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ABSTRACT

Balancing exploration and exploitation is crucial in reinforcement learning (RL).
While Thompson Sampling (TS) is a sound and effective exploration strategy, its
application to RL with high-dimensional continuous controls remains challenging.
We propose Practical ϵ-Exploring Thompson Sampling (PETS), a practical ap-
proach that addresses these challenges. Since the posterior over the parameters of
the action-value function is intractable, we leverage Langevin Monte Carlo (LMC)
for sampling. We propose an approach which maintains n parallel Markov chains
to mitigate the issues of naiv̈e application of LMC. The next step following the pos-
terior sampling in TS involves finding the optimal action under the sampled model
of the action-value function. We explore both gradient-based and gradient-free
approaches to approximate the optimal action, with extensive experiments. Further-
more, to justify the use of gradient-based optimization to approximate the optimal
action, we analyze the regret for TS in the RL setting with continuous controls and
show that it achieves the best-known bound previously established for the discrete
setting. Our empirical results demonstrate that PETS, as an exploration strategy,
can be integrated with leading RL algorithms, enhancing their performance and
stability on benchmark continuous control tasks.

1 INTRODUCTION

Reinforcement learning (RL) Mnih et al. (2015); Lillicrap et al. (2015); Sutton & Barto (1998)
has become a cornerstone in solving complex decision-making problems, demonstrating significant
success across diverse domains such as autonomous control (Kiumarsi et al., 2018), strategic game
playing (Mnih et al., 2013b), and natural language processing Kung et al. (2022); Cetina et al. (2021).
One of the central challenges of RL is striking a balance between exploration and exploitation
(Chapelle & Li, 2011a; Auer, 2003; Berger-Tal et al., 2014; Nair et al., 2017). Exploration, the
process of trying new actions to learn about their outcomes, is crucial for accurate value estimation
and finding the optimal behaviour. Exploitation, on the other hand, involves leveraging existing
knowledge to make optimal decisions. This exploration-exploitation dilemma is central to RL,
profoundly influencing the learning process’s efficiency and effectiveness (Sutton & Barto, 1998).

In continuous action spaces, the challenge of balancing exploration and exploitation is amplified
due to the infinite number of possible actions. The volume of the action space grows exponentially
with the number of dimensions, making efficient exploration in high-dimensional continuous spaces
especially difficult (Tang et al., 2016). In such settings, simple and widely-used exploration methods
like the ϵ-greedy strategy (Tokic, 2010) fall short due to their inefficiency and lack of adaptability to
knowledge acquired during learning (Dann et al., 2022). The maximum entropy framework introduces
its own set of complications, in particular the difficulty of tuning the temperature hyperparameter α
for entropy (Haarnoja et al., 2018b; Wang & Ni, 2020), which is crucial for balancing exploration
and exploitation. The Upper Confidence Bound (UCB) method (Garivier & Moulines, 2011; Garivier
& Cappé, 2011), while effective in the bandit setting, doesn’t work well in practice in challenging
continuous control tasks (Long & Han, 2023).

Thompson Sampling (TS) (Thompson, 1933) is an alternative exploration strategy that has been
extensively explored in bandit problems (Chapelle & Li, 2011a; Xu et al., 2022). TS balances
exploration and exploitation adaptively through probabilistic modeling of uncertainty. The essence of
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TS lies in its principle of probability matching (Vulkan, 2000), i.e., the probability of selecting an
action corresponds to the probability of that action being the optimal choice over the uncertainty of
the knowledge about the environment. The more certain we are of our knowledge of the environment,
the less TS explores. As learning progresses, TS naturally tends to favor actions that consistently yield
better outcomes, thereby reducing exploration in areas where the understanding of the environment
has solidified. In contrast, in contexts characterized by high uncertainty or sparse data, TS inherently
boosts exploration to acquire more information. This adaptive approach enables TS to effectively
manage the exploration-exploitation trade-off (Russo et al., 2017). When applied to the reinforcement
learning (RL) setting, TS models the posterior over the parameters of the expected returns, the
action-value function, for each state and action. It then selects the optimal action under a model
of action-value function sampled from the posterior. In this approach, as new trajectories and their
returns are observed, the uncertainty in the posterior decreases, and TS reduces exploration in favor
of exploitation as a result (Saha & Kveton, 2023).

Despite Thompson Sampling’s success in the bandit settings (Agrawal & Goyal, 2012; Slivkins et al.,
2019; Kuleshov & Precup, 2014), its application to the more general RL setting has been limited.
One of the main reasons is that the posterior, in all but the simplest cases, is intractable (van de
Schoot et al., 2021). Consequently, sampling from the posterior, which is a necessary step in TS,
is a challenge. To adapt TS to RL settings with high-dimensional continuous controls, we draw
insights from Langevin Monte Carlo (LMC) (Langevin et al., 1908; Rossky et al., 1978; Roberts &
Tweedie, 1996; Girolami & Calderhead, 2011). LMC provides a practical approach to sampling from
intractable distributions in high-dimensional spaces.

However, naïvely applying LMC for posterior sampling does not fully resolve the challenges of
performing TS in RL problems with continuous controls. (1) In TS, the step following posterior
sampling involves finding the optimal action under the sampled model of the action-value function.
In continuous action spaces, this task is non-trivial due to the infinite number of possible actions to
consider. We explore both gradient-based and gradient-free optimization with extensive experiments
for approximating the optimal action. Furthermore, to justify the use of gradient-based optimization,
we analyze the regret for TS in the RL setting with continuous controls – to the best of our knowledge
such analysis was previously limited to the discrete control setting (Ishfaq et al., 2024). We show
that, under regularity conditions, the regret for TS with gradient-based optimization matches the
best-known bound of Õ

(
d3/2H3/2

√
T
)

in the discrete setting. (2) Using samples from the LMC
Markov chain at nearby steps can result in a high correlation between the sampled models of action-
value function, which in turn leads to similar actions being explored. This is not ideal for effective
exploration, as it limits the diversity of actions taken by the agent. Consequently, naïve application of
LMC could lead to worse exploration compared to other exploration strategies because the posterior
samples don’t effectively represent the true posterior distribution. To tackle this issue, our approach,
detailed in Section 3, involves maintaining n parallel Markov chains. This helps us ensure a wider
range of available posterior samples for action selection which results in better exploration. In
Section 4.4, the effectiveness of this approach is empirically studied.

In this work, we introduce Practical ϵ-Exploring Thompson Sampling (PETS), a practical algorithm
that addresses the challenges that had previously limited the application of TS in challenging con-
tinuous control tasks. PETS can be incorporated into the existing RL approaches without requiring
substantial modifications to their core algorithms. To demonstrate the effectiveness of our explo-
ration strategy, we apply PETS to Policy Optimization with Model Planning (POMP) (Zhu et al.,
2023), Model-Based Policy Optimization (MBPO) (Janner et al., 2019) and Soft Actor-Critic (SAC)
(Haarnoja et al., 2018b) without modifying their inner workings and hyperparameters. We provide
these results in Section 4 and show that our exploration strategy notably improves the results and
stability of these methods.

1.1 CONTRIBUTIONS

Our contributions can be summarized as:

• We propose a TS-based exploration technique for RL with continuous controls.
• We explore gradient-based and gradient-free approaches to approximate the optimal action

in TS. We conduct extensive experiments and provide further justification for the use of
gradient-based optimization through a theoretical analysis of the regret.
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• We introduce a practical approach for getting around the slow mixing in sampling from the
posterior and reducing sample correlation, which we show results in better performance.

