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Abstract

Training graph neural networks on large graphs is challenging since there is
no clear way of how to extract mini batches from connected data. To solve
this, previous methods have primarily relied on sampling. While this often
leads to good convergence, it introduces significant overhead and requires
expensive random data accesses. In this work we propose locality-based
mini batching (LBMB), which circumvents sampling by using fixed mini
batches based on node locality. LBMB first partitions the training/validation
nodes into batches, and then selects the most important auxiliary nodes
for each batch using local clustering. Thanks to precomputed batches and
consecutive memory accesses, LBMB accelerates training by up to 20x per
epoch compared to previous methods, and thus provides significantly better
convergence per runtime. Moreover, it accelerates inference by up to 100x,
at little to no cost of accuracy.

1 Introduction

Modern neural networks commonly use stochastic mini-batch training to leverage large
datasets and accelerate convergence. This strategy becomes highly non-trivial for connected
data, since creating mini batches requires selecting a meaningful subset from the dataset,
despite its connectedness. Graph neural networks (GNNs) typically rely on sampling a set of
nodes from the graph to resolve this issue. However, graph sampling requires non-contiguous
memory accesses, which significantly slows down training for large datasets. This severely lim-
its their applicability to real-world graphs, which often consist of millions or billions of nodes.

The main question behind the connected mini-batching problem is: How do we choose the
best nodes for constructing the next mini batch? To answer this question, we introduce the
concept of primary and auxiliary nodes. Primary nodes are those for which we compute a
prediction in this batch, typically a set of training nodes. Auxiliary nodes only help with
computing the primary nodes’ outputs. This distinction allows us to provide a meaningful
neighborhood for every node’s prediction, while ignoring irrelevant parts of the graph. Note
that primary nodes in one batch can be auxiliary nodes in another batch.

This distinction splits the main question into two parts: 1. How do we choose the primary
nodes for a mini batch? 2. How do we choose the auxiliary nodes for a given set of primary
nodes? Having split the problem like this, we see that most previous works actually only
focus on the second question and just choose a uniformly random subset of nodes as primary
nodes (Hamilton et al., 2017; Zou et al., 2019). However, the nodes in a graph are not
independent, and a better approach can lead to large improvements in runtime.

In this work, we propose one simple answer for both questions: Locality. Choosing a set
of locally connected nodes is advantageous both from a computational and a predictive
perspective. It allows us to share computation between multiple nodes, keeps memory
accesses local, and reduces the mini batch’s memory footprint. The predictions of most
GNNs already leverage the fact that nearby nodes are more important. Previous works have
even shown that incorporating locality can improve GNN accuracy (Klicpera et al., 2019b;
Huang et al., 2021). Batching nearby primary nodes together can create synergies since one
primary node can leverage another one’s auxiliary nodes.
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Figure 1: Locality-based mini batching. The primary (e.g. training) nodes are indicated by
pentagons. These nodes are first partitioned into batches, e.g. using graph partitioning. We
then use local clustering to select the auxiliary nodes of each batch, e.g. the neighbors with
top-k personalized PageRank (PPR) scores. Finally, we generate a batch using the induced
subgraph of all selected nodes, but only calculate the outputs of the primary nodes we chose
when partitioning. Batches can overlap and do not need to cover the whole graph.

More specifically, we propose to use either graph partitioning or node distances to select
mini batches of primary nodes, and local clustering to select their auxiliary nodes. We then
use the subgraph induced by these nodes as a mini batch. See Fig. 1 for an overview of this
process. Importantly, these mini batches can be computed a priori, and loaded from a cache
to ensure efficient memory access. During training, we counteract the effect of correlated mini
batches with learning rate and batch scheduling. Overall, our method achieves an up to 20x
improvement in time per epoch, with similar final accuracy. This faster time per epoch more
than makes up for any slow-down in convergence per step. Its speed advantage grows even
further for the common setting of low label ratios, since our method avoids computation on
irrelevant parts of the graph. As opposed to most previous works, our method can successfully
be used for both training and inference. It accelerates inference by up to 100x compared
to previous methods that achieve similar accuracy. In summary, our core contributions are:

• Locality-based mini batching (LBMB): A general mini-batching method that works for
a variety of GNNs and datasets. It substantially accelerates both training and inference
without sacrificing accuracy, especially for small label ratios.

• We examine the impact of fixed, correlated mini batches on gradient estimation, and
propose training methods to mitigate these effects.

• An extensive and fair experimental evaluation of scalable training methods, covering four
datasets, two GNNs, and both training and inference.

2 Background

Graph neural networks. We consider a graph G = (V, E) with node set V and (possibly
directed) edge set E . N = |V| denotes the number of nodes, E = |E| the number of edges,
and A ∈ RN×N the adjacency matrix. GNNs use one embedding per node hu ∈ RH and
edge e(uv) ∈ RHe , and update them in each layer via message passing between neighboring
nodes. Most GNNs can be expressed via the following equations:

h(l+1)
u = fnode(h

(l)
u , Agg

v∈Nu

[fmsg(h
(l)
u ,h(l)

v , e
(l)
(uv))]), (1)

e
(l+1)
(uv) = fedge(h

(l+1)
u ,h(l+1)

v , e
(l)
(uv)). (2)

The node and edge update functions fnode and fedge, and the message function fmsg can be
implemented using e.g. linear layers, multi-layer perceptrons (MLPs), and skip connections.
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The node’s neighborhood Nu is usually defined directly by the graph G (Kipf & Welling,
2017), but can be generalized to consider larger or even global neighborhoods (Klicpera
et al., 2019b; Alon & Yahav, 2021), or feature similarity (Deng et al., 2020). The most
common aggregation function Agg is summation, but mean, min, standard deviation, and
other alternatives have also been explored (Corso et al., 2020; Geisler et al., 2020). Edge
embeddings e(uv) are not present in many GNNs, but some variants rely on them exclusively
(Chen et al., 2019). GNNs commonly use node features X ∈ RN×F for the input embeddings
h
(0)
u , but they can also be augmented with positional encodings (You et al., 2019; Dwivedi

et al., 2020) or node IDs (Vignac et al., 2020). See App. A for related work in scalable GNNs.

