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ABSTRACT

We introduce NerVE, a unified eigenspectral framework for understanding how
feed-forward networks (FFNs) in large language models (LLMs) organize and reg-
ulate information flow in high-dimensional latent space. Despite FFNs dominating
the parameter budget, their high-dimensional dynamics remain poorly understood.
NerVE addresses this gap through lightweight, memory-efficient tracking of eigen-
spectrum dynamics via four complementary metrics: Spectral Entropy (dispersion),
Participation Ratio (effective dimensionality), Eigenvalue Early Enrichment (top-
heaviness), and Jensen-Shannon divergence (distributional shifts). Our key insight
is that FFN nonlinearities reinject and reshape variance across eigenmodes, funda-
mentally governing latent dimension utilization. We validate NerVE across model
scales and diverse architectural configurations that each uniquely shape FFN dy-
namics: normalization strategies (PreLN, PostLN, MixLN, Norm-Free) controlling
variance flow; FFN weight geometries constraining latent space; positional encod-
ing and activation functions modulating information propagation. Across these
settings, NerVE consistently recovers stable spectral signatures that correlate with
model’s generalization ability and respond predictably to design choices, providing
actionable insights for architectural optimization beyond trial-and-error.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
of natural language tasks, driven in part by advances in transformer-based architectures. While
much emphasis has been devoted to understanding attention mechanisms and token-wise interac-
tions, the role of feed-forward networks (FFNSs), particularly their nonlinear components, remains
underexplored, despite FFNs dominating both the parameter budget and computational footprint of
transformer-based models|Geva et al.| (2021)); [de Vries| (2023)).

Despite their apparent simplicity, FFNs perform high-dimensional nonlinear transformations that
regulate information flow by reorganizing, compressing, and propagating the information extracted
by attention modules across layers. Understanding how these transformations evolve and interact
with architectural design choices remains a fundamental open question.

One challenge in interpreting FFNs is the absence of systematic and efficient tools for characterizing
how latent representations are structured and transformed by nonlinear activations. Unlike self-
attention, whose weight matrices make token-token interactions relatively easy to probe, FFN
transformations unfold in a high-dimensional feature space that is far less accessible for direct
visualization and probing. Prior work Kobayashi et al.|(2024) used attention maps to study the input-
contextualization effect of FFNs; however, this lens does not reveals how nonlinearity redistributes
variance in the latent space, and misses the rich geometric structure inherent in these transformations.

To this end, we introduce NerVE, a unified, online, and memory-efficient framework for analyz-
ing FFN latent geometry through the eigenspectrum analysis. NerVE summarizes pre- and post-
activation spectra using four scale-invariant, distribution-aware metrics: spectral entropy (dispersion
vs uniformity), participation ratio (effective latent dimensionality), eigenvalue early enrichment
(top-heaviness), and Jensen-Shannon divergence (distributional shift).

From a methodological standpoint, these metrics span a broad theoretical range and expose the
complementary facets of the eigenspectrum that any single scalar would obscure, thereby enabling
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Figure 1: Nonlinear eigenspectrum dynamics in FFNs (GPT-2): FFN nonlinearity (GELU) regulate
information flow by reinjecting variance, reactivating under-utilized directions (post-activation
SE1 and PRY), and flattening the eigenspectrum, less top-heavy (post-activation EEEJ), in the
high-dimensional latent space. The JS heatmap shows a depth-localized transition band where
redistribution is strongest. NerVE quantifies these effects via scale-invariant: SE, PR, EEE, and JS.
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continuous tracking of latent geometric dynamics throughout training. Spectral Entropy (SE) captures
the uniformity of variance distribution (De Domenico & Biamonte, [2016} |Garrido et al., [2023));
whereas, Participation Ratio (PR) reflects the geometric notion of effective dimensionality, indicating
how many directions meaningfully contribute to total variance |Gao et al.[(2017). Unlike SE and PR,
Eigenvalue Early Enrichment, which quantify the top-heaviness, can distinguish the eigenspectrum t
utilizing different fractions of the high-dimensional latent space (Marbut et al., 2023)). Finally, the
Jensen-Shannon (JS) divergence provides an information-theoretic distance measure between two
eigenspectra, quantifying how nonlinear transformations redistribute variance (Lin, |1991).

We apply this framework across a diverse range of architectural settings, including LayerNorm
placements: PreLN, PostLN, and MixLN (Li et al.,|2025); normalization-free variants (Jha & Reagen,
2024} He & Hofmannl, 2024); FFN weight-geometry constraints, including weight normalization [Sal+
1mans & Kingmal (2016)), spectral normalization (Miyato et al., 2018)), and hyperspherical constraints
Liu et al.|(2017); and positional encoding scheme (RoPE) Su et al.| (2024).

Across settings, a clear pattern emerges: FFN nonlinearities do not merely rescale the activations,
they actively reinject the variance into high-dimensional latent space and reawakens the inactive
directions, and flatten the eigenspectrum by reducing their top-heaviness. As shown in Figure[I] the
post-activation spectra in GPT-2 (125M) consistently show increases in SE and PR, and decreases
in EEE, while JS heatmaps reveal depth-localized transition bands where redistribution is strongest.
These findings highlight the active role of FFN nonlinearities in regulating information flow and
latent dimensionality that downstream layers exploit.

Contributions: Our contributions can be summarized as follows:

1. Framework. We propose NerVE, a lightweight and memory-efficient methodology for online
tracking of FFN eigenspectrum dynamics, using four distribution-aware, scale-invariant metrics.

