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ABSTRACT

Balancing exploration and exploitation is crucial in reinforcement learning (RL).
While Thompson Sampling (TS) is a sound and effective exploration strategy, its
application to RL with high-dimensional continuous controls remains challenging.
We propose Practical e-Exploring Thompson Sampling (PETS), a practical ap-
proach that addresses these challenges. Since the posterior over the parameters of
the action-value function is intractable, we leverage Langevin Monte Carlo (LMC)
for sampling. We propose an approach which maintains n parallel Markov chains
to mitigate the issues of naive application of LMC. The next step following the pos-
terior sampling in TS involves finding the optimal action under the sampled model
of the action-value function. We explore both gradient-based and gradient-free
approaches to approximate the optimal action, with extensive experiments. Further-
more, to justify the use of gradient-based optimization to approximate the optimal
action, we analyze the regret for TS in the RL setting with continuous controls and
show that it achieves the best-known bound previously established for the discrete
setting. Our empirical results demonstrate that PETS, as an exploration strategy,
can be integrated with leading RL algorithms, enhancing their performance and
stability on benchmark continuous control tasks.

1 INTRODUCTION

Reinforcement learning (RL) Mnih et al.| (2015)); |[Lillicrap et al.| (2015)); |Sutton & Barto, (1998)
has become a cornerstone in solving complex decision-making problems, demonstrating significant
success across diverse domains such as autonomous control (Kiumarsi et al., 2018), strategic game
playing (Mnih et al.,|2013b), and natural language processing |Kung et al.| (2022); Cetina et al.| (2021).
One of the central challenges of RL is striking a balance between exploration and exploitation
(Chapelle & Li, 2011a}; |Auer, [2003; [Berger-Tal et al., [2014; Nair et al., 2017). Exploration, the
process of trying new actions to learn about their outcomes, is crucial for accurate value estimation
and finding the optimal behaviour. Exploitation, on the other hand, involves leveraging existing
knowledge to make optimal decisions. This exploration-exploitation dilemma is central to RL,
profoundly influencing the learning process’s efficiency and effectiveness (Sutton & Barto, [1998).

In continuous action spaces, the challenge of balancing exploration and exploitation is amplified
due to the infinite number of possible actions. The volume of the action space grows exponentially
with the number of dimensions, making efficient exploration in high-dimensional continuous spaces
especially difficult (Tang et al., 2016). In such settings, simple and widely-used exploration methods
like the e-greedy strategy (Tokic| |2010) fall short due to their inefficiency and lack of adaptability to
knowledge acquired during learning (Dann et al.| 2022). The maximum entropy framework introduces
its own set of complications, in particular the difficulty of tuning the temperature hyperparameter o
for entropy (Haarnoja et al., 2018bj; [Wang & Ni, [2020)), which is crucial for balancing exploration
and exploitation. The Upper Confidence Bound (UCB) method (Garivier & Moulines| 2011} (Garivier
& Cappél 2011), while effective in the bandit setting, doesn’t work well in practice in challenging
continuous control tasks (Long & Hanl 2023)).

Thompson Sampling (TS) (Thompson, [1933) is an alternative exploration strategy that has been
extensively explored in bandit problems (Chapelle & Lil 2011a; Xu et al., [2022). TS balances
exploration and exploitation adaptively through probabilistic modeling of uncertainty. The essence of
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TS lies in its principle of probability matching (Vulkan, 2000), i.e., the probability of selecting an
action corresponds to the probability of that action being the optimal choice over the uncertainty of
the knowledge about the environment. The more certain we are of our knowledge of the environment,
the less TS explores. As learning progresses, TS naturally tends to favor actions that consistently yield
better outcomes, thereby reducing exploration in areas where the understanding of the environment
has solidified. In contrast, in contexts characterized by high uncertainty or sparse data, TS inherently
boosts exploration to acquire more information. This adaptive approach enables TS to effectively
manage the exploration-exploitation trade-off (Russo et al.,[2017). When applied to the reinforcement
learning (RL) setting, TS models the posterior over the parameters of the expected returns, the
action-value function, for each state and action. It then selects the optimal action under a model
of action-value function sampled from the posterior. In this approach, as new trajectories and their
returns are observed, the uncertainty in the posterior decreases, and TS reduces exploration in favor
of exploitation as a result (Saha & Kveton, 2023).

Despite Thompson Sampling’s success in the bandit settings (Agrawal & Goyal, [2012; [Slivkins et al.|
2019; |Kuleshov & Precup| 2014), its application to the more general RL setting has been limited.
One of the main reasons is that the posterior, in all but the simplest cases, is intractable (van de
Schoot et al.,[2021). Consequently, sampling from the posterior, which is a necessary step in TS,
is a challenge. To adapt TS to RL settings with high-dimensional continuous controls, we draw
insights from Langevin Monte Carlo (LMC) (Langevin et al., |1908; [Rossky et al., 1978} |Roberts &
Tweedie, [1996; |Girolami & Calderhead, 2011). LMC provides a practical approach to sampling from
intractable distributions in high-dimensional spaces.

However, naively applying LMC for posterior sampling does not fully resolve the challenges of
performing TS in RL problems with continuous controls. (1) In TS, the step following posterior
sampling involves finding the optimal action under the sampled model of the action-value function.
In continuous action spaces, this task is non-trivial due to the infinite number of possible actions to
consider. We explore both gradient-based and gradient-free optimization with extensive experiments
for approximating the optimal action. Furthermore, to justify the use of gradient-based optimization,
we analyze the regret for TS in the RL setting with continuous controls — to the best of our knowledge
such analysis was previously limited to the discrete control setting (Ishfaq et al.| 2024). We show
that, under regularity conditions, the regret for TS with gradient-based optimization matches the

best-known bound of O (d3/ 23/ Qﬁ) in the discrete setting. (2) Using samples from the LMC

Markov chain at nearby steps can result in a high correlation between the sampled models of action-
value function, which in turn leads to similar actions being explored. This is not ideal for effective
exploration, as it limits the diversity of actions taken by the agent. Consequently, naive application of
LMC could lead to worse exploration compared to other exploration strategies because the posterior
samples don’t effectively represent the true posterior distribution. To tackle this issue, our approach,
detailed in Section [3} involves maintaining n parallel Markov chains. This helps us ensure a wider
range of available posterior samples for action selection which results in better exploration. In
Section[4.4] the effectiveness of this approach is empirically studied.

In this work, we introduce Practical e-Exploring Thompson Sampling (PETS), a practical algorithm
that addresses the challenges that had previously limited the application of TS in challenging con-
tinuous control tasks. PETS can be incorporated into the existing RL approaches without requiring
substantial modifications to their core algorithms. To demonstrate the effectiveness of our explo-
ration strategy, we apply PETS to Policy Optimization with Model Planning (POMP) (Zhu et al.,
2023), Model-Based Policy Optimization (MBPO) (Janner et al.,2019) and Soft Actor-Critic (SAC)
(Haarnoja et al., 2018b)) without modifying their inner workings and hyperparameters. We provide
these results in Section 4] and show that our exploration strategy notably improves the results and
stability of these methods.