2 PRELIMINARIES

Reinforcement Learning We consider a discrete-time Markov Decision Process (MDP) (Puterman,
1994), represented by the tuple (S,A, P,R, γ). Here, S is the set of states, A is the set of actions,
P (x′|x, a) is the transition probability, R(x, a) is the one-step reward function, and γ is the discount
factor. The objective in RL is to find a policy π that maximizes the expected cumulative discounted
reward:

max
π

J(π) = max
π

Eπ

[ ∞∑
h=0

γhR(xh, ah)

]
A policy π : S → P (A) maps states to a probability distribution over actions. The value function
V π(x) is defined as the expected return starting from state x under policy π:

V π(x) = Eπ

[ ∞∑
h=0

γtR(xh, ah)|x0 = x

]
,

and the action-value function Qπ(x, a) (Watkins & Dayan, 1992) represents the expected return for
taking action a in state x and then following the policy π afterwards:

Qπ(x, a) = Eπ

[ ∞∑
h=0

γtR(xh, ah)|x0 = x, a0 = a

]
.

Exploration vs. Exploitation In reinforcement learning, exploration is fundamental for discovering
optimal policies. It involves exploring the action space to gather more information about the
environment, especially under uncertainty. Exploration can be viewed as a strategy where the
probability selecting an action is not solely dependent on the current knowledge of the rewards
(Watkins & Dayan, 1992), but also includes other components to encourage trying less-explored
actions. This process is critical in environments with sparse or deceptive rewards, as it enables the
agent to escape local optima and discover more rewarding strategies in the long run (Jiang et al.,
2023). While exploration is key in learning about the environment, its counterpart, exploitation, is
equally crucial (Wang et al., 2018) in RL. Exploitation involves leveraging the knowledge gained from
exploration to make decisions that maximize immediate rewards. The balance between exploration
and exploitation is a central challenge in RL, as excessive exploration can lead to sample inefficiency,
while excessive exploitation might result in getting stuck at suboptimal policies. A well-calibrated
balance ensures the agent learns effectively, adapts to the environment, and optimizes its strategy for
long-term success.

Thompson Sampling Thompson Sampling (TS) (Russo et al., 2017) is a systematic approach to
adaptively balance exploration and exploitation based on the uncertainty in the current knowledge
about the environment. TS continuously updates a posterior distribution over the parameters of the
model of expected returns, namely the action-value function Qw(x, a). In each step, TS first samples
parameters w from the posterior p(w|D), where D is the observation set. Then, given the current
state x, it selects an action a∗ that maximizes the expected return under the sampled model of the
action-value function:

w ∼ p(w|D) (1)
a∗ = argmax

a∈A
Qw(x, a) (2)

Crucially, as the posterior distribution reflects the uncertainty over the model of expected returns, TS
inherently adjusts the exploration-exploitation trade-off by sampling from this distribution, with a
higher uncertainty resulting in a greater exploration compared to exploitation.

3 METHOD

We model the cumulative return of taking an action a at state x, Rx,a, with a Gaussian (Sutton &
Barto, 1998), whose likelihood is denoted by p(Rx,a|µx,a):

Rx,a ∼ N (µx,a, 1) (3)

3
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where µx,a is the mean of the Gaussian. Typically in RL, the mean µx,a is modeled by using a
function Qw, parameterized by w, called the action-value function. Maximizing the likelihood of the
observed returns under this Gaussian model is equivalent to minimizing the following objective:

LQw
(D) = E(x,a,r,x′)∼D

[(
Qw(x, a)−R′

x,a

)2]
, (4)

where R′
x,a is the target return. The Q-learning objective (Watkins & Dayan, 1992) is recovered by

setting the target return to
R′

x,a = r + γmax
a′

Qw(x
′, a′) (5)

while Soft Actor-Critic (SAC) objective (Haarnoja et al., 2018a) is recovered by setting it to

R′
x,a = r + γVw′(x′) (6)

In machine learning, a commonly chosen prior for parameters is a Gaussian distribution with a zero
mean and a variance of σ2

p(Hoerl & Kennard, 2000). Under these choices of likelihood and prior:

− logp(w|D) = − log p(D|w)− log p(w) + log p(D) (7)

=
1

2

N∑
i=1

[(
Qw(xi, ai)−R′

xi,ai

)2]
+N log(

√
2π) +

1

2σ2
p

||w||2 + log(σp

√
2π) + log p(D)

=
1

2
E(x,a,r,x′)∼D

[(
Qw(xi, ai)−R′

xi,ai

)2]
+

λ

2
||w||2 + C

where C contains the constant terms and λ = 1
σ2
p

. Consider the following objective:

LQw
(D) = E(x,a,r,x′)∼D

[(
Qw(x, a)−R′

x,a

)2]
+ λ||w||2 (8)

where the choice of λ determines how informative the prior is, with λ = 0 corresponding to the least
informative prior, i.e., uniform distribution.

By Eq 7 we have LQw(D) ∝ − log p(w|D) and consequently:

p(w|D) = 1

Z
exp(−LQw

(D)) (9)

where Z is the partition function, also known as the normalizing constant, necessary to ensure that
p(w|D) integrates to 1.

3.1 LEVERAGING LANGEVIN MONTE CARLO

To dynamically balance exploration and exploitation, we use Thompson Sampling. This requires
sampling from the posterior distribution described in Eq 9. However, the partition function Z, except
for trivial cases, is intractable. One way to sample from the posterior without needing to compute Z
is Markov chain Monte Carlo (MCMC)(Levin & Peres, 2017; Holden, 2019; Sahlin, 2011) sampling.
A common Markov chain used in MCMC sampling is Langevin dynamics (Langevin et al., 1908;
Lemons & Gythiel, 1997) which is characterized by a stochastic differential equation (SDE) defined
as:

dw(s) = −∇L(w(s))ds+
√

2β−1dB(s), (10)
where L is an objective function parameterized by w, s is a continuous time index, B is a Brownian
motion, and β is an inverse temperature parameter. The Euler-Maruyama (Faniran, 2015) discretiza-
tion of this equation, also known as Langevin Monte Carlo (LMC) (Rossky et al., 1978; Girolami &
Calderhead, 2011; Durmus et al., 2018) is given by:

wt+1 = wt − ηt∇Lt(wt) +

√
2β−1

t ηtϵt, (11)

where ηt is the learning rate at time step t, and ϵt is isotropic Gaussian noise. This discretization
enables LMC to approximate the continuous-time process of Eq 10. One can use a mini batch of
observed data instead of a full batch to compute the gradients, giving rise to the famous stochastic
gradient Langevin dynamics (SGLD) (Welling & Teh, 2011). Under certain conditions, Eq 11
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generates a Markov chain whose marginal distribution converges to a unique distribution p(w) ∝
exp(−βL(w)) (Zou et al., 2020; Roberts & Tweedie, 1996).

Stochastic gradient Langevin dynamics (SGLD) offers a practical solution to sampling from the
posterior without explicitly computing the partition function. To sample, one needs to apply LMC
Eq 11 for an adequate number of iterations in order for the Markov chain to mix (Levin & Peres,
2017).

3.2 PARALLEL POSTERIOR SAMPLES

While SGLD provides a sampling method without needing to compute the partition function Z,
it results in highly correlated samples (Vishnoi, 2021) at nearby steps of Eq 11. This results in
similar actions in the TS procedure, which is suboptimal in environments requiring a high degree of
exploration and diversity in decision-making.

To avoid that, one needs to discard intermediate samples, also known as the burn-in period (Sahlin,
2011). In other words, the Markov chain generated by Eq 11 should be run for many steps (long
burn-in period) to adequately mix (Levin & Peres, 2017; Holden, 2019; Sahlin, 2011). However,
in challenging continuous control tasks where the agent needs to take actions over the course of
hundreds of thousands of steps, running this Markov chain to mix for every action sample is highly
inefficient.

