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Abstract

Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where
generated responses seem semantically plausible yet exhibit little or no relevance
to the input image. Previous studies reveal that this issue primarily stems from
LVLMs’ over-reliance on language priors while disregarding the visual information
during decoding. To alleviate this issue, we introduce a novel Conditional Point-
wise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively
strengthens the mutual dependency between generated texts and input images to
mitigate hallucinations. Unlike existing methods solely focusing on text token
sampling, we propose to jointly model the contributions of visual and textual tokens
to C-PMI, formulating hallucination mitigation as a bi-level optimization problem
aimed at maximizing mutual information. To solve it, we design a token purifi-
cation mechanism that dynamically regulates the decoding process by sampling
text tokens remaining maximally relevant to the given image, while simultaneously
refining image tokens most pertinent to the generated response. Extensive exper-
iments across various benchmarks reveal that the proposed method significantly
reduces hallucinations in LVLMs while preserving decoding efficiency.

1 Introduction

The unprecedented breakthroughs in large vision-language models (LVLMs) [1, 2, 3, 4, 5] have
expanded their applicability across various vision-language (V+L) tasks such as autonomous driving
[6, 7]. Benefiting from advanced designs of model architectures and training algorithms, LVLMs
trained on high-quality image-text pairs have exhibited outstanding capabilities in cross-modal
alignment and complex V+L understanding. Despite the remarkable success, the issue of hallucination
continues to pose challenges to LVLMs. Concretely, LVLMs may generate semantically coherent yet
factually incorrect contents that are entirely inconsistent with the input image [8, 9, 10]. E.g., describe
non-existent objects or misinterpret the attributes and relationships of visual entities within the
image. This raises serious concerns regarding the deployment of LVLMs in real-world applications,
particularly in high-risk scenarios such as medical diagnosis [11] and financial systems [12].

To address this issue, prior work has explored several directions. One line of research explores further
fine-tuning for more fine-grained alignment [13, 14] or post-hoc analysis to correct hallucinated

∗Equal Contribution
†Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Q

K

System Prompt
Image Tokens

Generated Tokens
User Instruction

The image features a 
large yellow [dog]

The image features a large 
yellow dog and a small [kitten]

Please describe this image in detail.

(a) Attention allocation. (b) Our visual token refinement.

Figure 1: (a) Illustration of the attention bias of LVLMs. While image tokens constitute the majority
of the input tokens, they receive significantly less cumulative attention scores compared to text tokens.
(b) The proposed purification mechanism when the masking ratio is 50%. Our method promotes more
reliable generation by adaptively retaining image tokens with high relevance to the ongoing response.

elements within the generated responses [15, 16]. Another research stream focuses on directly
modifying the token distributions in the decoding stage [17, 18, 8, 9, 10, 19]. These methods employ
various techniques to penalize the probabilities of hallucination-inducing tokens, thereby encouraging
the generation of more faithful and reliable responses. While these decoding-based strategies have
shown practical effectiveness and efficiency for hallucination mitigation, their designs are typically
grounded in empirical findings and lack convincing theoretical foundations. Moreover, they generally
fail to explicitly quantify and control the dynamic mutual relevance between the visual input and the
progressively generated text, thus leading to insufficient effectiveness in certain scenarios.

In this work, we build upon the line of decoding-based methods and investigate the issue from
an information-theoretic perspective, based on which we propose a novel Conditional Mutual
Information-aware adaptive Vision-Language Decoding strategy (CMI-VLD). Specifically, previous
studies [20, 21] have revealed that a key factor contributing to hallucination is LVLM’s tendency to
overly depend on text tokens during the autoregressive generation, with limited attention paid to the
critical visual input (see Fig. 1 (a)). As a result, the generated text is guided more by the language
priors inherent in the LLM backbone, rather than grounded in the actual visual content of the input
image. This eventually leads to a low mutual dependency between the input images and the final
responses, hence exacerbating the occurrence of hallucinations in LVLMs.

To mitigate this issue, we introduce conditional pointwise mutual information (C-PMI) to quantify
the mutual correlation between the visual inputs and the generated texts during generation. Cor-
respondingly, we reformulate the hallucination mitigation objective as a vision-language mutual
information maximization problem, which is further decomposed into two complementary sub-tasks
that capture the respective contributions of visual and textual tokens. Based on the analysis, we derive
a bi-level optimization formulation and design an effective solution that adaptively calibrates each
decoding step during the generation process. To optimize the inner sub-problem, we calibrate the
token distribution using the derived formula to prioritize tokens that exhibit strong relevance to the
visual input. For the outer sub-problem, we propose an efficient visual token purifier parameterized as
a learnable network, to dynamically refine image tokens that are most pertinent to the current textual
context. By filtering out redundant image tokens that impair mutual information with the generated
content, the proposed strategy directs the model to focus more on the key visual tokens most relevant
to the ongoing response (see Fig. 1 (b)), further enhancing the dependence of the generated text on
the input image. To summarize, our main contributions are threefold:

• We revisit the hallucination mitigation problem in LVLMs from an information-theoretic
perspective, where we reformulate it as a conditional mutual information maximization
problem and introduce a novel bi-level optimization-based solution framework.

• To implement this optimization, we propose an effective and efficient adaptive vision-
language decoding strategy that dynamically refines the most informative visual and textual
tokens to maximize the C-PMI throughout the generation process.

• Extensive experimental results on multiple LVLMs such as LLaVA-1.5 across five evalua-
tion benchmarks demonstrate the exceptional effectiveness of the proposed CMI-VLD in
mitigating hallucination, significantly outperforming competitive baselines.
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2 Related Work

Large Vision-Language Models. Built upon advanced pre-trained LLMs [22, 23, 24, 25], LVLMs
successfully bridge the gap between visual perception and linguistic reasoning [26, 27, 3, 28, 29],
achieving impressive performance in generating diverse responses and tackling complex visual un-
derstanding tasks. To incorporate visual information into the LLM backbone, LVLMs like LLaVA
[2, 4] and Shikra [3] employ linear projection layers trained by instruction fine-tuning to directly
map visual features into the LLM embedding space. Meanwhile, the BLIP series [30, 31] introduces
Q-former to integrate visual tokens dynamically through gated cross-attention layers, thereby re-
ducing redundancy in image token representations. Benefiting from better training data, improved
algorithms, and increasingly powerful LLM backbones, recent LVLMs such as LLaVA-Next [32]
have demonstrated stronger multimodal understanding capabilities. Despite the progress, LVLMs still
suffer from serious hallucination problems, where the generated responses are plausible yet unfaithful
or factually incorrect. Our work aims to mitigate this issue and enhance the reliability of LVLMs.

