Diffusion Beats Autoregressive
in Data-Constrained Settings

Mihir Prabhudesai* Mengning Wu* Amir Zadeh
Carnegie Mellon University Carnegie Mellon University Lambda
Katerina Fragkiadaki Deepak Pathak
Carnegie Mellon University Carnegie Mellon University
Abstract

Autoregressive (AR) models have long dominated the landscape of large language
models, driving progress across a wide range of tasks. Recently, diffusion-based
language models have emerged as a promising alternative, though their advantages
over AR models remain underexplored. In this paper, we systematically study
masked diffusion models in data-constrained settings—where training involves
repeated passes over limited data—and find that they significantly outperform AR
models when compute is abundant but data is scarce. Diffusion models make better
use of repeated data, achieving lower validation loss and superior downstream
performance. We find new scaling laws for diffusion models and derive a closed-
form expression for the critical compute threshold at which diffusion begins to
outperform AR. Finally, we explain why diffusion models excel in this regime:
their randomized masking objective implicitly trains over a rich distribution of
token orderings, acting as an implicit data augmentation that AR’s fixed left-to-
right factorization lacks. Our results suggest that when data, not compute, is the
bottleneck, diffusion models offer a compelling alternative to the standard AR
paradigm. Our code is available at: https://diffusion-scaling.github.iol

Pareto Frontier on 100M unique data Pareto Frontier on 50M unique data
6.0 i 4.6 i
1 1
1 1
1 1
1 4.4 1
1 1
1 1
5.0 b b
y Critical 424 1 Critical
g | Compute Point é | Compute Point
i i
I 4.0 L
1
1 1
4.0 4 1 1
\ 1 Epoch: | 381 1 Epoch: |
Chinchilla Optimal q . Chinchilla Optimal .
2.37¢+15 :_ 1.48e+14 !
1018 1019 1020 1018 1019
FLOPs FLOPs
=== Diffusion Pareto Frontier == AR Pareto Frontier —=-= Where Diffusion beat AR

Figure 1: Pareto frontier of validation loss versus training FLOPs for autoregressive (AR) and
masked diffusion models under data-constrained settings. Each point represents a model trained until
convergence; we report the best validation loss achieved among all models using less than or equal to
the FLOPs shown on the x-axis. AR models initially outperform diffusion models, particularly near
the Chinchilla-optimal compute point [12] (indicated on the plot). However, as training continues
beyond this regime with repeated data, AR models quickly saturate and begin to overfit. In contrast,
diffusion models continue to improve with more compute and exhibit no signs of overfitting.

*Project co-leads & Equal contribution. Correspondence to {mprabhud ,mengninw}@andrew.cmu.edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://diffusion-scaling.github.io

1 Introduction

Training large language models (LLMs) on massive corpora of internet text has become the driver of
recent Al breakthroughs [4} 28} 140]. This progress has been fueled by scaling two core resources:
compute and data [15][11]. While compute availability is steadily growing—enabled by advances in
hardware and the construction of larger data centers—the growth in high-quality data is stagnating.
Recent projections, such as those by Villalobos et.al. [42]], estimate that the global supply of publicly
available, human-generated data may be exhausted in the coming years, posing a serious bottleneck
to further scaling. This looming constraint makes it increasingly important to develop modeling
strategies that are more sample-efficient. Furthermore, there are several domains, such as robotics
and healthcare, where the data, not compute, is a scarce resource even to begin with.

LLM development has so far been dominated by autoregressive (AR) models, which factorize the
joint distribution of text in a fixed left-to-right order. While this modeling approach has delivered
state-of-the-art performance across a range of benchmarks, it remains unclear whether it is the optimal
strategy going forward. Recently, diffusion-based models—specifically masked diffusion models
[2, 134} [18L 139, [1]—have emerged as an alternative strategy, framing text generation as an iterative
masked denoising process rather than next-token prediction. At each step, the model predicts a
randomly masked subset of tokens conditioned on the remaining ones, implicitly averaging over
many conditional prediction orders instead of committing to one. Although these models have
demonstrated similar scaling behavior to AR models [22, 39], their practical benefits have, so far,
been modest—Ilargely due to their high training compute requirements.

This high compute demand has become the central obstacle to wider adoption of diffusion-based
language models. As noted by Nie et al. [22] and Swerdlow et al. [39], masked diffusion models
require up to 16x more compute than AR models to match validation NLL—a clear disadvantage for
most applications.

But a critical nuance is often overlooked: these comparisons are based entirely on single-epoch
training, where each token is seen only once. This conflates compute efficiency with sample efficiency,
making it unclear whether diffusion models truly need 16x more compute—or simply 16x more data.

To resolve this ambiguity, we systematically study masked diffusion models in data-constrained
settings, where repeated training on limited data is the norm rather than the exception. We find
that under such regimes, diffusion models substantially outperform autoregressive models across a
variety of data scales and compute budgets. We train hundreds of models spanning multiple orders of
magnitude in model size, data quantity, and number of training epochs to fit scaling laws for diffusion
models in the data-constrained setting. We summarize some of our key findings below.

1. Diffusion models surpass autoregressive models given sufficient compute. Across a
wide range of unique token budgets, we observe a consistent trend: autoregressive models
initially outperform diffusion models at low compute, but quickly saturate. Beyond a critical
compute threshold, diffusion models continue improving and ultimately achieve better
performance (Section

2. Diffusion models benefit far more from repeated data. Prior work [21] showed that
repeating the dataset up to 4 epochs is nearly as effective as using fresh data for autoregressive
models. In contrast, we find that diffusion models can be trained on repeated data for up to
100 epochs, while having repeated data almost as effective as fresh data (Section [3.2)).

3. Diffusion models have a much higher effective epoch count. Muennighoff et al. [21]]
fit scaling laws for AR models in data-constrainted settings and define R7, as a learned
constant that characterizes the number of epochs after which training more epochs results in
significantly diminished returns. For autoregressive models, they estimate R}, ~ 15 . In
contrast, we find R}, ~ 500 for diffusion models, suggesting they can benefit from repeated
data over far more epochs without major degradation (Section [3.2).

4. Critical compute point follows a power law with dataset size. We find that the amount of
compute required for diffusion models to outperform autoregressive models—the critical
compute point—scales as a power law with the number of unique tokens. This yields a
closed-form expression that predicts when diffusion becomes the favorable modeling choice
for any given dataset size (Section [3.3).

5. Diffusion models yield better downstream performance. We find the above benefits
extend beyond validation loss: the best diffusion model trained in data-constrained settings
consistently outperform the best autoregressive model on a range of downstream language
tasks (Section [3.4).

6. Exposure to different token orderings helps explain diffusion’s sample efficiency. By
adding explicit data augmentations to AR training, we find that diffusion models’ advantage
arises from their exposure to a diverse set of token orderings. Essentially, the random-
ized masking in diffusion’s objective serves as implicit data augmentation, allowing it to
generalize beyond the fixed left-to-right factorization of AR models. (Section 3.3)

Through detailed scaling law analysis and downstream task evaluations, we demonstrate that dif-
fusion models make significantly better use of repeated data, achieving lower validation loss and
better generalization to downstream tasks. These results suggest that diffusion models may offer a
compelling and underappreciated advantage in scenarios where data—not compute—is the primary
bottleneck.