1.1 CONTRIBUTIONS

Our contributions can be summarized as:

* We propose a TS-based exploration technique for RL with continuous controls.

* We explore gradient-based and gradient-free approaches to approximate the optimal action
in TS. We conduct extensive experiments and provide further justification for the use of
gradient-based optimization through a theoretical analysis of the regret.
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* We introduce a practical approach for getting around the slow mixing in sampling from the
posterior and reducing sample correlation, which we show results in better performance.

2 PRELIMINARIES

Reinforcement Learning We consider a discrete-time Markov Decision Process (MDP) (Puterman),
1994), represented by the tuple (S, A, P, R, ). Here, S is the set of states, A is the set of actions,
P(2'|z,a) is the transition probability, R(z, a) is the one-step reward function, and -y is the discount
factor. The objective in RL is to find a policy 7 that maximizes the expected cumulative discounted
reward:

max J(7) = maxE, [Z Y R(x, ah)]
h=0
A policy 7 : S — P(A) maps states to a probability distribution over actions. The value function
V™ (z) is defined as the expected return starting from state 2 under policy :

E 7 (zh,an |$0—$]7

and the action-value function Q™ (z, a) (Watkms & Dayanl [1992)) represents the expected return for
taking action a in state x and then following the policy 7 afterwards:

Q" (z lZW (zh,an)|zo = x, ao—a].

Exploration vs. Exploitation In reinforcement learning, exploration is fundamental for discovering
optimal policies. It involves exploring the action space to gather more information about the
environment, especially under uncertainty. Exploration can be viewed as a strategy where the
probability selecting an action is not solely dependent on the current knowledge of the rewards
(Watkins & Dayanl [1992)), but also includes other components to encourage trying less-explored
actions. This process is critical in environments with sparse or deceptive rewards, as it enables the
agent to escape local optima and discover more rewarding strategies in the long run (Jiang et al.
2023). While exploration is key in learning about the environment, its counterpart, exploitation, is
equally crucial (Wang et al.,|2018)) in RL. Exploitation involves leveraging the knowledge gained from
exploration to make decisions that maximize immediate rewards. The balance between exploration
and exploitation is a central challenge in RL, as excessive exploration can lead to sample inefficiency,
while excessive exploitation might result in getting stuck at suboptimal policies. A well-calibrated
balance ensures the agent learns effectively, adapts to the environment, and optimizes its strategy for
long-term success.

Thompson Sampling Thompson Sampling (TS) (Russo et al.,|2017) is a systematic approach to
adaptively balance exploration and exploitation based on the uncertainty in the current knowledge
about the environment. TS continuously updates a posterior distribution over the parameters of the
model of expected returns, namely the action-value function Q,,(xz, a). In each step, TS first samples
parameters w from the posterior p(w|D), where D is the observation set. Then, given the current
state x, it selects an action a* that maximizes the expected return under the sampled model of the
action-value function:

w ~ p(w|D) (1)
a® = argmax Q,(z,a) 2)
acA

Crucially, as the posterior distribution reflects the uncertainty over the model of expected returns, TS
inherently adjusts the exploration-exploitation trade-off by sampling from this distribution, with a
higher uncertainty resulting in a greater exploration compared to exploitation.

3 METHOD

‘We model the cumulative return of taking an action a at state x, R, ,, with a Gaussian (Sutton &
Barto, |1998), whose likelihood is denoted by p(R o|tiz,q):

Rw,a ~ N(,LL:C,LU 1) 3)
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where (1, , is the mean of the Gaussian. Typically in RL, the mean p; , is modeled by using a
function @,,, parameterized by w, called the action-value function. Maximizing the likelihood of the
observed returns under this Gaussian model is equivalent to minimizing the following objective:

Lq, (D) = E(w,a,r,w/)ND [(QW(I) a) - R;c,a)Z} s “)

where R;,a is the target return. The Q-learning objective (Watkins & Dayan, |[1992)) is recovered by
setting the target return to
R, , =7 +ymaxQy(z',a’) Q)
a/

while Soft Actor-Critic (SAC) objective (Haarnoja et al.,2018a)) is recovered by setting it to
R, ,=r+7Vy(z') (6)

In machine learning, a commonly chosen prior for parameters is a Gaussian distribution with a zero
mean and a variance of af)(Hoerl & Kennard, 2000). Under these choices of likelihood and prior:

—logp(w|D) = —log p(D|w) — log p(w) + log p(D) D
N
1 2 1
=35 Z {(Qw(ﬂcm ai) — R}, ) ] + Nlog(V2r) + T‘szHz + log(opV2m) + log p(D)
i=1 p
1 2 A
= §E(z,a,r7z’)~D I:(Qw(l‘iaai> - R;i’ai) :| + §||U}||2 + C

where C' contains the constant terms and A = % Consider the following objective:
P

£0.,(D) = Eguarann | (Quiw,a) = B, )] + Al ®)

where the choice of A determines how informative the prior is, with A = 0 corresponding to the least
informative prior, i.e., uniform distribution.

By Eq[7|we have Lg,, (D) x — log p(w|D) and consequently:

p(w|D) = = exp(-Lq, (D)) ©

where Z is the partition function, also known as the normalizing constant, necessary to ensure that
p(w|D) integrates to 1.

3.1 LEVERAGING LANGEVIN MONTE CARLO

To dynamically balance exploration and exploitation, we use Thompson Sampling. This requires
sampling from the posterior distribution described in Eq[9} However, the partition function Z, except
for trivial cases, is intractable. One way to sample from the posterior without needing to compute Z
is Markov chain Monte Carlo (MCMC)(Levin & Peres| 2017; Holden| [2019; |Sahlin, |2011)) sampling.
A common Markov chain used in MCMC sampling is Langevin dynamics (Langevin et al., |1908;
Lemons & Gythiel, |1997) which is characterized by a stochastic differential equation (SDE) defined

as:

dw(s) = =V L(w(s))ds + /26~ 1dB(s), (10)
where L is an objective function parameterized by w, s is a continuous time index, B is a Brownian
motion, and 3 is an inverse temperature parameter. The Euler-Maruyama (Faniran|, 2015) discretiza-
tion of this equation, also known as Langevin Monte Carlo (LMC) (Rossky et al., 1978 |Girolami &
Calderhead, 2011; Durmus et al., 2018)) is given by:

wyp1 = wy — 0V L (we) + 4/ 268, 'neer, (11)

where 7, is the learning rate at time step ¢, and ¢; is isotropic Gaussian noise. This discretization
enables LMC to approximate the continuous-time process of Eq[I0] One can use a mini batch of
observed data instead of a full batch to compute the gradients, giving rise to the famous stochastic
gradient Langevin dynamics (SGLD) (Welling & Teh, |2011). Under certain conditions, Eq
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generates a Markov chain whose marginal distribution converges to a unique distribution p(w) o
exp(—BL(w)) (Zou et al., 2020; Roberts & Tweedie, [1996).