3 Locality-based mini batching

An efficient GNN mini-batching method needs to consider both computational aspects
and convergence per gradient step. Previous works have largely been focused on sampling
methods that improve GNN convergence, and treated computational issues mostly as an
afterthought. By focusing more on computational aspects like memory access times, we can
accelerate training by multiple orders of magnitude, and therefore more than make up for
any disadvantage in convergence per step.
If we skip details like caching the computational perspective is rather simple: Save as many
operations and memory accesses as possible while maintaining a good GNN approximation.
When the auxiliary nodes of different primary nodes in a batch are shared, we only have to
compute their embeddings once and save computation and memory accesses. We therefore
aim to group together primary nodes in a way that maximizes the number of shared auxiliary
nodes. In locality-based mini batching (LBMB), we do this in two steps:

1. Obtain the k most important auxiliary nodes for each primary node. Batch together
primary nodes so that the union of their auxiliary nodes is smallest, yielding the primary
node partition PI.

2. Select the most important auxiliary nodes SII for each subset of primary nodes SI ∈ PI.

This process yields a single, fixed set of batches. We thus only need to perform it once
during preprocessing. We then cache each mini batch in consecutive blocks of memory,
thereby circumventing expensive random data accesses. This significantly accelerates training,
allows efficient distributed training, and enables even expensive node selection procedures.
In contrast, most previous methods select both primary and auxiliary nodes randomly in
each epoch (Ying et al., 2018; Zeng et al., 2020), which incurs significant overhead. Our
experiments show that our more efficient memory accesses clearly outweigh the slightly better
gradient estimates gained from re-sampling in each epoch (see Sec. 5). We will next describe
the details of LBMB’s two main steps.

3.1 Primary node partitioning

Optimal partitioning. In this step we are interested in finding the partition PI with
the highest number of shared auxiliary nodes. Naïvely, we could find PI by comparing the
auxiliary node overlaps achieved by every possible partition. This is clearly intractable since
the number of partitions increases exponentially with the number of primary nodes. An
obvious way of accelerating this is a greedy approach, in which we iteratively put those nodes
into a batch that has the largest overlap. Unfortunately, this would still require computing
the overlap for every pair of primary nodes. This requires a quadratic runtime O(N2), which
is intractable for large datasets. We must therefore rely on heuristics to obtain a scalable,
well-performing primary node partitioning algorithms.

Distance-based partitioning. We propose two methods that leverage graph locality as
a heuristic for effective node partitioning. The first is based on node distances. In this
approach we first compute the pairwise node distances between nodes that are close in
the graph. A common node distance measure in undirected graphs are random walks with
restart, or personalized PageRank (PPR) (Page et al., 1998). The PPR matrix is given by

Πppr = α(IN − (1− α)D−1A)−1, (3)
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with the teleport probability α ∈ (0, 1] and the diagonal degree matrix Dij =
∑

k Aikδij .
The proximity between nodes u and v is then given by Πppr

uv . Calculating this inverse is
obviously infeasible. However, we can approximate Πppr with a sparse matrix Π̃ppr in time
O( 1

εα ) per column, with error εdeg(u) (Andersen et al., 2006).
Next, we greedily construct the partition PI from Π̃ppr. To do so, we start by putting
every node u into a separate batch {u}. We then sort all elements in Π̃ppr by magnitude,
independent of their row or column. We scan over these values in descending order, considering
the value’s indices (u, v) and merging the batches containing the two nodes. Finally, we
randomly merge any small leftover batches. We stay within a memory constraint by only
merging batches that stay below a maximum batch size. Note that the resulting partition
is unbalanced. This method achieves well-overlapping batches and can efficiently add
incrementally incoming primary nodes, e.g. in a streaming setting. Our experiments show
that this method achieves a good compromise between well-overlapping batches and good
gradients for training (see Sec. 5).

Graph partitioning. For our second method, we note that partitioning primary nodes into
overlapping mini batches is closely connected to partitioning graphs. We can thus leverage
the extensive amount of research on this topic by using the METIS graph partitioning
algorithm (Karypis & Kumar, 1998) to find a partition of primary nodes PI. Note that
this approach completely skips step 1 in the above LBMB process. We found that graph
partitioning yields roughly a two times higher overlap of auxiliary nodes than distance-based
partitioning, thus leading to significantly more efficient batches. However, it also introduces
a strong bias in batch selection that we found to be detrimental for training (see Sec. 5).
Note that LBMB with graph partitioning is closely related to Cluster-GCN (Chiang et al.,
2019). However, in contrast to Cluster-GCN our method ignores irrelevant parts of the graph
and can obtain overlapping mini batches. This significantly accelerates training on small
training sets and improves the accuracy of primary nodes close to the partition boundary.

3.2 Auxiliary node selection

Generalizing influence scores. The goal of selecting auxiliary nodes is to provide a
neighborhood for each primary node that is as small as possible but still contains all relevant
information. To quantify a node’s importance, we can use the influence score of node v on
node u, I(v, u) =

∑
i

∑
j

∂hui

∂Xvj
. For GCN, this influence is proportional to a slightly modified

random walk (Xu et al., 2018). We can thus select the most influential nodes for GCN by
using this random walk landing probability. Unfortunately, different GNNs have different
node influence scores, which are often even data-dependent.
To obtain a simple method that works with many different GNNs, we generalize the random
walk landing probabilities obtained for GCN using local clustering methods. This is a
well-established class of methods for finding a meaningful cluster for a selected node u based
on proximity in the graph. Examples include random walks with restart (or personalized
PageRank (PPR), label propagation with return probability) (Andersen et al., 2006) and
heat kernel (HK) diffusion (Kloster & Gleich, 2014). Local clustering only relies on the
node’s local neighborhood, making its runtime independent of the overall graph size and thus
massively scalable. Since it is deterministic, we only need to perform its computation once
during preprocessing. This allows us to use expensive methods such as p-norm flow diffusion
(Fountoulakis et al., 2020), or methods that take node features into account. We leave these
advanced methods for future work, and rely on basic PPR clustering in this work.

