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Abstract

Robot assembly discovery is a challenging problem that lives at the intersection of
resource allocation and motion planning. The goal is to combine a predefined set of
objects to form something new while considering task execution with the robot-in-
the-loop. In this work, we tackle the problem of building arbitrary, predefined target
structures entirely from scratch using a set of Tetris-like building blocks and a robot.
Our novel hierarchical approach aims at efficiently decomposing the overall task
into three feasible levels that benefit mutually from each other. On the high level,
we run a classical mixed-integer program for global optimization of blocktype
selection and the blocks’ final poses to recreate the desired shape. Its output
is then exploited as a prior to efficiently guide the exploration of an underlying
reinforcement learning (RL) policy handling decisions regarding structural stability
and robotic feasibility. This RL policy draws its generalization properties from
a flexible graph-based neural network that is learned through Q-learning and
can be refined with search. Lastly, a grasp and motion planner transforms the
desired assembly commands into robot joint movements. We demonstrate our
proposed method’s performance on a set of competitive simulated and real-world
robot assembly discovery environments and report performance and robustness
gains compared to an unstructured graph-based end-to-end approach. Videos are
available at https://sites.google.com/view/milp-gnn-for-rad.

1 Introduction & Problem Definition

Figure 1: Illustrating a simulated RAD en-
vironment (left) and all three components of
our proposed hierarchical approach (right).

A common desire amongst many industry sectors is
to increase resource efficiency. The construction in-
dustry could significantly reduce its environmental
impact by re-using existing material more efficiently
[1]. There is a fundamental need for combining in-
telligent algorithms for reasoning on how existing
material can be recombined to form something new,
with autonomous execution [2].

Herein, we tackle the problem of autonomous robotic
assembly discovery (RAD), i.e., a robotic agent
should reason about abstract 3D target shapes that
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need to be fulfilled given a set of available building blocks (cf. Fig. 1). Unlike other assembly
problems with known instructions, in RAD, the agent does neither have any prior information about
which blocks to use and their final poses, nor about the execution sequence. Contrarily, the RAD
agent should discover the possible ways of combining the building blocks, find appropriate action
sequences, and put them into practice. RAD can thus be structured into two difficulty levels. On
the high level, a goal-defined resource allocation problem has to be solved, which is typically NP-
complete for discrete resources, and can be viewed as a real-world version of the Knapsack Problem
[3]. The low level requires solving a motion planning problem, i.e., having to come up with an overall
feasible action sequence of picking and placing actions taking into account the robot’s kinematics,
structural stability throughout the assembly, and avoiding any collisions.

One way of approaching RAD are end-to-end approaches that directly map from problem definition
to low level actions [4–6]. They are typically straightforward to design, and based on learned graph
neural network (GNN) representations. Due to their ability to learn relational encodings [7, 8] and
invariant representations, they can overcome combinatorial barriers [9], and be combined with search
for improved generalization [5, 6, 10]. Yet, they often require extensive training in combinatorial
action spaces, and typically lack interpretability. On the other end of the spectrum are Task and
Motion Planning approaches [11, 12], which naturally represent problem’s hierarchy and necessitate
full prior knowledge of geometrics and kinematics. They are usually unsuitable for real-time reactive
control, as the full joint optimization suffers from combinatorics and non-convex constraints.

We propose a novel hierarchical method for 3D RAD that addresses both, resource allocation and
motion planning. On the high level, a model-based mixed-integer linear program (MILP), handling
the process of block-type selection and optimizing the blocks’ final poses for optimally resembling
the desired target shape, is solved. The MILP’s solution is then used as a guiding exploration signal
in a graph-based Reinforcement Learning (RL) framework. We define a GNN for capturing the
geometric, structural, and physical relationships between building blocks, robot, and target shape,
thereby incorporating all effects that have not been modelled on the higher level. The GNN is trained
through model-free Q-learning allowing the integration with tree search for improved long-term
decisions [10]. To put the previous reasoning into practice, at the lowest level, we rely on simple
grasp and motion planning. We present an empirical evaluation of our proposed approach in a set of
competitive simulated RAD tasks. The results show superior performance of our approach against
both empirical and end-end GNN baselines, thereby underlining its effectiveness.

Problem Definition

Figure 2: 2D RAD environment
with one placed block consisting of
two primitive elements (shown in
brown/blue). The grid-cells are visual-
ized through their centre points. Pink
points represent target grid-cells that
are to be filled & non-target grid-cells
(green) should remain unoccupied.