Stochastic gradient Langevin dynamics (SGLD) offers a practical solution to sampling from the
posterior without explicitly computing the partition function. To sample, one needs to apply LMC
Eq[l1]for an adequate number of iterations in order for the Markov chain to mix (Levin & Peres|
2017).

3.2 PARALLEL POSTERIOR SAMPLES

While SGLD provides a sampling method without needing to compute the partition function Z,
it results in highly correlated samples (Vishnoi, [2021) at nearby steps of Eq[T1] This results in
similar actions in the TS procedure, which is suboptimal in environments requiring a high degree of
exploration and diversity in decision-making.

To avoid that, one needs to discard intermediate samples, also known as the burn-in period (Sahlin}
2011). In other words, the Markov chain generated by Eq [IT]|should be run for many steps (long
burn-in period) to adequately mix (Levin & Peres| 2017; Holden| 2019} |Sahlin, 2011). However,
in challenging continuous control tasks where the agent needs to take actions over the course of
hundreds of thousands of steps, running this Markov chain to mix for every action sample is highly
inefficient.

To address this challenge, instead of maintaining a single Markov chain, which requires many
steps to mix, or using nearby samples that result in high correlation, we maintain n independent
Markov chains, W = {w(l), w®, .. 7w(”)} where each w(? is trained on different batches from
the replay buffer (see line 21| to [24] of Algorithm|[I)). For action decisions, we randomly select one of
these n posterior samples, Wgelectea ~ Uniform(WW) where Uniform(WV) indicates a discrete uniform
distribution over the elements in the set V.

This approach ensures a representative exploration of the posterior distribution resulting in a more
diverse set of actions and better exploration. Moreover, another practical advantage of this approach
is that the Markov chains in W can be trained independently in parallel, improving computational
efficiency. In Section f.4] we empirically validate the effectiveness of this approach in achieving
better exploration.

3.3 APPROXIMATING THE OPTIMAL ACTION IN CONTINUOUS SPACES

Leveraging LMC to sample from the posterior does not fully address the challenges of using TS in
RL with continuous controls. A remaining challenge is that the step following the posterior sampling
involves finding the optimal action w.r.t the model of the action-value function, as described by
Eq[2] This is straightforward in discrete action spaces but becomes challenging in high-dimensional
continuous action spaces, as there are infinitely many possible actions to consider. We explore
both gradient-based and gradient-free optimization approaches. We use Adam for gradient-based
optimization, and one of the more recent methods, design by adaptive sampling (DBAS) (Brookes &
Listgarten, 2018), for gradient-free optimization. Experimental results in Section#.2]demonstrate that
PETS with both gradient-based and gradient-free optimization outperforms the baselines, including
the state-of-the-art RL algorithm in the continuous control setting, POMP (Zhu et al., [2023)).

3.3.1 DBAS

Given the sampled model of the action-value function Q.. and the current state, our objective is
to find the optimal action a* as described by Eq 2} Design by adaptive sampling (DBAS) (Brookes &
Listgarten| 2018)) is a gradient-free, iterative algorithm that can be used to approximate the optimal
action.

In each iteration ¢ of DBAS: (I) It trains an unconditional generative model G; on a set of actions A4;,
where 4 can be initialized randomly or from a policy. (II) It samples a new set of actions from G,
and initialize A; 4, with them. (III) It uses (..., @S an oracle to rank the samples in .4, 1, retaining
the top k actions in A;;—where k is a hyperparameter—and discarding the rest. This process is
repeated for n iterations, where n is a hyperparameter. Finally, one of the actions in .4,, can be used
as an approximation to the optimal action. In Appendix [B.1] we provide the implementation details
and pseudocode for this procedure. We refer readers to |Brookes & Listgarten| (2018)) for a more
detailed description.
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3.3.2 GRADIENT-BASED OPTIMIZATION

Gradient-based optimization is an iterative approximation process:

a1 = a + NVaQuygeneq (3;‘, at)’ (12)

where a; is the action at iteration ¢, ) is the learning rate, and V,Q.,..,.... (¢, a+) is the gradient of the
action-value function with respect to the action, Q... 1S the action-value function parameterized
by the selected posterior sample wWgeected, and x is the current state. The initial action ag can either be
initialized randomly or sampled from the policy.

This approach provides a practical approximation for finding the optimal action in continuous action
spaces. To complement our experimental results and justify the use of gradient-based optimization,
we analyze the regret under the setting with linear MDP(Puterman| {1994)) and linear function
approximation, as is standard in the literature (Ishfaq et al.,|2024} |Zhang et al.| 2021; Wang et al.,
2020). Under this setting, replacing the exact optimal action with an approximate optimal action
found by gradient-based optimization yields Algorithm [3] Our analysis culminates in Theorem [3.1]
which shows that under regularity conditions, the regret for Algorithm [3|matches the best-know regret
bound for TS in the discrete control setting (Ishfaq et al.| 2024). Below we state the main result of
our analysis informally. Rigorous definitions and proofs are available in Appendix

Theorem 3.1. Under appropriate choices of X in Eq[7} (3 in Eq[I1} learning rate and update number
for LMC in Eq[I1] if the action-value function is L-smooth and satisfies the Polyak-Lojasiewicz (PL)
inequality (Karimi et al| 2020), the regret of Algorithm 3] satisfies

Regret(K) = O (d*/2HY*VT), (13)

with probability at least 1 — § where § € (2\/12?, 1).

Furthermore, in Theorem we show that with the additional cost of extending the parameter
space, w, it is possible to achieve the same bound with a high probability of 1 — ¢ for any €’ € (0, 1).

3.4 IMPLEMENTATION DETAILS

We draw insights from [Jin et al.| (2023 and incorporate an e parameter into our TS algorithm.
Particularly, with probability €, we use TS to select an action, and with probability 1 — € we use
the underlying RL algorithm to select an action (see Algorithm [T). Jin et al|(2023)) demonstrates
that e-TS improves the computational efficiency of TS while achieving better regret bounds across
several reward functions. For optimizations, we use the Adam optimizer (Kingma, 2014) in all cases.
PETS-specific hyperparameters are provided in Appendix

4 EXPERIMENTS

In our experiments, we aim to study four primary questions: (1) Can PETS, as a general exploration
strategy, be integrated into recent RL algorithms and enhance their performance? (2) How does
the integrated PETS perform compared to state-of-the-art RL algorithms in challenging continuous
control tasks? (3) Does PETS lead to better exploration? and (4) How effective is the approach
of maintaining multiple parallel posterior samples for achieving better exploration and results? In
order to answer these questions, in the following sections, we conduct experiments on a range of
continuous control tasks from OpenAl Gym benchmark suite (Brockman et al.| [2016). For a fair
comparison we keep all components and hyperparameters of the underlying RL algorithms, POMP,
MBPO, and SAC, the same in all cases.