2 Method

Our objective is to determine whether masked diffusion language models are more effective than
standard autoregressive models in data-constrainted settings. For studying this, we keep the core
architecture and data pipeline fixed across both families.

2.1 Preliminaries:

Autoregressive models. In Autoregressive LLMs [40} 28], 4] each token is predicted based on a
growing prefix of prior tokens, defining a left-to-right factorization of the sequence probability:

L

PAR(T1, ..., 7L) = HP(%‘ | 2<j)-
j=1

This structure is implemented using a causal attention mask, which prevents each token from attending
to future positions. The model is trained via next-token prediction over clean, uncorrupted sequences.

Diffusion models. Masked diffusion language models [2,[34] 22} 39] treat generation as iterative
denoising. For each training sequence x = (z1,. .., zy,) diffusion models

1. Corrupt the sequence by sampling a masking ratio r ~ ¢(0, 1) and independently replacing each
token with a special [MASK] symbol with probability . This yields a corrupted sequence = and a
mask set

M = {i€e[l,L]: & = [MASK] }.

2. Denoise by predicting the original tokens at the masked positions with full (bidirectional) attention
over I:

Dpitfusion (T | £) = H po(w; |).
ieM

Because the mask pattern is resampled for every example, the model is implicitly trained on a vast
collection of token—ordering tasks. The absence of a causal mask allows each prediction to attend to
both past and future unmasked tokens.

2.2 Modeling Details for AR and Masked Diffusion

Both model families share the same Transformer backbone (GPT-2 style with rotary positional
embeddings, RoPE [38])).

Given a clean input sequence = = (z1,...,21) € VL, both models minimize a token-level cross-
entropy loss, yet they differ in the conditioning context:

Autoregressive (AR) objective. AR models predict each token conditioned on its prefix using a

causal attention mask:
L

Lar = —Zlogpo(scj | 2<j).

j=1

Masked Diffusion objective. For masked diffusion we first sample a masking ratio r ~ (0, 1)
and construct a corrupted sequence 2 by independently replacing each token with [MASK] with
probability r. Let M = {4 : &; = [MASK] } be the set of masked positions. The loss is then

1 -
LDiffusion - *Er,iwqr; Z 10gp9 (Iz ‘ l’),
iEM
which can be interpreted as an evidence lower bound (ELBO) on the data log-likelihood, and thus the
loss provides an upper bound on the true negative log-likelihood.

Beyond the attention mechanism and input corruption, all other variables are held constant. We
follow the hyperparameter configuration proposed by Muennighoff et al. [21] for all training runs. In
particular, we use a dynamic learning rate schedule that adapts to the number of training epochs. For
more detailed information on both model families please refer to related work Section in Appendix [6]

2.3 Scaling Framework in Data-Constrained Settings

Classical scaling laws, such as those proposed by [15}[12], model validation loss as a function of total
parameters (/V) and training tokens (D), assuming all data is unique that is single epoch regime.

Muennighoff et al.[21] extend the Chinchilla framework to explicitly account for repeated data —
a common necessity in data-constrained regimes. They show that repeating training data beyond a
few epochs yields diminishing returns and propose a new scaling law that incorporates the decaying
utility of repeated tokens.

We briefly outline their formulation below. Let U denote the number of unique tokens, £ the number
of epochs (how many times each unique token is reused), and D = U - E the total number of tokens
seen during training.

To model diminishing returns from repeated data, Muennighoff et al. [21] introduce an effective
unique data size D', motivated by the idea that each additional epoch contributes less useful signal
than the previous. Specifically, they assume the value extracted from the k" exposure to the same

data follows a geometric progression, where the utility of a token on its k-th repetition is (1 — §)*~1,

Summing over all epochs the total effective data becomes: D' = U - ZkEzl (1-0)k1=U. ﬂ

where 0 is the decay factor. Defining R}, = %}‘S, the expression simplifies to the exponential-decay
form:

D' =U+U-Rp (1- e F0/Rb),

here R}, represents the half-life of data reuse, repeating data beyond R7, epochs will result in
significant diminishing returns. This form approximates the geometric sum well and captures
diminishing returns over repeated epochs. As the number of epochs ' — oo, the exponential term
vanishes and D’ asymptotically approaches: D’ — U + U - R},, implying that no matter how many
times data is repeated, the maximum usable signal is bounded by (1 + R},) - U. This defines a natural
saturation point on returns: even infinite compute yields no additional effective data beyond this limit.

A symmetric formulation is applied to model parameters for mathematical convenience which is used
to define N’. Finally, a modified Chinchilla-style loss function incorporates these effective quantities
N’ and D':

A B >
e oy T
with A, B, o, 8, Ey, R},, N, fitted empirically from training runs. This formulation accurately
captures loss behavior in regimes where data is reused multiple times and serves as a powerful tool
for guiding training under data scarcity.

L(N,D) =

In this work, we adopt this framework to study how diffusion models and autoregressive models
compare in their ability to extract value from repeated data, enabling apples-to-apples comparisons
across compute, data, and model scale.

2.4 Training setup

We use the English C4 corpus [29], tokenized with the GPT-2 BPE vocabulary and truncated or
padded to 2048 tokens per sequence. We consider unique-token budgets of U € {25, 50, 100}M and
train for up to 800 epochs (80B tokens total). Models are trained ranging from 7M to 2.5B parameters,
following the Chinchilla scaling strategy where both width and depth are increased proportionally.
The detailed architectural configurations of each model are provided in Appendix [9] For all training
runs, we adopt the hyperparameter configuration introduced by Muennighoff er al. [21]. This may
provide a slight advantage to autoregressive models, as these hyperparameters were originally tuned
for that family. For details on hyperparameters please refer to Section [8]in Appendix.

3 Experiments

Our goal is to compare the performance of masked diffusion models and autoregressive models in
data-constrained settings. To this end, we train a total of 200 models—100 diffusion models and 100
autoregressive models—across varying unique data sizes, model scales, and epoch counts. We present
the empirical results in Section[3.1] In Section[3.2] we fit scaling laws tailored to data-constrained
regimes for both model types, following the methodology introduced by Muennighoff et al.[21]].
These scaling laws allow us to analyze performance trends and identify scenarios where diffusion
models should be preferred over autoregressive ones (Section [3.3). In Section [3.4] we demonstrate
that the superior validation loss of diffusion models indeed correlates with improved downstream
task performance. Finally, in Section[3.5] we investigate the underlying cause of diffusion’s advantage
in data-constrained settings, showing that its exposure to diverse token orderings enables better
generalization than AR’s fixed left-to-right factorization.

