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Abstract
Recent research has incorporated knowledge graphs to mitigate the issue of data
sparsity in recommendations. However, while leveraging the rich information
from knowledge graphs exhibits promising performance enhancements, it also
introduces noise that potentially disrupts collaborative signals. To overcome this
problem, we propose the Knowledge Graph Preference Contrastive Learning for
Recommendation, namely KPCL. The preference learning method and rationale
attention mechanism are designed to explicitly track collaborative signals and
identify informative knowledge connections from both macro and micro perspec-
tives. Specifically, preference learning is used to alleviate semantic dissonance in
knowledge embeddings by exploring intent correlations in user-item interaction
history, while the rationale attention restructures the knowledge graph by elim-
inating knowledge triplets with low attention scores as noise. By aggregating
the information in the knowledge graph through the selected knowledge triplets,
the task-unrelated noise presented would be filtered out, leading to enhanced
performance for the knowledge-aware recommender system. Experimental re-
sults on three benchmark datasets demonstrate the superiority of KPCL over
the state-of-the-art methods. The implementations for KPCL are available at
https://github.com/HuiCir/KPCL.

1 Introduction
In the era of information overload, recommender systems have become critical personalized infor-
mation retrieval tools [1–3]. Collaborative Filtering (CF) has been widely adopted as an effective
recommendation approach [4–8]. However, CF systems face challenges due to their heavy depen-
dence on historical user interaction data, resulting in issues of sparsity and cold-start [9–11]. To
overcome these data-related problems, Knowledge Graphs (KG) have been incorporated into the
recommendation tasks as side information to enhance the user-item representation by encoding
additional entity and relation information from KG [12, 13]. Previous studies have explored the
integration of KG into CF systems to obtain richer side information and potential multi-hop high-order
proximity [14–17]. Not only improving the recommendation performance, KG has also demonstrated
great potential in enhancing the explainability of recommendation [18, 19].

The main task of knowledge-aware recommendation is to derive high-quality user-item representations
from structural knowledge, with the aim of improving recommendation performance. Early research
[14, 18, 20] has mainly focused on the embeddings of KG and treated them as side information to
enhance item representations. To capture high-order connectivity in KG, some path-based approaches
[12] have attempted to extract semantically meaningful meta-paths from the KG and learn more
complex user-item representations along these meta-paths [19, 21, 22]. However, most path-based
models are restricted by various issues like labor-intensive feature engineering [19] and unstable
performance [23]. To combine the strengths of embedding-based and path-based methods seamlessly
and automatically, Graph Neural Networks (GNN) [24–27] have been introduced into recent studies
[28, 29] on knowledge-aware recommendation. By constructing a user-item interaction graph and
cooperating with structured knowledge from KG, propagation-based methods effectively derive multi-
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hop high-order representations through recursive propagation and aggregation of GNNs. Benefiting
from the integration of connectivity, these propagation-based models have achieved state-of-the-art
performance for recommendation, such as KGAT [15], KGCN [30], KTUP [12] and KGIN [31].

Despite the potential benefits of utilizing KGs to enhance item representations, real-world KGs
are often noisy and contain task-irrelevant entities. This can lead to suboptimal performance in
recommendation tasks [32–35], particularly when the scale of the KG is large and the noise signals
outnumber the effective signals required for CF tasks [36]. To address this issue, recent studies have
proposed various self-supervised techniques to alleviate noise in KGs. For instance, KGCL [37]
introduces contrastive learning based on stochastic graph augmentation to address noise issues in
KGs. To avoid the uncertainty of simple random augmentation, KACL [38] proposes two learnable
augmentation generators to perform cross-view contrastive learning adaptively. Yang et al. [39]
propose a self-supervised method to perform rationalization of KG to capture the collaborative signal
implicitly. KGIL [40] introduces the principle of invariance to the knowledge-aware recommendation,
which aims to discern and harness the task-relevant knowledge connections. On the other hand,
some studies employ generative techniques to overcome the noise problem. DiffKG [41] integrates a
diffusion model with a data augmentation paradigm, enabling robust knowledge graph representation
learning to resist noise. Tang et al. [42] design a knowledge generator to generate attributes for items
by exploring their mutual information correlations and semantic correlations. However, we argue that
these methods do not explicitly consider the semantic dissonance between additional knowledge and
user preferences in collaborative signals. The knowledge that meets user preferences is more suitable
for recommendation tasks. Therefore, the present study proposes a preference contrastive learning
method to explicitly track collaborative signals from interaction history.

The knowledge graph introduces side information using the connections between entities. If we
aggregate all these connections indifferently, it could interfere with the learned item representations
due to irrelevant noisy entities. Given a target user, the collaborative signals are extracted from
the interaction history with peers sharing the same interests. By mining user preferences from CF
signals, the irrelevant entities serving as negative samples will be distributed less attention than other
candidates. Thereby, the knowledge aggregation in KG can be conducted optionally by highlighting
preference-related knowledge triplets.