We formulate the problem of having to combine rectlinear
blocks into a desired target shape as Markov Decision Pro-
cess. Its state is given by four sets: i) the set of unplaced
blocks that encodes the remaining blocks, ii) the set of placed
blocks that have already been used, iii) the set of target grid-
cells (pink) that are part of the target shape and should all
be filled, and iv) the set of non-target grid-cells (green) that
should remain unoccupied (cf. Fig. 2). We also assume that
all building blocks are a combination of primitive blocks.
This choice allows to modularly represent any more compli-
cated block through primitive elements.

For block placement, we use of a discrete, time-varying
action space. Every unplaced primitive block can be placed
w.r.t. all available grid-cells while additionally selecting from
four actions that rotate the block by 0◦,±90◦, or 180◦ around the z-axis. We also add one termination
action that results in stopping the assembly process. The resulting action space of combinatorial
complexity thus contains #unplaced primitive elements×#grid-cells×4+1 = Up×Gc×4+1 actions.

After every placement action, the set of placed/unplaced elements and target/non-target grid cells are
updated, and a reward is assigned. The reward is positive when the action reduced the number of
target grid-cells, and negative if non-target grid-cells are being filled, therefore actively enforcing
resource efficiency. The conditions for a successful placement action are that the block can be placed
by the robot without moving or colliding with any other block, and that it is placed in a stable
configuration. On any invalid action, the episode is terminated and a high negative reward is assigned.
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Otherwise, the episode is terminated upon the events of i) the agent choosing the termination action,
ii) no more available building blocks, or iii) the completion of RAD.

2 Method
We now introduce the two upper levels of our proposed tri-level hybrid approach for reliable RAD
(cf. Fig. 1). For the lowest level that only realizes the commanded assembly actions, we refer to the
appendix.

High Level: MILP for optimal geometric target filling. We first solve a MILP for optimizing
the blocks’ placing poses to optimally fill the desired shape in light of the problem’s combinatorial
complexity. Yet, to render the problem tractable, we do not consider the sequencing and robotic
constraints. Based on the previous definitions (reward & voxelization), the MILP’s objective (subject
to maximization) equates to OMILP = cTg, with vector g∈RGc×1 representing the grid-state, and
c∈RGc×1 containing weights that indicate whether a grid-cell should be filled (1) or not (-1). We
essentially flatten the 2D grid from Fig. 2 into a single vector by converting the discrete coordinates
dx,dy of every grid-cell to a single index j=dx+dynx (with grid widht nx). As every grid-cell
can only be occupied at maximum by one block, we add g[i]≤1,∀g[i]∈g as constraints. Next, we
determine how every potential action changes the grid-state. I.e., placing the horizontal block from
Fig. 2 in the lowest left position results in a grid state of pT

i=1,k=1 = [1, 1, 0, ...., 0]∈R1×Gc , with
block type index i and placement action k. By additionally assigning a binary decision variable
wi,k and taking all object types into account, we can define the change in the grid-state according

to g =
∑P

î=1

∑K (̂i)

k̂=1
wi=î,k=k̂pi=î,k=k̂ with a total of P different block types and K(i) admissible

actions. While the binary decision variables prohibit any partial block placement by definition, we
still have to restrict that any type of block can only be placed depending on its appearance in the scene
(Ni),

∑K(i)

k̂=1
wi,k=k̂ ≤ Ni,∀i ∈ P. We solve the resulting MILP through Gurobi [13] and obtain the

optimal values for the decision variables thereby revealing the final poses for every block type.

Medium Level: GNN for task sequencing. The high level only partially resolves the problem’s
combinatorial aspect. It lacks i) the placement actions’ sequencing, ii) the exact assignment of which
block to use for each placement, and iii) the consideration of robotic feasibility, the blocks’ initial
positions, and structural stability. Thus, we require this level which is tasked to decide upon either
executing one of the proposed actions from the higher level MILP or terminating the current assembly.
We propose an approach based on combining GNN and Q-learning [5, 6]. The GNN is capable of
providing the required representational flexibility and invariance to problem size, while performing
action selection based on Q-learning is desirable as i) the action space is discrete, ii) the estimation of
all the actions’ quality as basis for action selection allows to efficiently incorporate the MILP’s prior
knowledge by masking out all actions that are not inside its solution, iii) potential multimodalities
in the MILP solution can be captured, and iv) it allows easy and time-effective combination with
search-based methods, i.e., Monte Carlo Tree Search (MCTS) to improve performance [10].
We now describe the action selection process (cf. Fig. 3). We refer to [6] (which esentially uses
the same GNN) for the details. We first transform the environment’s state into a graph by creating
nodes for all primitive blocks and grid-cells. Every node has 5 initial features, i.e., the 3D world
coordinates of its centre ∈R3, and 2 booleans indicating the node type, i.e. placed/unplaced primitive
block ([1, 0]/[0, 0]), target/non-target grid-cell ([1, 1]/[0, 1]). Almost all nodes of the graph are fully-