3.1 Does Diffusion Beat AR in Data-Constrained Settings?

Prior comparisons between diffusion and autoregressive (AR) language models have largely focused
on the single-epoch regime, where each token is seen only once during training [22} 39]. In this
setting, diffusion models are consistently reported to require substantially more training compute
(C' ~ 6N D) than AR models to achieve comparable validation loss. For instance, Nie et al. [22]] and
Swerdlow et al. [39] derive scaling laws showing that masked diffusion models can require up to
16 X more compute than AR counterparts.

Crucially, these studies scale compute by increasing both the model size (V) and the amount of
unique training data (D) proportionally. As a result, they do not isolate whether diffusion’s 16x
inefficiency stems from needing more total compute—or more unique data.

In other words: is diffusion limited by compute efficiency or by sample efficiency?

To answer this, we systematically study diffusion models in data-constrained settings, where the
total amount of unique data is fixed and models are trained for many epochs, reusing the same data.
Unlike prior work, our evaluation explicitly decouples model scaling from data reuse, allowing us to
disentangle the effects of compute and data.

In Figure [} we report empirical validation loss as a function of training FLOPs for the 50M and
100M regimes; results for the 25M setting are shown in Appendix Figure[9] We find that AR models
initially outperform diffusion models when trained with the compute-optimal budget prescribed by
Chinchilla scaling laws (denoted by the solid vertical line). However, this advantage disappears as
training continues beyond this point. When models are allowed to train for additional epochs on
repeated data, diffusion models consistently surpass AR models in validation loss across all data
regimes. These findings indicate that the previously observed inefficiency of diffusion models is
largely a consequence of evaluating them solely in the single-epoch regime. In data-constrained
settings with repeated exposures, diffusion models extract significantly more value from the same
data than their AR counterparts.

A key question remains is how should one go about increasing compute for diffusion models: by
increasing model size, or by increasing the number of epochs (i.e., data reuse)? To address this,
we analyze the trade-off between parameters and epochs in Figure 2] which shows validation loss
contours as a function of both axes. In the 100M unique token regime, for example, we find that
diffusion achieves its best loss at 500 epochs, while AR model reach its best at just 50 epochs. Each

point on the contour plot corresponds to a model trained with a specific parameter count and number
of epochs; we report the actual validation loss at each configuration, without early stopping. We find
that autoregressive models begin to overfit at high epoch counts, with validation loss worsening as
training continues beyond a certain point. In contrast, diffusion models show no signs of overfitting
within our compute budget—the best validation loss is achieved at the highest epoch counts we
explore. This suggests that diffusion models continue to benefit from additional training on repeated
data, and that observing overfitting may require significantly more compute.

To contextualize these results, we highlight two key configurations in Figure [2] for each model
family: the compute-optimal point for single-epoch training, as identified by prior scaling law
analyses [[12} 24] (marked with a colored star in the bottom-left), and the best validation loss achieved
under extended multi-epoch training (marked with a black star). At the compute-optimal point,
which corresponds to training for a single epoch, diffusion models perform substantially worse than
autoregressive models (10.65 vs. 7.07), consistent with prior findings that diffusion performs worse
initially. However, as training is extended to hundreds of epochs, diffusion models continue to
improve and eventually achieve a lower validation loss (3.55) than the best AR models (3.71).

1000M
1000M

416M Loss = 3.55

—c

144M ==

100M
100M

Params

Params

10M

Y Lowest Loss for 100M Tokens Y Lowest Loss for 100M Tokens
Y¢ Compute-Optimal model for 100M tokens 0.68M *"7‘??1_055— 10.65 Y& Compute-Optimal model for 100M tokens
i 10 5‘0 100 1000 i 10 100 5(‘)0 1000
Epochs Epochs
(a) Autoregressive contour: validation loss over (b) Diffusion contour: validation loss over epochs
epochs and model sizes. and model sizes.

Figure 2: Validation loss contours over epochs and model sizes for autoregressive (left) and diffusion
(right) models, trained on 100M unique tokens. Each plot shows validation loss as a function of
training epochs (x-axis) and model parameters (y-axis). The colored star marks the compute-optimal
point for single-epoch training, as predicted by prior scaling laws [12}[24]], and the black star indicates
the lowest validation loss achieved through extended multi-epoch training. In the single-epoch regime,
diffusion models perform worse than AR models (10.65 vs. 7.07). However, when trained longer,
diffusion models achieve a substantially lower final loss (3.55 vs. 3.71). This corresponds to a
67% reduction in loss for diffusion models compared to just 48% for AR models, highlighting their
superior ability to leverage repeated data.

3.2 Fitting Data-Constrained Scaling Laws

To gain deeper insight into the trade-offs between diffusion and autoregressive models in data-
constrained settings, we fit scaling laws to both model families across single-epoch and multi-epoch
regimes, as described in Section[2.3] Our approach systematically varies three key factors: (1) the
amount of unique data, (2) model parameter count, and (3) number of training epochs. This grid
search allows us to disentangle the effects of data quantity, model capacity, and data reuse on final
model performance.

We evaluate the quality of our scaling law fits using the coefficient of determination (R?) and relative
prediction error, as shown in Table |1 For autoregressive models, our R? values closely match
those reported by Muennighoff et al. [21]], indicating consistent behavior under repeated training.
Interestingly, diffusion models yield significantly higher R? values, reflecting a better overall fit. We

ig
- = ® AR Mean Points
© Diffusion Mean Points

s o
g £
8 =

Loss
w
L]
Delta Loss
o
2
&

0.04

100% 50% 25% 10% 5% 100% 50% 25% 10% 5% 100% 50% 25% 10% 5%

Data Fraction Data Fraction

Diffusion lel9 ® Diffusion 3el9 ® Diffusion 1€20 Predicted loss if repeating data value the same as unique
AR lel9 ® AR3el9 ® AR 1e20

Figure 3: Decay rate of data value under repetition: left shows diffusion, middle AR, and right the
average decay rate for both. Points are empirical results (darker color = higher FLOPs, lighter color =
lower FLOPs; each line = fixed compute), we find that fitted curves (represented as lines) closely
match the empirical points, indicating our scaling laws are representative. The decay rate of value for
repeated data is lower for diffusion, reflecting its greater robustness to repeating.

Diffusion 100 Ep.
Diffusion 50 Ep.
—— Diffusion 20 Ep.
Diffusion 10 Ep.

—— AR 100 Ep,

Diffusion 4 Ep.

—— Diffusion 2 Ep.

Validation loss
Validation loss

4.0

1G 2G 3G 4G 5G 6G 7G 8G 0 2G 4G 6G 8G 10G 12G 14G
Training Tokens Training Tokens
(a) AR Training Curves. (b) Diffusion Training Curves.

Figure 4: Training curves for different epoch counts, all with using the same total compute. Each
curve shows a different tradeoff between unique data and repetition. For AR models, validation loss
rises with more epochs (overfitting), while for diffusion models, the curves are nearly unchanged,
showing much greater robustness to data repetition.