Mitigating Hallucinations in LVLMs. To address the critical issue, various strategies have been
proposed to alleviate hallucinations from different perspectives. Early efforts focused on improving
the multimodal alignment by training LVLMs with higher-quality data or more advanced algo-
rithms [13, 14, 33]. However, they often require additional datasets and incur substantial computa-
tional overhead, primarily due to the exhaustive instruction-tuning procedures. In parallel, post-hoc
correction methods based on auxiliary models have been explored [15, 16] to filter or revise halluci-
nated content in the output responses. Nevertheless, these methods heavily rely on the performance
of the auxiliary model and introduce extra inference overhead.

Another research line focuses on decoding-based hallucination mitigation. These methods primarily
seek to construct token distributions that adaptively suppress the probabilities of hallucinated to-
kens [34, 17, 19, 8, 35]. By sampling from carefully crafted distributions, these methods significantly
reduce hallucinated concepts in generated responses. In addition, OPERA [12] identifies a strong
correlation between hallucinations and summary tokens, and proposes to penalize the over-trust logits
along with a rollback strategy. [20] conducts a modular analysis and empirically reveals that certain
attention heads overly focus on textual tokens while neglecting the pivotal visual information, based
on which they introduce two correction algorithms to penalize text attentions. Among these methods,
only M3ID [21] considers theoretical aspects, yet it introduces mutual information solely to justify its
vision-prompt dependency metric in contrastive decoding, without delving deeper into the key factors
influencing C-PMI or exploring an effective optimization paradigm. In contrast, this paper proposes a
novel multimodal adaptive decoding algorithm grounded in C-PMI, which dynamically amplifies the
mutual relevance between image and text and effectively reduces hallucinations in LVLM outputs.

3 Methodology

This section first introduces the basic generative paradigm of LVLMs. Building on this, we propose
our adaptive decoding algorithm for hallucination mitigation, i.e., CMI-VLD. Finally, we present the
detailed design of a learnable predictor for visual token purification in our method.

3.1 Preliminary

Before delving into the proposed adaptive decoding algorithm, i.e., CMI-VLD, we revisit the autore-
gressive generation paradigm of LVLMs, which serves as the foundation for subsequent derivations.

Given a user prompt x and an image v as input, a pre-trained LVLM fθ(·) first processes the image
v through a vision encoder, followed by a cross-modal projection module, to generate a set of
visual tokens v = {v0, v1, . . . , vN}. At decoding step t, the visual tokens are concatenated with the
textual tokens from the instruction x and the previously generated token sequence y<t. The resulting
sequence is fed into the LLM backbone of the LVLM to autoregressively predict the next token:

yt ∼ pθ(· | v, x, y<t) = softmax(fθ(· | v, x, y<t)), (1)
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where yt is the token being sampled at current generation step t. In particular, the probability of a
generated sentence y of length l can be factorized as a product of conditional probabilities:

qθ(y | v, x) =
l−1∏
t=0

pθ(yt | v, x, y<t) =

l−1∏
t=0

softmax (fθ (· | v, x, y<t))yt
, (2)

where qθ denotes the sentence-level conditional probability distribution characterized by the LVLM
fθ(·). This yields an appealing property for the subsequent expansion of mutual information, as the
likelihood of a given text under a specific LVLM can be accurately computed by Eq. (2).

3.2 The Proposed CMI-VLD

To reduce hallucination-related content in the output response, we propose to strengthen the bidi-
rectional dependency between the input image and the generated sentence by maximizing their
conditional mutual information measured by the target LVLM fθ(·). However, standard CMI com-
putation requires estimating the full conditional distributions of image variable V and text variable
Y given the user instruction variable X , which is intractable in practice due to challenges such as
dimension explosion or data sparsity. To overcome this challenge, we adopt its pointwise formulation
[36], which balances theoretical rigor with practical feasibility, to quantify the local dependency
between a specific image–text pair (V = v, Y = y), conditioned on a given instruction X = x:

max
v,y

C-PMIθ(V = v, Y = y | X = x) = max

(
log

pθ(v, y | x)
pθ(v | x) pθ(y | x)

)
. (3)

To achieve more effective optimization, we carefully analyze this objective from the perspectives
of both visual and textual data points involved in C-PMI calculation. Given an input image v, the
algorithm should encourage the generation of a text y that is highly aligned with the visual input v
to strengthen their mutual dependency. Simultaneously, for the given text y, the visual input can be
refined to exhibit strong relevance to y, hence further amplifying the mutual information between the
two modalities. As a result, the bidirectional dependency between the two variables in maximizing
C-PMI naturally induces a bi-level optimization framework, which can be effectively addressed by
alternately optimizing the derived inner and outer subproblems. However, the conditional distributions
in Eq. (3) can not yet be directly calculated. Based on Eq. (2) and Bayes’ Theorem, we then further
expand the optimization objective as follows:

max
v,y

C-PMIθ(v, y | x) = max

l−1∑
t=0

[log pθ (yt | v, x, y<t)− log pθ (yt | x, y<t)] . (4)

Detailed proof is in Appendix A. This formula decomposes the original objective over individual
decoding steps, enabling each term to be explicitly computed using the token-level probabilities
provided by the LVLM. An interesting observation is that the token distributions used in existing
contrastive decoding studies [18, 17, 9, 10] can be viewed as specific variants of the optimization
goal in Eq. (4), and thus can be naturally regarded as special cases of our framework when only the
text’s influence on C-PMI is considered. Next, we concretize the solution of two interdependent
subproblems from text and visual modalities to form our alternating optimization procedure:

(1) Calibrated Distribution Sampling for Text Modality. To optimize the text sequence y, Eq. (4)
encourages us to construct an improved distribution pc to prioritize text tokens that maximize the
difference between probabilities predicted with and without the visual input. However, directly
applying this formulation yields unsatisfactory results since it can excessively penalize reasonable
tokens in certain contexts. Inspired by [17, 9], we introduce a hyperparameter λ to provide a more
fine-grained control over the strength of the subtraction, which can be formally expressed as:

yt ∼ pc(· | v, x, y<t) = softmax
[
(1 + λ)fθ (· | v, x, y<t)− λfθ (· | x, y<t)

]
, (5)

This strategy calibrates the token distribution by urging the generation toward tokens that are more
informative of the image and hence enhancing its reliance on visual content. To ensure the quality of
generated sentences, we also incorporate the adaptive token truncation mechanism [13, 17] to prune
the sampling space of Eq. 5 into a more reliable token candidate pool.
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Figure 2: Overview of the proposed CMI-VLD decoding. At each timestep t, CMI-VLD mitigates
hallucination by maximizing mutual dependency between the visual input and the ongoing response
through the proposed vision-language purification. Specifically, the visual token purifier first incorpo-
rates current input tokens to predict an image mask Mv, which filters out irrelevant visual tokens
to enhance C-PMI. Based on the refined visual input, a text token distribution is correspondingly
constructed to penalize hallucination-related text tokens and hence guide the next-token sampling to
further strengthen the dependency on the visual input.