Figure 3: Illustrating action selection. First, the current scene is transformed into a graph. Note:
Only a subset of the target (pink) and non-target (green) grid-cells is shown. White nodes depict the
unplaced primitive blocks. Next follows message passing updating the nodes’ features. The action’s
Q-values are predicted based on the nodes’ features of the respective unplaced primitive block and
the grid-cells using a feedforward neural network (NN). To incorporate the prior knowledge, we only
consider actions part of the MILP solution (shown in red).
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connected with each other – we only omit the connections in-between the unplaced primitive blocks
if they do not belong to the same block to provide an inductive bias for the object shape. Upon graph
creation follow three rounds of message passing using an attention mechanism [6, 9], in which we
sequentially build an encoded graph. The encodings are the basis for computing Q-values for all
available actions (i.e., predicting every actions’ quality). As any unplaced primitive block can be
placed w.r.t. every grid-cell, a standard feedforward NN is used, that takes as input the encoded node
values of i) the primitive block-to-be-placed, and ii) the grid-cell, and outputs the Q-values for all
the four rotational-placement actions between these nodes. This process is repeated for all pairs of
unplaced primitive blocks and grid-cells. The action decision is done using an ϵ-greedy policy, yet,
only allowing to choose from the set of actions proposed by the MILP (we mask out all the other
ones), as well as the termination action. The ϵ-greedy policy controls the tradeoff between randomly
exploring actions and exploiting, i.e., selecting the action with highest Q-value during training and
evaluation. The graph’s weights are refined through temporal-difference learning, thereby attempting
to improve the estimation of the Q-values by minimizing the difference between the predicted quality
of the action and the observed outcome. While this Q-learning procedure by itself already results in
good policies, during test time, we additionally consider action selection based on the combination of
Q-learning and MCTS (DQN+MCTS). For more details, please see [14] and the appendix.

3 Experimental Results

We evaluate our proposed MILP-DQN method and potentially adding MCTS (search budget of 5), in
simulation (Fig. 1) and reality (cf. link to videos in abstract). We aim to answer two questions: 1)
Does the MILP’s guided exploration signal improve performance compared to end-to-end approaches?
2) How effective is the medium level GNN compared to an heuristic approach for task sequencing?
The training is conducted as in [6], and we also reuse their simulation, yet, allowing block placements
throughout the whole assembly area & voxelizing the target shape. In the evaluations, we describe
the environment’s difficulty through the grid size, i.e., Fig. 2 shows a potential target shape for a grid
size of 3. The star(*) indicates the agents’ evaluation in their training conditions, while the other
experiments are out-of-distribution. The results are obtained by averaging the agents’ performance in
200 scenes. We report the discounted reward R, the fraction of runs that ended upon failure f , and
the target grid-cell coverage ā, i.e., the fraction of initially unfilled and finally filled target grid-cells.

Table 1: Comparing our proposed method
with two learned baselines in the two-sided
environment wo robot.

Grid Size Method R ā

3* DQN 0.63 (0.02) 0.71
DQN-REL [6] 0.67 (0.01) 0.68
MILP-DQN 1.22 (0.01) 0.87

4 DQN 0.71 (0.08) 0.69
DQN-REL [6] 0.75 (0.08) 0.66
MILP-DQN 1.56 (0.03) 0.87

5 MILP-DQN 1.92 (0.05) 0.85

A) Is the high level MILP needed?
We consider scenarios without the robot, which re-
duces the task’s complexity to placing the blocks in
a stable configuration while trying to optimally fill
the desired shape. We compare against two baselines.
The first one (DQN) does not consider the MILP’s
prior knowledge and can therefore place any of the
available blocks at all currently unoccupied grid-cells.
The second one (DQN-REL) follows [6], in which
the available blocks can only be placed next already
placed blocks, thus, reducing the action space. In the
first step, we allow to place the blocks at any target grid-cell.