Table 1: Fitting metrics of the scaling law model for Diffusion and AR. Diffusion and AR achieve a
strong fit across both phases.

(a) Initial fit. (b) Second step fit with extracted scaling parameters.
Model R? Loss Model R? Loss R, Ry
Diffusion 0.9447 0.0002 Diffusion 0.9784 0.00079 493.89 1265.65
AR 0.9439 7.7532e—05 AR 0.7628 0.00361 31.19 55.16

attribute this to lower variance in validation loss across training runs, likely due to the absence of
overfitting in diffusion models even at high epoch counts.

Beyond the overall fit, we extract two key parameters from the scaling laws: R7,, which characterizes
the effective half-life of data reuse—i.e., the number of epochs after which additional training on
repeated data yields diminishing returns—and [?3;, which indicates the optimal model size for a given
data budget. Our results reveal a sharp contrast in data reuse half-lives: diffusion models exhibit an
R7Y, of 512.85, compared to just 31.93 for autoregressive models. A higher R7, implies that a model
can benefit from many more repeated exposures before saturating. This suggests that diffusion models
continue to improve across hundreds of epochs, while AR models quickly saturate—highlighting the
superior sample efficiency of diffusion models in data-constrained regimes.

Figure 3] illustrates how the utility of unique data decays with increased repetition. We evaluate this
effect across three compute budgets—1 x 10*°, 3 x 109, and 1 x 10?° FLOPs—by varying the
proportion of unique data and parameters while keeping total compute fixed (e.g., 50% of the data

AR validation loss over training length Diffusion validation loss over training length

0
3.8x10°{ === Unique Scaling 5%10 --= Unique Scaling
3.6x10° N\ 217TM AR 117M Diffusion
x \
o ' —— 425M AR —— 217M Diffusion
0
L, 34x10 L. —— 724M AR - —— 425M Diffusion
g 0 . . _ 8 ax10° - :
': 3.2x10 2Fv. Repeating for 4 epochs is almost ::] Repeating for 100 epochs is
g) LEpS 4 Lﬁ/ as good as new data e almost as good as new data
s 3x10 s =
3 y =]
= =
= 28x10° =
2.6x10° 3x10° o0 8, b TS~
24x10°1 T L T
1B 10B 100B 1T 10T 100T 1B 10B 100B 1T 10T 100T
Training Tokens Training Tokens

Figure 5: Predicted validation loss for AR (left) and Diffusion models (right) under compute-optimal
settings, extrapolated to larger compute budgets. Dotted lines show the hypothetical case where
repeated data equals new data. For AR, this holds up to =4 epochs; for diffusion, up to ~100
epochs—showing diffusion’s greater robustness to data repetition. Note that loss values between AR
and diffusion are not directly comparable, as they’re extrapolated from scaling laws with different
data-entropy terms (Ey). In Section @], we ignore this factor during comparison.

for 2 epochs, 25% for 4 epochs, etc.). For each compute budget, we use single-epoch scaling laws
to determine the optimal model size and unique token count for both AR and diffusion models. We
present both empirical results and fitted curves from our parametric scaling law, observing strong
agreement between the two. Notably, the decay rate of data value remains consistent across compute
budgets. Diffusion models consistently exhibit a substantially slower decay rate than AR models,
suggesting they are better able to extract value from repeated data.

Figure {] shows validation loss versus training tokens using the compute budget of 1e19. The results
reinforces the trend: AR models overfit with increased repetition, showing diverging loss curves.
In contrast, diffusion models exhibit overlapping curves across repetitions, indicating no signs of
overfitting and a very low decay rate with data reuse.

Figure [5|shows extrapolated training curves at large compute budgets. For each setting, we use the
compute-optimal model and dataset size derived from single-epoch scaling laws for 1el9, 3e19 and
1e20. We then extend training to multiple epochs. The dashed lines represent the ideal Chinchilla-
style scaling behavior, where all training tokens are assumed to be unique. We find that for AR
models, repeated data provides nearly the same benefit as fresh data only up to about 4 epochs.
Beyond this point, additional repetition yields diminishing returns. In contrast, diffusion models
continue to match the unique-data curve for up to 100 epochs, indicating a far greater capacity to
benefit from repeated data in data-constrained regimes.

3.3 When to Use Diffusion over AR?

A key question for practitioners is: when should diffusion be preferred over autoregressive models
(AR)? To answer this, we compare the fitted data-constrained scaling laws for both model families

(§2.3).

We define the validation loss gap between diffusion and AR as:
A£(07 U) = EDiffusion(Oa U) - EAR(Oa U),

where C is total training compute and U is the number of unique tokens. Positive values favor AR;
negative values favor diffusion. The critical compute C.;t(U) is the point where the models perform
equally: AL(Ceit, U) = 0.

Figure [6a) shows a heatmap of AL over compute and data. Red regions indicate regimes where
diffusion outperforms AR (AL < 0), while blue regions favor AR. As expected, AR performs better
in low-compute settings due to its efficient per-step learning. However, diffusion models begin to
outperform AR at higher compute, especially when data is limited and repeated.

Figure @b) plots the critical compute frontier C.;;(U)—the compute required for diffusion to
match AR at a given unique token count U. This frontier follows a power law: Cei (U) oc U174,

Heatmap of Predicted ALoss (Diffusion - AR)

107 Linear Fit of Critical Compute
22
10 . .
078 —-- Fitted line 0,9
o ©® Critical Compute Points ’B”
10 050 e
= l()2l i % Diffusion Match AR o/s
E &
= 05 = L&
& =
g’ 2 2 10" A
2 E E} s
= 0.00 B £ s
H z s Plaad ¢
g z Ue *r”
S 00 025%™ = 10 -
10 E e
o
050 A
18
10" o
18 o
10 075 &
@
1.00 " Y
10' 0 0 10 10
Unique Data (Million) Unique Data (Million)

(a) Loss Gap Heatmap. Difference in validation loss ~ (b) Critical Compute Curve. The FLOPs thresh-
(AL = Lpifiusion — L£ar) across unique data sizes and old Ceyit(U) beyond which diffusion outperforms
FLOPs. Red indicates regions where diffusion out- AR models. This follows a power law: Ceyit (U) o<
performs AR models and blue where AR outperforms U2,

diffusion.

Figure 6: When does Diffusion beat AR? Left: Heatmap showing where diffusion models have
lower validation loss than AR models. Right: The critical compute curve defining the compute
threshold needed for diffusion to match autoregressive models at a given unique token count.

The linear fit in log-log space is:

log,o(U) = 0.460 - log,((C) — 1.050, so Ceq(U) = 2.12 x 109%6 . 2174,

The dark green dashed line shows the fitted curve, and the blue stars represent empirical crossover
points—where diffusion matches AR performance in experiments. These points align closely with
the predicted frontier, confirming our fitted equation’s accuracy.