Node-wise clustering. Local clustering methods provide a separate cluster for each node,
referred to as the “root node”. For example, approximate PPR (Andersen et al., 2006) is
guaranteed to provide all nodes with a PPR value Πppr

uv > ε deg(v) w.r.t. the root node u.
To create a batch of auxiliary nodes we can thus compute the local clusters of all primary
nodes in a batch SI, and then merge them. If we partition the primary nodes according to
their approximate PPR distances (distance-based partitioning) and select auxiliary nodes
according to PPR clusters, we only need to calculate the PPR-scores once.

Batch-wise clustering. Considering each primary node separately does not take into
account how one auxiliary node jointly affects multiple primary nodes. Fortunately, many
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local clustering methods can be adapted to use a set of root nodes. For example, in PPR we
can use a set of nodes in the teleport vector t instead of a single node, e.g. by leveraging the
underlying recursive equation for a PPR vector πppr(t) = (1− α)D−1Aπppr(t) + αt. t is a
one-hot vector in the node-wise setting, while for batched PPR it is 1/|SI| for all nodes in
SI. This variant is also known as topic-sensitive PageRank. We found that batched PPR is
significantly faster than node-wise clustering, especially in combination with partitioning
the primary nodes via graph partitioning. However, it can lead to cases where one outlier
node receives almost no neighbors, while others have excessively many. Whether node-wise
or batch-wise clustering performs better thus often depends on the dataset and GNN.

3.3 Inference

In practice, a machine learning model is trained only once, while inference is run continuously
once it is put into production. Even during training, inference is necessary for early stopping
and performance monitoring. However, most previous GNN mini-batching methods only
work well for training. These methods thus only have rather limited utility by themselves.
Locality-based mini batching can be used for inference without any further changes, since it
already focuses on the most important auxiliary nodes. It can therefore be used for all steps
in the model’s life cycle, or be combined with a separate method that focuses on training.

4 Gradient estimation with correlated batches

Convergence. Partitioning primary nodes based on proximity effectively correlates the
gradients sampled in a batch. This might seem ill-motivated from the usual perspective of
providing unbiased, low-variance gradient samples – sacrilegious even. However, we use every
primary (training) node exactly once per epoch. The model thus sees all training labels
equally often, ensuring an unbiased training process. Furthermore, there are multiple ways
of mitigating the impact of correlated samples. Adaptive gradient descent methods such
as Adam (Kingma & Ba, 2015) already cope rather well with imperfect gradient samples.
We further improve this by adaptively reducing the learning rate when the validation loss
plateaus, which ensures that the gradient step size decreases continuously. The resulting
training scheme thus leads to convergence despite correlated samples, as shown in Sec. 5.

Batch scheduling. While we found Adam with learning rate scheduling to consistently
ensure convergence, we still observed downward spikes in accuracy during training. To
explain this issue, consider a sequence of multiple mini batches. In regular training every
mini batch is similar and the order of these batches is irrelevant. In our case, however, some
of the mini batches might be very similar. If the optimizer sees multiple similar batches in a
row, it will do increasingly large steps in a suboptimal direction, which can lead to sporadic
downward spikes in accuracy. To improve convergence we should therefore prevent such
sequences of similar batches. To do so, we first quantify batch similarity using the normalized
training class label distribution pi = ci/

∑
j cj , where ci is the number of training nodes of

class i. We then compare these distributions pairwise using the symmetrized KL-divergence,
resulting in a pairwise batch distance dab between batches a and b. Based on this, we propose
two ways of improving the batch schedule: 1. Find the fixed batch cycle that maximizes
the batch distances between consecutive batches. This is a traveling salesman problem for
finding the maximum distance loop that visits all batches. It is therefore only feasible for a
small number of batches and otherwise must be approximated. 2. Sample the next batch
weighted by the distance to the current batch. Both batch scheduling methods improve
convergence and increase final accuracy, at almost no computational cost during training.

5 Experiments

Experimental setup. We primarily evaluate two variants of our method: LBMB with
PPR distance-based batches and node-wise PPR clustering, and LBMB with graph partition-
based batches and batch-wise PPR clustering. Both variants run in linear time O(N +E).
We compare them to four state-of-the-art mini-batching methods: Neighbor sampling
(Hamilton et al., 2017), Layer-Dependent Importance Sampling (LADIES) (Zou et al., 2019),
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Figure 2: Convergence of validation accuracy in log. time. Average and 95 % confidence
interval of 10 runs. LBMB converges the fastest in 8 of 9 cases.

GraphSAINT-RW (Zeng et al., 2020), and Cluster-GCN (Chiang et al., 2019). We use four
large node classification datasets for evaluation: ogbn-arxiv (Hu et al., 2020; Wang et al.,
2020, ODC-BY), ogbn-products (Wang et al., 2020, Amazon license), Reddit (Hamilton
et al., 2017), and ogbn-papers100M (Hu et al., 2020; Wang et al., 2020, ODC-BY). While
these datasets use the transductive setting, LBMB makes no assumptions about this and
can equally be applied to the inductive setting. We skip the common, small datasets (Cora,
Citeseer, PubMed) since they are ill-suited for evaluating scalability methods. We do not
strive to set a new accuracy record but instead aim for a consistent, fair comparison based
on three standard GNNs: graph convolutional networks (GCN) (Kipf & Welling, 2017),
graph attention networks (GAT) (Veličković et al., 2018), and GraphSAGE (Hamilton et al.,
2017). We use the same training pipeline for all methods, giving them access to the same
optimizations. We run each experiment 10 times and report the mean and standard deviation
in all tables and the bootstrapped mean and 95 % confidence intervals in all figures. See
App. B for further details.

Training. To evaluate training performance we compare how fast the validation accuracy con-
vergences for each method. We use LBMB inference since full inference is too slow to execute
every epoch, and other approximate methods are either prohibitively slow or less accurate than
LBMB. This already demonstrates a major advantage of LBMB: It is fast and accurate enough
to run inference regularly during training. Fig. 2 shows how the accuracy increases depending
on training time. LBMB performs significantly better than previous methods in 8 of 9 cases,
converging up to 10x faster. This is despite the fact that we always prefetch the next batch in
parallel. Note that GAT is much more computationally heavy than GCN and GraphSAGE,
limiting the positive impact of a fast batching method. Computation-constrained models are
less relevant in practice since data access is typically the bottleneck for real-world, disk-based
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Table 1: Final accuracy and runtime averaged over 10 runs, with standard deviation. “Same
method” refers to using the training method for inference, while “full graph” uses the whole
graph for inference. LBMB achieves similar accuracy as previous methods when used for
training, while using significantly less time per epoch and without requiring expensive full
graph inference. LBMB is up to 500x faster than using the full graph for inference, at
comparable accuracy. Other inference methods are substantially slower or less accurate.
Note that LADIES is incompatible with the self loops in GAT and GraphSAGE.