4.1 GENERALITY OF PETS

To address the first question, we integrate PETS into the leading RL algorithm in the continuous
setting, POMP (Zhu et al., 2023)), resulting in PETS-POMP. Additionally, we integrate PETS into
two other recent algorithms: A high-performing model-based algorithm, MBPO (Janner et al.| [2019),
and a well-established model-free algorithm, SAC (Haarnoja et al.,|2018b) resulting in PETS-MBPO
and PETS-SAC respectively. In all cases, we maintain the methodologies and hyperparameters of
the underlying algorithms, POMP, MBPO, and SAC. The comparison between PETS-POMP and
POMP can be viewed in Figure 3] As shown in the figure, PETS-POMP outperforms POMP on
several challenging continuous control tasks. Further, in Figure[T]and 2] we compare the performance
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Algorithm 1 PETS Pseudocode

Input: exploration probability €, number of posterior samples 7gmples, learning rates 7 and 7/,
whether to use gradient-based or gradient-free optimization use_grad, gradient-free procedure ),
number of gradient ascent steps Ngrad_steps, €Nvironment £, RL algorithm A

W = {wi,wa, ..., Wy, and w; ~ N (6, I) {Initialize posterior samples randomly }
2: Initialize the replay buffer B < ()
3: repeat

4:  Observe current state x from environment £

5:  Draw a random value p from Uniform(0, 1)
6: if p < e then
7: Wselected ~ Uniform(W)
8: if use_grad then
9: Initialize action a randomly or by following .A’s procedure
10: for j = 1 t0 Ngrad_steps dO
11: a4 a+1VaQuuw (T, @)
12: end for
13: else
14: a 4 V(Qupea) {(see Algorithm[2)}
15: end if
16: else
17: Find action a by following A’s procedure
18:  endif

19:  Take action a in environment &£, observe next state ' and reward r
20 B+« BU{(z,a,r,2")} {Add observation to the replay buffer}
21:  for each sample w; in W do

22: Draw a batch of observations from B ~ BB
23: w;i <+ w; =NV, Lq,, (B) + /28~ ne; {SGLD where ¢; is an isotropic Gaussian noise}
24:  end for

25:  Update RL algorithm .4 with observations from B
26: until convergence criterion is met
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Figure 1: Learning curves of PETS-MBPO (Ours) and MBPO on three continuous control tasks. The
solid lines represent the mean and the shaded areas represent the standard deviation among trials of 5
different seeds. The MBPO hyperparameters for PETS-MBPO and MBPO are the same across these
experiments. As shown in this figure, our exploration strategy improves the results of MBPO across
several tasks.

of PETS-MBPO with MBPO and PETS-SAC with SAC on several continuous control tasks. We
observe that in both cases, our exploration strategy improves the performance of MBPO and SAC
on several tasks. These sets of results demonstrate the effectiveness and generalizability of PETS in
improving the results and stability of different existing RL algorithms and its potential as an effective
exploration strategy.

4.2 COMPARISON WITH BASELINES

To address the second question, we evaluate the performance of PETS-POMP compared to six leading
model-free and model-based RL algorithms. As shown in Figure [3| both PETS-POMP with gradient-
free and PETS-POMP with gradient-based optimization outperform all the baselines on several
challenging tasks. Notably, our method achieves better performance on Humanoid and Ant, which
generally are considered to be the most challenging OpenAl Gym (Todorov et al.l 2012} [Brockman
et al., 2016)) tasks. Specifically, our method improves POMP’s results by 38%, 29%, and 11% on
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Figure 2: Learning curves of PETS-SAC (Ours) and SAC on three continuous control tasks. The
solid lines represent the mean and the shaded areas represent the standard deviation among trials
of 5 different seeds. The SAC hyperparameters for PETS-SAC and SAC are the same across these
experiments. As shown in this figure, our exploration strategy improves the results of SAC across
several tasks.
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Figure 3: Learning curves of PETS-POMP (Ours) and baselines on three of the most challenging
continuous control tasks from OpenAl Gym benchmark. GB-PETS-POMP and GF-PETS-POMP
correspond to our method using gradient-based and gradient-free optimization approaches, respec-
tively, for approximating the optimal action. The solid lines represent the mean and the shaded areas
represent the standard deviation among trials of 8 different seeds. Both implementations of our
method achieve better performance and training stability compared to the baselines. Specifically,
our method improves POMP’s results by 38%, 29%, and 11% on Walker2d, Ant, and Humanoid,
respectively. In each sub-figure, the small upper-left plot shows the zoomed-in comparison of our
method and POMP during the final iterations.

Walker2d, Ant, and Humanoid, respectively. This demonstrates the effectiveness of our method in
challenging continuous control tasks. Figure [6] further illustrates PETS-POMP’s performance on
three additional tasks: InvertedPendulum, Hopper, and Cheetah. The implementation details and
hyperparameter settings for all experiments are described in Appendix [B]

4.3 PETS EXPLORATION EFFECTIVENESS

In this section, to further investigate the reasons for PETS’s superior performance address the
third question, we visualize the diversity of actions taken by our exploration policy compared to
POMP’s policy (Zhu et al., 2023). To achieve this, we take PETS actions for 40 steps in the Hopper
environment, resulting in a trajectory of length 40. Starting from the same initial state, we take
POMP actions for the same number of steps. This process is repeated 30 times, resulting in 30
trajectories for each method. In Figure[d] we visualize the standard deviation of the hopper’s height
(z coordinate) at each step across these trajectories. PET’s actions result in a wider range of height
changes, demonstrating a greater diversity in the outcomes of actions taken by PETS compared to
POMP. This greater diversity, a result of PETS’ exploration, correlates with its superior performance
demonstrated in Figures 3| and [6}

4.4 ABLATION

In this section, we try to address the fourth question by investigating the effectiveness of maintaining
parallel posterior samples by conducting two ablation studies. First, we vary the number of parallel
posterior samples, n, and observe the returns in Figure [5a} As shown in the figure, larger values
of n result in a higher return. Second, we compare the results of maintaining n parallel posterior
samples to the case where we maintain only one posterior sample with a burn-in period (Sahlin,
2011) of n where n — 1 intermediate samples in Eq [IT] are discarded as discussed in Section [3]
Figure [5b| shows that maintaining multiple parallel samples results in a higher return compared to
using a single posterior sample with a longer burn-in period. As higher returns reflect a more effective
exploration, these ablation studies show that maintaining multiple parallel posterior samples leads to
better exploration by ensuring a more representative exploration of the posterior distribution.
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Figure 4: Visualization of action diversity for PETS and POMP in the Hopper environment. On the
left, the hopper’s state in the first iteration is shown. On the right, the range of changes in the hopper’s
height (z coordinate) is visualized over 40 steps, for PETS actions in red and POMP actions in blue.
To achieve this, we take PETS actions in the Hopper environment for 40 steps, generating a trajectory
of length 40. Starting from the same initial state, we take POMP actions for the same number of
steps. This process is repeated 30 times for both PETS and POMP, resulting in 30 trajectories for
each method. At each step, the standard deviation of the hopper’s height across these trajectories is
visualized. As shown, PETS demonstrates greater diversity in the outcomes of its actions, correlating
with its superior performance compared to POMP.
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Figure 5: (a) Learning curves of PETS-MBPO for three different values for number of parallel
posterior samples, n, averaged over three trials with different seeds in the Cheetah environment.
As shown, a larger value of n results in higher returns. This demonstrates the effectiveness of our
approach to improve exploration by maintaining a wide range of posterior samples. (b) Comparison
of maintaining multiple parallel posterior samples with the case of maintaining only one with a
burn-in period of n for the Markov chain generated by Eq[I1] The curves are averaged over three
trials with different seeds in the Hopper environment. As shown, maintaining multiple parallel
posterior samples leads to higher returns compared to maintaining one, demonstrating the capability
of this approach to generate less correlated posterior samples.