3.4 Downstream Results

Benchmarks Random Baseline AR AR (Flop matched) Diffusion
ARC-Easy [6] 25.00 35.63 35.35 37.84
BoolQ [3] 50.00 46.00 38.23 49.38
COPA [30] 50.00 56.33 54.00 59.00
HellaSwag [43]] 25.00 27.37 29.03 30.24
PiQA 50.00 60.94 61.64 60.72
RACE [16] 25.00 25.28 24.88 28.96
WinoGrande XL 50.00 48.87 49.41 50.97
SciQ [14] 25.00 58.05 50.50 68.67
Lambada 00.00 1091 5.53 15.19

Note: All values represent accuracy (%). Best results shown in bold.

Table 2: Downstream results for the best-performing (as per validation loss) and flop-matched
autoregressive (AR) and diffusion models trained with 100M unique tokens. Random baselines are
reported for reference.

We evaluate the best-performing diffusion and autoregressive (AR) models, selected based on their
validation loss, across several downstream benchmarks to examine whether lower validation loss
translates to improved generalization.

Since AR models tend to overfit much earlier, we additionally evaluate flop-matched overfitted AR
models trained for the same number of epochs as their diffusion counterparts. On a few set of
benchmarks, these overfitted AR models slightly outperform their best-validation variants; however,
across almost all tasks, diffusion models consistently achieve the highest downstream performance.

Additional results, with 500M unique tokens and other downstream datasets, are provided in Table E]
and Table[d]in the Appendix.

Across a diverse set of tasks and data scales, diffusion models consistently outperform their AR
counterparts.

3.5 Why do Diffusion models outperform AR models in data-constrained settings?

To better understand why diffusion models are more sample-efficient than autoregressive (AR) models,
we conducted a series of controlled experiments aimed at isolating the core source of diffusion’s
advantage.

We first applied standard perturbation-based tech-

niques during AR training' SpeCiﬁcally’ we used: (1) Impact of N-1 Random Orderings on Autoregressive(AR)
attention dropout — randomly dropping 25%, 50%, 30 e StndardAR
or 75% of attention weights; and (ii) token masking 48 o ARmanra
— masking a subset of input tokens by zeroing their ¢ —e— ARwithN-16

44 --- Diffusion Best Loss

attention weights across all layers, while retaining
the standard next-token prediction objective.

As shown in Figures [84] and [8b] in Appendix, nei-
ther approach improved validation loss. In all cases,
AR models continued to overfit and remained far be-
hind diffusion models trained for longer epochs. All Training Epochs
AR baselines here used 140M parameters and were
trained for 50 epochs; the red line in the plots marks
the best diffusion model from Figure 2] trained for
500 epochs.

We next investigated whether diffusion’s advantage
stems from exposure to diverse token orderings. To
test this, we trained AR models with varying numbers of orderings: N = 1 denotes standard left-to-
right training, while N = k adds k—1 random permutations of the sequence order. All permutations
were fixed prior to training, and each training batch randomly samples from these orderings. All AR
models in this setting used 278M parameters and were trained for 100 epochs. As shown in Figure
increasing NV consistently lowered validation loss and delayed overfitting. At N = 16, the 100-epoch
validation loss of AR models approached that of diffusion, suggesting that diverse orderings are
indeed a key driver of diffusion’s sample efficiency.

Validation Loss

Figure 7: Validation loss improves as the number
of token orderings IV increases in AR training. At
N = 16, performance approaches that of diffusion
models.

These results support our interpretation that diffusion models outperform AR models in low-data
regimes because they are implicitly trained on a richer distribution of conditional prediction tasks.

Finally, this analysis suggests a natural continuum between the two paradigms: by controlling task
diversity—through masking or reordering—we could design hybrid models that interpolate between
compute efficiency (AR-like) and sample efficiency (diffusion-like). Exploring this continuum is a
promising direction for future work. Details of our permutation process are in Section[12]

4 Conclusion

As the availability of high-quality data plateaus, improving sample efficiency becomes essential for
scaling deep learning. In this work, we show that masked diffusion models consistently outperform
autoregressive (AR) models in data-constrained regimes — when training involves repeated passes
over a limited dataset. We establish new scaling laws for diffusion models, revealing their ability to
extract value from repeated data far beyond what AR models can achieve. These results challenge
the conventional belief that AR models are universally superior and highlight diffusion models as a
compelling alternative when data—not compute—is the primary bottleneck. Looking ahead, efficient
use of finite data may define the next frontier in scaling deep learning models. Although the studies
have been performed in the context of language models, we believe these findings should apply across
any kind of sequence modeling data, such as in robotics or healthcare.

For practitioners, our takeaway is simple: if you are compute-constrained, use autoregressive
models; if you are data-constrained, use diffusion models.

10

5 Acknowledgement

We thank Alexander Li for his valuable insights and detailed feedback on the manuscript. We are also
grateful to Zheyang Qin for his help in improving the figures. Finally, we thank Niklas Muennighoff,
Simo Ryu and Colin Raffel for their helpful comments on the final draft of the paper. We thank
Stella Biderman for pointing out the inconsistent unit used in the Critical Compute equation. We
thank Lucas Beyer and You Jiacheng, in suggesting the experiments in Section [3.5] that helped us
explain why diffusion models would be more sample-efficient. This work was supported in part
by ONR MURI N00014-22-1-2773, ONR N00014-22-1-2096, and AFOSR FA9550-23-1-0747.
The results and models presented in this work also used compute resources from the National Al
Research Resource Pilot, with support from NVIDIA, including NVIDIA’s DGX Cloud product and
the NVIDIA AI Enterprise Software Platform.

References

[1] M. Arriola, A. Gokaslan, J. T. Chiu, Z. Yang, Z. Qi, J. Han, S. S. Sahoo, and V. Kuleshov. Block
diffusion: Interpolating between autoregressive and diffusion language models. arXiv preprint
arXiv:2503.09573, 2025.

[2] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg. Structured denoising
diffusion models in discrete state-spaces. Advances in neural information processing systems,
34:17981-17993, 2021.

[3] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, et al. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[5] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq:
Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

[6] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[7] S. Dieleman. Diffusion language models, 2023.

[8] R. Eldan and Y. Li. Tinystories: How small can language models be and still speak coherent
english?, 2023.

[9] I. Gulrajani and T. B. Hashimoto. Likelihood-based diffusion language models. Advances in
Neural Information Processing Systems, 36:16693-16715, 2023.

[10] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[11] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.

[12] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre.
Training compute-optimal large language models, 2022.

[13] E. Hoogeboom, A. A. Gritsenko, J. Bastings, B. Poole, R. v. d. Berg, and T. Salimans. Autore-
gressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

[14] M. G. Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions. 2017.

11

[15] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[16] G.Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. Race: Large-scale reading comprehension dataset
from examinations. arXiv preprint arXiv:1704.04683, 2017.

[17] X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation. Advances in neural information processing systems, 35:4328-4343,
2022.

[18] A.Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution, 2024. URL https.//arxiv. org/abs/2310.16834.