(2) Visual Token Refinement for Visual Modality. Motivated by recent findings [37, 38] that
many image tokens in LVLMs are redundant, we propose a visual token purification mechanism that
enhances C-PMI by evicting tokens considered non-informative with respect to the given text. In this
way, the LVLM can focus more on the most critical visual tokens for improved generation. Moreover,
we also incorporate the model’s attention scores over the visual input to identify tokens that exert
a stronger influence on the LVLM’s decisions. Given the query vectors Qi ∈ RH×n×dk and key
vectors Ki ∈ RH×n×dk at the i-th LVLM layer, where H is the head number, n is the current token
number, and dk is the latent dimension, the total attention scores of an image v is calculated as:

Attni(v) =
1

H

∑
vj∈v

H−1∑
k=0

A
(k,:,:)
i [−1][vj ], where Ai = softmax

(
QiK

⊤
i√

dk
+Mc

)
, (6)

where Mc is the causal attention mask and Ai ∈ RH×n×n denotes the attention matrix at the i-th
layer. This design enables the optimizer to select visual tokens that are not only text-relevant but
also highly impactful in guiding the model’s predictions, boosting the effectiveness of our visual
purification. Formally, the overall bi-level optimization objective can be expressed as:

max
y

l−1∑
t=0

[
(1 + λ) log pθ (yt | v∗, x, y<t)− λ log pθ (yt | x, y<t)

]
,

s.t. v∗ = argmax
v

[
α · Attni(v) + log pθ (yt | v, x, y<t)− log pθ (yt | x, y<t)

]
,

(7)

where λ is the aforementioned correction factor for distribution calibration and α is a non-negative
hyperparameter balancing the influence of C-PMI and attention scores on visual token selection.

At decoding step t, we first optimize the upper subproblem by sampling yt from the distribution
adjusted based on Eq. (5). To solve the lower subproblem, we then adaptively retain a proportion
γ of image tokens as the purified input to promote its relevance to the current textual context.
Motivated by findings in [38] that token sparsification at the second layer of LVLMs yields optimal
performance, we utilize attention scores from this layer (i = 2) for visual purification and start
the refinement accordingly. By alternately solving the two subproblems at each decoding step, the
optimizer simultaneously samples text tokens that tightly align with current visual content and purifies
informative visual tokens with strong relevance to the ongoing textual context, hence effectively
amplifying C-PMI and reducing hallucination-related elements in the final response. For stable
performance, we also incorporate the feature steering mechanism [39] into our implementation.
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3.3 Visual Token Purifier for Visual Refinement

To address the outer subproblem in Eq. (7), an intuitive solution is to manually select image tokens
that maximize the defined score for every decoding step. However, this requires repeatedly calculating
token-wise scores and would incur substantial computational burdens compared to existing decoding-
based approaches [17, 18]. To overcome this challenge, we propose a lightweight visual token purifier
P(·), which consists of only a few transformer blocks and MLP layers (see Appendix D for details)
[37], to automatically filter visual tokens that benefit C-PMI maximization.

As illustrated in Fig. 2, the purifier P(·) incorporates the concatenated embeddings z =
[zv, zx, zy<t ] of the image v and the current text (x, y<t) to output a probability distribution
π = softmax (P (z)) ∈ [0, 1]N×2, where N is the number of visual tokens. Here, πi,0 repre-
sents the probability of discarding the i-th token, and πi,1 represents the probability of retaining it.
The final visual token mask Mv ∈ {0, 1}N can be then extracted via:

Mv =

{
argmax
j∈{0,1}

πij

∣∣∣∣∣ i ∈ {0, 1, . . . , N − 1}

}
. (8)

Model Training. The principle challenge in training the purifier lies in the non-differentiability of the
argmax operation used for discrete token selection. To address this, we employ the Gumbel-Softmax
technique with a temperature parameter τ to enable differentiable sampling:

G = Gumbel-Softmax(π, τ),

where the sampling output G ∈ {0, 1}N×2 containing N one-hot vectors. Since the retention
probability of a visual token corresponds to the second column in π, the differentiable mask Mv ∈
{0, 1}N can be extracted as Mv = G[:, 1]. This approach introduces stochasticity via noise from
a fixed Gumbel distribution, which enables gradients to propagate back through the probability
parameters. Moreover, the temperature factor τ helps soften the sampling distribution, thereby
improving gradient stability and facilitating convergence during training.

To specify the retaining ratio γ, we introduce a Frobenius norm-based regularization term that
penalizes incorrect retention rate. The overall training objective at decoding step t is defined as:

Ltotal =
(
log pθ(yt | v, x,y<t)− log pθ(yt | x, y<t)

)
+α·Attni(v) + β · ∥sum(Mv)/N − γ∥F ,

(9)

where β is a weight coefficient controlling the regularization strength of the reduction ratio, ∥·∥F
denotes the F-norm of a matrix, and sum(·) represents the summation operation.

By iteratively updating the network using the loss function in Eq. (9) on paired image-text data, the
purifier learns to dynamically identify visual tokens that effectively contribute to mutual information
maximization, which further enhances the informativeness of the visual input while discarding those
redundant and distracting visual tokens. Furthermore, our method preserves the decoding efficiency
despite introducing an additional network, as the purifier module is lightweight and the removal of
non-essential visual tokens helps reduce the overall inference cost (see Sec . 4.2).

4 Experiments

4.1 Experimental Setup

Models and Baselines. We align with [9] and choose four representative LVLMs for evaluation,
including InstructBLIP [31], Shikra [3], LLaVA-1.5 on the 7B scale [4], and LLaVA-NeXT [32]
on the 8B scale. We conduct a comprehensive evaluation of the proposed CMI-VLD on a range
of state-of-the-art (SOTA) baselines, including Sampling (Top-p=1), Greedy, VTI [39], VCD [17],
ICD [18], HALC [8], OPERA [19], SID [9], and VASparse [10]. Following SID, we implement
the proposed method under both sampling and greedy decoding settings. It is worth noting that
HALC, OPERA, and VASparse adopt the more flexible and stronger beam search strategy, which
may raise fairness concerns as it retains a broader set of promising candidate paths during decoding.
Nevertheless, our CMI-VLD still consistently outperforms these methods.
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Table 1: Comparison of the proposed CMI-VLD with SOTA baselines on the CHAIR metric. We
evaluate the performance on MSCOCO. The † indicates decoding strategies based on beam search.