2. Conceptual insights. We demonstrate that FFN nonlinearities do not simply rescale the activations
but actively reorganize eigenspectra, reinjecting variance into under-utilized directions, flattening
top-heavy distribution, thus regulating latent dimensionality available to later layers.

3. Architectural causality. We show that the architectural design choices—normalization layer
placement, activation functions, gating, weight geometry, positional encodings—imprint early-
emerging spectral signatures that can serve as reliable proxy for model’s generalization ability.

4. Empirical. We validate NerVE on GPT-2 and LLaMA models trained from scratch on CodeParrot
HuggingFacel OpenWebText, and C4 datasets Raffel et al.|(2020), with FFN width sweeps.

2 NERVE: A PRINCIPLED FRAMEWORK FOR EIGENSPECTRUM ANALYSIS

Notations.Let L be the number of layers, d the embedding dimension, D the FFN hidden dimension,
B the batch size, S the context length, and X the FEN (pre/post-activation) covariance matrix.

2.1 FORMULATION OF EIGENSPECTRUM-BASED FRAMEWORK

To understand how information is structured and propagated through LLM latent space, we analyze:
(1) variance distribution across the eigenspectrum and its impact on effective dimensionality; (2) how
nonlinearity within layer reshape this distribution; (3) how these patterns evolve across network depth
and training. Our Geometric framework consists of four main components: i) activation collection,
(i1) covariance matrix computation, (iii) eigendecomposition, and (iv) spectral metrics calculation.
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Activation collection. For a FFN with (non-gating) architecture FFN(z) = Waowno (Wyp +b1) + b2,
where o is the activation function (e.g., ReLU, GELU), we collect PreAct(X) = Wz + by and
PostAct(X) = o(Wypx + b1 ), the output of the up projection, and input to the down projection (after
activation function), respectively. For activation with gating mechanisms (e.g., SWiGLU in LLaMA),
the architecture becomes FFN(z) = Wyown (0 (Waae) © (Wyp)), Where © represents element-wise
multiplication, and we collect PreAct(X) = Wyex and PostAct(X) = o(Waae) © (Wiyp)).

Covariance matrix computation. At the logging step ¢, for each layer [, we collect full activation
matrices PreAct(X (“)) € RV*P and PostAct(X (1)) € RVXP where N = B x S is the total
number of tokens in the batch. These tensors, originally shaped [B, S, D], are flattened to [B x S, D],
intentionally discarding sequence order. This allows us to compute an unbiased covariance matrix for
all tokens in the batch, treating each token as an independent sample in embedding space.

Computing the covariance using all /V tokens without any sub-sampling, ensures exact second-order
statistics of the batch rather than their statistical approximations, and spectral analysis captures the
true statistical properties of the activation distributions. For each set of activations, we compute an
unbiased sample covariance matrix as follows:

(X — )" (X —p)

M=
N -1

N
.. 1
e RP*P: where X € RY* are activations and w= N ZXi )
i=1

This yields two covariance matrices per FEN layer: E}(fr’;ﬁc[(X ) and Z](,lo’:t)Act(X ).
Eigendecomposition For each covariance matrix, we perform eigendecomposition to obtain the
eigenvalues v = Av. Weuse torch.linalg.eigvalsh for numerical stability, as covariance
matrices are symmetric positive semi-definite. The resulting eigenvalues are sorted in descending
order: \; > Ao > ... > Ap > 0. We define A = Zil \;, the total variance, and normalized
eigenvalues to create a probability distribution as A; = A;/A.

Spectral metrics computation Next, we compute four scalar metrics from the eigenspectrum of

Eélrgicl(X ) and E&:{)AQ(X ), which quantify distinct aspects of the eigensectrum dynamics: Spectral
Entropy, Participation Ratio, Eigenvalue Early Enrichment, and the Jensen-Shannon divergence.

2.2  EIGENSPECTRUM METRICS FOR ANALYZING HIGH-DIMENSIONAL LATENT SPACE

Spectral Entropy (SE) Spectral Entropy quantifies the uniformity of eigenvalue distribution in
high-dimensional latent spaces. Formally, it is the Shannon entropy of the normalized eigenvalue

distribution derived from a layer’s covariance matrix: SE = — Z?:l i log Ai.

Mathematically, spectral entropy is equivalent to the von Neumann entropy (VNE) in quantum
information theory, which quantifies the degree of quantum entanglement or mixedness of a quantum
state (De Domenico & Biamonte, [2016). In quantum mechanics, vNE is defined as: Syng(p) =

—Tr(pln p), where p denotes a density matrix, a positive semidefinite operator with unit trace that
encapsulates the probabilistic nature of quantum states (Nikitin et al.| [2024)).

For FFN, an analogous density matrix is created by normalizing the covariance matrix by its trace:
PEFN = %, where Tr(X) = A. Applying this to pggn, SE becomes the Shannon (or von

Neumann) entropy of the normalized eigenvalue distribution SE = — Zil Ai log i

Thus, when the eigenspectrum exhibits significant anisotropy (e.g., A1 > Aq, ..., Ap), SE approaches
zero, indicating a collapsed or low-rank representation. Conversely, when eigenspectrum approach
uniformity (A\; = \; : Vi, j), SE approaches its theoretical maximum, In(D).

Participation Ratio (PR). It measures effective dimensionality of an eigenspectrum (Hu & Som;-
polinsky, 2022) and quantifies how many dimensions significantly hold variance. Formally,

(Ziil )‘i)Q A2
Zi’;l )‘% - Zi >‘127

PR values close to 1 indicates maximal anisotropy (i.e., variance concentrated in a single direction),
while a value near D indicates uniform variance across all dimensions. While SE depends on the

PR = where 1 < PR <D 2)
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entire distribution shape (including small eigenvalues) and measures the uniformity of distribution,
PR focuses on how many directions are meaningfully active.