[19] A.Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

[20] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

[21] N. Muennighoff, A. Rush, B. Barak, T. Le Scao, N. Tazi, A. Piktus, S. Pyysalo, T. Wolf, and
C. A. Raffel. Scaling data-constrained language models. Advances in Neural Information
Processing Systems, 36:50358-50376, 2023.

[22] S. Nie, F. Zhu, C. Du, T. Pang, Q. Liu, G. Zeng, M. Lin, and C. Li. Scaling up masked diffusion
models on text. arXiv preprint arXiv:2410.18514, 2024.

[23] S. Nie, F. Zhu, Z. You, X. Zhang, J. Ou, J. Hu, J. Zhou, Y. Lin, J.-R. Wen, and C. Li. Large
language diffusion models. arXiv preprint arXiv:2502.09992, 2025.

[24] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial nli: A new
benchmark for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.

[25] P.J. Ortiz Su’arez, B. Sagot, and L. Romary. Asynchronous pipelines for processing huge
corpora on medium to low resource infrastructures. Proceedings of the Workshop on Challenges
in the Management of Large Corpora (CMLC-7) 2019. Cardiff, 22nd July 2019, pages 9 — 16,
Mannheim, 2019. Leibniz-Institut f"ur Deutsche Sprache.

[26] A. Pannatier, E. Courdier, and F. Fleuret. o-gpts: A new approach to autoregressive models,
2024.

[27] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Ferndndez. The lambada dataset: Word prediction requiring a broad discourse
context. arXiv preprint arXiv:1606.06031, 2016.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research, 21(140):1-67, 2020.

[30] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In AAAI spring symposium: logical formalizations of
commonsense reasoning, pages 90-95, 2011.

[31] S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov.
Simple and effective masked diffusion language models. Advances in Neural Information
Processing Systems, 37:130136-130184, 2024.

[32] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

[33] N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

12

[34] J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias. Simplified and generalized masked diffusion
for discrete data. Advances in neural information processing systems, 37:103131-103167, 2024.

[35] X. Shi, L. Zhao, H. Zhou, and D. Hao. Industrycorpus2, 2024.

[36] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1-48, 2019.

[37] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063, 2024.

[38] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023.

[39] A. Swerdlow, M. Prabhudesai, S. Gandhi, D. Pathak, and K. Fragkiadaki. Unified multimodal
discrete diffusion. arXiv preprint arXiv:2503.20853, 2025.

[40] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[42] P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. Will we run out of
data? limits of 1lm scaling based on human-generated data. arXiv preprint arXiv:2211.04325,
2022.

[43] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen. Image data augmentation for deep
learning: A survey. arXiv preprint arXiv:2204.08610, 2022.

[44] Q. Yu, J. He, X. Deng, X. Shen, and L.-C. Chen. Randomized autoregressive visual generation.
arXiv preprint arXiv:2411.00776, 2024.

[45] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

Appendix

6 Related Work

Deep Learning in Data-Constrainted Settings. Deep learning progress has been largely driven
by the scaling of both data and compute. However, recent analyses suggest we may soon face a
data bottleneck that could inhibit continued advancement [42]. In language modeling, the dominant
paradigm has been autoregressive (AR) models [41} 28| 4], which are typically trained for a single
epoch to maximize exposure to unique tokens [11]. In light of looming data constraints, Muennighoff
et al.[21]] show that AR models can still benefit from data reuse: training for up to four epochs
on repeated data achieves performance nearly on par with training on fresh data, suggesting an
effective strategy for improving data efficiency. In contrast, computer vision has long embraced
multi-epoch training along with aggressive data augmentation—such as random cropping, flipping,
and color jittering—to expand effective dataset size and improve generalization[36l 43]], particularly
for discriminative tasks like classification and detection. Despite these practices, data efficiency in
generative modeling remains underexplored, and the trade-offs between leading paradigms such as
diffusion and AR models under constrained data regimes are still poorly understood.

Diffusion-Based Language Models. Diffusion models, originally developed for image genera-
tion [10]], have recently been adapted to text, offering a fundamentally different paradigm for language
modeling [2, 17, 19]. Broadly, diffusion language models fall into two categories: continuous and
discrete. Continuous approaches [9] inject Gaussian noise in the forward process, whereas discrete
methods [2]] corrupt tokens with noise sampled from distributions such as Bernoulli. Among the two
classes, continuous diffusion has proven more difficult to scale on language data [9}19]. In contrast,
recent advances in discrete diffusion—particularly masked diffusion—have shown encouraging
results. Recent work [[1} 7, 31, [19]] has significantly narrowed the performance gap between diffusion
and AR models. Notably, LLaDA [23] scales masked diffusion models to 8B parameters and achieves
results similar to LLaMA3-8B across both pretraining and instruction-tuned evaluations. Furthermore,
Nie et al. [22] provide scaling law analysis showing that diffusion models follow similar power-law
trends as AR models, though they may require up to 16 x more compute under single-epoch training,
Swerdlow et al. [39] find similar trends on multimodal data containing both image and text. However,
these evaluations are restricted to single-pass training and do not examine the data-constrained,
multi-epoch regimes which is the focus of our work.

7 Additional Results

Tmpact of Attention Dropout on AR Impact of Token Masking on AR

—8— Default Dropout

—8— 25% Attention Drop
50% Attention Drop
75% Attention Drop

—--- Diffusion Best Loss

Default Setting

12.5% Token Masking
25.0% Token Masking
37.5% Token Masking
50.0% Token Masking
Diffusion Best Loss

ES

'S
&
o

Validation Loss

& &

=)

Validation Loss
by E ke
(=} ™ s

bed

o
ot
%

@
EN
“
EN

lb 2‘0 Sb 4‘0 5‘0 lb 2‘0 Sb 4‘0 5‘0
Training Epochs Training Epochs
(a) Validation loss under varying attention dropout (b) Validation loss under varying token masking levels
levels in AR training. in AR training.

Figure 8: Impact of common data augmentations on AR models. Despite applying attention dropout
and token masking, AR models still overfit and underperform compared to diffusion models. We
believe this gap arises because diffusion models learn random factorizations of the joint distribution,
rather than a fixed left-to-right ordering.

In Table 3] we report downstream results using 500M unique tokens. Guided by the critical compute
threshold derived in Section[3.3] we scale training to 500M unique tokens and train a 2.3B-parameter

14

diffusion model under the predicted compute budget. The model is trained for 130 epochs, after which
we observe no signs of convergence and terminate due to compute limitations. For the autoregressive
(AR) model, we report results from the checkpoint that achieves the best validation loss before
overfitting..

Figure [8aand Figure [8b]show that standard perturbation-based techniques, such as attention dropout
(25-75%) and token masking, fail to improve validation loss. Across all settings, AR models continue
to overfit and lag behind diffusion models trained for longer epochs. All AR baselines use 140M
parameters and are trained for 50 epochs, whereas the red line denotes the best diffusion model from
Figure[2b] trained for 500 epochs.