Method LLaVA-1.5 InstructBLIP Shikra LLaVA-Next
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Sampling 52.2 15.8 55.0 25.3 56.2 15.8 34.8 9.4
ICD 51.0 15.2 64.0 20.2 56.6 15.5 33.4 8.7
VCD 50.4 15.6 57.6 19.2 56.2 15.5 36.0 9.3
VTI 37.2 11.4 49.2 21.9 47.0 14.1 32.2 7.8
SID 49.2 14.5 58.0 18.7 54.4 14.4 39.4 9.9
CMI-VLD 30.2 9.3 51.0 16.1 38.2 10.1 30.6 7.6
Greedy 45.0 13.5 52.2 21.8 54.8 15.8 31.6 8.2
ICD 44.8 12.8 48.8 14.1 55.0 14.0 32.8 9.1
VCD 49.4 14.0 46.6 13.3 55.8 15.3 36.8 9.4
HALC† 33.2 10.3 61.4 20.0 55.4 14.7 36.7 9.5
OPERA† 39.4 10.3 48.2 13.8 36.8 11.7 33.6 8.3
VTI 30.6 10.1 48.3 20.7 44.6 13.7 30.1 7.6
SID 42.8 12.1 56.2 15.8 51.2 13.6 38.0 8.9
VASparse† 49.6 14.2 53.6 14.9 51.6 14.8 33.6 9.1
CMI-VLD 29.9 8.9 43.2 12.9 30.6 8.9 27.2 6.8

Sampling OPERA SID VASparse Ours

Figure 3: GPT-4o assisted benchmark. We calculate the Sentence-level Hallucination Ratio (SHR) as
the major metric for hallucination degree, along with 1&2-gram, the number of sentences per image
(SPI), and the number of words per image (WPI). A larger radar area indicates better performance.

Evaluation Benchmarks. Following the evaluation protocol in [9, 35], we analyze our CMI-VLD
across five widely-used benchmarks: (1) the CHAIR metric [40] on the MSCOCO dataset [41] that
measures object hallucinations; (2) a GPT-4 assisted evaluation [33], where we adopt the advanced
GPT-4o [42] to detect more fine-grained hallucinations and compute the Sentence-level Hallucination
Ratio (SHR); (3) Polling-based Object Probing Evaluation (POPE) [43], another object hallucination
evaluation also conducted on MSCOCO; (4) Multimodal Large Language Model Evaluation (MME)
[44], a general-purpose benchmark for assessing multimodal capabilities; and (5) MMBench [45],
which includes multiple-choice questions designed to evaluate visual perception and reasoning.

Implementation Details. We set α = 1× 102 and β = 5× 102 in Eq. (9) during the training of the
purifier for all LVLMs. To initiate the refinement process, we adopt Layer i = 2 for LLaVA-1.5,
Shikra, and LLaVA-NeXT and i = 4 for InstructBLIP. In Sec. 4.3, we explore the contrastive strength
λ ranging from 0 to 0.9. For all experiments, we set max new tokens as 512 for evaluation. Note that
CMI-VLD is compatible with the feature steering mechanism in VTI [39], which is then incorporated
in our implementation for stable and enhanced performance. More details are in Appendix B.

4.2 Performance Evaluation

CHAIR Evaluation. Following previous studies [19, 9, 8], we query LVLMs with the input prompt
"Please describe this image in detail." using 500 images randomly sampled from the
validation set of MSCOCO. By dynamically amplifying the mutual relevance between visual inputs
and generated texts, the proposed method achieves remarkable improvements over SOTA baselines

7



Table 2: Comparison of the proposed CMI-VLD with SOTA baselines on the POPE metric. The †

indicates decoding strategies based on beam search.

Model Method Random Popular Adversarial

Accuracy F1 score Accuracy F1 score Accuracy F1 score

LLaVA-Next

Sampling 82.53% 79.19% 81.57% 78.31% 80.30% 77.16%
ICD 82.77% 79.57% 81.97% 78.81% 81.03% 77.95%
VCD 83.67% 80.80% 82.17% 79.40% 80.90% 78.25%
VTI 82.70% 79.45% 81.43% 78.25% 80.10% 77.05%
SID 84.67% 82.20% 83.57% 81.16% 81.60% 80.27%
CMI-VLD 85.17% 83.02% 84.10% 82.03% 82.30% 80.40%
Greedy 83.40% 80.32% 82.60% 79.55% 81.77% 78.77%
ICD 83.47% 80.41% 82.60% 79.56% 81.90% 78.91%
VCD 84.43% 81.85% 83.30% 80.77% 82.33% 79.88%
HALC† 83.34% 80.36% 82.33% 79.48% 81.40% 78.92 %
OPERA† 83.50% 80.46% 82.70% 79.69% 81.87% 78.91%
VTI 84.70% 82.09% 83.67% 81.11% 82.90% 80.40%
SID 84.97% 82.53% 83.93% 81.56% 82.97% 80.67%
VASparse† 83.47% 80.52 % 82.24 % 79.69% 81.33% 78.88 %
CMI-VLD 86.43% 84.52% 85.07% 83.22% 83.90% 82.14%

InstructBLIP

Sampling 82.03% 81.30% 78.77% 78.66% 76.37% 76.81%
VTI 83.50% 82.01% 80.83% 79.70% 79.13% 78.29%
ICD 83.20% 82.29% 79.87% 79.51% 77.63% 77.74%
VCD 83.43% 82.49% 79.70% 79.36% 77.53% 77.65%
SID 85.43% 84.81% 82.43% 82.24% 79.47% 79.84%
CMI-VLD 86.33% 85.41% 84.60% 83.87% 81.57% 81.29%
Greedy 87.27% 85.91% 84.87% 83.72% 82.97% 82.04%
ICD 87.23% 85.82% 84.90% 83.68% 83.13% 82.11%
VCD 86.73% 85.30% 84.37% 83.16% 82.47% 81.49%
HALC† 87.30% 85.96% 84.83% 83.70% 83.00% 82.08%
OPERA† 87.53% 86.26% 85.07% 84.00% 83.07% 82.24%
VTI 85.73% 83.86% 84.13% 82.36% 82.50% 80.89%
SID 88.10% 87.15% 85.87% 85.10% 82.90% 82.52%
VASparse† 87.33% 86.00% 84.87% 83.74% 83.00% 82.09%
CMI-VLD 88.37% 87.50% 86.10% 85.40% 82.87% 82.64%

on different LVLMs, as observed in Table 1. E.g., a notable improvement of 7% and 2.1% in CS and
CI for Sampling on the LLaVA-1.5 model. Notably, some baselines even exacerbate hallucination
content compared to standard decoding strategies in some cases. In contrast, the proposed CMI-VLD
consistently reduces both sentence-level and instance-level object hallucinations in the final responses.