Notably, different eigenvalue distributions can share the same SE and PR, yet allocate variance
very differently across the eigenspectrum. hence, we need to include additional metric that reliably
differentiate spectra that utilizing the latent space in qualitatively different ways.

Early Eigenvalue Enrichment (EEE). It quantifies the fop-heaviness of an eigenspectrum by
tracking how rapidly the leading principal directions accumulate variance. Specifically, it captures
how front-loaded the variance is among the top eigenvalues, by assessing how quickly the cumulative
sum surpasses that of a uniform spectrum (Marbut et al., 2023)).

Formally, the proportion of variance explalned by the top k principal directions is defined by the
normalized cumulative sum at index k as Sj, = 3 El 1 Ai» and for comparison, the ideal uniform

reference grows linearly as D (see Figure[2). The EEE score is then the average vertical distance
between the empirical cumulative curve and this ideal line, normalized by the maximal possible value
(which occurs when all variance is in a single component):

EEE—Z<5k>—2xZ< f))le)' 3)

z 1

EEE =~ 1 indicates that most of the variance is concentrated in the top few directions, forming a
steep eigenvalue spectrum; conversely, EEE =~ 0 corresponds to a nearly uniform spectrum, where
variance accumulates gradually across all dimensions.
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component, indicative of a highly degenerate latent rep- p
resentation. As more dimensions begin to carry variance 0.0 55250300260 530550750
(from 10% to 99%), the EEE value decreases from 0.94 Principal Component

to 0.44, suggesting a gradual transition toward more dis- Figure 2: Cumulative variance distri-
tributed representations. Notably, EEE’s nonlinear scaling pution across a 768-dimensional latent
with dimension count highlights its sensitivity to early gpace. Higher values (shown on curves)
eigenvalue dominance, making it a valuable diagnostic for jpdicates top-heavy concentration in a
understanding how architectural choices and training dy- few dominant directions, while lower
namics shape the effective dimensionality of latent spaces. one reflects a more uniform distribution.

Jensen-Shannon Divergence (JS) Unlike the previous metrics, which describe a single eigenspectra
in isolation, JS provides a principled measure of dissimilarity between two eigenspectrum within a
layer. Specifically, it quantify the extent of distributional shifts from the pre to post eigenspectrum

caused by FFN nonlinearity. For a normalized eigenvalue distributions P, = {/\pre D and
Prost = {)\pOSt 2 1, where N\ = i/ Zle A, the JS is defined as (see Amari| (2016, Chapter 4.6.3)):

1 1
JS(Ppre H Ppost) = §DKL(Ppre ” M) + §DKL(Ppost H M) (4)

where M = et B g the midpoint distribution and Dy is Kullback-Leibler divergence:

Dy (P || Q) = ZAPlog< ) ©)

For numerical stability, we compute JS for FFN as follows:

D 1 pre D 1 post
2)‘}: 1 1 post 2A5
z_: (Xpre + S\POSt) + 5 Z; )‘i log 5\[»)]-6 + 5\Post (6)

IS(Pore || Poost) =

w\)—*
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The key benefits of above formulation of JS divergence, compared to a simpler KL divergence, for
eigenspectrum analysis are: (1) Symmetry: JS(Pyre || Ppost) = JS(Ppost || Ppre) enables unbiased
comparison of pre-activation and post-activation eigenspectrum, whereas KL is asymmetric and
would prioritize one distribution as the reference; (2) Boundedness and interpretability: 0 < JS( Py ||
Ppost) < In(2), facilitating standardized comparisons across layers of different dimensions, unlike
KL which could become unbounded. Moreover, the bounded scale makes JS values interpretable
under distributional shift, unlike KL which could yields unbounded values, in isolation, and (3)
Numerical stability: JS offers superior numerical stability when analyzing eigenspectra with near-
zero eigenvalues, which are common in neural network representations.

In the context of FFNs, JS divergence quantifies the information-theoretic distance between pre-
activation and post-activation eigenspectra, identifying FFNs where nonlinearity causes significant
geometric restructuring. Large JS values indicate that nonlinear activations substantially redistribute
variance across different principal components, potentially creating new directions of specialization or
eliminating others. Conversely, small JS values suggest that nonlinearities primarily rescale existing
directions without fundamentally altering the latent space geometry. Refer to Appendix [B] for a
discussion on the distributional sensitivity of these spectral metrics.

3 EXPERIMENTAL RESULTS

Models and datasets We evaluate the FFN eigenspectrum of two model families: GPT-2 and
LLaMA-style architectures. For GPT-2, we train a 125M parameter model on 2.1B tokens from
the CodeParrot dataset, which is created from 20M GitHub Python files and preprocessed using
HuggingFace|tokenizer of vocabulary size S0K. For LLaMA-style models, we train in-house variants
with 71M and 130M parameters on the C4 dataset, tokenized using the T5-base tokenizer with a
32K vocabulary. These LLaMA variants follow the architectural specifications (depth, embedding
dimensions, FFN width, positional encoding, and SwiGLU activation) from Li et al.|(2025)), which
adopts downscaling methodology of |Lialin et al.| (2024); Zhao et al.|(2024). For experiments with
RoPE, we train GPT-2 on OpenWebText dataset, following the architectural settings and training
recipe from Loshchilov et al.[(2025).

Training setup All experiments are conducted on NVIDIA RTX 3090 GPUs (24 GB). GPT-2 models
are trained for 41K steps with context length 128 on the CodeParrot dataset. For RoPE experiments,
GPT-2 is trained on 26B tokens from OpenWebText using 4 GPUs with context length 512. LLaMA-
71M is trained on 1.1B tokens for 10K steps, while LLaMA-130M variants are trained on 2.2B tokens
for 20K steps. All LLaMA models use a context length of 256.