Table @] reports the negative log-likelihood (NLL; lower is better) on four diverse corpora: OSCAR
[25], TinyStories[8]], WikiText [20]], and IndustryCorpus2 EN Sub [35]]. These datasets span open-
domain, narrative, encyclopedic, and industry-specific text.

Figure 9 shows validation loss versus training FLOPs for autoregressive (AR) and masked diffusion
models under data-constrained settings. This figure extends Figure[T]in the main paper, by including
empirical validation loss for the 25M unique token regimes.

Table 3: Downstream results for the best-performing (as per validation loss) autoregressive and
diffusion models trained with S00M unique tokens. We also report the random baseline for reference.

Benchmarks Random Baseline AR Diffusion
ARC-Easy [6] 25.00 43.79 45.95
BoolQ [5] 50.00 51.87 55.26
COPA [30] 50.00 67.00 64.83
HellaSwag [435]] 25.00 32.28 35.33
PiQA 50.00 65.71 65.61
RACE [16] 25.00 28.28 31.44
WinoGrande XL [32]] 50.00 50.61 51.51
SciQ [14] 25.00 67.82 79.13
Lambada [27]] 00.00 15.07 22.30

Note: All values represent accuracy (%). Best results shown in bold.

Table 4: Downstream NLL of best diffusion and AR models at 100M unique data points.
Model Type Flops | OSCAR TinyStories WikiText IndustryCorpus2

Best ARM 4.32e18 | 3.98 2.96 4.94/4.96 3.58
Best MDM 1.24e20 | 3.83 2.93 4.50/4.52 344

Pareto Frontier on 100M unique data Pareto Frontier on 50M unique data Pareto Frontier on 25M unique data

50

S = = as
« 40 _

4.0

s 0 20 18 19 40 n 0
10 10 10° 10 10 10 10
FLOPs FLOPs FLOPs

=== Diffusion Pareto Frontier === Where diffusion beat AR
= AR Pareto Frontier —— Chinchilla Optimal

Figure 9: Pareto frontier of validation loss (negative log-likelihood) versus training FLOPs for
autoregressive (AR) and diffusion models under data-constrained settings, on three different unique
data settings 25M, 50M and 100M.

15

8 Hyperparameter details

We use the following hyperparameters: batch size of 256 sequences, AdamW optimizer with 5,=0.9,
B2=0.95, e=10"8, a learning rate schedule with peak 2e-4, minimum 2e-5, 1% warm-up, cosine
decay, weight decay 0.1, and gradient clipping of 1.0.

9 Model Architecture

We adopt the Megatron-DeepSpeed framework as the foundation of our implementation, upon which
we build our training and evaluation setup for the masked Diffusion Model. Similar to the “extended
version of the architectures” proposed in [22], our model adheres to the general transformer design
while introducing several architectural modifications to better align with modern LLM practices.

Specifically, we replace absolute positional embeddings with Rotary Positional Embeddings (RoPE)
[37], which improve extrapolation to longer contexts and reduce parameter count. Furthermore, we
adopt the SwiGLU activation function in the MLP blocks, which has been shown to outperform
standard GELU or ReLU in both convergence and downstream performance [33]. To further simplify
the architecture and enhance training stability, we substitute standard LayerNorm with RMSNorm
and eliminate all bias terms. These design choices are consistent with [3} 40].

To preserve the original MLP capacity while aligning with hardware-friendly parameter sizes, we
compute the feed-forward hidden size hy as:

8'dmodel
= —_— . 4
hs { 364 J 0

This rounding scheme ensures that the FFN hidden size remains divisible by 64 while closely
matching the effective dimensionality used in SwiGLU layers.

We slightly modify the parameter count estimation formula from the original:

13 V+s
P=121R% 1+ ==
th < Ton T 121h)

to better reflect our revised architecture. The original formula can be decomposed into: 4h? (atten-
tion), 8/h? (MLP), 13lh (LayerNorm and biases), and (V' + s)h (token and positional embeddings).
After applying our architectural adjustments—namely, using a SwiGLU-based MLP of dimension
h¢, switching to RoPE (eliminating sh), and removing bias terms—we arrive at the revised formula:

P =41h* 4+ 3lh-hy +6lh + Vh

Table [5] presents all model configurations used in our experiments along with their parameter counts.

10 Discussion

Why are autoregressive (AR) models more compute-efficient than diffusion models? We
hypothesize two main contributing factors. (i) Order specialization: AR models are trained with a
fixed left-to-right factorization, so every gradient update reinforces the same prediction task, allowing
them to specialize effectively. In contrast, diffusion models must generalize across many random
token orderings, which hinders specialization. (ii) Stronger supervision per update: In AR training,
every token in a training sequence serves as a supervised target, and the causal structure enables dense
gradient updates, resulting in stable, low-variance learning. Diffusion models, however, compute loss
only on a subset of masked tokens, making supervision sparser per sequence, even though gradients
propagate through the entire input. As a result, each update carries less direct learning signal. Arriola
et al. [[L] show that tuning the masking schedule can help reduce gradient variance and improve
training compute efficiency.

16

Table 5: Model Architectures

Name param (M) | d_model origin_ffw_size ffw_size kv_size n_heads n_layers
7 7.0 128 512 320 32 4 3
14 13.6 224 896 576 32 7 4
20 19.5 288 1152 768 32 7 5
35 36.6 448 1792 1152 32 7 6
44 50.7 512 2048 1344 64 8 8
57 64.8 576 2304 1536 64 9 9
74 80.5 640 2560 1664 64 10 10
90 95.0 640 2560 1664 64 10 13
106 109.6 640 2560 1664 64 10 16
117 123.6 768 3072 2048 64 12 12
140 144.8 768 3072 2048 64 12 15
163 166.1 768 3072 2048 64 12 18
175 179.2 896 3584 2368 64 14 14
196 198.3 896 3584 2368 64 14 16
217 217.5 896 3584 2368 64 14 18
251 250.8 1024 4096 2688 64 16 16
278 275.7 1024 4096 2688 64 16 18
306 300.6 1024 4096 2688 64 16 20
425 416.9 1280 5120 3392 128 10 18
489 475.6 1280 5120 3392 128 10 21
509 4959 1408 5632 3712 128 11 18
552 534.4 1280 5120 3392 128 10 24
587 566.7 1408 5632 3712 128 11 21
632 615.3 1536 6144 4096 128 12 19
664 637.6 1408 5632 3712 128 11 24
724 700.3 1536 6144 4096 128 12 22
816 785.2 1536 6144 4096 128 12 25
893 856.4 1792 7168 4736 128 14 20
1018 971.3 1792 7168 4736 128 14 23
1143 1086.3 1792 7168 4736 128 14 26
1266 1207.6 2048 8192 5440 128 16 22
1424 1353.6 2176 8704 5760 128 17 22
1429 1358.2 2048 8192 5440 128 16 25
1593 1508.9 2048 8192 5440 128 16 28
1609 1523.2 2176 8704 5760 128 17 25
1731 1644.9 2304 9216 6144 128 18 24
1794 1692.9 2176 8704 5760 128 17 28
2007 1899.8 2304 9216 6144 128 18 28
2283 2154.7 2304 9216 6144 128 18 32
2298 2165.3 2560 10240 6784 128 20 26
2639 2478.6 2560 10240 6784 128 20 30
2980 2791.9 2560 10240 6784 128 20 34
3530 3257.0 2688 10752 7168 128 21 36
3802 3561.3 2816 11264 7488 128 22 36
4084 3879.2 2944 11776 7808 128 23 36
4516 4231.9 3072 12288 8192 128 24 36
6796 63374 3584 14336 9536 128 28 40
9293 8640.6 4096 16384 10880 128 32 42
11452 10889.0 4352 17408 11584 128 32 47
12295 11444.2 4608 18432 12288 128 36 44
12569 12208.7 4608 18432 12288 128 32 47
13735 13560.0 4864 19456 12928 128 32 47
14940 14905.3 4992 19968 13312 128 32 49
16183 15028.3 5120 20480 13632 128 40 47