The results in Table 1 reveal that the MILP provides a strong inductive bias that is effective in guiding
the exploration. The agents trained using our proposed MILP-DQN approach outperform the two
baselines which in turn exhibit very similar performance. Compared to the baselines, MILP-DQN
agents achieve an increase in the success rate and discounted reward by a factor of 2. These results
confirm the task’s combinatorial complexity. Performing an ϵ-greedy exploration without using an
informed prior does not allow for discovering good action sequences. The results also reveal that
the MILP-DQN agents generalize well to the out-of-distribution environments as the desired target
grid-cell coverage remains high at 0.87 and 0.85 (grid size of 4,5), despite the significant increase
in task complexity. I.e., the number of blocks in the scene increases in line with the average target
grid-cells that should be filled. The latter increases from roughly 5 to 12 while increasing the grid
size from 3 to 5.

B) How effective is the GNN for robotic execution? We now consider the scenario with the robot (Fig.
1) and investigate the GNN’s effectiveness. For this purpose, we compare the GNN with a heuristic
(HEUR). The HEUR agents perform action selection as follows: based on MILP’s proposed actions,
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the heuristic only considers those which will result in a stable block placement and selects one of
them at random. If there is no such action, the termination action is selected.

Table 2: Comparing our proposed method
with a heuristic in the two-sided environment
with the robot-in-the-loop.

Grid
Size Method R f ā

4* HEUR 0.57 0.4 0.62
MILP-DQN 1.03 0.16 0.7
MILP-DQN-MCTS 1.24 0.05 0.75

5 HEUR 0.34 0.58 0.47
MILP-DQN 0.98 0.25 0.58
MILP-DQN-MCTS 1.38 0.08 0.65

As shown in Table 2, in both environments, our pro-
posed agents (MILP-DQN & MILP-DQN-MCTS)
clearly outperform the heuristic. Already in the envi-
ronment with less blocks, the heuristic results in 40%
of failures, indicating that a more informed method
for action sequencing is required. An example of
such a failure is depicted in Fig. 5, where due to bad
action sequencing by the heuristic, the two blocks
collide. Our proposed approaches effectively reduce
the failure rates, with MILP-DQN achieving a de-
crease by a factor of 2, while adding MCTS leads to
a decrease by a factor of almost 8. Those results show that our learned graph-based representations
are indeed capable of effectively capturing the environment’s state and make informed decisions
regarding the action sequencing - a crucial component of RAD. Overall, we conclude that our pro-
posed hierarchical approach is indeed capable of resolving the inherent difficulties of RAD, as also
illustrated in Fig. 4 where we show the successful assembly of a desired target shape using 4 blocks
of 3 different types. Moreover, on our website, we also showcase real-world transfer of the learned
policies.

4 Conclusions
We have presented a novel hierarchical approach for robot assembly discovery (RAD). Our approach
combines global reasoning through mixed-integer programming, which forms a powerful inductive
bias for the subsequent graph-based reinforcement learning for local decision-making, together with
grasp and motion planning for realizing the assembly actions. The hierarchy efficiently decomposes
the problem’s huge combinatorial action space and results in robust and reliable RAD policies. The
proposed approach is validated in a set of simulated RAD and real-world experiments that illustrate
its effectiveness. As graph structures are already widely used in robotics (i.e., kinematic/dynamic
chains, scene graphs, factor graphs), in the future, we want to investigate how our approach and
learning on graphs can be applied in different problem settings and domains.

Figure 4: Illustration of a successful RAD sequence using our proposed MILP-DQN-MCTS approach.
The agent successfully the assembly successfully using in total 4 blocks and 3 different block types.

Figure 5: Illustration of an unsuccessful RAD sequence using the heuristic agent introduced in
Sec. 3-B. As shown in the images, it is important to perform informed decisions about the assembly
sequence, as the wrong sequencing can result in collisions between the block that is placed and other
blocks in the scene.
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A Appendix
A.1 Visualization of successful RAD sequences

To support the experimental evaluations presented in Section III-B, we also present videos on our
website https://sites.google.com/view/milp-gnn-for-rad that illustrate the difference
between the agents.

We also show on the website that we can successfully transfer our learned policies to real-world RAD
instances. To get all the information about the initial scene, we use an OptiTrack motion capture
system. Afterwards, we can use this information to create a digital twin and subsequently plan in
simulation and execute the respective actions also in the real world as shown in the videos.