Time (s) Test accuracy (%)
Setting Training method Preprocess Per epoch Inference Same method Full graph

og
bn

-a
rx

iv
,

G
C

N

Full graph - - 2.8 - -
Neighbor sampling 0.3 4.7 2.5 70.7±0.2 71.3±0.4

LADIES 0.3 0.62 0.69 71.7±0.2 71.4±0.3
GraphSAINT-RW 0.4 0.42 0.34 68.1±0.2 72.3±0.2

Cluster-GCN 8.7 0.14 0.14 72.0±0.1 72.2±0.1
LBMB, graph part. 14.1 0.14 0.13 72.2±0.2 72.2±0.2

LBMB, PPR batching 17.5 0.27 0.16 72.7±0.1 72.7±0.1

og
bn

-a
rx

iv
,

G
A

T

Full graph - - 9.4 - -
Neighbor sampling 0.3 4.1 1.97 70.9±0.1 72.1±0.1
GraphSAINT-RW 0.4 1.2 0.38 68.7±0.2 72.6±0.1

Cluster-GCN 7.6 0.69 0.28 69.7±0.3 71.6±0.2
LBMB, graph part. 7.7 0.68 0.31 71.0±0.3 71.8±0.3

LBMB, PPR batching 17.6 1.53 0.98 72.2±0.1 72.3±0.2

og
bn

-a
rx

iv
,

G
ra

ph
SA

G
E Full graph - - 2.37 - -

Neighbor sampling 0.3 3.44 1.67 71.1±0.1 72.0±0.1
GraphSAINT-RW 0.3 0.41 0.35 69.0±0.1 72.2±0.1

Cluster-GCN 8.8 0.15 0.14 71.7±0.1 72.1±0.1
LBMB, graph part. 7.2 0.15 0.13 72.0±0.2 72.1±0.1

LBMB, PPR batching 17.5 0.31 0.15 72.4±0.2 72.4±0.2

og
bn

-p
ro

du
ct

s,
G

C
N

Full graph - - 130 - -
Neighbor sampling 32 42 433 78.2±0.2 78.0±0.2

LADIES 33 25 22.5 75.9±0.3 79.0±0.4
GraphSAINT-RW 35 11 20.6 52.6±0.8 77.0±0.3

Cluster-GCN 302 3.7 3.4 76.2±0.3 76.5±0.2
LBMB, graph part. 306 3.5 3.1 76.8±0.2 77.2±0.3

LBMB, PPR batching 382 5.5 14.1 77.5±0.2 77.6±0.2

og
bn

-p
ro

du
ct

s,
G

A
T

Full graph - - 1700 - -
Neighbor sampling 33 450 3450 79.1±0.3 77.2±0.5
GraphSAINT-RW 35 140 102 69.5±0.1 80.8±0.2

Cluster-GCN 626 24 10.6 76.6±0.4 78.1±0.5
LBMB, graph part. 767 25 10.0 77.0±0.4 78.9±0.6

LBMB, PPR batching 378 41 94 79.3±0.3 79.4±0.3

og
bn

-p
ro

du
ct

s,
G

ra
ph

SA
G

E Full graph - - 88.0 - -
Neighbor sampling 31.4 52.0 530 81.0±0.2 81.4±0.2
GraphSAINT-RW 35.8 10.6 20.0 69.4±0.2 81.3±0.2

Cluster-GCN 313 3.1 3.4 79.5±0.4 79.7±0.4
LBMB, graph part. 319 2.9 3.1 79.2±0.3 79.5±0.3

LBMB, PPR batching 374 5.0 13.1 80.5±0.3 80.7±0.3

R
ed

di
t,

G
C

N

Full graph - - 14.8 - -
Neighbor sampling 14.4 7.3 3.3 93.5±0.1 94.8±0.1

LADIES 15.4 11.4 11.4 95.5±0.0 95.3±0.0
GraphSAINT-RW 17.1 14.6 2.9 93.2±0.1 95.6±0.0

Cluster-GCN 175 1.8 1.6 93.7±0.2 94.8±0.1
LBMB, graph part. 175 1.6 1.4 93.5±0.4 94.7±0.1

LBMB, PPR batching 64.8 0.72 0.57 95.7±0.0 95.2±0.0

R
ed

di
t,

G
A

T

Full graph - - 76.9 - -
Neighbor sampling 14.8 70 32.5 94.3±0.1 95.1±0.1
GraphSAINT-RW 17.9 21 3.2 79.4±0.2 95.4±0.1

Cluster-GCN 366 4.7 1.4 91.4±0.1 93.5±0.7
LBMB, graph part. 396 4.3 1.2 91.6±0.1 92.8±1.1

LBMB, PPR batching 65.3 1.1 0.25 94.2±0.2 94.2±0.1

R
ed

di
t,

G
ra

ph
SA

G
E Full graph - - 17.3 - -

Neighbor sampling 16.1 7.5 3.5 96.2±0.0 96.8±0.0
GraphSAINT-RW 18.2 14.6 3.6 95.9±0.0 96.8±0.0

Cluster-GCN 173 1.7 1.8 95.5±0.2 96.0±0.1
LBMB, graph part. 175 1.6 1.7 95.6±0.2 96.1±0.1