3.1 FFN NONLINEARITY REINJECT VARIANCE AND FLATTEN THE EIGENSPECTRUM

Variance is reinjected, not merely rescaled Figure ] contrasts pre- and post-activation spectral
dynamics and highlights the role of nonlinearity withing FFN. The PreAct eigenspectrum is highly
top-heavy as most variance is concentrated in a few leading directions. This is reflected by lower SE
and PR, indicating a lower utilization of the latent space. Once the nonlinearity is activated, both SE
and PR jump upward across training, suggesting that the nonlinearity redistributes variance across
more dimensions. In effect, the nonlinearity reawakens previously inactive directions, injecting new
degrees of freedom into the latent space. This reinjection of variance promote the disentanglement of
features which facilitate more effective downstream processing in subsequent layers, and enables
deeper layers to operate on richer and more informative representations.

Flattening and reshaping the eigenspectrum The variance redistribution has a noticeable impact
on the spectrum shape. The EEE values, which quantifies how sharply leading eigenvalues dominate,
drops consistently for post-activation, re-affirming that the spectrum is being flattened. Instead of
concentrating variance in a small number of dominant modes, the post-activation spectrum spreads
variance more evenly. Moreover, the JS heatmaps shows a distributional shift: post-activation
eigenspectra are not merely scaled versions of pre-activation ones but are effectively reordered.

GELU vs. ReLU: Similar Trajectory, Distinct Dynamics GELU (Figure|l) and ReLU (Figure [3)
follow the same qualitative trajectory—variance reinjection (TSE, 1PR), spectral flattening (JEEE),
and distributional reordering (1JS)—but differ in pace and extent. While ReL U stabilize SE and PR
earlier, suggesting a faster reinjection of variance, GELU progresses more gradually yet ultimately
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Figure 3: Eigenspectrum dynamics illustrate how FFN nonlinearities regulate information flow and
reshape the eigenspectrum during training for GPT-2 (ReLU) on CodeParrot. Pre- and post-activation
dynamics are shown for SE, PR, and EEE, highlighting how nonlinearities reinject variance and alter
spectral structure. JS heatmaps (rightmost) capture the layer-wise distributional shift induced by
nonlinearity. In-panel titles report Pearson correlations (r) between each metric and evaluation loss.
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pushes PR, to higher values, indicating that its smoother nonlinearity enables exploration of a
broader subspace. This broader exploration correlates with GELU’s lower perplexity, underscoring
its effectiveness despite slower dynamics.

Spectral dynamics correlate with generalization We quantify how eigen-metrics shift in their
favorable directions (SE 1, PR 1, EEE |) correlate with next-token prediction performance. We
observe a strong and consistent correlation with validation loss (|| > 0.94), suggesting that optimizer
actively leverages the spectral shifts to improve generalization.

Together, these eigen-metrics highlights the functional role of nonlinearity: (1) improving the
directional usage of FFN latent space (SE 1, PR 1), (2) flattening eigenspectrum (EEE |), and
(3) inducing a shift in the geometry of latent representations (JS 1). This serve as the geometric
underpinning of the nonlinear expressivity principles in transformer models.

3.2 COMPENSATORY ROLE OF FFN NONLINEARITY IN THE ABSENCE OF LAYERNORMS

Removing LayerNorm from transformer architectures eliminates their layerwise re-centering and
variance normalization, shifting the burden of statistical regularization entirely onto the attention and
FFN sub-blocks. This motivates a central question: Can FFN activation functions compensate for
the absence of normalization, and if so, to what extent and through what mechanisms? Our findings
reveal that, unlike GELU, ReLLU-family activations actively compensate the absence for removal of
LayerNorms by regulating the FFN latent space variance.

Spectral inertia in normalization-free GELU models Normalization-free GELU model exhibits
spectral inertia in early layers, characterized by EEE,. ~ 1 and JS ~ 0 (see Figure E[) This
indicates that the nonlinearity in early FFNs fails to reinject variance into the latent space, leaving
the eigenspectrum heavily front-loaded. Consequently, variance remains confined to a few dominant
subspaces, and there is a significant overlap between SEpre and SEpost. Thus, nonlinearity in
early FFNs does not activate new directions, and information continues to flow through a narrow
subspace in subsequent layers. This spectral bottleneck reflects a downstream consequence of entropic
overload—a critical failure mode observed in normalization-free LLMs|Jha & Reagen|(2024)—where
a disproportionate number of attention heads in the early layers remains in persistently high-entropy
states throughout training, squandering the representation diversity of multi-head attention mechanism.
Ultimately, this degrades the performance and leads to a higher perplexity.