To address this challenge, instead of maintaining a single Markov chain, which requires many
steps to mix, or using nearby samples that result in high correlation, we maintain n independent
Markov chains,W = {w(1), w(2), . . . , w(n)} where each w(i) is trained on different batches from
the replay buffer (see line 21 to 24 of Algorithm 1). For action decisions, we randomly select one of
these n posterior samples, wselected ∼ Uniform(W) where Uniform(W) indicates a discrete uniform
distribution over the elements in the setW .

This approach ensures a representative exploration of the posterior distribution resulting in a more
diverse set of actions and better exploration. Moreover, another practical advantage of this approach
is that the Markov chains inW can be trained independently in parallel, improving computational
efficiency. In Section 4.4 we empirically validate the effectiveness of this approach in achieving
better exploration.

3.3 APPROXIMATING THE OPTIMAL ACTION IN CONTINUOUS SPACES

Leveraging LMC to sample from the posterior does not fully address the challenges of using TS in
RL with continuous controls. A remaining challenge is that the step following the posterior sampling
involves finding the optimal action w.r.t the model of the action-value function, as described by
Eq 2. This is straightforward in discrete action spaces but becomes challenging in high-dimensional
continuous action spaces, as there are infinitely many possible actions to consider. We explore
both gradient-based and gradient-free optimization approaches. We use Adam for gradient-based
optimization, and one of the more recent methods, design by adaptive sampling (DBAS) (Brookes &
Listgarten, 2018), for gradient-free optimization. Experimental results in Section 4.2 demonstrate that
PETS with both gradient-based and gradient-free optimization outperforms the baselines, including
the state-of-the-art RL algorithm in the continuous control setting, POMP (Zhu et al., 2023).

3.3.1 DBAS

Given the sampled model of the action-value function Qwselected and the current state, our objective is
to find the optimal action a∗ as described by Eq 2. Design by adaptive sampling (DBAS) (Brookes &
Listgarten, 2018) is a gradient-free, iterative algorithm that can be used to approximate the optimal
action.

In each iteration i of DBAS: (I) It trains an unconditional generative model Gi on a set of actions Ai,
where A0 can be initialized randomly or from a policy. (II) It samples a new set of actions from Gi

and initializeAi+1 with them. (III) It uses Qwselected as an oracle to rank the samples inAi+1, retaining
the top k actions in Ai+1—where k is a hyperparameter—and discarding the rest. This process is
repeated for n iterations, where n is a hyperparameter. Finally, one of the actions in An can be used
as an approximation to the optimal action. In Appendix B.1, we provide the implementation details
and pseudocode for this procedure. We refer readers to Brookes & Listgarten (2018) for a more
detailed description.
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3.3.2 GRADIENT-BASED OPTIMIZATION

Gradient-based optimization is an iterative approximation process:

at+1 = at + η∇aQwselected(x, at), (12)

where at is the action at iteration t, η is the learning rate, and ∇aQwselected(x, at) is the gradient of the
action-value function with respect to the action, Qwselected is the action-value function parameterized
by the selected posterior sample wselected, and x is the current state. The initial action a0 can either be
initialized randomly or sampled from the policy.

This approach provides a practical approximation for finding the optimal action in continuous action
spaces. To complement our experimental results and justify the use of gradient-based optimization,
we analyze the regret under the setting with linear MDP(Puterman, 1994) and linear function
approximation, as is standard in the literature (Ishfaq et al., 2024; Zhang et al., 2021; Wang et al.,
2020). Under this setting, replacing the exact optimal action with an approximate optimal action
found by gradient-based optimization yields Algorithm 3. Our analysis culminates in Theorem 3.1,
which shows that under regularity conditions, the regret for Algorithm 3 matches the best-know regret
bound for TS in the discrete control setting (Ishfaq et al., 2024). Below we state the main result of
our analysis informally. Rigorous definitions and proofs are available in Appendix C.
Theorem 3.1. Under appropriate choices of λ in Eq 7, β in Eq 11, learning rate and update number
for LMC in Eq 11, if the action-value function is L-smooth and satisfies the Polyak-Łojasiewicz (PL)
inequality (Karimi et al., 2020), the regret of Algorithm 3 satisfies

Regret(K) = Õ
(
d3/2H3/2

√
T
)
, (13)

with probability at least 1− δ where δ ∈ ( 1
2
√
2eπ

, 1).

Furthermore, in Theorem C.11 we show that with the additional cost of extending the parameter
space, w, it is possible to achieve the same bound with a high probability of 1− ϵ′ for any ϵ′ ∈ (0, 1).

3.4 IMPLEMENTATION DETAILS

We draw insights from Jin et al. (2023) and incorporate an ϵ parameter into our TS algorithm.
Particularly, with probability ϵ, we use TS to select an action, and with probability 1 − ϵ we use
the underlying RL algorithm to select an action (see Algorithm 1). Jin et al. (2023) demonstrates
that ϵ-TS improves the computational efficiency of TS while achieving better regret bounds across
several reward functions. For optimizations, we use the Adam optimizer (Kingma, 2014) in all cases.
PETS-specific hyperparameters are provided in Appendix B.

4 EXPERIMENTS

In our experiments, we aim to study four primary questions: (1) Can PETS, as a general exploration
strategy, be integrated into recent RL algorithms and enhance their performance? (2) How does
the integrated PETS perform compared to state-of-the-art RL algorithms in challenging continuous
control tasks? (3) Does PETS lead to better exploration? and (4) How effective is the approach
of maintaining multiple parallel posterior samples for achieving better exploration and results? In
order to answer these questions, in the following sections, we conduct experiments on a range of
continuous control tasks from OpenAI Gym benchmark suite (Brockman et al., 2016). For a fair
comparison we keep all components and hyperparameters of the underlying RL algorithms, POMP,
MBPO, and SAC, the same in all cases.

4.1 GENERALITY OF PETS

To address the first question, we integrate PETS into the leading RL algorithm in the continuous
setting, POMP (Zhu et al., 2023), resulting in PETS-POMP. Additionally, we integrate PETS into
two other recent algorithms: A high-performing model-based algorithm, MBPO (Janner et al., 2019),
and a well-established model-free algorithm, SAC (Haarnoja et al., 2018b) resulting in PETS-MBPO
and PETS-SAC respectively. In all cases, we maintain the methodologies and hyperparameters of
the underlying algorithms, POMP, MBPO, and SAC. The comparison between PETS-POMP and
POMP can be viewed in Figure 3. As shown in the figure, PETS-POMP outperforms POMP on
several challenging continuous control tasks. Further, in Figure 1 and 2 we compare the performance

6
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Algorithm 1 PETS Pseudocode
Input: exploration probability ϵ, number of posterior samples nsamples, learning rates η and η′,
whether to use gradient-based or gradient-free optimization use_grad, gradient-free procedure Y ,
number of gradient ascent steps ngrad_steps, environment E , RL algorithmA

1: W = {w1, w2, . . . , wnsamples} and wi ∼ N (⃗0, I) {Initialize posterior samples randomly}
2: Initialize the replay buffer B ← ∅
3: repeat
4: Observe current state x from environment E
5: Draw a random value p from Uniform(0, 1)
6: if p < ϵ then
7: wselected ∼ Uniform(W)
8: if use_grad then
9: Initialize action a randomly or by following A’s procedure

10: for j = 1 to ngrad_steps do
11: a← a+ η′∇aQwselected(x, a)
12: end for
13: else
14: a← Y(Qwselected) {(see Algorithm 2)}
15: end if
16: else
17: Find action a by following A’s procedure
18: end if
19: Take action a in environment E , observe next state x′ and reward r
20: B ← B ∪ {(x, a, r, x′)} {Add observation to the replay buffer}
21: for each sample wi inW do
22: Draw a batch of observations from B ∼ B
23: wi ← wi − η∇wiLQwi

(B) +
√

2β−1ηϵt {SGLD where ϵt is an isotropic Gaussian noise}
24: end for
25: Update RL algorithm A with observations from B
26: until convergence criterion is met

Figure 1: Learning curves of PETS-MBPO (Ours) and MBPO on three continuous control tasks. The
solid lines represent the mean and the shaded areas represent the standard deviation among trials of 5
different seeds. The MBPO hyperparameters for PETS-MBPO and MBPO are the same across these
experiments. As shown in this figure, our exploration strategy improves the results of MBPO across
several tasks.

of PETS-MBPO with MBPO and PETS-SAC with SAC on several continuous control tasks. We
observe that in both cases, our exploration strategy improves the performance of MBPO and SAC
on several tasks. These sets of results demonstrate the effectiveness and generalizability of PETS in
improving the results and stability of different existing RL algorithms and its potential as an effective
exploration strategy.