Overall, it is important to discover the preference by tracking the CF signals in the knowledge
graph recommender systems. To tackle this challenge, we propose a Knowledge Graph Preference
Contrastive Learning for Recommendation, namely KPCL. KPCL constructs a preference learning
mechanism that matches the preference of collaborative signals with the relation entities in KG. It
allows the collaborative signals, expressed as a reward to different relations, to guide the hierarchical
aggregation process explicitly. Consequently, KPCL can strategize a heterogeneous aggregator that
is sensitive to collaborative signals, thereby improving the performance of recommendation tasks.
Finally, we filter out edges with less contribution and perform preference-driven aggregation of
information to generate the final embedding representation.

To summarize, the main contributions of this paper are three folds:

(1) We design a relation rank preference learning to effectively catch user’s intentions by explicitly
aligning them with collaborative signals. This mechanism optimizes the relation weights globally
based on different preference requirements, which improves the embedding representations of entities
and adapts them to downstream recommendation tasks appropriately.

(2) The rationale attention mechanism allows us to individually extract relevant triplets by distinguish-
ing between noise and critical task-related connections that significantly contribute to recommendation
tasks. This method allows the model to refine the KG by diminishing the impact of noise, resulting in
a more streamlined and accurate knowledge base for recommendation tasks.

(3) To validate the effectiveness of our proposed KPCL method, we conduct extensive experiments
using three real-world datasets. The results demonstrate that the proposed model outperforms the
state-of-the-art recommendation methods. Particularly in high-density knowledge graphs, KPCL
exhibits superior capabilities in more precise rationalization and target noise connections.
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2 PROBLEM FORMULATION
2.1 User-Item Interaction Graph

In recommendation, the signal of a user’s preference is a form of implicit feedback extracted from
historical user-item interactions [43]. Let U be the set of users and I the set of items. u ∈ U and
i ∈ I denote a single user and item, respectively. The interaction between u and i is denoted by
yui, with yui = 1 if user u interact with the item i, and yui = 0, otherwise. Thereby, the user-item
interaction graph can be expressed as V = {(u, yui, i)|u ∈ U , i ∈ I}, where (u, yui, i) is a triplet
denoting a specific user-item interaction.

2.2 Knowledge Graph

KG stores the entity-relation-entity structured information of real-world facts, in the form of a
heterogeneous graph or heterogeneous information network [44]. Let E be a set of entities and R be
the relation set. The KG, denoted by G = {(h, r, t)|h, t ∈ E , r ∈ R}, is a collection of triplets, with
a triplet (h, r, t) representing the relation between the head entity h and tail entity t. To improve the
quality of recommendation, Knowledge-aware recommendations utilize KG as side information, with
I ⊂ E .

2.3 Task Description

The task of this knowledge-aware recommendation can be formally defined as follows: Provided with
the user-item interaction data V and the KG G, the goal is to learn a function F(u, i|V,G,Θ) that can
predict the preference of user u interacting with item i, where Θ are learnable parameters.

3 Methodology

𝑓(ℎ, 𝑟, 𝑡)

⊙

=×

ℎ
𝑡

𝑟

𝑒ℎ𝑊𝑄

𝑒𝑡𝑊𝐾

e𝑟

𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑒 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐻𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑉𝑖𝑒𝑤 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

𝑑𝑟𝑜𝑝𝑒𝑑 𝑒𝑑𝑔𝑒

|𝒩ℎ|𝜔(ℎ, 𝑟, 𝑡) 𝐺𝑙𝑜𝑏𝑎𝑙 𝐷𝑟𝑜𝑝

𝐼𝑛𝑓𝑜𝑁𝐶𝐸

𝒢

𝒩ℎ

𝑧𝑣

𝑧𝑘

𝒢′

𝒱

𝒢

𝒱

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑅𝑎𝑛𝑘𝑖𝑛𝑔

e𝑟, e′𝑟

𝑠𝑅𝑒𝑤𝑎𝑟𝑑

𝑟0

𝑟1

…

𝑟𝑛

…

Figure 1: The overall framework of KPCL

The proposed KPCL is depicted in Figure 1, and the details are presented in this section.

3.1 Relation Preference Learning

By adjusting individual weights based on attention mechanism from a micro perspective, previous
studies [15, 39, 40] optimized the KG representation with less noise. On the contrary, this study takes
a more macroscopic perspective, aligning collaborative signals by optimizing the embeddings of
relations, while optimizing triplet individuals globally. When we consider the head-tail connection
categories, the role it plays in a knowledge triplet, this will manifest as the embeddings of relation.
Inspired by the recent success of RLHF (Reinforcement Learning from Human Feedback) [45, 46],
the interaction of humans can be used to capture user’s preferences and further guide model’s
optimization.