5 RELATED WORK

Exploration. As one of the most central research problems in RL, exploration has been extensively
studied. In this section, we discuss some of the works in this field, while recognizing that the breadth
of literature on exploration is far too vast to be comprehensively covered here. In the context of
discrete action spaces: |Osband et al.|(2014) shows that least-square value iteration using e-greedy
is highly inefficient. By introducing randomized least-square value iteration (RLSVI), they show
that randomized value functions can be efficient and effective. [Fortunato et al.|(2017) adds noise
to value and action-value functions with learned coefficients to boost exploration. |Auer (2003)
encourages exploration in the bandit setting by using confidence bounds and introducing bonuses for
less-visited arms. [Henaff et al.| (2023)) proposes to make use of both global and episodic bonuses to
improve exploration. (Chen et al.| (2017) proposes an exploration strategy based on UCB by leveraging
uncertainty estimates from the Q-ensemble to boost exploration. [Jarrett et al.|(2022) proposes to learn
representations of the future that capture the unpredictable aspects of each outcome and use that as
additional input for predictions. |Pislar et al.| (2021)) draws inspiration from animals and humans and
proposes mode-switching exploration in RL where they introduce an approach to adaptively switch
between modes of exploration. Furthermore, among the exploration approaches in the context of
continuous action spaces: Bellemare et al.|(2016) uses density models to measure uncertainty and
proposes a method to derive a pseudo-count from an arbitrary density model. [Lobel et al.| (2023)
proposes a count-based exploration strategy suited for high-dimensional state spaces. To this end,
they estimate visitation counts by averaging samples from the Rademacher distribution. [Pathak et al.
(2019)) trains an ensemble of dynamics models and incentivizes the agent to explore such that the
disagreement of those ensembles is maximized.
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Thompson Sampling. TS has been extensively studied in the multi-armed bandit (Slivkins et al.,
2019} [Kuleshov & Precup, [2014) setting. (Agrawal & Goyal, [2012) showed that TS achieves a
logarithmic expected regret and it is competitive to or better than UCB (Garivier & Moulines, 2011}
Garivier & Cappél 2011). [Komiyama et al.|(2015) adapted TS to the setting where multiple arms need
to be selected at the same time. In the contextual bandit setting, |Agrawal et al.|(2017) applies TS in

scenarios with linear payoffs and proves a high probability regret bound of O (%\/ T1+5>. Xu et al.

(2022) demonstrates that Laplace approximation (Chapelle & Lil 2011b) of the posterior distribution
is inefficient in high-dimensional settings. They leverage Langevin Monte Carlo (Langevin et al.|
1908) for posterior sampling and show that TS achieves a regret bound of O(d\/ﬁ ). Moreover,
Jin et al.| (2023)) introduces e-Exploring Thompson Sampling (e-TS) which selects arms based on
the posterior with a probability of €. They show that e-TS improves the computational efficiency
of TS while achieving better regret bounds. They further demonstrate the superiority of e-TS for a
range of reward distributions, such as Bernoulli, Gaussian, Poisson, and Gamma. |Ishfaq et al.|(2024)
demonstrates the effectiveness of Langevin Monte Carlo Thompson Sampling (LMC-TS) in Atari
games (Mnih et al.l 2013a) where the discrete action space contains at most 18 possible actions. They
prove that LMC-TS achieves the regret bound of O(d3/2H3/2\/T) in the linear MDP setting with
discrete actions under specific assumptions. While they demonstrate the effectiveness of TS in Atari
games (Mnih et al.|, [2013a), they do not address the challenges limiting the application of TS in
challenging continuous control tasks.

High-dimensional Continuous Control. While the mentioned challenges in Section [3.2] have
limited the application of TS in high-dimensional continuous control tasks, a great amount of
progress has been made by other methods, not necessarily focusing on the exploration/exploitation
trade-off. Among model-free algorithms, Schulman et al.[(2015]) improves policy updates by ensuring
small, incremental changes, using a trust region to maintain policy performance and stability by
using a surrogate objective function. Schulman et al.|(2017)) introduces a simple surrogate objective
function that lower-bounds the performance of a policy. In contrast to TRPO (Schulman et al.|
2015)), PPO (Schulman et al.,[2017) only requires first-order information to optimize the policy. SAC
(Haarnoja et al.| |2018a) tries to address the exploration/exploitation trade-off using the Maximum
Entropy Reinforcement Learning framework. On the other hand, model-based approaches have
shown great progress in improving the sample efficiency and performance of RL algorithms. POMP
(Zhu et al., 2023) incorporates Deep Differential Dynamic Programming (D3P) planner into the
model-based RL and shows significant improvement on MuJoCo tasks. MAGE (D’Oro & Jaskowskil,
2020) leverages the environment model differentiability to directly compute policy gradients. MBPO
(Janner et al.l 2019) makes use of the environment model with different horizons and shows that
their approach matches the asymptotic performance of the best model-free algorithms. CMLO (Ji
et al.,|2022) proposes an event-triggered mechanism to determine when to update the model of the
environment. DDPPO (Li et al.| [2022)) proposes a two-model-based learning method to control the
prediction and gradient error.

6 CONCLUSION

In this work, we introduced Practical e-Exploring Thompson Sampling (PETS), which aims to
address the challenges that have limited the application of Thompson Sampling (TS) in RL with
continuous control tasks. We draw insights from Langevin Monte Carlo (LMC) for posterior
sampling and propose an approach to maintain n parallel posterior samples, mitigating the issue of
sample correlation. Additionally, we employ both gradient-based and gradeient-free approaches to
approximate the optimal action and provide theoretical guarantees that under regularity conditions,
replacing the exact optimal action with an approximate one found by gradient-based optimization

achieves the best-known regret bound of O (d?’/ 2H3/2\/T ) To validate PETS’s effectiveness

as an exploration strategy, we integrated it into POMP (Zhu et al., 2023), MBPO (Janner et al.,
2019) and SAC (Haarnoja et al.l[2018b)). Our empirical results demonstrate PETS’s effectiveness
in improving the performance and training stability of existing RL alorithms across a range of
challenging continuous control tasks.
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A ADDITIONAL RESULTS

InvertedPendulum Cheetah Hopper

Average Return

Average Return
Average Return
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Figure 6: Learning curves of PETS-POMP (Ours) and baselines on three continuous control tasks
from OpenAl Gym benchmark. The solid lines represent the mean and the shaded areas represent the
standard deviation among trials of 8 different seeds. As shown in the figure, our method achieves better
performance compared to baselines on InvertedPendulum and Cheetah while achieving comparable
results on Hopper. Moreover, PETS-POMP outperforms POMP on all tasks while also improving its
training stability.