A.2 Further details regarding our proposed approach

In this section, we aim to summarize the overall working of our algorithms and provide a more
thorough description of the individual components that are involved.

A.2.1 Formulating RAD as MDP

As already mentioned in the problem definition section, we describe RAD using the notation of a
Markov Decision Process (MDP) with state and action space, S,A, transition probabilities p, reward
function r, and discount factor γ.

State space

The state s is given by the combination of four sets, s=(SU ,SP , TF , TE), with
|SU |=NU , |SP |=NP , |TF |=NF , |TE |=NE . The set SU encodes the unplaced primitive units that
are still available for construction, SP the primitive units that have already been used, TF and
TE contain the so-called target grid-cells and non-target grid-cells, respectively. These grid-cells
are parameterized through their respective 3D center coordinate x ∈ R3, i.e. TF={xi, i ∈ NF },
TE={xi, i ∈ NE} (visualized in pink and green). By projecting all grid-cells centre coordinate
xi into the yellow target shape (cf. Fig. 2), we decide whether it should be occupied or remain
unoccupied during RAD.

Moreover, we assume that all building blocks are a combination of primitive units. More specifically,
we consider that there is only one type of primitive unit: a unit cube uc = 13. Thus, all the blocks
in the scene are a combination of primitive units (cf. Fig. 2), i.e., block i is defined by the union of
Nbi primitive units, bi =

⋃Nbi
j=1 uc. Representing blocks as concatenations of primitives allows for a

universal interface with graph-based representations, as any Tetris-like block can easily be represented.
Simply put, each primitive unit induces a node in the graph, and the connectivity information encodes
whether or not multiple primitive units form a larger block (cf. two leftmost frames in Fig. 3). This
choice also allows us to describe the placed and unplaced blocks through the primitive units’ 3D
positions xk, and connectivity information yk = [yk,1, ..., yk,NU

], i.e., SU={(xk, yk), k ∈ NU}. If
primitive unit k is connected with primitive unit 1 to form a larger block yk,1 equals 1, otherwise
yk,1=0. We follow the same procedure for the set of already placed elements SP .

Action space

For placing blocks in the scene, we use a discrete, time-varying action space. In particular, every
primitive unit which is at the moment unplaced, can be placed w.r.t. all available grid-cells. As
more complicated blocks might also require rotations, we augment all placement actions with four
rotational actions, i.e. rotating the block by 0,±90, or 180 degrees around the upward-pointing
z-axis. Furthermore, we add one termination action that enables the agent to indicate that the current
assembly is finished or not possible to continue, as there are no feasible actions left. Thus, the
resulting action space contains Na = NU × (NF +NE)× 4 + 1 = NU ×Gc × 4 + 1 actions. Note
that the MDP is focused on high level decision making. It does not account for the low level motion
generation, namely grasp selection and robot motion planning, as this would further increase the
already large action space. Nevertheless, given the action, the motion generation problem is well
defined as it specifies the block that is to be moved, the required relative change in orientation, and its
placement location. After every placement action, all primitive units belonging to the moved block
are transferred from the set of unplaced elements to the set of placed ones. We also update the set of
grid-cells by removing all cells that are now occupied.
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Reward definition

On every successful placement action, we assign a reward of r(st, at) = 0.2(NFt
−NFt+1

+NEt+1
−

NEt
), thereby giving a positive signal when the action reduced the number of target grid-cells, while

also penalizing unnecessary filling of non-target grid-cells. Thus, this choice actively enforces
resource efficiency. The conditions for a successful placement action (i.e., valid action) are:

• the block is placed by the robot without moving or colliding with any other block

• the block is placed in a stable configuration (i.e. the resulting structure is not falling apart due to
gravity).

If any of these conditions is violated, the action will be marked as invalid. This results in terminating
the current episode and assigning a reward of −1.

To summarize the previous definitions, the reward is given by

r(st, at) =

 0.2(NFt−NFt+1+NEt+1−NEt) if valid action executed,
−1 if executing an invalid action,

0.2(NFt−NFt+1+NEt+1−NEt)+1 if valid action and NFt+1 == 0, i.e., the completion of RAD,

(1)
As the last case corresponds to the desired behaviour, i.e., successful completion of RAD, we increase
the final reward by +1 upon this event.