In this study, we introduce Bradley-Terry model as reward model for relation preference learning
from user intention information in the user-item interaction graph. The preference rewards are used
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to catch the collaborative filtering signals and guide KG optimization. Formally, we define preference
rewards embeddings P in the same space as R. To establish the bridge between preferences and
relations, the formula for calculating preference relation ranking scores is as follows:

s =
∑

p∈P,r∈R
exp(ep · er); s′ =

∑
p∈P,r′∈R′

exp(ep · er′), (1)

where, ep and er represent the embedding of preference reward and relation, respectively. r ∈ R
represents the original relation used to calculate the ranking score for matching preferences, denoted as
s. While er′ represents the masked relation embeddings used to calculate the score for non-matching
preferences, denoted as s′. For R′, non-existent relations in the input user interaction information
would be masked. Thereby, we can define the loss function of preferences by the following formula:

Lp = −log
s

αs+ s′
, (2)

By extending the Bradley-Terry model, we introduce an additional hyperparameter α to adjust the
focus of preferences to positive and negative samples. By doing so, the preference information P from
user intents in collaborative signals can be delivered to knowledge triplets. The preference-driven
relation embeddings will guide the further optimization of the triplet in KG.

3.2 Rationale Attention

To extract essential semantic information for collaborative interactions from the complex knowledge
graph, we introduce an attentive weighting function that learns the probability of how a knowledge
triplet can reflect the underlying rationale for collaborative signals. Following previous works
[15, 39, 47], which discerns the importance of heterogeneous relations in KG, the attention calculation
function f(h, r, t) is defined by the following formula:

f(h, r, t) =
ehWQ · (etWK ⊙ er)⊤√

d
, (3)

where eh, er and et represent the embeddings for the head, relation, and tail of the knowledge triplet.
Wk,WQ ∈ Rd×d are learnable weights for graph attention, where d is the hidden dimensionality.
The Hadamard product of the relation er and the tail entity et denotes the rotation of the tail entity
embedding et to the latent space of relation er [39, 48].

Furthermore, a multi-view criterion, formulated by Eq.(4), was designed to assess the rationale
importance of edges from both global and local viewpoints [39].

ω(h, r, t) = |Nh| ·
exp(f(h, r, t))∑

(h,r′,t′)∈Nh
exp(f(h, r′, t′))

, (4)

where Nh is the neighbors of the head entity h. |Nh| is the number of neighbors of h. The right
part of Eq.(4) is the rationale score, normalized by the softmax function, for estimating the local
importance of the triplet among all edges connected to the same head entity h. By multiplying the
local importance with |Nh|, the rational score is globally weighted based on the number of degrees
of head entity. Next, we construct a low-contribution noise set of edges based on ω(h, r, t) with
a ratio γ ∈ (0, 1). By removing these edges from the original knowledge graph G, we create a
rationale-aware augmented knowledge graph, denoted as G′.

3.3 Heterogeneous Aggregation

With the above processing, KPCL could pay more attention to the knowledge connections with higher
rationale scores, which enables the model to infer the intents of collaborative signals. Thus, by
weighting knowledge triplets with their corresponding knowledge rationale scores, the knowledge
aggregator can be defined as:

e(l)h =
1

|N ′
h|

∑
(h,r,t)∈N ′

h

ω(h, r, t)er ⊙ e(l−1)
t , (5)
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where l denotes the certain layer of the aggregator. N ′
h is an ego graph of first-order neighbors

sampled from the augmented KG G′. The attention scores of the preserved triplets do not need to
be recalculated, as the discarded structures have such low scores that their minor variations can be
ignored.

As for the entity representations in the user-item graph, considering items are a subset of knowledge
entities, the item embeddings ei can be collected from the trained entities embeddings eh. Regarding
the users’ embeddings, a neighbor aggregation method defined by the following formulas is used.

e(l)u =
1

|Nu|
∑
i∈Nu

e(l−1)
i ; eu =

L∑
l

e(l)u (6)

where eu and ei are the embeddings of user and item, respectively. L is the number of layers in the
GNN aggregation. Nu ⊂ V is a set of neighboring nodes of the items i. These neighboring nodes
have connections through their interaction histories with the user u. Similarly, the item embedding
ei in the user-item graph can also be calculated by a method like Eq.(6). This allows us to model
collaborative signals between users and items by aggregating the embeddings of the neighboring
items through the user-item interaction histories.