B IMPLEMENTATION DETAILS

In this section, we provide some details for the implementation of our method.

B.1 DBAS DETAILS

Here we provide more implementation details for DBAS (Brookes & Listgarten, 2018). The pseu-
docode for DBAS procedure can be found in Algorithm 2] In our method, we use a mixture of
Gaussians as the generative model G. We use the Expectation-Maximization (E-M) algorithm (Moon),
1996) to train the mixture of Gaussians. Furthermore, we use an initial set of actions drawn from the
policy for zini. We repeat the DBAS procedure (Line[5]of Algorithm [2) for 10-20 iterations.

Algorithm 2 DBAS

Input: predictor oracle O(x), GenTrain(z;), percentage of least-performing samples [¢ = 0.9],
number of samples [M = 1000], initial data set [ziy; = 0]

1: set < Tinit

2: if xipy is empty then
3 set < randomly initialized data
4: end if
5: while not converged do
6: G + GenTrain(set)
7.
8
9
0
1

set < x; ~ G

scores; < O(x;)
: set « x; if it is not among the ¢ percentage least-performing samples based on scores
: end while

1
11: return setg

B.2 HYPERPARAMETERS

In Table[T|and Table[2]and 3] we present the set of hyperparameters used in PETS-POMP, PETS-MBPO
and PETS-SAC respectively.
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B.3 ACTION INITIALIZATION

When using gradient-based optimization to find the approximate optimal action, action initialization
can make a difference in the quality of the approximation. This also can be seen in our regret analysis
in Appendix [C] We empirically have found that initializing the action with an action sampled from

the policy helps with getting better approximations.

Table 1: Set of hyperparameters used in PETS-POMP.

P};Ygﬁiil Walker2d Cheetah Ant Humanoid Hopper
¢ exploration 0.6 0.3 08 03 0.8 0.8
probability
number of
Tsamples — hosterior samples 3 5 50 10 5 10
number of gradient
Mndsers | aseont aeps 40 100 100 60 100 50
o gradient ascent g 602 0.01 001 005 005  0.005
earning rate

Table 2: Set of hyperparameters used in PETS-POMP.

Cheetah Ant Hopper

exploration
€ probability 0.8 0.4 0.4
egaples number of 50 5 5

posterior samples
number of gradient
ascent steps
, gradient ascent
N learning rate

100 40 40

Thgrad_steps

0.01 0.01 0.01

Table 3: Set of hyperparameters used in PETS-SAC.

Cheetah Ant Hopper

exploration
. probability S
number of 5 5
Nsamples posterior samples

number of gradient
ascent steps
, gradient ascent
K learning rate

20 40 80

Tgrad_steps

0.02 0.01 0.01

C REGRET ANALYSIS

We expand upon the regret analysis presented in [Ishfaq et al.|(2024])), extending it to approximate
greedy policies. We demonstrate that under certain assumptions on the action-value function, the

regret bound of O (d3/2H3/2\/T) can be achieved, even when the optimal action a* cannot be

trivially identified and has to be approximated.

To this end, we first state the analysis setting. Consider an episodic MDP of the form (S, A, H, P, r)
where S is the state space, A is the continuous action space, H is the episode length, P = {P, }/_,
are the state transition probability distributions, and r = {r),}}__, are the reward functions where

T}LZSXA%[O,H.
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Furthermore, 7}, () denotes the action that the agent takes in the state x at the h-th step in the episode,
and  is the set of policies. The value and action-value functions are defined as:

H
Vi (@) = Eq [Z i (an ) | @ = x] |

h'=h

QZ(I,CL) = ]E‘ﬂ'

H
Z rh (Tpryap) | o = T,ap = a] )

h'=h
The Bellman equation and Bellman optimality equations are as follows:
QZ(:LQ a) = (rh + thfzr+1) (CL‘, a)7 szr(x) = Q;Lr (CL‘, 7Th(‘r)) ) VI‘[{TJrl(‘(L') = 0.

QZ(Z‘,G) = (rh—’—PhV;—&-l) (ac,a), Vi;k(x) :QZ (.Z‘,TF;;(J?)), V:I—i—l(x) :O
where V¥ (z) = Vi (2), Q;(2,a) = QF (x,a), 7 is the optimal policy and [PV}, 11] (z,a) =
]EIIN]P)}L(“:E7G,)V]—L+1 (iC/)

We measure the suboptimality of an agent by the total regret defined as

K
Regret(K) = 37 [v7 (a}) = V™" (a})] (14)
k=1

where x¥ is the initial state and 7, is the policy agent uses for episode k. and K is the total number of
episodes which the agent interacts with the environment with the goal of learning the optimal policy.

Consider the following loss function for the action-value function from [Ishfaq et al.[(2024)):

k—1 2
Lj; (wn) =) {rh (@h, ah) + max Qi (27115 0) = Q (wn; ¢ (7, a;))] +Mwnl® - A5)
=1

where ¢(., .) is a feature vector, wy, is the Q function parameters and ) is the regularization constant.
We consider a linear function approximation for the Q function and:

QZ(7) <_mln{¢(7)Tw}]j7Jk7H_h+1}+ (16)

where w,’j"]’“ is the parameter vector obtained after J;, iterations of the Langevin Monte Carlo (LMC)
process, applied to the loss function defined in Eq. equation as described in Algorithm [3] We
further denote V;*(2F) = maxq,c4 QF (2}, a).