4.2 COMPARISON WITH BASELINES

To address the second question, we evaluate the performance of PETS-POMP compared to six leading
model-free and model-based RL algorithms. As shown in Figure 3, both PETS-POMP with gradient-
free and PETS-POMP with gradient-based optimization outperform all the baselines on several
challenging tasks. Notably, our method achieves better performance on Humanoid and Ant, which
generally are considered to be the most challenging OpenAI Gym (Todorov et al., 2012; Brockman
et al., 2016) tasks. Specifically, our method improves POMP’s results by 38%, 29%, and 11% on

7
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Figure 2: Learning curves of PETS-SAC (Ours) and SAC on three continuous control tasks. The
solid lines represent the mean and the shaded areas represent the standard deviation among trials
of 5 different seeds. The SAC hyperparameters for PETS-SAC and SAC are the same across these
experiments. As shown in this figure, our exploration strategy improves the results of SAC across
several tasks.

Figure 3: Learning curves of PETS-POMP (Ours) and baselines on three of the most challenging
continuous control tasks from OpenAI Gym benchmark. GB-PETS-POMP and GF-PETS-POMP
correspond to our method using gradient-based and gradient-free optimization approaches, respec-
tively, for approximating the optimal action. The solid lines represent the mean and the shaded areas
represent the standard deviation among trials of 8 different seeds. Both implementations of our
method achieve better performance and training stability compared to the baselines. Specifically,
our method improves POMP’s results by 38%, 29%, and 11% on Walker2d, Ant, and Humanoid,
respectively. In each sub-figure, the small upper-left plot shows the zoomed-in comparison of our
method and POMP during the final iterations.

Walker2d, Ant, and Humanoid, respectively. This demonstrates the effectiveness of our method in
challenging continuous control tasks. Figure 6 further illustrates PETS-POMP’s performance on
three additional tasks: InvertedPendulum, Hopper, and Cheetah. The implementation details and
hyperparameter settings for all experiments are described in Appendix B.

4.3 PETS EXPLORATION EFFECTIVENESS

In this section, to further investigate the reasons for PETS’s superior performance address the
third question, we visualize the diversity of actions taken by our exploration policy compared to
POMP’s policy (Zhu et al., 2023). To achieve this, we take PETS actions for 40 steps in the Hopper
environment, resulting in a trajectory of length 40. Starting from the same initial state, we take
POMP actions for the same number of steps. This process is repeated 30 times, resulting in 30
trajectories for each method. In Figure 4, we visualize the standard deviation of the hopper’s height
(z coordinate) at each step across these trajectories. PET’s actions result in a wider range of height
changes, demonstrating a greater diversity in the outcomes of actions taken by PETS compared to
POMP. This greater diversity, a result of PETS’ exploration, correlates with its superior performance
demonstrated in Figures 3 and 6.

4.4 ABLATION

In this section, we try to address the fourth question by investigating the effectiveness of maintaining
parallel posterior samples by conducting two ablation studies. First, we vary the number of parallel
posterior samples, n, and observe the returns in Figure 5a. As shown in the figure, larger values
of n result in a higher return. Second, we compare the results of maintaining n parallel posterior
samples to the case where we maintain only one posterior sample with a burn-in period (Sahlin,
2011) of n where n − 1 intermediate samples in Eq 11 are discarded as discussed in Section 3.
Figure 5b shows that maintaining multiple parallel samples results in a higher return compared to
using a single posterior sample with a longer burn-in period. As higher returns reflect a more effective
exploration, these ablation studies show that maintaining multiple parallel posterior samples leads to
better exploration by ensuring a more representative exploration of the posterior distribution.
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Figure 4: Visualization of action diversity for PETS and POMP in the Hopper environment. On the
left, the hopper’s state in the first iteration is shown. On the right, the range of changes in the hopper’s
height (z coordinate) is visualized over 40 steps, for PETS actions in red and POMP actions in blue.
To achieve this, we take PETS actions in the Hopper environment for 40 steps, generating a trajectory
of length 40. Starting from the same initial state, we take POMP actions for the same number of
steps. This process is repeated 30 times for both PETS and POMP, resulting in 30 trajectories for
each method. At each step, the standard deviation of the hopper’s height across these trajectories is
visualized. As shown, PETS demonstrates greater diversity in the outcomes of its actions, correlating
with its superior performance compared to POMP.

(a) (b)

Figure 5: (a) Learning curves of PETS-MBPO for three different values for number of parallel
posterior samples, n, averaged over three trials with different seeds in the Cheetah environment.
As shown, a larger value of n results in higher returns. This demonstrates the effectiveness of our
approach to improve exploration by maintaining a wide range of posterior samples. (b) Comparison
of maintaining multiple parallel posterior samples with the case of maintaining only one with a
burn-in period of n for the Markov chain generated by Eq 11. The curves are averaged over three
trials with different seeds in the Hopper environment. As shown, maintaining multiple parallel
posterior samples leads to higher returns compared to maintaining one, demonstrating the capability
of this approach to generate less correlated posterior samples.

5 RELATED WORK

Exploration. As one of the most central research problems in RL, exploration has been extensively
studied. In this section, we discuss some of the works in this field, while recognizing that the breadth
of literature on exploration is far too vast to be comprehensively covered here. In the context of
discrete action spaces: Osband et al. (2014) shows that least-square value iteration using ϵ-greedy
is highly inefficient. By introducing randomized least-square value iteration (RLSVI), they show
that randomized value functions can be efficient and effective. Fortunato et al. (2017) adds noise
to value and action-value functions with learned coefficients to boost exploration. Auer (2003)
encourages exploration in the bandit setting by using confidence bounds and introducing bonuses for
less-visited arms. Henaff et al. (2023) proposes to make use of both global and episodic bonuses to
improve exploration. Chen et al. (2017) proposes an exploration strategy based on UCB by leveraging
uncertainty estimates from the Q-ensemble to boost exploration. Jarrett et al. (2022) proposes to learn
representations of the future that capture the unpredictable aspects of each outcome and use that as
additional input for predictions. Pislar et al. (2021) draws inspiration from animals and humans and
proposes mode-switching exploration in RL where they introduce an approach to adaptively switch
between modes of exploration. Furthermore, among the exploration approaches in the context of
continuous action spaces: Bellemare et al. (2016) uses density models to measure uncertainty and
proposes a method to derive a pseudo-count from an arbitrary density model. Lobel et al. (2023)
proposes a count-based exploration strategy suited for high-dimensional state spaces. To this end,
they estimate visitation counts by averaging samples from the Rademacher distribution. Pathak et al.
(2019) trains an ensemble of dynamics models and incentivizes the agent to explore such that the
disagreement of those ensembles is maximized.
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Thompson Sampling. TS has been extensively studied in the multi-armed bandit (Slivkins et al.,
2019; Kuleshov & Precup, 2014) setting. (Agrawal & Goyal, 2012) showed that TS achieves a
logarithmic expected regret and it is competitive to or better than UCB (Garivier & Moulines, 2011;
Garivier & Cappé, 2011). Komiyama et al. (2015) adapted TS to the setting where multiple arms need
to be selected at the same time. In the contextual bandit setting, Agrawal et al. (2017) applies TS in
scenarios with linear payoffs and proves a high probability regret bound of Õ

(
d2

ϵ

√
T 1+ϵ

)
. Xu et al.