Early FFNs overcompensate to break spectral inertia in normalization-free ReLLU models In
contrast with GELU, ReLLU and learnable-slope Leaky ReLU variant exhibit strong compensatory
behavior when LayerNorms are removed. Specifically, in the first two FFN layers, the post-to-pre
Participation Ratio (PR) gain surges by ~ 20x to 300x (blue curves, Figure [)), indicating an
abrupt reinjection of variance into previously underutilized latent directions. Consequently, the post-
activation EEE remains consistently low (= 0.3-0.5) across layers, indicating that the spectrum
becomes flatter and more isotropic, rather than top-heavy. This redistribution is further corroborated
by non-overlapping SEpre and SEpost spectrum, and by JS peaks ~0.48 in the early-layer contour
maps, confirming the crucial role of nonlinearity in reshaping eigenspectrum in early FFNs

This aggressive variance injections demonstrate that FFN nonlinearity can partially assume the
statistical regularization role of LayerNorm, widening the latent manifold and mitigating spectral
bottlenecks. In terms of predictive performance, both ReLU variants reduce the perplexity gap to the
LayerNorm baseline by ~50% (refer to Table[T).
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Figure 4: Eigenspectrum dynamics for norm-free GPT-2 models using GELU (top), ReLU (middle),
and learnable-slope Leaky ReLLU (bottom). Columns show layer-averaged SE (pre vs. post), PR gain
(post to pre), post-activation EEE (yellow — top-heavy), and JS (yellow — strong redistribution)
across layers and training steps. Norm-free GELU exhibits spectral inertia in layers O to 5 (EEE —
1,JS — 0); whereas, ReLU and Leaky ReLU aggressively reinject variance (PR gain > 200x) and
flattening the spectrum (EEE < 0.3).

3.3 FEED-FORWARD NETWORKS WEIGHT GEOMETRY AND EIGENSPECTRUM DYNAMICS

Previously, we have seen that how ReLU variants improve the redistribution of top-heavy eigenvalues
in the early layers of normalization-free LLMs. We now analyze how parametric normalization
applied to their FFNs further influence eigenspectrum dynamics. Figure[5]shows the effects of weight,
spectral, and hyperspherical normalization applied to FFNs.

Table 1: Evaluation perplexity (PPL |) comparison across GPT-2 baseline models (GELU and ReL.U),
norm-free models (GELU, ReLU, learnable-slope Leaky ReLU). Parametric normalization (Weight,
Spectral, Hyperspherical) are applied to FFNs of norm-free learnable-slope Leaky ReLU models. All
models trained on 2.1B tokens from CodeParrot dataset.

| Baseline Models | Norm-free Models | Norm-free w/ FEN-Norm
| GELU ReLU | GELU ReLU Leaky ReLU | WNorm SNorm HNorm
PPL ‘ 2.714 2.774 ‘ 3.223 2.988 3.081 ‘ 3.041 3.000 3.122

Parametric normalization alters the localization of distributional shifts across layers Despite
being applied only to FFN linear layers, each parametric normalization technique induces distinct
learning dynamics, as demonstrated by the layerwise JS divergence in Figure [3] (rightmost column).
Specifically, SNorm exhibits highly localized distributional shifts in the mid-to-deeper layers that
emerge very early in training. In contrast, WNorm induces distributional shifts in a smaller subset of
mid layers that appear very late in training. Meanwhile, HNorm triggers strong shifts in the early
layers at the very-beginning of training, which gradually diminish as training progresses.

Spectral normalization achieves superior performance through smooth and sustained spectral
flattening By constraining the spectral norm of each FFN weight matrix, SNorm induces early and
consistent spectral flattening, reflected in uniformly negative AEEE (Post-Pre) values in Figure 3]
especially in deeper layers. This yields the lowest EEE_post (=-0.45) among all parametric normal-
ization methods, indicating balanced variance distribution across a moderate number of directions
(PR_post ~ 200) and improved latent space utilization. In contrast, WNorm shows delayed and
highly localized flattening in a few mid layers, while HNorm induces early flattening in shallow
layers that vanishes as training progresses.

Hyperspherical normalization underperforms due to early overshooting in eigenspectrum
HNorm projects weight vectors onto a unit hypersphere, which rapidly expands latent capacity,
indicated by a sharp increase in PR_post (exceeding 600). However, this expansion leads to an
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Figure 5: Impact of FFN (parametric) normalization in norm-free GPT-2 with learnable-slope leaky
ReLU. Eigenspectrum dynamics are quantified by latent capacity (PR_post), spectral regularization
and flattening (AEEE and EEE _post), and distributional shift (JS). Top to bottom: Weight, Spectral,
and Hyperspherical Normalization. Each method exhibits distinct JS localization and spectral patterns,
showing different influences on FFN internal dynamics.
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early-overshooting in AEEE dynamics, and EEE_post values remain high across depth, indicating the
persistence of dominant directions despite the expanded capacity. This behavior is also reflected in JS
divergence patterns, suggesting an undifferentiated and inefficient use of model’s depth. Hence, the
combination of early overshooting, lack of spectral control, and depthwise redundancy likely, leads
to HNorm’s degraded perplexity. While large latent capacity can be beneficial, it must be paired with
sustained flattening mechanisms to prevent top-heavy eigenspectrum from re-emerging.

3.4 IMPACT OF LAYERNORM POSITIONING ON THE FFN LATENT SPACE DIMENSIONALITY

PreLLN turns width into usable dimensions. Across the FFN-width sweep, the normalized PR,
which reflects the effective utilization of available latent space, for PreLLN is highest and remains
nearly flat as D increases. Figure [6]shows the layer-consistent behavior for PreLN, highlighting the
conversion of added width into usable dimensions. In effect, PreLLN offers the best return-on-width.