LBMB, PPR batching 66.0 0.77 0.65 96.8±0.1 96.4±0.0

pa
pe

rs
10

0M
,

G
C

N

Full graph - - 5700 - -
Neighbor sampling 739 900 159 64.3±0.2 61.8±0.2

LADIES 735 2830 672 65.4±0.2 62.4±0.4
LBMB, PPR batching 1160 104 11.7 66.0±0.1 66.3±0.0
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Figure 3: Training convergence in log. time for GCN on ogbn-products with smaller training
sets. The gap in convergence speed between LBMB and the baselines grows larger for small
training sets, since LBMB scales with training set size and not with overall graph size.
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Figure 4: Test accuracy and log. inference time for a fixed GNN. LBMB consistently provides
the best accuracy versus time trade-off (top-left corner).

datasets (Bojchevski et al., 2020). Table 1 furthermore shows that LBMB’s time per epoch
is significantly faster than all sampling-based methods. Cluster-GCN has a comparable run-
time, which is expected due to its similarity with LBMB. However, it converges more slowly
than LBMB with PPR batching and reaches a substantially lower final accuracy. Neighbor
sampling achieves good final accuracy, but is extremely slow. GraphSAINT-RW only achieves
good final accuracy with prohibitively expensive full graph inference. LBMB with PPR
batching achieves the best final accuracy with a scalable inference method in 8 out of 10 cases.
LBMB requires more preprocessing than previous methods. However, since LBMB is rather
insensitive to hyperparameter choices (see Table 7, Fig. 10), preprocessing rarely needs to be
re-run. Instead, its result can be saved to disk and re-used for training different models. Just
considering our 10 training seeds, preprocessing of LBMB (PPR batching) only took 1.3 %
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of the training time for GCN and 0.25 % for GAT on ogbn-arxiv. In some cases, LBMB uses
more main memory than previous methods due to overlapping batches. However, it can also
reduce memory requirements because it ignores irrelevant parts of the graph (see Table 6).
LBMB with GCN outperforms SIGN-XL ((66.1±0.2) %) (Frasca et al., 2020) on ogbn-
papers100M, without any hyperparameter tuning and despite using 30x fewer parameters.
LBMB furthermore has a substantially faster time per epoch and lower memory consumption
than previous methods on this massive dataset, demonstrating LBMB’s favorable scaling with
dataset size. Notably, we were unable to evaluate GraphSAINT-RW and Cluster-GCN on
this dataset, since they use more than 256 GB of main memory. Despite its fixed, correlated
batches LBMB even performs similarly well as previous methods in terms of convergence per
epoch (see Fig. 5). This demonstrates the importance of focusing on computational efficiency.

Training set size. The ogbn-arxiv and ogbn-products datasets both contain a large number
of training nodes (91k and 197k, respectively). However, labeling training samples is often an
expensive endeavor, and models are commonly trained with only a few hundred or thousand
training samples. GraphSAINT-RW and Cluster-GCN are global training methods, i.e. they
always use the full graph for training. They are thus ill-suited for the common setting of a
large overall graph containing a small number of training nodes (resulting in a small label
rate). In contrast, the training time of LBMB purely scales with the number of training nodes.
To show this, we reduce the label rate by sub-sampling the training nodes of ogbn-products
and compare the convergence in Fig. 3. As expected, the gap in convergence speed between
LBMB and both Cluster-GCN and GraphSAINT-RW grows even larger for smaller training
sets. Final test accuracies of all batching methods remain comparable in this setting.

Inference. Fig. 4 compares the inference accuracy and time of different batching methods,
using the same pretrained model and varying computational budgets (number of auxiliary
nodes/sampled nodes) at a fixed GPU memory budget. LBMB consistently provides the best
trade-off between accuracy and time. PPR-based batching mostly performs better, except
on ogbn-products, where it performs slightly worse than graph partitioning. LBMB provides
a significant speedup over full graph inference, being 10 to 300 times faster at comparable
accuracy. All previous methods are either significantly slower or less accurate.

Ablation studies. We ablate our primary node partitioning schemes by instead batching
together random sets of nodes. We use fixed batches since we found that resampling incurs
significant overhead without benefits – which is consistent with our considerations on gradient
samples and contiguous memory accesses. Fig. 7 shows that this method (“Fixed random”)
converges more slowly and does not reach the same level of accuracy as our partition schemes.
Fig. 4 shows that it (“LBMB, random batch.”) is also substantially slower and often less
accurate for inference. This is due to the synergy effects of primary node partitioning: If
primary nodes have similar auxiliary nodes, they benefit from each other’s neighborhood.
We test auxiliary node selection by comparing LBMB to Cluster-GCN, since this just uses
the graph partition as a batch instead of smartly selecting auxiliary nodes. We use the
graph partition size as the number of auxiliary nodes for LBMB with graph partitioning to
allow for a direct comparison. As discussed above, Cluster-GCN consistently performs worse,
especially in terms of final accuracy, for inference, and for small label rates. Finally, Fig. 9
compares the proposed batch scheduling methods. Optimal and weighted sampling-based
scheduling improve convergence and prevent or reduce downward spikes in accuracy. We
explore further LBMB variants and hyperparameter choices in App. C.

6 Conclusion

We propose locality-based mini batching (LBMB), a method for extracting batches for GNNs.
Unlike previous methods, we treat primary (output) and auxiliary nodes separately and
focus on the computational aspects of training. LBMB can be used both for training and
inference, and outperforms previous methods on both tasks. It improves time per epoch
by up to 20x and inference time by up to 100x compared to previous methods that reach
a similar accuracy. These improvements grow even larger in the common setting of sparse
labels and when the pipeline is constrained by data access speed.
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Reproducibility. We publish a reference implementation along with this paper for re-
producibility. Additionally, App. B contains all hyperparameters, experimental settings,
software versions, and the hardware configuration necessary for reproducing our results.

Ethical considerations. Scalable graph-based methods can enable the fast analysis of
huge datasets with billions of nodes. While this has many positive use cases, it also has
obvious negative repercussions. It can enable mass surveillance and the real-time analysis of
whole populations and their social networks. This can potentially be used to detect emerging
resistance networks in totalitarian regimes, thus suppressing chances for positive change.
Voting behavior is another typical application of network analysis: Voters of the same party
are likely to be connected to one another. Scalable GNNs can thus influence voting outcomes
if they are leveraged for targeted advertising.
The ability of analyzing whole populations can also have negative personal effects in fully
democratic countries. If companies determine credit ratings or college admission based
on connected personal data, a person will be even more determined by their environment
than they already are. Companies might even leverage the obscurity of complex GNNs
to escape accountability: It might be easy to reveal the societal effects of your housing
district, but unraveling the combined effects of your social networks and digitally connected
behavior seems almost impossible. Scalable GNNs might thus make it even more difficult for
individuals to escape the attractive forces of the status quo.
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A Related work

Scalable GNNs. Multiple works have proposed massively scalable GNNs that leverage the
peculiarities of message passing to limit the model to a single message passing step, akin to
label or feature propagation (Bojchevski et al., 2020; Frasca et al., 2020). In our work we
are interested in general, model-agnostic scalability methods.