GPT-4o Assisted Evaluation. While CHAIR is a reliable evaluation metric widely adopted in
previous studies, it is limited within the scope of object hallucinations and fails to identify other types,
such as attribute, relational, and positional hallucinations. To more comprehensively evaluate the
effectiveness of our method, we introduce the GPT-assisted benchmark [33], which uses the object-
level descriptions in the Visual Genome dataset [46] as ground-truth, to judge more fine-grained
hallucinations assisted by the advanced GPT-4o. Figure 3 demonstrates that the proposed CMI-VLD
significantly outperforms SOTA baselines across four LVLMs. Compared with competitive baselines,
we achieve a relative improvement of 15.89% for LLaVA-1.5 in the hallucination metric SHR while
maintaining text fluency. We also note that our method reduces the length of generated texts to some
extent, which can be caused by the removal of hallucinated sentences [19].

POPE Evaluation. The POPE metric also focuses on object hallucinations by using a prompt "Is
there a <object> in the image?" to query LVLMs for answering a yes/no question. We report
the results of the accuracy and F1 score in Table 2. The quantitative results reveal that our method
generally performs best across the three split datasets. Notably, in the POPE evaluation, where
responses are typically short and follow fixed patterns such as "Yes, there is a <object> in
the image.", the evaluation primarily hinges on the first one or few tokens (i.e., Yes or No) [19].
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Table 3: Comparison of the proposed CMI-VLD with SOTA baselines on LVLM benchmarks. The †

indicates beam search-based methods, while other methods adopt the same Greedy decoding.
Benchmarks Greedy ICD VCD HALC† OPERA† VTI SID VASparse† CMI-VLD

MME 1465.11 1432.43 1472.57 1473.43 1471.37 1435.35 1467.05 1466.61 1481.17
MMBench 64.86 64.26 64.26 57.90 64.78 64.43 64.26 64.78 65.12

100
200 Average Time of 

different methods

20
30
40
50

ICD VCD SID OPERA HALC CMI-VLD
Method

5
7.5
10

12.5
15

  G
en

er
ai

on
 T

im
e 

pe
r 

Sa
m

pl
e 

(s
)

Figure 4: Generation time per sam-
ple of different methods.

(a) (b)

Figure 5: CHAIRS results of the proposed CMI-VLD under vary-
ing values of hyperparameters α and λ.

Consequently, our CMI-VLD may not fully exhibit its effectiveness in this constrained setup, as it is
designed to dynamically adjust decoding over the entire generation rather than concentrating solely
on the initial tokens. Nevertheless, our method still achieves notable improvements over competitive
baselines. Due to the page limit, results on more LVLMs are provided in Appendix C.

MME and MMBench Evaluations. Apart from the above benchmarks tailored for hallucination
evaluation, we additionally test on two popular LVLM benchmarks, i.e., MME [7] and MMBench
[45], to systematically analyze their various capability dimensions. MME provides a suite of fine-
grained, image-grounded multiple-choice questions across various categories. We follow SID and
report the overall perception score covering 10 sub-tasks, such as object existence and fine-grained
recognition. MMBench is another large-scale bilingual benchmark consisting of over 3,000 curated
multiple-choice questions. We compute the LVLM’s average score across 20 multimodal tasks, such
as attributes, logical reasoning, and coarse/fine-grained perception, to comprehensively evaluate its
capabilities. As observed, CMI-VLD not only reduces the hallucinated contents but also enhances
diverse capabilities of MLLMs, bringing remarkable improvements over the default decoding methods.
These results underscore CMI-VLD as a reliable and practical strategy for hallucination mitigation.

Inference Time Analysis. Since our method introduces an additional visual token purifier for effective
visual refinement, it is crucial to assess its influence on the overall computational efficiency. Following
[20], we calculate the generation time per response based on LLaVA-1.5 to assess computing burdens.
Figure 4 reveals that the proposed CMI-VLD achieves satisfactory decoding efficiency, introducing
negligible computational overhead. This is primarily attributed to the lightweight architecture of the
visual purifier and the removal of redundant visual tokens that would incur significant computational
overhead, demonstrating that CMI-VLD effectively balances performance and efficiency.

4.3 Ablation Study

Next, we provide ablation analysis regarding several critical hyperparameters. More ablation analysis
about the retaining ratio and the effectiveness of the proposed techniques is presented in Appendix C.

The effect of varying loss parameter α. The value of α is a critical factor as it adjusts the contribution
of the attention scores during purifier training. We then evaluate the performance under various
values of α in Figure 5 (a). The performance gains observed when comparing to α = 0 suggest that
incorporating Attni(·) enhances the effectiveness of the visual purifier. Moreover, the results indicate
that α = 1× 102 yields the best performance, and is therefore adopted in our main experiments.

The effect of calibration intensity λ. During decoding, the hyperparameter λ plays a pivotal role in
regulating the strength of distribution calibration. We present the CHAIR results under varying λ in
Figure 5 (b). The proposed method reaches optimal performance when λ = 0.5, hence we adopt it
as the default setup. Moreover, we emphasize that a properly selected range of positive values of λ
yields significant improvements over the λ = 0 setup, validating our distribution calibration strategy.
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5 Conclusion

In this work, we first revisit the key reason for hallucination in LVLMs, based on which we introduce
conditional mutual information as a theoretical foundation to enhance the mutual dependency between
visual input and generated text. To strengthen this cross-modal association, we propose a novel
CMI-aware bi-level optimization framework, which is efficiently and effectively solved via a carefully
designed vision-language decoding strategy. Through extensive experiments across multiple LVLMs
and evaluation benchmarks, we demonstrate the superiority of the proposed approach in mitigating
hallucinations and improving the recognition capability of LVLMs in diverse scenarios.
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impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license and terms of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced except code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not utilize LLMs for our core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Complete Derivation of Equation (4)

Based on Eq. (2) and Bayes’ theorem, we provide the detailed derivation of Eq. (4) as follows:

max
v,y

C-PMIθ(v, y | x) = max
v,y

log
pθ(v, y | x)

pθ(v | x) pθ(y | x)
(10)

= max
v,y

log
pθ(v, x, y)/pθ(x)

pθ(v | x) pθ(y | x)
(11)

= max
v,y

log
pθ(v, x, y)

pθ(x) pθ(v | x) pθ(y | x)
(12)

= max
v,y

log
pθ(v, x, y)

pθ(v, x) pθ(y | x)
(13)

= max
v,y

log
pθ(y | v, x)
pθ(y | x)

(14)

= max
v,y

log

∏l−1
t=0 pθ(yt | v, x, y<t)∏l−1
t=0 pθ(yt | x, y<t))

(15)

= max
v,y

log

l−1∏
t=0

pθ(yt | v, x, y<t)− log

l−1∏
t=0

pθ(yt | x, y<t)) (16)

= max
v,y

l−1∑
t=0

[log pθ(yt | v, x, y<t)− log pθ(yt | x, y<t)] . (17)

B Experimental Details

B.1 Implementation Details

Throughout our experiments, we retain 80% of the visual input for LLaVA and LLaVA-NeXT, and
90% for Shikra and InstructBLIP. To guide the training of the purifier, we utilize image-text pairs from
ShareGPT4V [47]—a high-quality image question answering dataset constructed using images from
the MSCOCO dataset. Specifically, we use 2,000 samples for training the purifiers of LLaVA and
LLaVA-NeXT, and 4,000 samples for InstructBLIP and Shikra. The learning rate is set to 1× 10−6

across all models for the decoding hyperparameters of LLMs, and the purifier is trained for 5 epochs.