Episode termination

We additionally want to point out which events result in terminating the current episode. Terminating
the episode requires having to sample a new RAD scene before taking the next action. Every episode
terminates upon one of the following events occurring:

• the agent selecting an invalid action (i.e., one of the following: 1) upon block placement, the
robot or the block, or both collide with any other block, 2) the block placement results in an
unstable configuration, i.e., the resulting structure falling apart due to gravity)

• the agent choosing the termination action

• no more available building blocks

• the completion of RAD, i.e., the filling of all target grid-cells.

Discount factor

Finally, to reflect the long-horizon of the considered task, we set the discount factor γ to 0.999. For
the definition of the reward, we refer to the next section.

A.2.2 High Level: MILP for optimal geometric target filling

The pseudocode in Alg. 1 contains all the logic to obtain and update the MILP’s solution. In particular,
the function computeMILPSol from Line 4 onwards describes the necessary steps to obtain the MILP
solution given the current state. The pseudocode closely follows our descriptions from Sec. 2 for the
highest level.

As the environment state changes constantly during the assembly process, we also require another
function that updates the actions that are available to the agent. This function is called updateAvailAc-
tions and described from Line 16 onwards. Please note that the update function does not require
solving the MILP again (it takes as input the previously calculated solution) and is therefore way
more efficient.
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Algorithm 1 MILP
1: Grid is of size nx, ny, nz (x-, y-, z-direction, respectively)
2: Grid has Gc = nxnynz cells
3: Conversion from grid coordinate dx, dy, dz to index via j = dx + dynx + dznxny

4: procedure computeMILPSol(s)
5: Extract grid state g∈RGc×1 from s
6: Add Gc constraints ensuring only 1 primitive block at each cell: g[i]≤1, ∀g[i]∈g
7: From SU , extract the P different block types that are in the scene, and their quantities Ni

8: K, M = computeUniqueP lacements(SU , P, g) (cf. Line 20)
9: Introduce vector of binary decision variables: w∈{0, 1}(

∑P
î=1

K(̂i))×1

10: Add contraint on decision variables regarding occurance of each block type:
∑K(i)

l=K(i−1) w[l]≤Ni, for
i in 1..P , and with K(0) = 1

11: Define cost vector c∈RGc×1

12: Define Objective: maxw cT Mw
13: Solve optimization problem, returns optimal entries for w
14: compute all available actions: AMILP = computeAvailGNNActions(SU , g,w,M) (cf. Line 34)
15: return AMILP,w,M
16: procedure updateAvailActions(s,w,M)
17: Extract grid state g∈RGc×1 from s
18: compute all available actions: AMILP = computeAvailGNNActions(SU , g,w,M)
19: return AMILP,w,M
20: procedure computeUniqueP lacements(SU , P, g)
21: Define empty Matrix M
22: for î in 1..P do
23: Number of valid placing actions: K (̂i) = 0
24: for m in 1..Gc do
25: /* Iterate over all potential placing positions
26: for h in 1..4 do
27: /* Iterate over all rotational actions
28: Starting from empty grid with all zeros: g1 = 0Gc×1

29: Attempt to place the first primitive unit p1 of block î at grid-cell m while applying rotation
h, and capture resulting grid-state g1

30: if All primitive units inside cell && g1 not equal to any column in M && gT
1 g = 0 then

31: Append vector g1 as a new column to M
32: K (̂i)+=1

33: return K, M
34: procedure computeAvailGNNActions(SU , g,w,M)
35: Define empty list of available actions AMILP
36: From SU , extract the Pt different block types that are currently in the scene
37: for î in 1..Pt do
38: for m in 1..Gc do
39: /* Iterate over all potential placing positions
40: for h in 1..4 do
41: /* Iterate over all rotational actions
42: Starting from empty grid with all zeros: g1 = 0Gc×1

43: Attempt to place the first primitive unit p1 of block î at grid-cell m while applying rotation
h, and capture resulting grid-state g1

44: if All primitive units inside cell && g1 equal to any column j in M for which holds
w[j] == 1 && gT

1 g = 0 then
45: /* This if checks: 1) is the block entirely in the target area?, 2) is the action that is to be executed inside the

solution space?, 3) is any of the voxels, where the block might be placed already filled?
46: Append Triple (p1,m, h) to AMILP

47: Append termination action (0, 0, 5) to AMILP
48: return AMILP

A.2.3 Medium Level: GNN & Q-Learning for task sequencing.