Scalable graph learning. Classical graph learning faced issues similar to GNNs when
scaling to large graphs. Multiple frameworks for distributed graph computations were
proposed to solve this without approximations or sampling (Gonzalez et al., 2012; Low et al.,
2012; Malewicz et al., 2010; Kyrola et al., 2012). Other works scaled to large graphs via
stochastic variational inference, e.g. by sampling nodes and node pairs (Gopalan et al., 2012).
Interestingly, this approach is quite similar to sampling-based mini batching for GNNs.

Mini batching for GNNs. Previous mini-batching methods can be divided into three
categories: Node-wise sampling, layer-wise sampling, and subgraph-based sampling (Liu
et al., 2021). In node-wise sampling, we obtain a separate set of auxiliary nodes for every
primary node, which are sampled independently for each message passing step. Each primary
node is treated independently; if two primary nodes sample the same auxiliary node, we
compute its embedding twice (Hamilton et al., 2017; Ying et al., 2018; Liu et al., 2020).
Layer-wise sampling jointly considers all primary nodes of a batch to compute a stochastic
set of activations in each layer. Computations on auxiliary nodes are thus shared (Chen
et al., 2018; Huang et al., 2018; Zou et al., 2019). Subgraph-based sampling selects a
meaningful subgraph and then runs the GNN on this subgraph as if it were the full graph.
This method thus computes the outputs and intermediate embeddings of all nodes in that
subgraph (Chiang et al., 2019; Zeng et al., 2020). Our method most closely resembles the
subgraph-based sampling approach. We also use the full subgraph induced by the selected
nodes and calculate the intermediate embeddings for all nodes in a batch. However, we only
calculate the outputs of primary nodes, similar to node-wise sampling.

B Model and training hyperparameters

Hardware. All experiments are run on an NVIDIA GeForce GTX 1080Ti. The experiments
on ogbn-arxiv and ogbn-products use up to 64 GB of main memory. The experiments on
ogbn-papers100M use up to 256 GB.

Packages. Our experiments are based on the following packages and versions:

• torch-geometric 1.7.0
– torch-cluster 1.5.9
– torch-scatter 2.0.6
– torch-sparse 0.6.9

• python 3.7.10
• ogb 1.3.1
• torch 1.8.1
• cudatoolkit 10.2.89
• numba 0.53.1
• python-tsp 0.2.0

Preprocessing. Before training, we first make the graph undirected, and add self-loops.
The adjacency matrix is symmetrically normalized. We cache the symmetric adjacency
matrix for graph partitioning and mini-batching. Instead of re-calculating the adjacency
matrix normalization factors for GCN for each mini batch, we re-use the global normalization
factors. We found this to achieve similar accuracy at lower computational cost.

Models. We use three models for all the experiments: GCN (3 layers, hidden size 256 for
the ogbn datasets and 2 layers, hidden size 512 for Reddit), GAT (3 layers, hidden size
128, 4 heads for the ogbn datasets and 2 layers, hidden size 64, 4 heads for Reddit), and
GraphSAGE (3 layers, hidden size 256). All models use layer normalization, ReLU activation
functions, and dropout. We performed a grid search on ogbn-arxiv, ogbn-products, and
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Table 2: Number of batches for graph partition-based batching.

Number of batches
Model Dataset Train Validation Test
GCN ogbn-arxiv 4 2 2
GCN ogbn-products 16 8 8
GCN Reddit 8 4 4
GAT ogbn-arxiv 8 4 4
GAT ogbn-products 1024 512 512
GAT Reddit 400 200 200
GCN ogbn-papers100M 256 32 48

Reddit to obtain the optimal model hyperparameters based on final validation accuracy. For
ogbn-papers100M we use the same hyperparameters as for GCN on ogbn-arxiv, but with 32
auxiliary nodes per primary node.

Training. To minimize data loading and memory access overhead we always prefetch the
next batch in parallel. We found that using more than one worker for data loading does
not improve runtime, since loading is memory-bound, not compute-bound. We use the
Adam optimizer for all the experiments, with a starting learning rate of 10−3. We use an L2

regularization of 10−4 for GCN on ogbn-arxiv and ogbn-products, and no L2 regularization
in all other settings. We use a ReduceLROnPlateau scheduler for the optimizer, with the
decay factor 0.33, patience 30, minimum learning rate 10−4, and cooldown of 10, based on
validation loss. We train for 300 to 800 epochs and stop early with a patience of 100 epochs,
based on validation loss. We determine the optimal batch order for LBMB via simulated
annealing (Dréo et al., 2006).

Graph partition-based batching. We tune the number of batches and thus the size of
batches using a grid search (see Table 2). Generally, final accuracy increases with larger
batch sizes, but this can lead to excessive memory usage and slower convergence speed. Note
that the inference batch size is double the sizes of training batches since in this case we do
not need to store any gradients.

PPR-based batching. For PPR-based batching we first calculate the PPR scores for
each primary node, and then pick the top-k nodes for each primary node as its auxiliary
nodes. Generally we use the same batch size, i.e. number of nodes in a batch, as in graph
partition-based batching, to keep the GPU memory usage similar. However, if the graph
is too dense, we might have to increase the batch size of PPR-based batching, because it
tends to create sparser batches. Note that the resulting number of batches might differ
from Table 2. We tune the number of auxiliary nodes per primary node using a logarithmic
grid search using factors of 2. Based on this we use 16 neighbors for ogbn-arxiv, 64 for
ogbn-products and 8 for Reddit. Note that the number of auxiliary nodes is the main degree
of freedom in LBMB. It influences preprocessing time, runtime, memory usage, and accuracy.
The number of primary nodes per batch is then determined by the available GPU memory.