3.4 View Alignment Contrastive Learning

To capture the view-specific node representations, LightGCN [49] is used to iteratively model the
interactions and capture high-order information on the user-item graph V . Formally, LightGCN could
be implemented as:

x(l)
u =

∑
i∈Nu

x(l−1)
i√

|Nu||Ni|
; x(l)i =

∑
u∈Ni

x(l−1)
u√

|Nu||Ni|
. (7)

Here, x(l)u and x(l)
i are the embeddings of user u and item i in the l-th layer, respectively. Nu and Ni

represent the connected items and users of u and i, respectively. Consequently, the representations of
items in the collaborative filtering view, denoted as xv , are obtained by summing up the embeddings
of L layers:

xv =

L∑
l

x(l)
u ; xk =

L∑
l

e(l)i , (8)

Similarly, the embeddings of entities, denoted as xk, in KG view are calculated by the aggregation on
the augmented graph G′.

As stated in previous studies [37, 39, 50], cross-view contrastive learning is crucial for knowledge-
aware recommender. Therefore, we adopt the contrastive learning method to align the representations
of the knowledge graph and collaborative signals. Specifically, we first map the embeddings xv and
xk from different spaces into the same latent space as zv and zk by using a two-layer MLP. The
loss function Lc is then calculated using the InfoNCE paradigm [51, 52] to align the collaborative
relational signals and knowledge graph signals.

Lc =
∑
i∈I

−log
exp(s(zvi , zki )/τ)∑

j∈J (exp(s(zvi , zki )/τ) + exp(s(zvj , zkj )/τ))
. (9)

Here, τ is a hyperparameter called temperature that controls the focus on hard negatives. Besides,
a candidate set of negative sampling J = {i, i′} is constructed, including positive and other non-
positive items. The randomly selected one from this candidate set is applied as the negative sampling
result j to participate in contrastive learning. The s(·) is used to estimate the matching degree of two
representations, and is set as a cosine similarity function in this study.

3.5 Model Optimization

Given the final representations of a user u and an item i, the inner product y(u, i) = e⊤u ei can be
employed to measure the user’s preference on the item. Then, the widely used BPR loss [43] is used
to optimize the parameters in the model:

Lrec =
∑

(u,i,i′)∈S

−logσ(y(u, i)− y(u, i′)), (10)
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where S represents the training set for training the model. i ∈ Nu is the ground-truth for user u.
i′ /∈ Nu is a stochastic negative interaction.

Finally, a joint learning for KPCL is designed, which consists of three tasks, i.e., the main recommen-
dation task, preference learning task, and contrastive learning task. Together with L2 regularization,
the loss function of the joint learning is defined as follows.

L = Lrec + λ1Lp + λ2Lc + ||Θ||22. (11)

Here, λ1 and λ2 represent the weight of the relation preference learning and view alignment con-
trastive learning tasks, respectively. Θ represents the learnable model parameters.

3.6 Model Complexity

We analyze the time complexity of our KPCL framework from three key components, i.e., aggregation
scheme, preference learning, and contrastive learning. In the aggregation over User-Item Interaction
Graph, the complexity of user representations is O(L × |V| × d), where L, |V|, and d denote the
number of layers, the number of triplets in V , and embedding size, respectively. In the aggregation
over KG, the time cost of updating entity representations is O(L× |G| × d), where |G| is the number
of KG triplets. Then, The relation preference learning module takes O(|V| × d2) time. As for the
contrastive learning, the time complexity to calculate InfoNCE loss is O((|U| + |I|) × d), where
|U| and |I| denote the number of users and items in U and I. Under the same experimental settings,
KPCL has comparable complexity to other baselines[31, 39].

4 EXPERIMENTS
4.1 Dataset Description

To evaluate the effectiveness of KPCL, we perform experiments using three benchmark datasets from
small to large scale:

• Movielens [38] is a classic movie recommendation dataset gathered from a research-focused
website of the same name.

• Alibaba-iFashion [53] is a collection of fashion outfits from Alibaba’s e-commerce platform,
documenting user-outfit click history.

• Amazon-Book [54] is a widely used dataset for product recommendation selected from Amazon-
review.

Both of the datasets are publicly available and have been used in previous studies on knowledge-based
recommendation. The statistics of three datasets are presented in the appendix.

4.2 Evaluation Metrics

We adopt the commonly used all-ranking strategy metrics in the top-K recommendation and preference
ranking tasks: Recall@K and NDCG@K, with K set to 20. Recall@K shows the proportion of their
rated items that are included in the top K recommended items. NDCG@K represents the normalized
discounted cumulative gain at K, which accounts for the positioning of correctly recommended items.

4.3 Overall Performance Comparison

We conduct benchmark evaluations comparing KPCL and other baseline models from a variety of
research perspectives.

General Collaborative Filtering

• BPR [43] is a matrix factorization model that utilizes pairwise ranking loss and is based on
implicit feedback, focusing solely on user-item interactions.