B.2 Evaluation Model

As mentioned above, we adopt InstructBLIP [31], Shikra [3], LLaVA-1.5 on the 7B scale [4], and
LLaVA-NeXT [32] on the 8B scale. InstructBLIP employs Q-former as a cross-modal connector,
leveraging 32 learned query tokens to extract and align visual features with text representations in an
efficient manner. Other models adopt a simpler architecture of linear projection layers, which directly
map visual features into the language model’s embedding space, typically using a larger number of
image tokens (256 or even 576) as input.

B.3 Evaluation Benchmarks

CHAIR Evaluations. The Caption Hallucination Assessment with Image Relevance (CHAIR)
metric is specifically designed to evaluate object hallucination in image captioning tasks. It quantifies
the extent to which a generated caption includes references to objects that are not present in the
corresponding ground-truth annotations. Specifically, CHAIR computes the proportion of hallucinated
objects, those mentioned in the generated caption but absent from the reference object set, providing
a direct measure of hallucination severity. CHAIR comprises two commonly used variants: CHAIRi

(CI ) and CHAIRs (CS), which evaluate the degree of object hallucination at the instance and
sentence level, respectively. The lower values of CI and CS correspond to a lower degree of object
hallucination, indicating greater factual consistency. The two variants can be formulated as follows:

CI =
|hallucinated objects|
|all mentioned objects|

, CS =
|captions with hallucinated objects|

|all captions|
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POPE Evaluations. The Polling-based Object Probing Evaluation (POPE) benchmark is also
proposed to evaluate object hallucination in LVLMs. It adopts a discriminative approach by prompting
models with binary questions such as “Is there a <object> in the image?” to assess whether the model
can correctly identify the presence or absence of specific objects. To ensure balanced evaluation,
POPE includes a 50%/50% ratio of queries about present and absent objects. POPE further categorizes
the queries into three negative sampling settings: (1) random, where absent objects are sampled
randomly; (2) popular, where negative objects are selected from the most frequent categories; (3)
adversarial, where negative objects are chosen based on their high co-occurrence likelihood with
present ones to increase difficulty. Evaluation is conducted using Accuracy and F1 score, with higher
scores indicating stronger performance in mitigating object hallucinations. Due to the concise format
of POPE responses, which are typically short declarative sentences, the benchmark primarily reflects
the visual grounding ability of a model rather than its long-form generation capacity.

GPT-4 Assisted Evaluations. In addition to object-level hallucinations via CHAIR and POPE, we
adopt the GPT-4 assisted benchmark [33], which leverages fine-grained object-level annotations from
the Visual Genome (VG) dataset [46] as ground truth. In our implementation, we employ the advanced
GPT-4o to identify detailed hallucinations, such as positional, relational, and attribute-based errors,
and compute the Sentence-level Hallucination Ratio (SHR) as evaluation results. Given the generated
captions and manually annotated facts, GPT-4o is prompted by a template to assess hallucinations for
every sentence. Following previous studies [19, 9], we evaluate on 200 VG images with a maximum
output length of 512 tokens based on the prompt: "Please describe this image in detail."

MME and MMBench Evaluations. MLLM Evaluation (MME) benchmark is designed to rigorously
assess hallucination in MLLMs. It provides a suite of fine-grained, image-grounded multiple-choice
questions across various categories, such as object recognition, OCR, counting, and commonsense
reasoning, each requiring accurate visual understanding. By offering carefully controlled distractors
and a consistent answer format, MME allows for precise evaluation of a model’s ability to generate
faithful, image-grounded responses. MMBench is a large-scale, bilingual, multimodal benchmark
designed to comprehensively evaluate the capabilities of vision-language models (VLMs). It consists
of over 3,000 carefully curated multiple-choice questions covering 20 fine-grained ability dimensions,
ranging from perception to reasoning. To ensure robustness and fairness, MMBench introduces the
CircularEval strategy, where models must consistently answer a question across multiple permutations
of choices. MME and MMBench provide rigorous and scalable frameworks for evaluating multimodal
understanding and instruction-following capabilities across a wide spectrum of models.

B.4 Principles of Hyperparameter Choices and Adaptation to New LVLMs.

The hyperparameters are chosen based on our empirical analysis and relevant literature, which are
further supported through ablation studies. Specifically, we summarize our choice strategy behind
several critical hyperparameters for LLaVA-1.5 in our algorithm as follows:

• Contrast strength λ balances the difference between the vision-conditioned and vision-free
distributions. Large values may favor casual and incorrect tokens, while a small λ can fail to
sufficiently penalize hallucination-prone tokens. We aim to preserve correct distributions
while penalizing hallucinated predictions, and thus select a moderate value of λ = 0.5,
which is further validated by ablations (see Fig. 5 (b)) and prior studies [9, 17].

• Visual token retention ratio γ is a sensitive and critical parameter. A high γ may retain
noisy tokens and weaken the C-PMI maximization, while a low can discard important visual
information. Hence, we adopt an adaptive strategy: for models with many visual tokens
(e.g., LLaVA-1.5), we set a relatively smaller γ = 80%; for models with fewer, already
refined tokens (e.g., InstructBLIP), we use a higher γ = 90%. Ablation studies on each
model validate the rationality, with results on LLaVA-1.5 shown in Fig. 7 as an illustration.

• Coefficient of attention loss α balances the importance between attention loss and C-PMI
loss during purifier training. Empirically, we find the attention loss to be ∼1000x smaller in
magnitude compared to C-PMI loss, so we set α = 100 to adequately amplify its impact
while preserving the dominance of the C-PMI objective.

• Purification starting layer i is chosen based on existing well-established studies on to-
ken selection [9, 38], which have been empirically validated to yield strong task-specific
performance while preserving its general capability.
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Table 4: Comparison of the proposed CMI-VLD with SOTA baselines on the POPE metric. To make
a fair comparison, all the methods are based on the sampling decoding.