Random batching. Random batching is similar to PPR-based batching except that the
auxiliary nodes are batched randomly. We first calculate the PPR scores and pick the
top-k neighbors as the auxiliary nodes for a primary node. We choose the same number
of neighbors as with PPR-based batching. We investigate 2 variants of random batching:
Resampling the batches in every epoch, and sampling them once during preprocessing and
then fixing the batches. We only show the results for the second method, since we found it
to be significantly faster, albeit requiring significantly more main memory.

Hyperparameter tuning. The priorities for tuning the hyperparameters are as follows:
1. To keep methods comparable in a realistic setup, we keep the GPU memory usage
constant between methods. 2. When there are semantic hyperparameters that do not
influence performance (such as the number of steps per epoch in GraphSAINT-RW, which
only changes how an epoch is defined), we choose them to be comparable to other methods.
3. We choose all relevant hyperparameters based on validation accuracy. We use this process
for both LBMB and the baselines.
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Table 3: Hyperparameters for LADIES

Nodes per layer
Model Dataset Train Validation
GCN ogbn-arxiv 42 336 84 672
GCN ogbn-products 204 085 306 128
GCN Reddit 90 000 150 000

Table 4: Hyperparameters for neighbor sampling

Number of batches
Model Dataset Train Validation Test Number of nodes
GCN ogbn-arxiv 12 8 8 6, 5, 5
GCN ogbn-products 20 4 200 5, 5, 5
GCN Reddit 8 4 4 12, 12
GAT ogbn-arxiv 8 4 4 8, 7, 5
GAT ogbn-products 1000 150 8000 15, 10, 10
GAT Reddit 400 400 400 20, 20

Baseline hyperparameters. For Cluster-GCN the number of batches are the same as for
our graph partition-based batching variant. Table 3 shows the hyperparameters for LADIES,
Table 4 for neighbor sampling, and Table 5 for GraphSAINT-RW. To ensure that every node
is visited exactly once during GraphSAINT-RW inference we use the validation/test nodes
only as root nodes of the random walks.

Full graph inference. We chunk the adjacency matrix and feature matrix for full-graph
inference to allow using the GPU even for larger datasets. The only hyperparameter is the
number of chunks. We limit the chunk size to ensure that full-graph inference does not
exceed the amount of GPU memory used during training.

Table 5: Hyperparameters for GraphSAINT-RW

Batch size
Model Dataset Walk length Sample coverage Number of steps Train Val/Test
GCN ogbn-arxiv 2 100 4 25 000 10 000
GCN ogbn-products 2 100 16 80 000 5000
GCN Reddit 2 100 8 23 000 6000
GAT ogbn-arxiv 2 100 8 17 500 10 000
GAT ogbn-products 2 100 1024 14 000 100
GAT Reddit 2 100 400 1600 60
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C Additional experimental results

Main memory usage. Since LBMB saves the preprocessed dataset to memory, it can have
a rather different main memory footprint than the normal dataset. To illustrate this, consider
the Reddit dataset. LBMB uses 8 auxiliary nodes per primary node on this dataset, and the
train and validation sets of Reddit contain 177k nodes (of a total of 233k nodes). If there was
no overlap, this would translate to 1.4 million auxiliary nodes. However, our method aims at
increasing precisely this overlap between auxiliary nodes in a batch (see Sec. 3). With graph
partitioning, we end up with 466k auxiliary nodes, and with PPR batching we have 416k
auxiliary nodes, across all batches. The number of auxiliary nodes determines the size of
the batched feature matrix and thus the memory size. The number of edges per batch also
impacts memory usage, but the feature matrix is usually the dominant factor. The edges
do, however, have a major impact on GNN computation time. Overall, we should expect a
memory usage of around 416/233 = 178 % with PPR batching, and 466/233 = 200 % with
graph partitioning, compared to the normal dataset. All in all, LBMB’s memory usage thus
depends on three aspects: 1) How large is the training/validation set compared to the full
graph? 2) How many auxiliary nodes per primary node are we using? 3) How well are the
batches overlapping?

So why are we not seeing a memory overhead in the measured usage for Reddit in Table 6?
Because LBMB requires no memory for sampling. Constructing and prefetching batches
requires a surprisingly large amount of memory, especially if you aim to saturate main
memory or PCIe bandwidth ( 30GB/s). The memory used by sampling is required in
addition to the normal dataset, while LBMB can delete the dataset from memory after
preprocessing.

LBMB variants. Fig. 7 shows that PPR-based batching converges faster than both graph
partition-based and random batching. This suggests that the middle ground between unbiased
gradient samples (random batching) and strongly overlapping batches (graph partitioning) is
beneficial. Furthermore, graph partition-based batching converges faster than fixed random
batching in time, but not per epoch. This demonstrates the impact of auxiliary node overlap
on runtime. We found that LBMB is largely insensitive to different local clustering methods
and hyperparameters for selecting auxiliary nodes (see Table 7). Fig. 10 shows that the
batch size (number of primary nodes per batch) also only has a minor influence on accuracy,
especially above 1000 primary nodes per batch. Consequently, in practice LBMB only has
a single free hyperparameter to choose: The number of auxiliary nodes per primary node.
This can be determined in a few training runs. The number of primary nodes per batch
is then given by saturating the available GPU memory, and the local clustering method
and hyperparameters are not important. Note that Fig. 10 shows that LBMB performs
surprisingly well with small batches. LBMB can thus even be used in extremely constrained
settings with small batches of 100 primary nodes per batch.