• NFM [55] incorporates MLP into matrix factorization to learn the non-linear user-item feature
interactions.

• LightGCN [49] simplifies the convolution operations during the message passing among users
and items by removing activation and feature transformation.
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Table 1: Evaluation results on Movielens, Alibaba-iFashion and Amazon-book. The best and second-
best results are denoted in boldface and borderline.

Model
Movielens Alibaba-iFashion Amazon-book

Recall NDCG Recall NDCG Recall NDCG

BPR 0.4114 0.2673 0.0672 0.0406 0.1074 0.0593
NFM 0.3554 0.2146 0.0506 0.0276 0.1033 0.0532

LightGCN 0.4395 0.2932 0.0995 0.0613 0.1396 0.0738
SGL 0.4341 0.2931 0.1113 0.6982 0.1445 0.0766
CKE 0.4094 0.2652 0.0647 0.0390 0.1342 0.0700

KGAT 0.4122 0.2664 0.0711 0.0416 0.1408 0.0744
KGNN-LS 0.4218 0.2741 0.0983 0.0633 0.1362 0.0560

KGIN 0.4601 0.3089 0.1158 0.0721 0.1436 0.0748
KGCL 0.4533 0.3053 0.1146 0.0719 0.1496 0.0793

MCCLK 0.4204 0.2752 0.0985 0.0610 0.1125 0.0633
KGRec 0.4624 0.3097 0.1176 0.0734 0.1513 0.0741
KPCL 0.4647 0.3117 0.1181 0.0741 0.1609 0.0859

• SGL [56] introduces a self-supervised learning paradigm to GNN-based recommendation by
applying stochastic augmentation on the user-item graph.

Knowledge-aware Recommenders

• CKE [14] is an embedding-based approach, which adopts TransR to encode the semantic
information of items into the matrix factorization framework.

• KGAT [15] constructs a collaborative knowledge graph (CKG) from KG and user-item graph
and designs an attentive message passing scheme over CKG.

• KGNNLS [28] is a GNN-based model, modelling relations in decay factors, which introduces
label smoothing as regularization to force similar user preference weights between neighbors
items in the KG.

• KGIN [31] is a powerful approach for modelling intents from collaborative interactions, focus-
ing on relations between entities and employing relational path-aware aggregation to encode
information from KG.

Self-Supervised Knowledge-aware Recommenders

• KGCL [37] incorporates knowledge augmentation into a cross-view contrastive learning ap-
proach to reduce the disturbances of noise caused by knowledge overload.

• MCCLK [50] is a hierarchical data augmentation contrastive learning framework, which
considers both multi-level graph view and structural collaborative semantic views.

• KGRec [39] designs a generative task in the form of masking-reconstructing to highlight
rationales in the knowledge graph. By rebuilding useful edges serving as rationales, KGRec
reconstructs the aggregation path of GNN and learns suitable representations for recommendation
systems.

In this Experiment, baseline models are implemented from the original articles. Both the baseline
model and ours are trained with the following parameters: batch size 1024, embedding size 64, and
learning rate 1e-5. We present the performance comparison of all methods in Table 1, and summarize
the results as follows:

The proposed KPCL demonstrates consistent superior performance over all baselines, as evidenced
by its higher scores in terms of Recall@20 and NDCG@20 across three datasets. Remarkably, it
achieves significant improvements when evaluated on a denser and larger knowledge graph (e.g.,
Amazon-book), outperforming the strongest baseline model by 6.34% in terms of Recall@20. This
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Table 2: Ablation results of KPCL with different variants. The superscript ∗ denotes the largest
change in performance. The Relation Preference module and the Rationale Attention module are
denoted as RP and RA, respectively.

Ablation Movielens Alibaba-iFashion Amazon-book
Setting Recall NDCG Recall NDCG Recall NDCG
w/o RP 0.4614* 0.3086* 0.1181 0.0737 0.1434* 0.0748*
w/o RA 0.4627 0.3100 0.1177* 0.0735* 0.1513 0.0797
KPCL 0.4647 0.3117 0.1181 0.0741 0.1609 0.0859

notable performance can be attributed to the ability of KPCL to effectively filter out more noise
interfering with collaborative signals than other GNN-based Knowledge-aware baselines. Several
key factors contribute to this improvement within KPCL. First, through relation preference learning,
KPCL successfully captures the critical knowledge connections that genuinely contribute to the
recommendation task. Second, by leveraging rationale attention scores to filter out noise and
employing an efficient aggregation path, the performance of GNN is notably enhanced. Lastly, KPCL
employs view alignment contrastive learning on the augmented graphs from both KG and CF views,
thereby enhancing the uniformity of embedding representation while aligning signals across different
views.