Model Method Random Popular Adversarial

Accuracy F1 score Accuracy F1 score Accuracy F1 score

LLaVA-1.5

Default 85.20% 85.42% 81.67% 82.50% 76.20% 78.40%
ICD 85.73% 85.84% 81.90% 82.61% 76.70% 78.68%
VCD 83.77% 84.24% 80.77% 81.84% 76.10% 78.38%
VTI 85.23% 85.33% 82.77% 83.24% 76.63% 78.56%
SID 87.93% 87.65% 84.57% 84.69% 79.43% 80.59%
Ours 88.63% 87.83% 86.37% 85.71% 82.27% 82.18%

Shikra

Default 85.07% 83.44% 83.13% 81.68% 81.63% 80.37%
ICD 85.27% 83.87% 83.13% 81.94% 81.73% 80.73%
VCD 85.17% 83.77% 83.27% 82.03% 82.03% 80.96%
VTI 84.03% 81.94% 82.43% 80.49% 81.07% 79.29%
SID 85.53% 84.26% 83.47% 82.39% 81.43% 80.64%
Ours 86.23% 85.15% 83.83% 82.96% 81.63% 81.08%
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Figure 6: Ablation analysis of the proposed two
techniques on the POPE metric.
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Figure 7: MME results of the proposed CMI-
VLD under varying values of retaining ratio γ.

For the adaptation of our method, we empirically observe that the above hyperparameters can transfer
to new LVLMs and achieve effectiveness. A necessary adaptation involves slightly tuning λ according
to the characteristics of the new models. We also recommend adjusting the retention ratio γ based
on the number of input visual tokens, as previously suggested. In addition, it is also necessary to
correspondingly adjust the hyperparameters in latent feature steering [39] for different LVLMs.

B.5 Explanation about the Inference Time Comparison

Notably, following SID [9], we evict the selected visual tokens by applying masks to the attention
matrices for implementation convenience, rather than physically removing them. The inference time
of CMI-VLD reported in Fig. 4 is measured under this implementation and demonstrates that our
method maintains inference efficiency. In practice, performing actual eviction of visual tokens would
further accelerate inference, implying that the real efficiency advantage of CMI-VLD is even greater.

C More Experimental Results

POPE evaluation on more LVLMs. We supplement the results of POPE metrics on more LVLMs,
including LLaVA-1.5 and Shikra. The quantitative results in Table 4 again confirm the effectiveness
of our method in mitigating object hallucinations.

Ablation study of vision-language decoding. We then conduct an ablation analysis to validate the
contributions of the proposed two techniques, i.e., Calibrated Distribution Sampling and Visual Token
Refinement, which interact with each other to fully maximize the C-PMI. Specifically, we design
two variants CMI-VLDt and CMI-VLDv, which retain only the Calibrated Distribution Sampling

22



Table 5: Inference costs under varying sequence lengths. The number of visual tokens is fixed to 576.

Metric Method Sequence Length

633 (prefilling) 850 1000 1250 1500

FLOPs (1e14) w/o purifier 1.9214 2.5814 3.0391 3.8044 4.5731
CMI-VLD 1.5671 2.4582 3.1226 4.3182 5.6241

Inference Latency (s) w/o purifier 0.37 17.99 30.26 50.43 70.72
CMI-VLD 0.35 18.53 31.17 52.2 73.22

Table 6: Inference costs under varying numbers of input visual tokens. We use a fixed text query
from the CHAIR evaluation, where the number of text tokens is 56.

Metric Method
Visual Token Count

49 256 576 1024

FLOPs (1e14) w/o purifier 0.3188 0.9448 1.9214 3.3067
CMI-VLD 0.2888 0.7876 1.5671 2.6718

Inference Latency (s) w/o purifier 0.24 0.28 0.37 0.60
CMI-VLD 0.23 0.28 0.35 0.53

and Visual Token Refinement, respectively. Results in Fig. 6 reveal that both the removal of the two
components degrade the performance of our algorithm, validating their considerable contributions to
guarantee a successful approach for hallucination mitigation.

Ablation study of varying retaining ratio. The retaining ratio γ is a sensitive hyperparameter that
should be carefully tuned. A high retaining ratio may fail to sufficiently enhance C-PMI, whereas an
excessively low value can degrade performance due to information loss. We evaluate the influence
under varying γ to confirm the optimal value. Fig. 7 indicates that γ = 80% is an optimal choice.

Detailed Analysis of the Computational Costs. To reduce computational overhead, we design the
purifier as a lightweight network with only 0.1% of the parameters of the LVLM. Its effectiveness in
mitigating hallucination has been thoroughly validated by extensive experiments in the main text.
Next, we present a detailed computational cost analysis of the visual purifier using LLaVA-Next 8B.

As shown in Table 5 and 6, thanks to its lightweight design and visual token reduction, our purifier
introduces negligible overhead and generally maintains computational efficiency comparable to the
purifier-free variant. Furthermore, as the number of visual tokens increases, the benefits of visual
token reduction become more pronounced, further reducing the computational complexity.

Table 7: CHAIR metrics and Token-per-second (TPS) of CMI-VLD and its learning-free variant
CMI-VLDlf on four LVLMs using greedy decoding. We present the results of the existing SOTA
method, SID [9], as a reference.

Metric Method LLaVA-1.5 InstructBLIP Shikra LLaVA-NEXT

CS ↓
SID 42.8 56.2 51.2 38.0

CMI-VLDlf 30.0 40.4 36.2 26.6
CMI-VLD 29.9 43.2 30.6 27.2

CI ↓
SID 12.1 15.8 13.6 8.9

CMI-VLDlf 9.0 11.8 10.2 6.5
CMI-VLD 8.9 12.9 8.9 6.8

TPS ↑
SID 8.76 11.70 3.85 15.71

CMI-VLDlf 2.45 2.41 1.05 2.35
CMI-VLD 8.96 11.86 4.29 16.52

Investigation of the learning-free variant. Initially, we proposed learning a purifier to reduce the
computational overhead incurred by manual token selection. To validate this design, we implement a
learning-free variant CMI-VLDlf , which selects tokens by manually computing our derived score in
Eq. (7) at each step, with all other settings unchanged.
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Table 7 shows that both variants of our method significantly mitigate hallucination compared to the
SOTA baseline, validating the effectiveness of our objective function derived from C-PMI. However,
manual token selection incurs substantial latency due to repeated score computations at each decoding
step, limiting its practicality in real-world applications. In contrast, our learned purifier efficiently
selects informative tokens with nearly 4× faster inference than CMI-VLDlf while preserving strong
effectiveness, exhibiting an excellent trade-off between performance and efficiency.

D Model Architecture of Visual Token Purifier

We provide the detailed purifier architecture as follows. Notably, this learnable network contains fewer
than 1% of the LVLM’s total parameters, hence introducing only marginal computation overheads.
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Figure 8: Overview of the architecture of the visual token purifier.

E Limitations

Despite the promising performance of LVLMs, the proposed method still faces several limitations.
First, the introduced visual purifier introduces additional computational overhead for purifier training.
Second, when the LVLM generates very long responses, the efficiency gain from the removal of
visual tokens may become less significant. Besides, the performance of the LVLM is highly sensitive
to the retaining ratio, and the optimal ratio may vary at each decoding step. However, our method
adopts a fixed mask rate throughout the generation process. Future work could better address this
limitation by exploring more advanced purification strategies with adaptive retaining ratios.