(2022) demonstrates that Laplace approximation (Chapelle & Li, 2011b) of the posterior distribution
is inefficient in high-dimensional settings. They leverage Langevin Monte Carlo (Langevin et al.,
1908) for posterior sampling and show that TS achieves a regret bound of Õ(d

√
dT ). Moreover,

Jin et al. (2023) introduces ϵ-Exploring Thompson Sampling (ϵ-TS) which selects arms based on
the posterior with a probability of ϵ. They show that ϵ-TS improves the computational efficiency
of TS while achieving better regret bounds. They further demonstrate the superiority of ϵ-TS for a
range of reward distributions, such as Bernoulli, Gaussian, Poisson, and Gamma. Ishfaq et al. (2024)
demonstrates the effectiveness of Langevin Monte Carlo Thompson Sampling (LMC-TS) in Atari
games (Mnih et al., 2013a) where the discrete action space contains at most 18 possible actions. They
prove that LMC-TS achieves the regret bound of Õ(d3/2H3/2

√
T ) in the linear MDP setting with

discrete actions under specific assumptions. While they demonstrate the effectiveness of TS in Atari
games (Mnih et al., 2013a), they do not address the challenges limiting the application of TS in
challenging continuous control tasks.

High-dimensional Continuous Control. While the mentioned challenges in Section 3.2 have
limited the application of TS in high-dimensional continuous control tasks, a great amount of
progress has been made by other methods, not necessarily focusing on the exploration/exploitation
trade-off. Among model-free algorithms, Schulman et al. (2015) improves policy updates by ensuring
small, incremental changes, using a trust region to maintain policy performance and stability by
using a surrogate objective function. Schulman et al. (2017) introduces a simple surrogate objective
function that lower-bounds the performance of a policy. In contrast to TRPO (Schulman et al.,
2015), PPO (Schulman et al., 2017) only requires first-order information to optimize the policy. SAC
(Haarnoja et al., 2018a) tries to address the exploration/exploitation trade-off using the Maximum
Entropy Reinforcement Learning framework. On the other hand, model-based approaches have
shown great progress in improving the sample efficiency and performance of RL algorithms. POMP
(Zhu et al., 2023) incorporates Deep Differential Dynamic Programming (D3P) planner into the
model-based RL and shows significant improvement on MuJoCo tasks. MAGE (D’Oro & Jaśkowski,
2020) leverages the environment model differentiability to directly compute policy gradients. MBPO
(Janner et al., 2019) makes use of the environment model with different horizons and shows that
their approach matches the asymptotic performance of the best model-free algorithms. CMLO (Ji
et al., 2022) proposes an event-triggered mechanism to determine when to update the model of the
environment. DDPPO (Li et al., 2022) proposes a two-model-based learning method to control the
prediction and gradient error.

6 CONCLUSION

In this work, we introduced Practical ϵ-Exploring Thompson Sampling (PETS), which aims to
address the challenges that have limited the application of Thompson Sampling (TS) in RL with
continuous control tasks. We draw insights from Langevin Monte Carlo (LMC) for posterior
sampling and propose an approach to maintain n parallel posterior samples, mitigating the issue of
sample correlation. Additionally, we employ both gradient-based and gradeient-free approaches to
approximate the optimal action and provide theoretical guarantees that under regularity conditions,
replacing the exact optimal action with an approximate one found by gradient-based optimization
achieves the best-known regret bound of Õ

(
d3/2H3/2

√
T
)

. To validate PETS’s effectiveness
as an exploration strategy, we integrated it into POMP (Zhu et al., 2023), MBPO (Janner et al.,
2019) and SAC (Haarnoja et al., 2018b). Our empirical results demonstrate PETS’s effectiveness
in improving the performance and training stability of existing RL alorithms across a range of
challenging continuous control tasks.
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Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis of langevin monte carlo
via convex optimization. J. Mach. Learn. Res., 20:73:1–73:46, 2018. URL https://api.
semanticscholar.org/CorpusID:88515870.

Taye Samuel Faniran. Numerical solution of stochastic differential equations. 2015. URL https:
//api.semanticscholar.org/CorpusID:7122822.

11

https://api.semanticscholar.org/CorpusID:10485293
https://api.semanticscholar.org/CorpusID:8310565
https://api.semanticscholar.org/CorpusID:10959576
https://api.semanticscholar.org/CorpusID:10959576
https://api.semanticscholar.org/CorpusID:16099293
https://api.semanticscholar.org/CorpusID:16099293
https://api.semanticscholar.org/CorpusID:233210638
https://api.semanticscholar.org/CorpusID:233210638
https://api.semanticscholar.org/CorpusID:6002655
https://api.semanticscholar.org/CorpusID:6002655
https://api.semanticscholar.org/CorpusID:6002655
https://api.semanticscholar.org/CorpusID:6002655
http://arxiv.org/abs/1706.01502
http://arxiv.org/abs/1706.01502
https://api.semanticscholar.org/CorpusID:249888897
https://api.semanticscholar.org/CorpusID:249888897
https://api.semanticscholar.org/CorpusID:88515870
https://api.semanticscholar.org/CorpusID:88515870
https://api.semanticscholar.org/CorpusID:7122822
https://api.semanticscholar.org/CorpusID:7122822


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and
Shane Legg. Noisy networks for exploration. ArXiv, abs/1706.10295, 2017. URL https:
//api.semanticscholar.org/CorpusID:5176587.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and
beyond. In Proceedings of the 24th annual conference on learning theory, pp. 359–376. JMLR
Workshop and Conference Proceedings, 2011.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International Conference on Algorithmic Learning Theory, pp. 174–188. Springer,
2011.

Mark A. Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 2011.
URL https://api.semanticscholar.org/CorpusID:6630595.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. ArXiv, abs/1812.05905, 2018b. URL https://api.semanticscholar.
org/CorpusID:55703664.

Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A study of global and episodic bonuses
for exploration in contextual mdps. ArXiv, abs/2306.03236, 2023. URL https://api.
semanticscholar.org/CorpusID:259088896.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 42:80 – 86, 2000. URL https://api.semanticscholar.org/
CorpusID:28142999.

Lars Holden. Mixing of mcmc algorithms. Journal of Statistical Computation and Simulation, 89:2261
– 2279, 2019. URL https://api.semanticscholar.org/CorpusID:164237972.

Haque Ishfaq, Qingfeng Lan, Pan Xu, Ashique Rupam Mahmood, Doina Precup, Anima Anand-
kumar, and Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in rein-
forcement learning via langevin monte carlo. abs/2305.18246, 2024. URL https://api.
semanticscholar.org/CorpusID:258959015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Daniel Jarrett, Corentin Tallec, Florent Altch’e, Thomas Mesnard, Rémi Munos, and M. Vaĺko. Cu-
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A ADDITIONAL RESULTS

Figure 6: Learning curves of PETS-POMP (Ours) and baselines on three continuous control tasks
from OpenAI Gym benchmark. The solid lines represent the mean and the shaded areas represent the
standard deviation among trials of 8 different seeds. As shown in the figure, our method achieves better
performance compared to baselines on InvertedPendulum and Cheetah while achieving comparable
results on Hopper. Moreover, PETS-POMP outperforms POMP on all tasks while also improving its
training stability.