On the medium level, we now get as input the solution from the higher level and use it to train our
graph-based reinforcement learning agents.
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To start with, we present the general loop that is used to train the graph-based representations in
Alg. 2. It consists of two main components. We first collect experience through interacting with the
environment (cf. while loop in Line 6), and secondly, we use the obtained samples to refine our GNN
(cf. Line 23) that estimates the quality of all the actions and thus directly influences the actions that
are being taken in the environment.

Algorithm 2 Training Loop for the medium level GNN-RL
1: for i in 1..NumberEpochs do
2: /* Collect experience
3: j = 0, Buffer B = []
4: /* Define number of samples to collect
5: Γ = 100
6: while j < Γ do
7: Sample initial state s
8: /* Obtain MILP solution by running computeMILPSol from Alg. 1, cf. Line 4
9: AMILP,w,M = computeMILPSol(s)

10: finished=False
11: while finished==False do
12: Sample action a = act(Q, s,AMILP) using Q-function approximator Q. This calls Alg. 3 Line 2
13: Execute a, i.e., move robot to pick and place the part & obtain r(s, a)
14: Receive next state s′

15: B.append([s, a, r(s, a), s′])
16: j = j + 1
17: s = s′

18: /* Update MILP solution by running updateAvailActions from Alg. 1, cf. Line 16
19: AMILP = updateAvailActions(s,w,M)
20: if Any of the termination criteria (cf. A.2.1) is true then
21: finished=True
22: /* Update weights of Q-function
23: π = update(Q,B)

During training and also during evaluation of our proposed MILP-DQN approach, we perform action
selection as shown in Alg. 3 Line 2. In both cases of either exploring a random action (cf. Line 5) or
selecting the action with highest predicted Q-value (i.e., exploitation, cf. Line 7), we only allow to
choose from the set of actions that has been previously proposed by the high level MILP. For training
the GNN to predict the correct Q-values, we exploit the collected experience and perform temporal
difference learning, as shown in Alg. 3 from Line 8 onwards.

Algorithm 3 DQN
1: Number of update steps χ
2: procedure act(Q, s,AMILP)
3: /* ϵ-greedy policy
4: if RandomVariable < ϵ then
5: a = RandomChoice(AMILP)
6: else
7: a = maxa′ Q(s, a′|a′ ∈ AMILP)

return a
8: procedure update(π,B)
9: Add B to Replay Memory

10: for i in 1..χ do
11: Sample random subset from Replay Memory
12: /* Temporal-difference learning using tatget network QT as in [15].
13: loss = smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s

′, a′|a′ ∈ AllPossibleActions(s))))
14: Update Q-function approximator Q with parameters θ
15: θ = θ − α ∂loss

∂θ

16: return Q

Lastly, we are only missing the details regarding action selection for our proposed MILP-DQN-
MCTS method. Contrarily to the previous MILP-DQN approach, here, we even add model-based
search through MCTS. This has the potential to even further improve performance, robustness, and
generalization.
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Alg. 4 provides the details for action selection in MILP-DQN-MCTS agents. Please note, that Alg. 4
is still only capable of selecting from the set of actions proposed by the high level MILP. As can be
seen in the pseudocode, we now simulate the outcome of multiple actions and subsequently exploit
this experience to decide upon the desired action that should be executed. We provide the code for
the search process from Line 7 onwards. Moreover, as pointed out in the second line of the algorithm,
we only consider a rollout depth of 1. This means that we stop the model-based rollouts after the first
action and estimate the expected reward of the remaining trajectory by again querying our Q-function
estimator. This possibility of clipping the rollouts already after the first or generally speaking after
very few actions is another reason why the combination of Q-learning and MCTS is appealing and
efficient.

Algorithm 4 DQN + MCTS
1: /* Note, this is only during evaluation.
2: Rollout Depth η = 1 if not stated otherwise
3: Search Budget τ = 5 if not stated otherwise
4: procedure act(Q, s,AMILP)
5: Given: state s, set containing the explored actions SA = {}
6: ∀a ∈ AMILP, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
7: for i in 1..τ do
8: if RandomVariable < ϵ then
9: a = RandomChoice(a ∈ AMILP|W (s, a) = 1)

10: else
11: a = maxa′ Q(s, a′|a′ ∈ AMILP,W (s, a′) = 1)