- PreLN DBW MixLN Do PostLN}

“ h ﬁ LY

1536 2048 3072 3840 4608 5376 6144
FFN Hidden Dimension (D)
Figure 6: LayerNorm positioning and FFN width sweep: We report participation ratio normalized by
hidden size D for PreLN, MixLN, and PostLN configurations. PreLLN sustains the highest and most
stable utilization of FFN width across the sweep, PostLN incurs diminishing return at higher FFN
width, MixLN lies in between but with greater layer-to-layer variability.

o
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PostLN shows diminishing returns at higher width. The width utilization is lowest for PostLN and
decreases with D, revealing growing spectral concentration—added capacity is concentrated into
fewer dominant directions instead of broadening the effective dimensionality. MixLN is intermediate
with medians between PreLN and PostLN and wider layer-to-layer spread, implying a less stable
inductive bias across depth. Thus, LayerNorm placement governs how width is spent. Table [4]
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shows the raw metric values. For a detailed discussion on spectral signatures of these normalization
techniques (Figure[8), refer to Appendix [C.T}

3.5 LAYERWISE DYNAMICS FOR POSITIONAL ENCODING: ROPE vs NOPE

RoOPE prevents mid-to-deep spectral collapse, improving depth utilization

Figure|/|demonstrate that the NoPE’s PR
declines in the middle and deeper layers,
indicating that representations collapse into
a narrow subspace and squander model
depth. RoPE. on the other hand, sustains
higher PR across the mid-to-deeper layers,
improving the depth utilization. This ef-
fect aligns with recent evidence that in-
termediate layers are disproportionately
important—a sweet spot between compres-
sion and preservation ?, and a critical fea-
ture engineering and ensembling phases of

NoPE (Eval PPL = 16.78)  mmm RoPE (Eval PPL = 15.20)

Participation Ratio
5
8

0

Figure 7: Layerwise participation ratio (PR) comparison
(RoPE vs NoPE) in GPT-2 models trained from scratch
on 26B token form openwebtext dataset with 512 con-
text length for 100K steps. RoPE sustains higher PR in
the middle and deeper layers, indicating better utiliza-
tion of latent space and network’s depth.

computation |Lad et al.|(2024)—which collapse under NoPE but remain effective under RoPE. These
improved spectral utilization in RoPE helps achieves lower evaluation perplexity (15.20 vs 16.78)
than NoPE. Figure[9)in Appendix shows the spectral entropy heatmaps reaffirming that RoPE prevents
the mid-to-deep spectral collapse characteristic of NoPE.

4 RELATED WORK

Spectral diagnostics in deep neural networks. Prior work uses spectral signals primarily on
representations or weights. RankMe |Garrido et al.| (2023)) and Diff-eRank |Wei et al.| (2024)) apply
spectral-entropy-based Rank measures for hidden states to predict downstream accuracy and quantify
compression, respectively. [Bao et al.| (2024)) established the link between spectral concentration
of QK weight matrix and attention localization, which [Lee et al.|(2025)) addressed using one-step
belief-propagation refinement. Hu et al.[(2025]) showed that weight ESD heavytailness is biased by
layer aspect ratio and propose fixed-aspect sub-ESD averaging to debias, and|Hu et al.|(2025) analyzes
layerwise representations using matrix/spectral entropy to select strong mid-depth embeddings.

In contrast to rank-based representation proxies, attention-weight analyses, or weight-ESD debiasing,
our approach directly explains architectural effects within FFNs through eigenspectrum dynamics.

5 COMPUTATIONAL COMPLEXITY AND OVERHEADS OF NERVE

To enable scalable eigenvalue analysis during training, we implemented memory optimization
strategies, listed in Algorithm [T](Appendix [FI)). As shown in Table[2] these memory optimization
significantly reduces the peak GPU memory usage. For instance, for GPT-2 model (D=4d) the peak
GPU memory usage is restricted to ~ 2 x 36MB per layer rather than accumulating 2 x 12 x 36MB
= 864MB across all FFNs per logging step. For absolute wall-clock time, refer to Table [6]

Table 2: GPU memory overhead for full-batch eigen-computation across various FFN widths.

Metric D=1d D=2d D=3d D=4d D=5d D=6d D=7d D=84d
Matrix dim.  [768,768] [1536, 1536] [2304,2304] [3072,3072] [3840,3840] [4608,4608] [5376,5376] [6144,6144]
Matrix size ~ 2.25MB 9MB 20.25MB 36MB 56.25MB 81IMB 110.25MB 144MB
GPU Mem. 4.5MB 18MB 40.5MB 72MB 112.5MB 162MB 220.5MB 288MB

6 LIMITATIONS AND CONCLUSION

While our four framework analyze how FFNs organize variance in LLMs, they do not directly predict
downstream task quality. Moreover, computing full eigendecompositions in large dimensions can be
costly, often necessitating sampling or approximation. Despite these constraints, our analysis shows
that each metric contributes a distinct and complementary view of high-dimensional usage, revealing
top-heaviness, effective rank, early enrichment, and distribution shifts.
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A DESIGN OF EXPERIMENTS AND IMPLEMENTATION DETAILS

Implementation Details for Computing Covariance Matrices
Our implementation ensures numerical stability and efficiency through:

1. Precision control: Converting all tensors to float32 to avoid precision issues.

2. Numerical stability: Adding small epsilon values (1e-12) to prevent division by zero.

3. Memory efficiency: For distributed training, gathering activations from all GPUs to rank 0.
4. Specialized computation: Using torch.linalg.eigvalsh for symmetric matrices.

During training, activations are collected through registered PyTorch hooks. For pre-activation
collection, we use forward hooks on the output of the up-projection layer. For post-activation
collection, we use pre-forward hooks on the down-projection layer to capture inputs before they enter
the down-projection.

B EIGENVALUE DISTRIBUTION SENSITIVITY OF SPECTRAL METRICS

SE characterizes the shape of the spectrum by computing a normalized entropy over eigenvalues, and
it is highly sensitive even to the smaller eigenvalues due to the logarithmic weighting of \;/ >~ y Aj. As
a result, SE increases with broader tails and offers a fine-grained view of how variance is distributed,
especially in the mid-to-lower spectrum. Participation ratio, by contrast, suppresses the influence of
smaller eigenvalues due to insignificant contribution to ) . A2, Consequently, PR is less sensitive to
gradual slope changes among the top eigenvalues compared to SE.