17

Algorithm 1 Generating a Random Order List with Predefined Permutations

Input: Sequence length L, number of orders /V, random seed s
Output: Order list O of N orderings

1: Initialize order list O « ||

2: Append raster order: O < O U {[0,1,...,L — 1]}

3: fori=1to N —1do

4. b+ [0,1,...,L — 1] {base raster order}

5. €~ N(0,i%I) {add Gaussian noise with scale 7}
6: s < b+ e {perturbed scores}

7: 7 < argsort(s) {permutation order}

8: O+ Ou{n}

9: end for
10:

11: return O

11 Limitations

In this work, we examined two extremes of generative modeling: masked diffusion models, which
learn over random condition prediction tasks and are more data-efficient, and autoregressive (AR)
models, which follow a fixed left-to-right order and are more compute-efficient. While our results
highlight a clear trade-off, this need not be binary—hybrid models that interpolate between AR and
diffusion would offer a better balance. Although prior works have explored such hybrids [1}[13]], they
have not been evaluated through the lens of data-compute efficiency. We explore part of this question
in Section [3.5] however it will be useful to study this in more detail. Additionally, our scaling laws
are currently fit over a limited range of unique data sizes; extending them to larger regimes may
improve predictive accuracy and reveal further insights.

12 Order Permutation Details

In this experiment, we train autoregressive models using different token orderings. We do not
introduce target positional embeddings as done in works such as RAR [44] 26]. We evaluated the
trained models using left-to-right ordering. We define the perturbations in the token ordering by
adding varying levels of noise to the left-to-right ordering.

Specifically, we generate a list of N orderings, where the first order is the standard left-to-right (12r)
order. Subsequent permutations are created by adding Gaussian noise to the left-to-right position ids,
with the standard deviation of the noise directly proportional to the permutation’s index. This method
allows us to create a spectrum of orderings, from the standard 12r order to more heavily permuted
sequences, as detailed in Algorithmm

During training, we apply these predefined orders to the input sequences. For each sequence in a
batch, we randomly sample a permutation from our predefined list. This process is summarized in
Algorithm 2] and further detailed below:

For each sequence, the first token is kept fixed. This ensures that the position ID 0 is always assigned
to the first token, providing a soft absolute positional anchor for the sequence when using RoPE[38]].
Under RoPE, attention depends only on relative position offsets rather than absolute information,
i.e. (R(i)q, R(j)k) = qR(i — j)k. Therefore, fixing position O on the first token keeps the control
anchor unrotated R(0) = I and removes global sequence-wise phase shifts induced by permutations,
which stabilized the optimization and reduced variance under permutation augmentation.

As an example, suppose that the number of predicted tokens is 7" (e.g. 7" = 2048 in our default
setting) and the total input length is L = T" + 1 including the label shift. Only the indices in [1:7]
are shuffled and assigned position IDs from {1, ..., T'}. For instance, with 7' = 6 and a permutation
T =1[2,0,1,4,5, 3], the resulting token and label orders are:

tokens: [0, 3, 1, 2, 5, 6],

labels: [3,1,2,5,6,4].

18

Algorithm 2 Shuffling Tokens Using Predefined Order Lists

Input: Token matrix tokens € Z5*L+1 (including last label), order list O of K permutations
Output: Shuffled tokens and position IDs

: Let B < number of sequences in batch
Let L < sequence length
Initialize position_ids <+ 0B*F
Sample index vector I ~ Uniform({0, ..., K—1})5 {select random order for each sequence}
for i =1to B do
7 < O|[I;] {retrieve i-th random order}
tokens|i, 1:] + tokens]i, 1:][r] {shuffle tokens except first token}
m < 7 + 1 {shift positions by 1 to reserve position 0}
position_idsli, 1:] - w[0:L—1] {assign shifted positions}
end for

PRIL AN

[
Mo

: return tokens, position_ids

13 Broader Impacts

Our findings suggest that masked diffusion models are more sample-efficient language modeling,
which is especially valuable as high-quality textual data becomes scarce. This could benefit low-
resource languages, privacy-sensitive domains, and scientific fields where data is limited or costly. By
reducing dependence on massive proprietary datasets, diffusion models may help democratize access
to LLM development. Nonetheless, the broader deployment of generative models raises concerns
around misuse and misinformation, underscoring the need for responsible research and deployment
practices.

19

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the goal of comparing diffusion
and autoregressive models in data-constrained regimes. The main claims—that diffusion
models are more sample-efficient under repeated exposures and that new scaling laws
established—are consistent with the theoretical analysis and experimental results presented
throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the work, such as the restricted range of model sizes and
datasets used in scaling law fitting, are explicitly discussed in the paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

20

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or theorems requiring
assumptions or proofs. While empirical scaling laws are fitted, they are based on empirical
loss trends rather than derived from formal proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental setups, including model size, data budget, compute used, and
training protocols, are fully described in Section. Code is opensourced.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

21

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code and data is made public.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper explains the model hyperparameters and training setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We showed the results with different amount of unique dataset sizes and
compute.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detailed information of the compute resources and configuration are
provided in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We discussed he broader impact of the work in the last section. of Appendix.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed he broader impact of the work in the last section. of Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

23

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The models trained are small scale.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The framework and datasets that we used to train and evaluate are open-sourced
and correctly cited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

24

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The provided code is well-documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work does not involve human participants or subject studies.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Preliminaries:
	Modeling Details for AR and Masked Diffusion
	Scaling Framework in Data-Constrained Settings
	Training setup

	Experiments
	Does Diffusion Beat AR in Data-Constrained Settings?
	Fitting Data-Constrained Scaling Laws
	When to Use Diffusion over AR?
	Downstream Results
	Why do Diffusion models outperform AR models in data-constrained settings?

	Conclusion
	Acknowledgement
	Related Work
	Additional Results
	Hyperparameter details
	Model Architecture
	Discussion
	Limitations
	Order Permutation Details
	Broader Impacts