Note that while the action-value function Q¥ is linear with respect to the parameter vector w, it
is not necessarily linear in the action a. Furthermore, the loss function L¥ (wy,) includes the term
Vh’C 1 (27, 41), which, in a high-dimensional continuous action space, cannot be computed exactly due
to infinite actions. Consequently, in Algorithm [3]and our regret analysis, we substitute this term with

the approximate value function, Vf, as defined in Equation equation This approach leads to the
formulation of the following modified loss function:

E

—1 . 9
Lk (wn) = 3 [rn (a7, 0) + Vi (@70) = Q (wns o (wh ap)) | + Aljwnl® (17)
1

T

We present a modified version of the Langevin Monte Carlo Least Squares Value Iteration
(LMC_LSVI) algorithm (Ishfaq et al., 2024) in Algorithm [3] Contrasting with Algorithm 1 in
Ishfaq et al.| (2024), Algorithm [3|incorporates the use of an approximate value function, denoted as
V, and employs approximate optimal actions. In the subsequent sections, we demonstrate that under
certain assumptions about the action-value function, Algorithm [3]achieves the same target regret
bound.
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Algorithm 3 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) with Approximate
Greedy Policy

Input: step sizes {nx > 0} k>1» inverse temperature {Br} k>1» loss function
Li(w)

1: Initialize w,* = 0 for h € [H],Jo =0

2: forepisode k =1,2,..., K do

3:  Receive the initial state s¥

4. forsteph=H,H—1,...,1do
5: w0 = b Ik
h h

6: forj=1,...,J;do

7: EZ’] ~ N(0,1)

8: wZ’J = w,’i’ﬂ_l — e VLE (wi’y_l) + \/2nkﬁ,€_162’3
9: end for

Jr

10: Qb ) min{Q (wp7 o)) H —h+1]

11: initialize set of actions aj,

12: for iterationt = 1,2,...,t" do

13: ap, = af,_, +VQ(,ay, ) {as outlined in Eq }
14: end for

15: V() < Q(., a ,-) {approximate optimal value}

16:  end for

17. forsteph=1,2,...,H do

18: Take approximate optimal action aﬁ based on a’fm* , observe reward r,’i (sfl, aﬁ) and next

state sy

19:  end for
20: end for

Proposition C.1. As defined in|Ishfaq et al.| (2024)), let w*”* be the approximation of posterior
parameters after Jy, iterations of LMC as defined in Eq|l I|for the k’th episode where h is the horizon
step. Under the loss defined in Eq wk 7% follows a Gaussian distribution where the mean vector
and covariance matrix are defined as:

k
T = Al AP e YA Al (T-al) @, as)
i=1
k
1 _ o\ — _ _
=3 A ALY (r=a2) () a+ Ayt Al Al a9
i=1""

where A; = I — 2n; Al fori € [k].

Proof. We refer readers to Proposition B.1 of [Ishfaq et al.| (2024) for the proof. O

Definition C.2. (Model Prediction Error). For any (k, h) € [K] x [H]|, we define the model prediction
error associated with the reward r;,,

(@, a) = ra(,0) + PV (2, 0) — Q4(a, ). (20)
Proposition C.3. For an action-value function Q(x,.) that has an L-Lipschitz continuous gradient
and satisfies the Polyak-Lojasiewicz Inequality (PL) inequality for some 1 > 0 as stated below:

1
S IVQL( a)l* = 1 (Qh(2,0) - Qfi(w,a")),  Va. @1)

where
a* = argmax, Q¥ (zp,, a)

k * k
is the optimal action. For t* >= (l%log(KH Qh(igg’;lz 21;/622}:5;}“@0)

th(ffh) - th(xh) < g (22)

)) iterations we have:

d3/2F8/2 /T

where e« = W
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Proof. As proved in Theorem 1. of [Karimi et al.|(2020), with the step size of %, for an action-value
function Q(x, .) that has an L-Lipschitz continuous gradient and satisfies the PL inequality, we have

t
Qhnsa) = Qh(ana) < (1= ) (@h(wn,a*) = Qh(wn,a0)) (23)

where a; is the action after ¢ iteration of gradient ascent:
a1 = a; + VQp (an, ar) 24)

using 1 — u < exp(—u) on Eq[23|we have

Qh(ensa*) = Qh(ans ar) < exp (<4 ) (Qh(wn.a*) = Qh(an. o))

So for t* >= %log(KH Qﬁ(wh’a*)fQﬁ(aih’aO)) we have:

d3/2H3/2ﬁ
. d3/2 H3/2\/T
Qn(@n,a®) = Q(@n, @) €~ = ere (25)
by applying the definition of V}* we have:
Vii(an) = Vi (2n) < e (26)
O

Proposition C.4. Under the approximate value function V,f we have:
Ph‘/hl,c-&-l (:Ca a) - ]P)hvhk-kl (l’, a) < e (27)
where £+ is defined in Proposition|[C.3]

Proof. Applying the definition of IP;, we have:

[PrVis1] (2, 0) = By ip, (1o,a) Vst (27) < Europy ey Vg (@) + €40 (28)
= [PVis] (w,0) + 20 (29)
where the first to the second line is by using Proposition [C.3} O

Lemma C.5. Let A = 1 in Eq[I7] Define the following event
E(K,H,0) = {’qﬁ(a:,a)—r@,lj —rp(z,a) — IP’thk’+1(x,a)|
< 5H\/305qu(x,a)H(Ak)fl,V(h,k) € [H] x [K] and¥(z,a) € S x A}.
h

(30)
where we denote
1 2v2K Bs s 91"
Cs = ilog(KJr 1) +log (H) +1lo 61
and Bs = (%Hd\/[i{Jr B?B%ds/z). Then we have P(E(K,H,0)) > 1 — 0.
Proof. We refer readers to Lemma. B5. of (Ishfaq et al.| [2024)) for the proof. O

Lemma C.6. Let A\ = 1 in Eq[I7] For any § € (0,1) conditioned on the event (K, H, ), for all
(h,k) € [H] x [K] and (z,a) € S x A, with probability at least 1 — 62, we have

= (ra(@,a) + PV (2, 0) = Qf(x, a)lj (2, a)) (31)
2dlog(1/0)
< <5H\/306+5 351("'4/3> H@b(%G)H(Aﬁ)—la (32)

where Cy is defined in Lemma[C.3]
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Proof. We refer readers to Lemma. B.6 of (Ishfaq et al.,[2024) for the proof. O

Lemma C.7. (Error bound). Let A = 1 in Eq - For any ¢ € (0,1) conditioned on the event
E(K, H,0), forall (h,k) € [H] x [K] and (x,a) € S x A, with probability at least 1 — &2, we have

2dlog(1/6)

1 (x,a) < (5H[C +5 3

+4/3> 6wl (ppy +eers G

Proof. using Lemma|C.6|and Proposition [C.4] we have:
- (Th(xv a’) + PthkJrl(xa a) - QZ(% a)lﬁ(m, (l) + 8t*>
2dlog(1/6
= If(x,a) —et* < | BHVACs +5 2dlog(1/9) +4/3 | lo(z,a)|l, yny-1
35]( (Ah)
O
Lemma C.8. Let A = 1 in Eq[I7] Conditioned on the event E(K, H, ), for all (h, k) € [H] x [K]
and (z,a) € S x A, with probability at least \/7 we have
= (ru(w, @) + PV (3,0) — Qi(,0)) <0 (34)

Proof. We refer readers to Lemma. B.7 of (Ishfaq et al.,|2024)) for the proof. O

Lemma C.9. (Optimism). Let A\ = 1 in Eq . Conditioned on the event E(K, H,§), for all
(h,k) € [H] x [K] and (z,a) € S x A, with probability at least \/7 we have

lj(2,a) <0 (35)
Proof. We immediately get the stated result by using Proposition|[C.4on Lemma|[C.§] O

‘We restate the main theorem:

Theorem C.10. Let A = 1 in Eq = O(H/d) in Algorithmand § € (2\/12?,1). For

any episode k € |K), let the learning rate 1, = 1/ (4\max (A})), the update number for LMC in
Eqbe Ji = 2k log(4H K d) where ki = Amax (Afl) / Amin (A],?L) is the condition number 0fAfL
defined in Proposition Under the assumption that the action-value function Qfl in thas

an L-Lipschitz continuous gradient and satisfies the Polyak-Lojasiewicz Inequality (PL) inequality
Eq[21) the regret of Algorithm[Blunder the regret definition in Definition[I4] satisfies

Regret(K) = O (d3/ 23/ zﬁ) , (36)
with probability at least 1 — 0.