While SE and PR consider the entire set of eigenvalues in different ways, EEE targets the front-
loadedness of the spectrum. Hence, EEE is most sensitive to front-loaded spectrum where a handful
of large eigenvalues drives EEE close to 1, even if the rest are moderate.

Meanwhile, JS divergence plays a distinct role and compares two different distribution (e.g. pre- vs.
post-activation) in shape rather than magnitude. In that sense, JS captures a distinct aspect that SE,
PR, and EEE do not: while the first three measure intrinsic properties of a single distribution, JS
quantifies the information-theoretic distance between two distributions.

Notably, all four metrics are invariant to uniform scaling of the eigenvalues {\;}2 ;. This is crucial
in practice, as the magnitude of the covariance matrix may fluctuate due to various factors such as
changes in batch statistics. Scale invariance ensures the metrics remain focused on the shape of
the distribution, which truly governs the directionality in the latent space. Moreover, each metric
accounts for the entire eigenvalue distribution, unlike simple measures such as the eigenvalue ratio
(largest-to-smallest), which are sensitive only to extremes.

C FEIGENSPECTRAL SIGNATURE

C.1 SPECTRAL SIGNATURE OF LAYERNORM POSITIONING: PRELN, MIXLN, AND POSTLN

Figure []illustrates the post-activation spectral signatures (SE_post and PR_post) for three LayerNorm
placements—PreLN, PostLN, and MixLN—across GPT2-125M, LLaMA-70M, and LLaMA-130M.
These signatures highlight the extent of FFN latent space utilization across layers. Within each model
family, the ranking of evaluation perplexities is corroborated by their spectral signatures: models
with lower perplexity exhibit higher utilization.

GPT2-125M: Performance follows the order PreLN (PPL = 2.714) > MixLN (2.808) > PostLN
(2.830). The spectral signatures follow this ranking: PreLN exhibits superior spectral entropy and
participation ratio trend across layers, indicating more effective FFN latent space utilization, while
PostLN shows the most constrained spectral characteristics. In particular, L7 in PostLN and MixLN
show very-low utilization compared to the PreLN configuration.

LLaMA-70M: PostLN achieves the lowest perplexity (PPL = 33.6), followed by MixLN (33.9), while
PreLLN performs worst (34.2). The eigenspectral analysis shows that PreLN exhibits substantially
lower spectral entropy in deeper layers (L7-L8) compared to PostLN and MixLN. In contrast,
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Figure 8: Eigenspectral impact of LayerNorm placement (PreLLN, PostLN, MixLLN) in GPT-2 and
LLaMA variants (70M, 130M). The spectral signatures are shown through post-activation spectral
entropy (1) and participation ratio (1), and model’s perplexity is shown on top of each plots. GPT-2
models trained on CodeParrot and LLaMA variants on C4.

PostLN demonstrates superior spectral characteristics with higher participation ratios in deeper layers
compared to MixLN, consistent with its lower perplexity.

LLaMA-130M: PreLN yields the best performance with a perplexity of 26.4, followed closely by
PostLN (26.7) and MixLN (26.8). While PostLN exhibits stronger spectral entropy and participation
ratio in the mid-depth layers (L6-L9), PreLN consistently outperforms across the remaining layers,
particularly 10 where PostLN deteriorates, undermining its overall benefits. In contrast, MixLN
shows the worse spectral profile, leads to highest perplexity.

These results suggest that LayerNorm placement significantly influences how effectively the FFN
utilizes its latent space. Pre-LN configurations appear to better preserve and amplify feature diversity,
especially in deeper layers, thereby enabling higher-dimensional latent representations. The observed
gains in the MixLN setup indicate that even partial use of PreLN can compensate for the limitations
of PostLN, offering a potential strategy for balancing stability and expressivity.
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C.2 SPECTRAL SIGNATURE OF POSITIONAL ENCODING: NOPE vs ROPE

Figure 9] shows the spectral signature of rotatory positional encoding (RoPE), in contrast with
no positional encoding (NoPE). In particular, the layerwise spectral entropy and EEE values of
post-activation eigenspectrum are shown.
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Figure 9: Spectral Signature of Positional Encoding (RoPE vs NoPE) in GPT-2 models trained with
512 context size on 26B token form openwebtext dataset

D ADDITIONAL RESULTS

Table 3: Correlation between validation loss/perplexity and eigen-metrics (SE and PR). Left: Across
FFN width configurations in GPT-2 (GELU) models. Right: Across architectures and activation
functions. Higher SE/PR implies lower loss regardless of configuration.

Metric | FFN Width Configuration (GPT-2 GELU) | GPT-2 | NormFree GPT-2 | LLaMA
‘ D=1d D=2d D=3d D=4d D=5d D=6d D=7d D=8d ‘ GELU ReLU GeGLU SwiGLU ‘ GELU ReLU LReLU ‘ 71IM
SEpre | -098 -098 -099 -099 -099 -099 -099 -099 | -099 -0.98 -0.95 -0.97 -0.82 0.03 0.03 -0.96
SE_post | -0.84 -0.84 -0.86 -0.87 -0.87 -0.87 -0.87 -0.87 | -1.00 -1.00 -0.57 -0.85 -0.92 -0.99 -1.00 -0.87
PRpre | -097 -098 -098 -0.99 -098 -097 -098 -097 | -099 -0.98 -0.97 -0.97 -093  -0.55 -0.60 -0.84
PR_post | -0.85 -093 -094 -094 -095 -095 -093 -093 | -1.00 -0.97 -0.94 -0.89 -0.99  -0.94 -0.99 -0.62