B IMPLEMENTATION DETAILS

In this section, we provide some details for the implementation of our method.

B.1 DBAS DETAILS

Here we provide more implementation details for DBAS (Brookes & Listgarten, 2018). The pseu-
docode for DBAS procedure can be found in Algorithm 2. In our method, we use a mixture of
Gaussians as the generative model G. We use the Expectation-Maximization (E-M) algorithm (Moon,
1996) to train the mixture of Gaussians. Furthermore, we use an initial set of actions drawn from the
policy for xinit. We repeat the DBAS procedure (Line 5 of Algorithm 2) for 10-20 iterations.

Algorithm 2 DBAS
Input: predictor oracle O(x), GenTrain(xi), percentage of least-performing samples [q = 0.9],
number of samples [M = 1000], initial data set [xinit = ∅]

1: set← xinit
2: if xinit is empty then
3: set← randomly initialized data
4: end if
5: while not converged do
6: G← GenTrain(set)
7: set← xi ∼ G
8: scoresi ← O(xi)
9: set← xi if it is not among the qth percentage least-performing samples based on scores

10: end while
11: return set0

B.2 HYPERPARAMETERS

In Table 1 and Table 2 and 3 we present the set of hyperparameters used in PETS-POMP, PETS-MBPO
and PETS-SAC respectively.
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B.3 ACTION INITIALIZATION

When using gradient-based optimization to find the approximate optimal action, action initialization
can make a difference in the quality of the approximation. This also can be seen in our regret analysis
in Appendix C. We empirically have found that initializing the action with an action sampled from
the policy helps with getting better approximations.

Table 1: Set of hyperparameters used in PETS-POMP.

Inverted
Pendulum Walker2d Cheetah Ant Humanoid Hopper

ϵ
exploration
probability 0.6 0.3 0.8 0.3 0.8 0.8

nsamples
number of

posterior samples 5 5 50 10 5 10

ngrad_steps
number of gradient

ascent steps 40 100 100 60 100 50

η′
gradient ascent

learning rate 0.002 0.01 0.01 0.05 0.05 0.005

Table 2: Set of hyperparameters used in PETS-POMP.

Cheetah Ant Hopper

ϵ
exploration
probability 0.8 0.4 0.4

nsamples
number of

posterior samples 50 5 5

ngrad_steps
number of gradient

ascent steps 100 40 40

η′
gradient ascent

learning rate 0.01 0.01 0.01

Table 3: Set of hyperparameters used in PETS-SAC.

Cheetah Ant Hopper

ϵ
exploration
probability 0.7 0.4 1.0

nsamples
number of

posterior samples 5 5 5

ngrad_steps
number of gradient

ascent steps 20 40 80

η′
gradient ascent

learning rate 0.02 0.01 0.01

C REGRET ANALYSIS

We expand upon the regret analysis presented in Ishfaq et al. (2024), extending it to approximate
greedy policies. We demonstrate that under certain assumptions on the action-value function, the
regret bound of Õ

(
d3/2H3/2

√
T
)

can be achieved, even when the optimal action a∗ cannot be
trivially identified and has to be approximated.

To this end, we first state the analysis setting. Consider an episodic MDP of the form (S,A, H,P, r)
where S is the state space, A is the continuous action space, H is the episode length, P = {Ph}Hh=1

are the state transition probability distributions, and r = {rh}Hh=1 are the reward functions where
rh : S ×A→ [0, 1].

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Furthermore, πh(x) denotes the action that the agent takes in the state x at the h-th step in the episode,
and π is the set of policies. The value and action-value functions are defined as:

V π
h (x) = Eπ

[
H∑

h′=h

rh′ (xh′ , ah′) | xh = x

]
.

Qπ
h(x, a) = Eπ

[
H∑

h′=h

rh′ (xh′ , ah′) | xh = x, ah = a

]
.

The Bellman equation and Bellman optimality equations are as follows:

Qπ
h(x, a) =

(
rh + PhV

π
h+1

)
(x, a), V π

h (x) = Qπ
h (x, πh(x)) , V π

H+1(x) = 0.

Q∗
h(x, a) =

(
rh + PhV

∗
h+1

)
(x, a), V ∗

h (x) = Q∗
h (x, π

∗
h(x)) , V ∗

H+1(x) = 0.

where V ∗
h (x) = V π∗

h (x), Q∗
h(x, a) = Qπ∗

h (x, a), π∗ is the optimal policy and [PhVh+1] (x, a) =
Ex′∼Ph(·|x,a)Vh+1 (x

′).

We measure the suboptimality of an agent by the total regret defined as

Regret(K) =

K∑
k=1

[
V ∗
1

(
xk
1

)
− V πk

1

(
xk
1

)]
(14)

where xk
1 is the initial state and πk is the policy agent uses for episode k. and K is the total number of

episodes which the agent interacts with the environment with the goal of learning the optimal policy.

Consider the following loss function for the action-value function from Ishfaq et al. (2024):

Lk
h (wh) =

k−1∑
τ=1

[
rh (x

τ
h, a

τ
h) + max

a∈A
Qk

h+1

(
xτ
h+1, a

)
−Q (wh;ϕ (xτ

h, a
τ
h))

]2
+ λ ∥wh∥2 (15)

where ϕ(., .) is a feature vector, wh is the Q function parameters and λ is the regularization constant.
We consider a linear function approximation for the Q function and:

Qk
h(·, ·)← min

{
ϕ(·, ·)⊤wk,Jk

h , H − h+ 1
}+

(16)

where wk,Jk

h is the parameter vector obtained after Jk iterations of the Langevin Monte Carlo (LMC)
process, applied to the loss function defined in Eq. equation 17, as described in Algorithm 3. We
further denote V k

h (xk
h) = maxa∈A Qk

h

(
xk
h, a
)
.

Note that while the action-value function Qk
h is linear with respect to the parameter vector w, it

is not necessarily linear in the action a. Furthermore, the loss function Lk
h(wh) includes the term

V k
h+1(x

τ
h+1), which, in a high-dimensional continuous action space, cannot be computed exactly due

to infinite actions. Consequently, in Algorithm 3 and our regret analysis, we substitute this term with
the approximate value function, V̂ k

h , as defined in Equation equation 12. This approach leads to the
formulation of the following modified loss function:

Lk
h (wh) =

k−1∑
τ=1

[
rh (x

τ
h, a

τ
h) + V̂ k

h+1(x
τ
h+1)−Q (wh;ϕ (xτ

h, a
τ
h))
]2

+ λ ∥wh∥2 (17)

We present a modified version of the Langevin Monte Carlo Least Squares Value Iteration
(LMC_LSVI) algorithm (Ishfaq et al., 2024) in Algorithm 3. Contrasting with Algorithm 1 in
Ishfaq et al. (2024), Algorithm 3 incorporates the use of an approximate value function, denoted as
V̂ , and employs approximate optimal actions. In the subsequent sections, we demonstrate that under
certain assumptions about the action-value function, Algorithm 3 achieves the same target regret
bound.
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Algorithm 3 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) with Approximate
Greedy Policy
Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function
Lk(w)

1: Initialize w1,0
h = 0 for h ∈ [H], J0 = 0

2: for episode k = 1, 2, . . . ,K do
3: Receive the initial state sk1
4: for step h = H,H − 1, . . . , 1 do
5: wk,0

h = w
k−1,Jk−1

h
6: for j = 1, . . . , Jk do
7: ϵk,jh ∼ N (0, I)