Proof of Theorem|[C.10] By Lemma. 4.2 in (Cai et al., [2020), it holds that

K
Regret(T) = (Vi (a4) = V7" (a}) ) (37)

k=1

H K H
D Eee (@ (@ny) o mh (L wn) =k ([ @) 20 = 2f] +> Y Dy (38)

1t=1 k=1 t=1
@ (i)

K H K H
+ZZM§+ZZ o lh xh,ah)|$1—xk] _lh (xhva;i)) (39

k=1t=1 k=1h=1

M=

b
Il

(iii) (iv)
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where (.,.) denotes inner product which in continuous spaces is defined as (f, g) = [, f()g(t) dt.
Furthermore, DZ and MZ are defined as

Dh = ((@h - QF") (b, )k (b)) — (@ - Q1) (ahah)

M =By (Vi = Vit )) (ahoaf) = (Vit —vith) (o).

Bounding Term (i):  Using Proposition [C.3|we have Q(zp,a*) — Q(zp, ar+) < 4=

Note that W}’j is approximately greedy w.r.t Qﬁ and W}’j (at+) = 1 where a;- is the approximate optimal

greedy action from Eq The largest value that (QF (z,,-) , 7} (- | @n) — @ (- | x4)) in chan
take is Q(xn, a*) — Q(xn, as+ ) which happens if 7} (a*) = 1 where a* = argmax,, Q¥ (zp, a). This
completes the proof using Eq[25]

Bound for Term (ii): With probability 1 — §/3 we have:

DF < \/2H2T1og(3/6) (40)

M=

>

k=1

>
Il

1

We refer the readers to the Appendix. B.2 of (Ishfaq et al.,[2024) for the proof.

Bound for Term (iii): With probability 1 — §/3 we have:

K H
DS My < 2H?Tlog(3/9). A1)

k=1h=1

We refer the readers to the Appendix. B.2 of Ishfaq et al.|(2024) for the proof.

Bound for Term (iv): With probability at least (1 - g -3 \/12?> we have:

K H
SN B [l (wnoan) | @1 = 2] — 1 (f,af)) <O (d3/2H3/2\/T) (42)
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Suppose the event £ (K, H, §’) holds. by union bound, with probability 1 — (5’ 2+ 5 \/12?) , we have,

=

M=

(Ene [} (xnyan) | 21 = 2] = 15, (), af)) (43)

=~
[
—
>
Il

—li (=5, af) (44)

[N
N
M= 0=

i 2dlog (1/5")
<> 5HVdCys + 5 T ¢ (zf, af H apy K He (45)
k=1h=1 P
K H
- <5H¢&05,+5 e LD 3) 23116 (b ah) | g + K Her (46)
P k=1h=1
2dlog (1/6' ul i
< <5Hf0 +5 (;i;/)% 3) Z\/?<ZH¢ 2t af) [ ) > + K Hey-
K h=1
47)
/
< <5H\/QC(;/ +5 26“%(1/5) + 4/3) H\/2dK log(1 + K) + K Hey- (48)
K
/
- <5H\/305/ +5 2‘“%(1/5) + 4/3) V2dHT log(1 + K) + K He,- (49)
K
/
- <5H¢&05/ +5 M@W + 4/3) V2dHT log(1 + K) + (d3/2H3/2\/:F) (50)
K
-0 (d3/2H3/2\/T) . (51)

Here the first, the second, and the third inequalities follow from Lemma[C.9] Lemma|[C.7]and the
Cauchy-Schwarz inequality respectively. The last inequality follows from Lemma [C.5| The last
equality follows from W = 10HVdCjy +3 8 which we defined in Lemma By Lemma

the event £ (K, H, ¢") occurs with probability 1 — ¢’. Thus, by union bound, the event £ (K, H, 0 )
occurs and it holds that
K H ~
Z (Eﬂ* [l’,i (Zp,ap) | 21 = m’ﬂ — 1k (mﬁ,aﬁ)) <0 (d3/2H3/2\/T)

k=1h=1

By applying union bound for (i), (ii), (iii) and (iv), the final regret bound is 0] (d3/2H3/2\/T) with
at least probability 1 — § where § € (-—7=— \/7 1).

1
Theorem C.11. Let A = 1 in Eq L — O(HVd) in Algorzthmandd € (m,l). For

any episode k € [K|, let the learmng rate mj, = 1/ (4Xmax (A})), the update number for LMC
in Eq|ll|be Ji, = 2k log(4HKd) where ki = Amax (Aﬁ) / Amin (Aﬁ) is the condition number
of A’,?L defined in Proposition Let W = [wy,ws,...,w,]|T be the extended parameter space
and Q(x,a) = max;c[n) Qu, (T, a) be the optimistic action-value function. Under the assumption

that the action-value function Q »in kg . has an L-Lipschitz continuous gradient and satisfies
the Polyak-Lojasiewicz Inequallty (PL) inequality Eq[21) the regret of Algorithm[3|under the regret
definition in Definition (l4] satisfies

Regret(K) = O (d3/2H3/2\/T) , (52)

with probability of 1 — € for any ¢ € (0,1).
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Proof of Theorem In Lemma B.9 we prove that the estimation Q¥ (x, a) is optimistic with a

constant probability of at least 3 \/12? In other words, the failure probability is at most 1 — —*X

2v2er”
By extending the parameter space 1 = [wy, ws, . . ., w,]T and modelling the optimistic action-value
function using Q(z, a) = max;e[n) Qu, (, a), the failure probability will be at most (1 — 2\/12?)”
We want this probability to be arbitrarily small. To guarantee that the failure probability is less than

¢ it suffices to find an n that is large enough such that (1 — 5 \/12?)” < €. If we solve for n we have

_ loge’ . log(1/6) ,
n > T p—— We can express the latter quantity as log(2v3er) —log (22 —1) € Qlog(1/¢€)).

So, we can extend the parameter space by a factor of (log(1/€’)) to ensure that the failure probability
is less than €’. Finally, we can apply the union bound on (i), (ii), (iii), and (iv) to conclude that the
regret bound in Theorem holds with a probability of 1 — ¢’ for any ¢’ € (0,1).
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