12: Add a to SA, collect r(s, a), update AMILP = updateAvailActions(s,w,M)
13: for j in 1..η − 1 do
14: a = DQN− act(Q, s) (Alg. 3, Line 2), collect current single step reward r̃
15: Update: r(s, a) = r(s, a) + γj r̃ and AMILP

16: Update: W (s, a) = W (s, a) + 1, QS(s, a) =
1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

17: ar = maxa′ QS(s, a
′|a′ ∈ SA)

18: return ar

A.3 Additional details on the lowest level: Grasp and Motion planning (GAMP)

The lowest level is tasked with the conversion of the previous level’s actions into robot joint commands,
and performs the final robot execution of block grasping and moving such that the block is placed in
the desired pose. While it would be possible to add those decisions to the higher levels, we decided
to consider motion generation as a separate module in our hierarchical framework, as these decisions
are heavily dependent on the actual robot manipulator. Moreover, we want to avoid increasing the
action space of the previous level. Robotic block grasping and placing is achieved by first checking
the feasibility of a predefined set of top-down grasping poses and subsequently checking if this grasp
results in a feasible final placement pose. If there exists a pair of feasible grasping and placing poses,
we move the robot by approaching the grasping pose from the top, then move to a position that
is slightly above the placing location, and finally, approach the placement pose. All intermediate
waypoints are computed based on inverse kinematics.

A.4 Additional details on running times

Lastly, we want to provide the running times of our individual components. We focus on the
environment with the robot-in-the-loop, and thus report the running times for the experiments
presented in Section 3 - B). Please note that we did not have time to properly optimize our code, thus,
we think that there is still lots of room for improvement for the running times that we will report in
this section. The results are again obtained by averaging across all the 200 RAD scenes that have
been presented to the agents. We also want to emphasize that computing the initial MILP solution is
only required once per scene, whereas all the other components have to be run per action, i.e., per
step that is taken in the environment.

The results from this experiment are shown in Table 3. Computing the initial MILP solution, i.e.,
calling the function computeMILPSol (cf. Alg. 1), takes around 18 milliseconds (ms), and 26 ms for
the environments with a grid sizes of 4 and 5, respectively. Please again note, that computing the
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Table 3: Reporting the average running times of all our components in the same experimental setting as
presented in Section 3 - B). All the running times have been acquired on a computer with 64GB RAM, an
NVIDIA GeForce RTX 2080 SUPER GPU, as well with an AMD Ryzen 9 3900x CPU (24 cores).

Grid Compute MILP solution Update MILP solution GNN-DQN GNN-DQN + MCTS GAMP
Size (per scene) (per step) (per step) (per step) (per step)

4 0.0178s 6.5410−5s 0.0069s 1.2094s 0.0324s
5 0.0259s 7.5110−5s 0.0069s 1.3968s 0.0370s

initial MILP solution is only required once for every RAD scene. All the other components have to be
run for every action, i.e., every step that is taken in the scene. Further, the table shows that updating
the MILP solution, i.e., calling the function updateAvailActions (cf. Alg. 1) requires by far the least
amount of time and is negligible compared to the other running times. Calculating the desired action
based on the GNN-DQN approach only (cf. Alg. 3) is also very efficient as it only takes about 7ms
for both of the environments. However, if we take more than 3 actions per RAD scene, then the total
time required for the GNN-DQN already exceeds the time taken to compute the initial MILP solution.
Moreover, running the grasp and motion planning (GAMP, cf. Sec. A.3) which is required for every
action requires on average around 32 and 37ms (for the two different versions of the environment) and
thus even consumes more time than computing the initial MILP solution. Finally, when performing
the action decision based on the combination of GNN-DQN + search(MCTS) as described in Alg.
4, this requires 1.2s and even 1.4s on average for the environments with the grid sizes of 4 and 5.
The big increase in runtime compared to the GNN-DQN approach can be explained by the fact that
we explore five different actions before we decide upon the one that should be taken. This means
that we have to query the GNN five times, perform GAMP five times, and lastly, have to evaluate
the outcomes of the five actions using our PyBullet simulation which is very costly. Nevertheless,
we still want to point out that our approach is targeted at high-level decision-making and that the
robot motion in the real world (i.e., picking and placing the block) takes on the order of 20s, which is
still much longer than the time taken to decide upon the action. However, as we plan to apply our
proposed algorithms to different domains, speeding up this combination of DQN+MCTS is on top of
our priority list as it performed best across experiments.
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