8: wk,j
h = wk,j−1

h − ηk∇Lk
h

(
wk,j−1

h

)
+
√
2ηkβ

−1
k ϵk,jh

9: end for
10: Qk

h(·, ·)← min
{
Q
(
wk,Jk

h ;ϕ(·, ·)
)
, H − h+ 1

}+

11: initialize set of actions akh,0
12: for iteration t = 1, 2, . . . , t∗ do
13: akh,t = akh,t−1 +∇Q(., akh,t−1) {as outlined in Eq 12}
14: end for
15: V̂ k

h (·)← Q(., akh,t∗) {approximate optimal value}
16: end for
17: for step h = 1, 2, . . . ,H do
18: Take approximate optimal action akh based on akh,t∗ , observe reward rkh

(
skh, a

k
h

)
and next

state skh+1
19: end for
20: end for

Proposition C.1. As defined in Ishfaq et al. (2024), let wk,Jk be the approximation of posterior
parameters after Jk iterations of LMC as defined in Eq 11 for the k’th episode where h is the horizon
step. Under the loss defined in Eq 17, wk,Jk follows a Gaussian distribution where the mean vector
and covariance matrix are defined as:

µk,Jk

h = AJk

k . . . AJ1
1 w1,0

h +

k∑
i=1

AJk

k . . . A
Ji+1

i+1

(
I −AJi

i

)
ŵi

h, (18)

Σk,Jk

h =

k∑
i=1

1

βi
AJk

k . . . A
Ji+1

i+1

(
I −A2Ji

i

) (
Λi
h

)−1
(I +Ai)

−1
A

Ji+1

i+1 . . . AJk

k , (19)

where Ai = I − 2ηiΛ
i
h for i ∈ [k].

Proof. We refer readers to Proposition B.1 of Ishfaq et al. (2024) for the proof.

Definition C.2. (Model Prediction Error). For any (k, h) ∈ [K]×[H], we define the model prediction
error associated with the reward rh,

lkh(x, a) = rh(x, a) + PhV̂
k
h+1(x, a)−Qk

h(x, a). (20)
Proposition C.3. For an action-value function Q(x, .) that has an L-Lipschitz continuous gradient
and satisfies the Polyak-Łojasiewicz Inequality (PL) inequality for some µ > 0 as stated below:

1

2
∥∇Qk

h(x, a)∥2 ≥ µ
(
Qk

h(x, a)−Qk
h(x, a

∗)
)
, ∀a. (21)

where
a∗ = argmaxaQ

k
h(xh, a)

is the optimal action. For t∗ >=
(

L
µ log(KH

Qk
h(xh,a

∗)−Qk
h(xh,a0)

d3/2H3/2
√
T

)
)

iterations we have:

V k
h (xh)− V̂ k

h (xh) ≤ εt∗ (22)

where εt∗ = d3/2H3/2
√
T

KH .
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Proof. As proved in Theorem 1. of Karimi et al. (2020), with the step size of 1
L , for an action-value

function Q(x, .) that has an L-Lipschitz continuous gradient and satisfies the PL inequality, we have

Qk
h(xh, a

∗)−Qk
h(xh, at) ≤

(
1− µ

L

)t (
Qk

h(xh, a
∗)−Qk

h(xh, a0)
)

(23)

where at is the action after t iteration of gradient ascent:

at+1 = at +∇Qk
h(xh, at) (24)

using 1− u ≤ exp(−u) on Eq 23 we have

Qk
h(xh, a

∗)−Qk
h(xh, at) ≤ exp

(
−t µ

L

) (
Qk

h(xh, a
∗)−Qk

h(xh, a0)
)
.

So for t∗ >= L
µ log(KH

Qk
h(xh,a

∗)−Qk
h(xh,a0)

d3/2H3/2
√
T

) we have:

Qk
h(xh, a

∗)−Qk
h(xh, at∗) ≤

d3/2H3/2
√
T

KH
= εt∗ (25)

by applying the definition of V k
h we have:

V k
h (xh)− V̂ k

h (xh) ≤ εt∗ (26)

Proposition C.4. Under the approximate value function V̂ k
h we have:

PhV
k
h+1(x, a)− PhV̂

k
h+1(x, a) ≤ εt∗ (27)

where εt∗ is defined in Proposition C.3

Proof. Applying the definition of Ph we have:

[PhVh+1] (x, a) = Ex′∼Ph(·|x,a)Vh+1 (x
′) ≤ Ex′∼Ph(·|x,a)V̂h+1 (x

′) + εt∗ (28)

=
[
PhV̂h+1

]
(x, a) + εt∗ (29)

where the first to the second line is by using Proposition C.3.

Lemma C.5. Let λ = 1 in Eq 17, Define the following event

E(K,H, δ) =
{∣∣ϕ(x, a)⊤ŵk

h − rh(x, a)− PhV
k
h+1(x, a)

∣∣
≤ 5H

√
dCδ∥ϕ(x, a)∥(Λk

h)
−1 ,∀(h, k) ∈ [H]× [K] and ∀(x, a) ∈ S ×A } .

(30)

where we denote

Cδ =

[
1

2
log(K + 1) + log

(
2
√
2KBδ/2

H

)
+ log

2

δ

]1/2
and Bδ =

(
16
3 Hd

√
K +

√
2K

3βKδd
3/2
)

. Then we have P(E(K,H, δ)) ≥ 1− δ.

Proof. We refer readers to Lemma. B5. of (Ishfaq et al., 2024) for the proof.

Lemma C.6. Let λ = 1 in Eq 17. For any δ ∈ (0, 1) conditioned on the event E(K,H, δ), for all
(h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1− δ2, we have

−
(
rh(x, a) + PhV

k
h+1(x, a)−Qk

h(x, a)l
k
h(x, a)

)
(31)

≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1 , (32)

where Cδ is defined in Lemma C.5.
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Proof. We refer readers to Lemma. B.6 of (Ishfaq et al., 2024) for the proof.

Lemma C.7. (Error bound). Let λ = 1 in Eq 17. For any δ ∈ (0, 1) conditioned on the event
E(K,H, δ), for all (h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1− δ2, we have

−lkh(x, a) ≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1 + εt∗ , (33)

Proof. using Lemma C.6 and Proposition C.4 we have:

−
(
rh(x, a) + PhV̂

k
h+1(x, a)−Qk

h(x, a).l
k
h(x, a) + εt∗

)
= lkh(x, a)− εt∗ ≤

(
5H
√
dCδ + 5

√
2d log(1/δ)

3βK
+ 4/3

)
∥ϕ(x, a)∥(Λk

h)
−1

Lemma C.8. Let λ = 1 in Eq 17. Conditioned on the event E(K,H, δ), for all (h, k) ∈ [H]× [K]
and (x, a) ∈ S ×A, with probability at least 1

2
√
2eπ

, we have

−
(
rh(x, a) + PhV

k
h+1(x, a)−Qk

h(x, a)
)
≤ 0 (34)

Proof. We refer readers to Lemma. B.7 of (Ishfaq et al., 2024) for the proof.

Lemma C.9. (Optimism). Let λ = 1 in Eq 17. Conditioned on the event E(K,H, δ), for all
(h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1

2
√
2eπ

, we have

lkh(x, a) ≤ 0 (35)

Proof. We immediately get the stated result by using Proposition C.4 on Lemma C.8.