F Visualization Results

To visually demonstrate the effectiveness of our approach, we present generated captions using the
prompt "Please describe this image in detail." from our method and baseline approaches
on the MSCOCO dataset in Fig. 9 and 10. Qualitative results reveal the effectiveness of our method.
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Instruction
(max new tokens=512)

Please describe this 
image in detail.

Greedy: The image features a close-up view of a delicious sandwich with a slice of cucumber on top. The sandwich is cut in 
half, revealing the cucumber and other ingredients inside. The sandwich is placed on a dining table, accompanied by a bowl and 
a cup. The bowl is located on the left side of the table, while the cup is situated on the right side. The sandwich appears to be a 
delightful and healthy meal option.

SID: The image features a dining table with two small sandwiches on a piece of cardboard. Each sandwich is filled with tuna 
salad and topped with green sprouts or spinach leaves. A jar of greens, possibly parsley, is placed near the sandwiches. A knife 
can also be seen on the table, possibly used for spreading the tuna salad. The table setting is simple, with only the two 
sandwiches and the jar of greens occupying the space.

VASparse: The image features a close-up view of a delicious-looking sandwich, cut in half and placed on a dining table. The 
sandwich is filled with meat and accompanied by a leafy green garnish, adding a touch of freshness to the dish. The dining table 
is set with various items, including a wine glass, a cup, a fork, and a spoon. The wine glass is positioned on the left side of the 
table, while the cup is located near the center. The fork and spoon are placed on the right side of the table.

CMI-VLD: The image features two small sandwiches, each with a leaf sprouting from the top. The sandwiches are placed on a 
wooden table, and there is a jar nearby, possibly containing a spread or sauce. The sandwiches are cut in half, revealing the 
filling inside. The overall scene appears to be a casual and appetizing meal.

Instruction
(max new tokens=512)

Please describe this 
image in detail.

Greedy: The image features a delicious breakfast plate with a blueberry, strawberry, and banana pancake topped with whipped 
cream. The plate is placed on a dining table, and a cup of coffee is positioned next to it. The table is surrounded by chairs, with 
one chair on the left side and another on the right side. The arrangement creates a cozy and inviting atmosphere for enjoying a 
morning meal.

SID: The image showcases a plate with a breakfast pastry topped with strawberries and blueberries, sitting on a dining table. 
Beside the plate, there is a cup of coffee, enhancing the overall breakfast setting. There are two chairs visible in the scene; one is 
located to the right side of the table, while the other is situated towards the top-right corner. The breakfast setting appears to be 
well-prepared and inviting.

VASparse: The image features a delicious breakfast plate with a blueberry, strawberry, and banana pancake topped with 
whipped cream. The plate is placed on a dining table, accompanied by a cup of coffee. There are two chairs visible in the scene, 
one on the left side and another on the right side of the table. A fork can be seen on the right side of the plate, ready to be used 
to enjoy the scrumptious meal.

CMI-VLD: The image features a white plate with a delicious strawberry and blueberry topped pancake. The plate is placed on a 
dining table, and a coffee cup is situated next to it. The pancake is topped with fresh strawberries and blueberries, making it a 
visually appealing and appetizing breakfast or snack.

Figure 9: Visualization results comparing our CMI-VLD and other methods with LLaVA-1.5 back-
bone. Hallucinations are marked in red.
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Instruction
(max new tokens=512)

Please describe this 
image in detail.

Greedy: The image features a train traveling over a bridge that spans a river. The train is positioned in the middle of the scene, 
with its length visible as it crosses the bridge. The bridge itself is made of concrete and appears to be a part of a larger 
infrastructure. In addition to the train, there are several birds flying in the sky, adding a sense of liveliness to the scene. The 
birds are scattered throughout the image, with some closer to the train and others further away. The combination of the train, the 
bridge, and the birds creates a dynamic and lively atmosphere.

SID: The scene features a train crossing over a red brick bridge that spans a body of water. The train is composed of two long 
silver and blue cars, moving on the bridge. The bridge itself has a large pipe on top, adding a distinctive architectural element to 
the scene. In addition to the train, there are three birds visible in the sky, possibly flying or soaring above the water. The overall 
setting gives a sense of tranquility, with the train gently traveling over the waterway.

VASparse: The image depicts a train traveling over a bridge that spans a river. The train is positioned in the middle of the scene, 
with its length visible as it crosses the bridge. The bridge itself is made of concrete and appears to be a part of a larger 
infrastructure. In addition to the train, there are a few people scattered throughout the scene, possibly enjoying the view or 
waiting for the train to pass. Some of them are closer to the train, while others are further away, near the edges of the image.

CMI-VLD: The image features a train traveling over a red bridge that spans a body of water. The train is blue and white, and it 
appears to be a commuter train. The bridge is made of concrete and provides a clear path for the train to cross the water. In the 
background, there are trees and a gas tower, adding to the scenery of the image. The combination of the train, the bridge, and 
the water creates a picturesque scene.

Instruction
(max new tokens=512)

Please describe this 
image in detail.

Greedy: The image features a kitchen with a sink and a refrigerator on the left side. Above the sink, there is a window with a 
projection screen, which is displaying a picture of a house. The kitchen is equipped with a microwave and an oven, both located 
on the countertop. There are several bottles placed around the kitchen, with one near the sink, another on the countertop, and a 
third one further away. A bowl can also be seen on the countertop, and a vase is placed near the sink. The kitchen appears to be 
well-equipped and organized, with a focus on the projection screen and the displayed image of the house.

SID: The image shows a kitchen with a stainless steel sink, a black refrigerator, and black cabinets. There are various items in 
the kitchen, including several bottles and cups placed around the countertop, a vase, a bowl, and a spoon. A TV screen is 
mounted in the kitchen, likely showing the view of the house outside. The room is brightly lit, giving a warm atmosphere to the 
space. In addition to the main appliances, there is a potted plant placed in the kitchen, adding a touch of greenery to the room.

VASparse: The image depicts a kitchen with a stainless steel sink, a refrigerator on the left side, and a microwave on the 
countertop. Above the sink, there is a projection screen displaying an image of a house. The kitchen is equipped with various 
appliances, including a toaster, a bottle, a bowl, and a spoon. There are two people in the scene, one standing near the sink and the 
other closer to the refrigerator. The kitchen appears to be well-organized and clean, with a focus on functionality and aesthetics.

CMI-VLD: The image features a kitchen with black cabinets and a sink. Above the sink, there is a window with a projection 
screen, which is displaying a house image. The kitchen also has a refrigerator on the left side and a bottle placed on the 
countertop. The overall atmosphere of the kitchen is cozy and inviting.

Figure 10: Visualization results comparing our CMI-VLD and other methods with LLaVA-1.5
backbone. Hallucinations are marked in red.
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