It is evident that most knowledge-aware models outperform BPR and NFM. This verifies that
incorporating additional information from knowledge graphs effectively alleviates the sparsity issue
that commonly exists in collaborative filtering systems. Notably, two notable exceptions, LightGCN
and SGL, which are the recent state-of-the-art techniques without considering KG, have outperformed
some KG-based models. This demonstrates that simply introducing knowledge graphs does not
always guarantee improved performance in recommendation systems. Among the knowledge-aware
methods evaluated in our experiment, KGIN stands out as the best model. This model excels in
capturing user latent intention by modeling the representation of interactions. Notably, even on
small-scale datasets such as MovieLens and Alibaba-iFashion, KGIN achieves better results than
some self-supervised models (e.g., MCCLK and KGCL). Turning to our proposed approach, KPCL
consistently outperforms all baselines across datasets with varying distribution types, especially
for Amazon-Book with larger KG scales. We attribute this improvement primarily to the effective
noise-filtering capabilities of KPCL.

Across the three datasets, the improvement of the proposed KPCL is most significant on Amazon-
Book. This is in line with our expectations, given that the KG of the Amazon-Book has nearly ten
times more knowledge connections compared to the MovieLens and Alibaba-iFashion datasets. While
more diverse entities and links in the KG provide more auxiliary information, they also introduce more
noise, leading to a substantial impact on recommender systems. Particularly, when dealing with a
complex and dense KG with sparse interactions, the noise significantly affects the performance of the
recommendation models. Based on the results of t-test on MovieLens and Amazon-Book, the KPCL
is statistically different from all the other models with a p-value<0.05. Given that Alibaba-iFashion is
the most sparse one, the KPCL is not statistically different and the improvement of KPCL is limited.

4.4 Ablation Study

From the results of the ablation study presented in Table 2, we have the following observations. (1)
The prototype framework of KPCL consistently outperforms its variants across all three datasets.
This indicates that the combination of the RP and RA modules consistently leads to performance
improvements, regardless of the distribution of the dataset. (2) The contribution of the RP and RA
modules varies depending on the specific data distributions. Specifically, the RP module has a more
significant impact on the Amazon-Book and Movieslens datasets compared to the RA module. This
can be attributed to the presence of numerous invalid links within the KGs of these two datasets.
However, the KG of Alibaba-iFashion contains numerous knowledge entities, but strictly limits the
number of edges. In this case, the high-quality sparse knowledge data reduces the filtering effect of
the RP module. Consequently, it can be deduced that the RP module structurally filters out potential
noise in KG that does not contribute to recommendation tasks, while the RA module focuses on
aligning features between knowledge entities and items.
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5 RELATED WORK
5.1 Knowledge-aware Recommender Systems

Knowledge-aware Recommender Systems are a type of recommendation that leverages knowledge
graphs to incorporate valuable information for item representation learning and user modeling.
Generally, it can be broadly categorized as embedding-based, path-based, and GNN-based methods.

Embedding-based methods [14, 18, 20] utilize KG embedding techniques to learn entity embeddings
as prior information of items. They subsequently utilize knowledge entity and relation embeddings to
improve the semantic representations in recommender systems. For example, in [14], CKE integrates
various types of side information into the collaborative filtering framework to construct a collaborative
knowledge graph. The structural knowledge embeddings of items are encoded using TransR. However,
these embedding-based methods cannot capture long-range semantics or sequential dependencies due
to their disregard for high-order connectivity. This limitation restricts their representation ability for
recommendation tasks.

Path-based methods [19, 21, 22, 57] have shown their ability to explore high-order connectivity by
extracting paths from target user to item nodes via knowledge triplets. These paths are then employed
to predict user preferences using recurrent neural networks or memory networks. An example of this
is the utilization of Long Short-Term Memory (LSTM) in KPRN [19] to extract side information
through meta-paths. However, path-based methods have inherent limitations. The effectiveness of
recommendation heavily relies on the quality of meta-paths, which typically require labor-intensive
feature engineering and identification of domain-specific patterns.

GNN-based Methods [15, 28, 31] leverage the information aggregation mechanism of GNN to learn
representations from KG for recommendation tasks. KGAT [15], for example, builds a heterogeneous
graph with user-item interactions and KG. It then applies an attention aggregation mechanism to
propagate user and item embeddings on this graph. GNN-based methods have been widely adopted
in recent research due to their ability to capture rich semantics representations and achieve state-of-
the-art performance.