Table 4: Raw Metrics - Final Values (median == MAD across 12 layers)

Method Metric | D=768 D=1536 D=2048 D=3072 D=3840 D=4608 D=5376 D=6144

PreLN PR 292462  573+£149  831+£238 10024354 12754333 15624429 17214244  1822+370
Exp(SE) | 546+39 1109480 16314+91  2154+146 2678+158  31854£200 3732+133  4169+175

137£111 1844126 2474233 2744224 278+234 1594142 2514201 2334187

. PR
MixLN Exp(SE) ‘ 434+123 8144214 12554336  1450+£628 1907+525  1941+£607  2108+£923 22294962
PostLN PR 95465 1424104 151+147 2404231 117£110 91483 94484 71+62
Exp(SE) | 374£170 8154233 1008+485 1361£613 1064+863 1225+1040 828+619  1148+1010
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Table 5: Effect of Spectrum Approximations (sub-sampling and low-rank approximation) on correla-
tion dimensionality measure and eval loss in GPT-2. Token-level sub-sampling preserves pre-metric
trends but degrades post-metric correlations because tail eigenvalues are under-sampled; low-rank
truncation distorts both.

Sampling RandSVD Lanczos
5% 10% 25% 50% 256 512 256 512

SE_pre -097 -0972 -0971 -0972 -0.106 -0.174 -0.822 -0.959
SE_post -0.34 -0376 -0332 -0363 0.612 0.568 0.335 0.08

PRpre -0914 -0915 -0918 -0912 0.014 0.047 -0.788 -0.901
PR_post -0.122 -0.138 0.049 -0.235 0.594 0575 0314 0.136

Metric

Table 6: Computational Overhead: Wall-clock time and relative overhead for computing eigenspec-
trum metrics at various logging frequencies. Overhead is reported as percentage of total training time
when eigendecomposition is performed every 200 and 1000 steps on GPT-2 with 3072x3072 FFN
covariance matrix size running on AMD EPYC 7502 server with NVIDIA RTX 3090 GPU

Sampling RandSVD Lanczos Full
5% 10%  25% 50% 256 512 256 512 batch

Wall-clock time 9.89s 9.92s 11.48s 12.62s 10.28s 11.19s 12.07s 12.20s 14.41s
Overhead-200 (%) 4.37  4.39 5.08 5.58 4.55 4.95 5.34 5.40 6.38
Overhead-1K (%)  0.87  0.88 1.02 1.12 0.91 0.99 1.07 1.08 1.28

Metric

E SPECTRAL SIGNATURE ACROSS FFN WIDTH SWEEPS
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Figure 10: Eigen metrics in GPT-2 (GELU, D=1d to 8d) with Pearson r to eval 10SS ("pre; Tpost)
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Figure 16: Impact of sampling (10%, 25%, 50%), and low-rank approximation on EEE eigenmetric
in GPT-2
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® N A AW N -

w0 = O ©

=

# Start timing (includes all operations below)
torch.cuda.synchronize ()
start_time = time.time ()

Complete eigenvalue pipeline for all layers:

CPU-GPU data transfer of activations

Covariance matrix computation (3072x3072)

Eigenvalue decomposition using torch.linalg.eigvals ()
Eigenvalue metrics computation (SE, PR, EEE, JS)
Memory cleanup and GPU cache clearing

H oW o W e
Gs WN e

torch.cuda.synchronize ()
end_time = time.time ()
overhead = end_time - start_time # Complete wall-clock time

Listing 1: Wall-clock timing measurement for eigenspectrum-based computational overhead
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Algorithm 1 Memory-Efficient Eigenspectrum Analysis

I: forlayer/ =1,...,L do

2 H, < GetActivations(¥) > Store on CPU
3 ¢ < eigvalsh(H; H,/N) > O(d) memory
4: Compute metrics: SE, PR, EEE, JS from A,

5 del H, > Immediate cleanup
6: end for

F.1 MEMORY-EFFICIENT EIGENSPECTRUM ANALYSIS

To enable scalable eigenvalue analysis during training, we implement three memory optimization
strategies that significantly reduce GPU memory overhead:

1. Eigenvalue-only computation: Since our eigen metrics depend only on eigenvalues, we employ
torch.linalg.eigvalsh to compute eigenvalues without eigenvectors.

(

iI| ### What we’re using (efficient):

# Only eigenvalues: 3072 values

3l vals = torch.linalg.eigvalsh (cov)

)

5| ### Less efficient alternatives:
6/ # Eigenvalues + eigenvectors: 3072 + (3072x3072)

71 vals, vecs = torch.linalg.eigh (cov)
8| # General eigendecomposition (even more overhead)
9o| vals, vecs = torch.linalg.eig(cov)

Listing 2: Memory-efficient eigenvalue computation

2. Sequential layer processing: Rather than computing eigenvalues for all layers simultaneously,
we process layers sequentially with memory cleanup between computations:

e

1| # Process each layer individually with cleanup

2| for layer_idx in sorted(self.layer_pre_acts.keys()):

# Compute metrics for current layer

, #

5 self.layer_pre_acts|[layer_idx].clear ()
6 gc.collect ()

7 torch.cuda.empty_cache ()

Listing 3: Sequential layer processing with memory cleanup

This approach maintains peak GPU memory usage at ~2x36MB per layer rather than accumulat-
ing 2x 12x36MB = 864MB across all FENs per logging step (Table [2)).

3. Hybrid storage strategy: We store activation tensors on CPU memory while performing eigen-
value computations on GPU, balancing memory efficiency with computational speed.
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