We restate the main theorem:

Theorem C.10. Let λ = 1 in Eq 17, 1
βk

= Õ(H
√
d) in Algorithm 3 and δ ∈

(
1

2
√
2eπ

, 1
)

. For

any episode k ∈ [K], let the learning rate ηk = 1/
(
4λmax

(
Λk
h

))
, the update number for LMC in

Eq 11 be Jk = 2κk log(4HKd) where κk = λmax

(
Λk
h

)
/λmin

(
Λk
h

)
is the condition number of Λk

h

defined in Proposition C.1. Under the assumption that the action-value function Qk
h in Eq 16 has

an L-Lipschitz continuous gradient and satisfies the Polyak-Łojasiewicz Inequality (PL) inequality
Eq 21, the regret of Algorithm 3 under the regret definition in Definition 14, satisfies

Regret(K) = Õ
(
d3/2H3/2

√
T
)
, (36)

with probability at least 1− δ.

Proof of Theorem C.10. By Lemma. 4.2 in (Cai et al., 2020), it holds that

Regret(T ) =

K∑
k=1

(
V ∗
1

(
xk
1

)
− V πk

1

(
xk
1

))
(37)

=

K∑
k=1

H∑
t=1

Eπ∗
[〈
Qk

h (xh, ·) , π∗
h (· | xh)− πk

h (· | xh)
〉
| x1 = xk

1

]
︸ ︷︷ ︸

(i)

+

K∑
k=1

H∑
t=1

Dk
h︸ ︷︷ ︸

(ii)

(38)

+

K∑
k=1

H∑
t=1

Mk
h︸ ︷︷ ︸

(iii)

+

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
︸ ︷︷ ︸

(iv)

, (39)
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where ⟨., .⟩ denotes inner product which in continuous spaces is defined as ⟨f, g⟩ =
∫
D
f(t)g(t) dt.

Furthermore, Dk
h andMk

h are defined as

Dk
h :=

〈(
Qk

h −Qπk

h

) (
xk
h, ·
)
, πk

h

(
·, xk

h

)〉
−
(
Qk

h −Qπk

h

) (
xk
h, a

k
h

)
,

Mk
h := Ph

((
V k
h+1 − V πk

h+1

)) (
xk
h, a

k
h

)
−
(
V k
h+1 − V πk

h+1

) (
xk
h

)
.

Bounding Term (i): Using Proposition C.3 we have Q(xh, a
∗)−Q(xh, at∗) ≤ εt∗ .

Note that πk
h is approximately greedy w.r.t Qk

h and πk
h(at∗) = 1 where at∗ is the approximate optimal

greedy action from Eq 25. The largest value that
〈
Qk

h (xh, ·) , π∗
h (· | xh)− πk

h (· | xh)
〉

in Eq 38 can
take is Q(xh, a

∗)−Q(xh, at∗) which happens if π∗
h(a

∗) = 1 where a∗ = argmaxaQ
k
h(xh, a). This

completes the proof using Eq 25.

Bound for Term (ii): With probability 1− δ/3 we have:

K∑
k=1

H∑
h=1

Dk
h ≤

√
2H2T log(3/δ) (40)

We refer the readers to the Appendix. B.2 of (Ishfaq et al., 2024) for the proof.

Bound for Term (iii): With probability 1− δ/3 we have:

K∑
k=1

H∑
h=1

Mk
h ≤

√
2H2T log(3/δ). (41)

We refer the readers to the Appendix. B.2 of Ishfaq et al. (2024) for the proof.

Bound for Term (iv): With probability at least
(
1− δ

3 −
1

2
√
2eπ

)
we have:

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
≤ Õ

(
d3/2H3/2

√
T
)

(42)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Suppose the event E (K,H, δ′) holds. by union bound, with probability 1−
(
δ′2 + 1

2
√
2eπ

)
, we have,

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
(43)

≤
K∑

k=1

H∑
h=1

−lkh
(
xk
h, a

k
h

)
(44)

≤
K∑

k=1

H∑
h=1

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)∥∥ϕ (xk
h, a

k
h

)∥∥
(Λk

h)
−1 +KHεt∗ (45)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
K∑

k=1

H∑
h=1

∥∥ϕ (xk
h, a

k
h

)∥∥
(Λk

h)
−1 +KHεt∗ (46)

≤

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
H∑

h=1

√
K

(
K∑

k=1

∥∥ϕ (xk
h, a

k
h

)∥∥2
(Λk

h)
−1

)1/2

+KHεt∗

(47)

≤

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)
H
√
2dK log(1 +K) +KHεt∗ (48)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)√
2dHT log(1 +K) +KHεt∗ (49)

=

(
5H
√
dCδ′ + 5

√
2d log (1/δ′)

3βK
+ 4/3

)√
2dHT log(1 +K) +

(
d3/2H3/2

√
T
)

(50)

= Õ
(
d3/2H3/2

√
T
)
. (51)

Here the first, the second, and the third inequalities follow from Lemma C.9, Lemma C.7 and the
Cauchy-Schwarz inequality respectively. The last inequality follows from Lemma C.5 The last
equality follows from 1√

βK
= 10H

√
dCδ′ +

8
3 which we defined in Lemma C.9. By Lemma C.7,

the event E (K,H, δ′) occurs with probability 1− δ′. Thus, by union bound, the event E (K,H, δ′)
occurs and it holds that

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh (xh, ah) | x1 = xk

1

]
− lkh

(
xk
h, a

k
h

))
≤ Õ

(
d3/2H3/2

√
T
)

By applying union bound for (i), (ii), (iii) and (iv), the final regret bound is Õ
(
d3/2H3/2

√
T
)

with

at least probability 1− δ where δ ∈ ( 1
2
√
2eπ

, 1).

Theorem C.11. Let λ = 1 in Eq 17, 1
βk

= Õ(H
√
d) in Algorithm 3 and δ ∈

(
1

2
√
2eπ

, 1
)

. For

any episode k ∈ [K], let the learning rate ηk = 1/
(
4λmax

(
Λk
h

))
, the update number for LMC

in Eq 11 be Jk = 2κk log(4HKd) where κk = λmax

(
Λk
h

)
/λmin

(
Λk
h

)
is the condition number

of Λk
h defined in Proposition C.1. Let w⃗ = [w1, w2, . . . , wn]

T be the extended parameter space
and Q(x, a) = maxi∈[n] Qwi(x, a) be the optimistic action-value function. Under the assumption
that the action-value function Qk

h in Eq 16 has an L-Lipschitz continuous gradient and satisfies
the Polyak-Łojasiewicz Inequality (PL) inequality Eq 21, the regret of Algorithm 3 under the regret
definition in Definition 14, satisfies

Regret(K) = Õ
(
d3/2H3/2

√
T
)
, (52)

with probability of 1− ϵ′ for any ϵ′ ∈ (0, 1).
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Proof of Theorem C.11. In Lemma B.9 we prove that the estimation Qk
h(x, a) is optimistic with a

constant probability of at least 1
2
√
2eπ

. In other words, the failure probability is at most 1− 1
2
√
2eπ

.
By extending the parameter space w⃗ = [w1, w2, . . . , wn]

T and modelling the optimistic action-value
function using Q(x, a) = maxi∈[n] Qwi(x, a), the failure probability will be at most (1− 1

2
√
2eπ

)n.
We want this probability to be arbitrarily small. To guarantee that the failure probability is less than
ϵ′ it suffices to find an n that is large enough such that (1− 1

2
√
2eπ

)n < ϵ′. If we solve for n we have

n > log ϵ′

log(1− 1
2
√

2eπ
)
. We can express the latter quantity as log(1/δ)

log(2
√
2eπ)−log(2

√
2eπ−1)

∈ Ω(log(1/ϵ′)).

So, we can extend the parameter space by a factor of Ω(log(1/ϵ′)) to ensure that the failure probability
is less than ϵ′. Finally, we can apply the union bound on (i), (ii), (iii), and (iv) to conclude that the
regret bound in Theorem C.11 holds with a probability of 1− ϵ′ for any ϵ′ ∈ (0, 1).
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