, indicating that a small T is sufficient for balancing accuracy and
efficiency within the bridge matching framework.

Table 8. Ablation results of SDE steps T and the guidance strength α on PepMD test set. Values of each metric are first averaged over 3
independent runs for each peptide and then shown in mean/std of all 14 test peptides.

Hyperparameters JS DISTANCE (↓) VAL-CA (↑) CONTACT (↓)
PWD RG TIC TIC-2D

T = 15, α = 0.05 0.328/0.149 0.330/0.189 0.510/0.124 0.731/0.074 0.575/0.139 0.157/0.088
T = 15, α = 0.06 0.340/0.143 0.372/0.187 0.511/0.114 0.740/0.059 0.594/0.100 0.167/0.090
T = 15, α = 0.07 0.349/0.144 0.384/0.206 0.523/0.132 0.736/0.074 0.607/0.138 0.195/0.091

T = 25, α = 0.05 0.391/0.141 0.474/0.190 0.507/0.134 0.738/0.066 0.441/0.117 0.231/0.087
T = 25, α = 0.06 0.404/0.171 0.445/0.222 0.505/0.142 0.734/0.078 0.468/0.136 0.244/0.110
T = 25, α = 0.07 0.409/0.159 0.488/0.218 0.516/0.129 0.742/0.078 0.496/0.147 0.239/0.114

Atomic Embedding Expansion To investigate the contribution of atomic embedding expansion to pretraining, we conduct
additional ablation experiments. Specifically, we remove the expanded embedding Ae from the model architecture while
keeping all other parameters the same as in Table 4. The model is then pretrained and finetuned on the PepMD dataset
following the same procedure as described in the main text, and the ablation results on PepMD test set are shown in Table 9.
It is evident that removing Ae leads to a decline in nearly all evaluation metrics to varying degrees, demonstrating the
effectiveness and necessity of our atomic embedding expansion technique in cross-domain scenarios.

Table 9. Ablation Results of atomic embedding expansion on PepMD test set. Values of each metric are shown in mean/std of all 14 test
peptides. The best result for each metric is shown in bold.

MODELS
JS DISTANCE (↓) VAL-CA (↑) CONTACT (↓)

PWD RG TIC TIC-2D

UniSim/g 0.332/0.135 0.332/0.161 0.510/0.115 0.738/0.064 0.505/0.112 0.162/0.076
UniSim/g w/o Ae 0.389/0.175 0.453/0.233 0.516/0.135 0.732/0.053 0.397/0.132 0.228/0.119
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E.2. Inference Efficiency

In this section, we compare the inference efficiency of UniSim with that of MD performed using OpenMM. Following
Timewarp (Klein et al., 2024), we use the effective-sample-size per second of wall-clock time (ESS/s) as the evaluation
metric. Figure 8 illustrates the statistical results of ESS/s between UniSim and MD on PepMD test set, demonstrating that
UniSim achieves, on average, approximately 25 times higher efficiency compared to MD.

Meanwhile, since conformation refinement using OpenMM is performed at each inference iteration (i.e., generating a new
state) for peptide or protein generation, we provide the statistics of the number of optimization steps required per iteration as
follows: (1) mean: 69.3, (2) median: 55, and (3) maximum: 2,075, as illustrated in Figure 8. Additionally, for each iteration,
the average inference time is 0.120 s and the average optimization time is 0.152 s. Therefore, the computational overhead
remains within the same order of magnitude with the refinement step.
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Figure 8. Statistical results for evaluating the model’s efficiency. Left. The effective-sample-size per second of wall-clock time (ESS/s) on
PepMD test set. For the convenience of comparison, the values were converted into ratios relative to the median of results from MD (the
blue dashed line). Right. The optimization steps performed by OpenMM per iteration on PepMD test set.

F. Computing Infrastructure
UniSim was trained on 8 NVIDIA GeForce RTX 3090 GPUs within a week. The inference procedures were performed on
one NVIDIA GeForce RTX 3090 GPU.
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