Table 6: Main memory usage (GiB). In some cases, LBMB uses more main memory than
previous methods due to overlapping batches (e.g. on ogbn-products). However, it can
also reduce memory requirements because it ignores irrelevant parts of the graph (e.g. on
Reddit). Note that we chose hyperparameters in a way that keeps GPU memory usage
roughly constant between methods (as opposed to main memory usage).

ogbn-arxiv ogbn-products Reddit
GCN GAT GraphSAGE GCN GAT GraphSAGE GCN GAT GraphSAGE

Neighbor sampling 3.0 3.6 3.1 8.7 7.9 8.5 7.4 7.5 7.1
LADIES 3.0 - - 6.0 - - 4.8 - -
GraphSAINT-RW 3.5 3.6 3.5 9.6 9.6 9.6 8.4 8.5 8.4
Cluster-GCN 3.5 3.4 3.5 7.8 6.0 7.3 6.1 4.2 6.5
LBMB, graph part. 3.5 3.6 3.5 7.9 7.0 7.8 6.3 4.9 6.3
LBMB, PPR batching 3.8 3.8 4.2 13.0 12.3 13.2 4.5 5.3 5.1
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LBMB, PPR batch.
LBMB, graph part.
Cluster-GCN
Neighbor sampling
GraphSAINT-RW
LADIES

Figure 5: Convergence per epoch. LBMB converges similarly fast in most cases, despite not
performing any sampling.
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Figure 6: Training convergence per epoch for smaller training sets. All methods converge
similarly fast per training step, demonstrating once again the importance of a fast time per
training step.
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Figure 7: Convergence per
time for training GCN on
ogbn-arxiv. Both graph par-
titioning and PPR batching
lead to faster convergence
than fixed random batching.
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Figure 8: Convergence per
epoch for batching methods
when training GCN on ogbn-
arxiv. PPR-based partition-
ing also converges the fastest
per training step.
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Figure 9: Batch scheduling for
GAT on ogbn-arxiv. Optimal
batch order prevents down-
ward spikes in accuracy and
leads to higher final accuracy.

Table 7: Methods and hyperparameters for selecting aux-
iliary nodes for GCN on ogbn-products. LBMB is very
robust to this choice. We did observe a slightly lower vali-
dation accuracy for a low alpha (0.05), so we recommend
using 0.25.

Time (s) Test accuracy (%)
Method α, t per epoch LBMB inference Full graph
PPR 0.05 3.5 76.8±0.3 77.1±0.3
PPR 0.15 3.6 76.6±0.4 76.9±0.4
PPR 0.25 3.5 76.8±0.2 77.2±0.3
PPR 0.35 3.5 76.9±0.5 77.2±0.5
Heat kernel 0.1 3.5 76.5±0.4 76.8±0.3
Heat kernel 1 3.5 76.6±0.5 76.9±0.5
Heat kernel 3 3.5 76.8±0.2 77.1±0.2
Heat kernel 5 3.5 76.7±0.5 77.0±0.5
Heat kernel 7 3.5 76.6±0.4 76.8±0.4
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Figure 10: Final test accuracy
(LBMB inference) when train-
ing LBMB with PPR batching
with different numbers of pri-
mary nodes per batch (GCN on
ogbn-arxiv). LBMB is rather
insensitive to this choice.
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D Additional considerations

Experimental limitations. We only tested our method on homophilic node classification
datasets. While proximity is a central inductive bias in all GNNs, we did not explicitly
test this on a more general variety of graphs. However, note that LBMB does not require
homophily. The underlying assumption is merely that nearby nodes are the most important,
not that they are similar. Finally, we expect our method to perform even better in the
context of billion-node graphs, but our benchmark datasets still fit into main memory.

Micro batching. To further smoothen the gradients we could accumulate gradients across
multiple batches before performing a gradient step, a method known as micro batching. This
is especially well-suited for calculating the gradients of multiple batches in parallel, e.g. via
distributed training. With some overhead, we can even include inter-batch edges in this case,
as proposed by Cluster-GCN (Chiang et al., 2019). We found that neither regular micro
batching nor parallel micro batching with inter-batch edges yields noticeable improvements
for the datasets we considered.

Exponential moving averages. Another common method for smoothing noisy model
weight updates are exponential moving averages (EMA) of the model parameters. This
approach uses two sets of model parameters: The regular training parameters and the shadow
parameters. The shadow parameters are updated in each step by a fraction of the current
training parameters, thus giving an exponential moving average of the regular parameters.
The shadow parameters are never used during training, only for validation and prediction.
While this method often has a positive impact on accuracy, we did not use it for the sake of
simplicity.

Scalable batch scheduling. The batch scheduling methods we introduced in Sec. 4 are
quadratic in the number of batches, which might become problematic for massive datasets.
While this was not a problem in our experiments, we can overcome this by scheduling based
on batch clusters instead of individual batches.

Long-range interactions. Many models in deep learning have dozens or even hundreds of
layers (He et al., 2016). However, modern GNNs typically only have a few layers. Intuitively,
this might seem like a strong limitation, and is often attributed to oversmoothing (Li et al.,
2018). However, GNNs that overcome oversmoothing still only rely on a close neighborhood
(Xu et al., 2018; Klicpera et al., 2019a). This holds for models focusing on heterophilic
graphs as well (Zhu et al., 2021b). Even structural (role-based) embeddings are based on a
measure of proximity (Zhu et al., 2021a), which can also be exploited for mini batching. This
difference to regular neural networks is most likely due to the message passing dynamics
in GNNs. The dynamics are very different due to the permutation invariance required in
aggregation. The aggregation mechanism in Eq. (2) means that nodes at a far distance are
aggregated across multiple layers, and can thus no longer be represented individually (Alon
& Yahav, 2021). Only very few models are capable of preserving messages over long distances
(Beaini et al., 2021; Alon & Yahav, 2021), and none have demonstrated benefits for large
networks. On the contrary, simple label propagation and diffusion methods can substantially
improve the accuracy of GNNs on large graphs (Klicpera et al., 2019b; Huang et al., 2021).
Overall, current evidence strongly suggests that in most datasets the close neighborhood is
disproportionately more important for GNN predictions than distant neighbors. While the
role of long-range interactions in GNNs still remains an open topic of research, focusing on
local clusters thus does not appear to be a limitation for most GNNs. This is also evidenced
by many previous scalability methods relying on locality as well (Zeng et al., 2020; Chiang
et al., 2019).
For settings that still require long-range interactions, locality-based mini batching could be
extended using special globally connected nodes, parallel micro batching with inter-batch
edges (see Sec. 4), or steady-state learning (Dai et al., 2018) – possibly with compression to
enable scaling to large graphs (Rae et al., 2020).
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