5.2 Self-Supervised Learning for Recommender Systems

Self-supervised learning, particularly contrastive learning, has gained increasing attention in the area
of recommendation systems. By designing pretext tasks that provide additional supervised signals
[52], contrastive learning aims to learn high-quality discriminative representations by distinguishing
between supervised signals and noise [51]. Recent studies have shown that introducing contrastive
learning improves the quality of graph embedding representation in terms of alignment and uniformity
[39]. Many researchers have incorporated contrastive learning into their methods to construct self-
supervised recommendation systems. For example, SGL [56] applies graph contrastive learning to
graph recommendation systems by using random graph augmentation to generate contrastive views.
Further, KGCL [37] introduces graph contrastive learning on KG to resist noise and address long-tail
problems. It leverages additional signals from KG to enhance user-item representation learning for
collaborative filtering. Recently, KGRec [39] applies two self-supervised learning methods, masked-
encoder, and contrastive learning, to discover knowledge rationale and match the graph embeddings in
cross-view. Different from the above existing self-supervised frameworks, our work KPCL proposes
a novel preference contrastive learning paradigm from both macro and micro perspectives to align
the intent from collaborative signals structurally.

6 CONCLUSION
In this paper, we proposed a novel preference contrastive learning method (KPCL) for recommen-
dation. A self-supervised module driven by relation preference ranking and rationale attention was
applied to align the collaborative signals. This method helps KG to filter out interfering noise and
discard knowledge connects that contribute little to the recommendation task. Then, an augmented
heterogeneous aggregator was conducted to optionally aggregate informative knowledge connections.
Extensive experiments on three real-world datasets validated the superiority of KPCL over state-of-
the-art baselines. This work provides valuable insight into aligning collaborative signals from the
macro and micro perspectives. In the future, advanced methods of self-supervised preference learning
for knowledge-aware recommender systems will be explored.
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[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[27] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. 1

[28] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regular-
ization for recommender systems. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 968–977, 2019. 1, 7, 9

[29] Ze Wang, Guangyan Lin, Huobin Tan, Qinghong Chen, and Xiyang Liu. Ckan: Collaborative
knowledge-aware attentive network for recommender systems. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information Retrieval,
pages 219–228, 2020. 1

[30] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge graph convolu-
tional networks for recommender systems. In The world wide web conference, pages 3307–3313,
2019. 2

[31] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan
He, and Tat-Seng Chua. Learning intents behind interactions with knowledge graph for rec-
ommendation. In Proceedings of the web conference 2021, pages 878–887, 2021. 2, 6, 7,
9

[32] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua Zheng. Self-
guided learning to denoise for robust recommendation. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1412–
1422, 2022. 2

11



Knowledge Graph Preference Contrastive Learning for Recommendation

[33] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Denoising implicit
feedback for recommendation. In Proceedings of the 14th ACM international conference on
web search and data mining, pages 373–381, 2021.

[34] Xinjun Zhu, Yuntao Du, Yuren Mao, Lu Chen, Yujia Hu, and Yunjun Gao. Knowledge-refined
denoising network for robust recommendation. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, page 362–371,
2023.

[35] Yu Tian, Yuhao Yang, Xudong Ren, Pengfei Wang, Fangzhao Wu, Qian Wang, and Chenliang
Li. Joint knowledge pruning and recurrent graph convolution for news recommendation. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 51–60, 2021. 2

[36] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015. 2

[37] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. Knowledge graph contrastive
learning for recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1434–1443, 2022. 2, 5, 7, 9

[38] Hao Wang, Yao Xu, Cheng Yang, Chuan Shi, Xin Li, Ning Guo, and Zhiyuan Liu. Knowledge-
adaptive contrastive learning for recommendation. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pages 535–543, 2023. 2, 6

[39] Yuhao Yang, Chao Huang, Lianghao Xia, and Chunzhen Huang. Knowledge graph self-
supervised rationalization for recommendation. In Proceedings of the 29th ACM SIGKDD
conference on knowledge discovery and data mining, pages 3046–3056, 2023. 2, 3, 4, 5, 6, 7, 9

[40] Shuyao Wang, Yongduo Sui, Chao Wang, and Hui Xiong. Unleashing the power of knowledge
graph for recommendation via invariant learning. In Proceedings of the ACM on Web Conference
2024, pages 3745–3755, 2024. 2, 3

[41] Yangqin Jiang, Yuhao Yang, Lianghao Xia, and Chao Huang. Diffkg: Knowledge graph
diffusion model for recommendation. In Proceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 313–321, 2024. 2

[42] Gu Tang, Xiaoying Gan, Jinghe Wang, Bin Lu, Lyuwen Wu, Luoyi Fu, and Chenghu Zhou.
Editkg: Editing knowledge graph for recommendation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 112–122,
2024. 2

[43] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. pages 452–461, 2009. 3, 5, 6

[44] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. Heterogeneous information network
embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31
(2):357–370, 2018. 3

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 3

[46] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024. 3

[47] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao
Dong, and Jie Tang. Mask and reason: Pre-training knowledge graph transformers for complex
logical queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1120–1130, 2022. 4

[48] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph em-
bedding by relational rotation in complex space. In International Conference on Learning
Representations, 2018. 4

[49] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, pages 639–648, 2020. 5, 6

12



Knowledge Graph Preference Contrastive Learning for Recommendation

Table 3: Statistics of the datasets.

Statistics Movielens Alibaba-iFashion Amazon-book

Users 37,385 114,737 70,679
Items 6,182 30,040 24,915
Interactions 539,300 1,781,093 847,733

Entities 24,536 59,156 88,572
Relations 20 51 39
Triplets 237,155 279,155 2,557,746
Density 19.331 9.438 57.755

[50] Ding Zou, Wei Wei, Xian-Ling Mao, Ziyang Wang, Minghui Qiu, Feida Zhu, and Xin Cao.
Multi-level cross-view contrastive learning for knowledge-aware recommender system. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1358–1368, 2022. 5, 7

[51] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference
Proceedings, 2010. 5, 9

[52] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020. 5, 9

[53] Wen Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng Guo, Fei Sun, Chao Li, Andreas Pfadler,
Huan Zhao, and Binqiang Zhao. Pog: personalized outfit generation for fashion recommendation
at alibaba ifashion. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2662–2670, 2019. 6

[54] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In proceedings of the 25th international conference
on world wide web, pages 507–517, 2016. 6

[55] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173–182, 2017. 6

[56] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
Self-supervised graph learning for recommendation. In Proceedings of the 44th international
ACM SIGIR conference on research and development in information retrieval, pages 726–735,
2021. 7, 9

[57] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks. Proceedings of the VLDB
Endowment, 4(11):992–1003, 2011. 9

A Appendix
A.1 Dataset Description

The statistics of datasets used in the experiments are reported in Table 3.

A.2 Impact of Aggregation Depth

In this subsection, the number of heterogeneous aggregation layers is explored. Here, we set the
number of layers to be either 2 or 3 and summarized the results in Table 4. Since constructing rationale
attention with a single relation set is not feasible, the case of KPCL-1 is excluded. Generally, longer
paths with more stacked layers are expected to integrate information from longer-range connectivity
into node representations. However, the results of Table 4 show that KPCL-2 outperforms KPCL-3 in
most cases, except for the Amazon-book dataset where KPCL-3 performs slightly better in terms of
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Table 4: Impact of the number of layers.

Layers Movielens Alibaba-iFashion Amazon-book
Recall NDCG Recall NDCG Recall NDCG

KPCL-2 0.4647 0.3117 0.1181 0.0741 0.1609 0.0859
KPCL-3 0.4617 0.3089 0.1165 0.0727 0.1605 0.0866

NDCG. Based on these results, we can conclude that: (1) For most datasets, two-layer aggregation
is sufficient to extract necessary information for recommendation tasks. Adding more layers and
exploring deeper information within KG may introduce additional noise, potentially making the
model suboptimal. (2) In the more dense and complex KG like the case of Amazon-book, the
exploration of high-order information introduces noise but also provides effective side information
that benefits collaborative filtering.

A.3 Model Explainability Study
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Figure 2: Explanation of KPCL training on Movielens dataset. The part (a) displays the attention
score distribution of all edges after training. The part (b) visualizes the trend of standard deviation
(std) of edge attention scores during the training process.

To analyze the preference contrastive learning method comprehensively, we record the distribution
of attention scores and their dispersion. From the results reported in Figure 2 on sparse users, we
have the following observations. Firstly, upon examining the sorted result of the normalized edge
attention distribution, it is evident that only a very small proportion of knowledge edges achieve
higher scores and produce a significant contribution in recommendation. Conversely, edges with
scores close to zero are dropped optionally to avoid propagating noise. This indicates that the model
focuses its attention on a subset of edges that are deemed more informative and relevant for making
recommendations. Secondly, Part (b) of the figure demonstrates that the dispersion of edge attention,
measured by the Standard Deviation (std), increases as the training steps progress. This suggests
that the model effectively distinguishes between effective edges, which contribute significantly to
recommendation tasks, and noise.

To provide an intuitive understanding of the explainability of our approach, we illustrate an example
from the Movielens data in Figure 3. From this case, we can observe that KPCL carried out a path
design process automatically based on the rationale score. For instance, let’s consider entity 4940 as
an example. In this case, even when there are multiple connections with the same type of relation,
KPCL does not assign approximate weights blindly. Instead, it learns to assign weights based on the
recommendation requirements. In this specific example, entity 4940 assigns the highest weight to
entity 13140, rather than focusing on entity 17413, which has more connections. This highlights the
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Figure 3: Explanation of a case of the rationale attentive mechanism in Movielens.

model’s ability to learn the embeddings from a global and holistic perspective, taking into account
the recommendation requirements and aligning with collaborative signals.
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