
A Bayesian Approach to Robust Inverse
Reinforcement Learning

Ran Wei1, Siliang Zeng2, Chenliang Li1, Alfredo Garcia1, Anthony McDonald3, Mingyi Hong2

1Texas A&M University, 2University of Minnesota, 3University of Wisconsin
{rw422, chenliangli, alfredo.garcia}@tamu.edu

{zeng0176, mhong}@umn.edu, {admcdonald}@wisc.edu

Abstract: We consider a Bayesian approach to offline model-based inverse rein-
forcement learning (IRL). The proposed framework differs from existing offline
model-based IRL approaches by performing simultaneous estimation of the ex-
pert’s reward function and subjective model of environment dynamics. We make
use of a class of prior distributions which parameterizes how accurate the expert’s
model of the environment is to develop efficient algorithms to estimate the expert’s
reward and subjective dynamics in high-dimensional settings. Our analysis reveals
a novel insight that the estimated policy exhibits robust performance when the
expert is believed (a priori) to have a highly accurate model of the environment. We
verify this observation in the MuJoCo environments and show that our algorithms
outperform state-of-the-art offline IRL algorithms.1

Keywords: Inverse Reinforcement Learning, Bayesian Inference, Robustness

1 Introduction

Inverse reinforcement learning (IRL) is the problem of extracting the reward function and policy of a
value-maximizing agent from its behavior [1, 2]. IRL is an important tool in domains where manually
specifying reward functions or policies is difficult, such as in autonomous driving [3], or when the
extracted reward function can reveal novel insights about a target population and be used to device
interventions, such as in biology, economics, and human-robot interaction studies [4, 5, 6]. However,
wider applications of IRL face two interrelated algorithmic challenges: 1) having access to the target
deployment environment or an accurate simulator thereof and 2) robustness of the learned policy
and reward function due to the covariate shift between the training and deployment environments or
datasets [7, 8, 9].

Figure 1: Objectives of the traditional two-stage
IRL and the proposed simultaneous estimation ap-
proach of Bayesian model-based IRL.

In this paper, we focus on model-based offline
IRL to address challenge 1). A notable class of
model-based offline IRL methods estimate the
dynamics and reward in a two-stage fashion (see
Figure 1) [10, 11, 12, 13]. In the first stage, a
dynamics model is estimated from the offline
dataset. Then, the dynamics model is fixed and
used as a simulator to train the reward and policy in the second stage. To overcome covariate shift in
the estimated dynamics, recent methods design density estimation-based “pessimistic” penalties to
prevent the learner policy from entering uncertainty regions in the state-action space (i.e., space not
covered in the demonstration dataset) [14, 13, 12].

We instead approach IRL from a Bayesian modeling perspective, where we simultaneously estimate
the expert’s reward function and their internal model of the environment dynamics. The core idea is
that expert decisions convey their beliefs about the environment [15, 16] and thus should affect the
update direction of the dynamics model. This Bayesian model of perception and action, related to

1https://github.com/rw422scarlet/bmirl_tf

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://github.com/rw422scarlet/bmirl_tf

Bayesian Theory of Mind [15], has been used to understand human biases encoded in the internal
dynamics in simple and highly constrained domains [17, 16, 18, 19, 20, 21, 22, 23, 24]. In contrast to
these works, we study how a Bayesian model enables learning high-performance and robust policies.

We first propose a class of priors parameterizing how accurate we believe the expert’s model of the
environment is. We then present our key observation that if the expert is believed a priori to have
a highly accurate model, robustness emerges naturally in the Bayesian modeling framework by a
simultaneous estimation approach in which planning is performed against the worst-case dynamics
outside the offline data distribution. We then analyze how varying the prior affects the performance of
the learner agent and pair our analysis with a set of algorithms which extend previous simultaneous
estimation approaches [18, 19] to high-dimensional continuous-control settings. We show that
the proposed algorithms outperform state-of-the-art (SOTA) offline IRL methods in the MuJoCo
environments without the need for designing pessimistic penalties.

2 Preliminaries

2.1 Markov Decision Process

We consider modeling agent behavior using infinite-horizon entropy-regularized Markov decision pro-
cesses (MDP; [25]) defined by tuple (S,A, P,R, µ, γ) with state space S , action space A, transition
probability distribution P (s′|s, a) ∈ ∆(S), reward function R(s, a) ∈ R, initial state distribution
µ(s0) ∈ ∆(S), and discount factor γ ∈ (0, 1). We denote the discounted occupancy measure
as ρπP (s, a) = Eµ,P,π [

∑∞
t=0 γ

tP (st = s, at = a)] and the marginal state-action distribution as
dπP (s, a) = (1− γ)ρπP (s, a). We further denote the discounted occupancy measure starting from a
specific state-action pair (s, a) with ρπP (s̃, ã|s, a). The agent selects actions from an optimal policy
π(a|s) ∈ ∆(A) that achieves the maximum expected discounted cumulative rewards and policy
entropy H(π(·|s)) = −

∑
ã π(ã|s) log π(ã|s) in the MDP:

max
π

JP (π) = Eµ,P,π

[∞∑
t=0

γt
(
R(st, at) +H(π(·|st))

)]
(1)

The optimal policy satisfies the following conditions [26]:

π(a|s) ∝ exp (Q(s, a))

Q(s, a) = R(s, a) + γEP (s′|s,a) [V (s′)]

V (s) = log
∑
a′

exp (Q(s, a′))
(2)

2.2 Inverse Reinforcement Learning

The majority of contemporary IRL approaches have converged on the Maximum Causal Entropy
(MCE) IRL framework, which aims to find a reward function Rθ(s, a) with parameters θ such that
the entropy-regularized learner policy π̂ has matching state-action feature with the unknown expert
policy π [27].

A related formulation casts IRL as maximum discounted likelihood (ML) estimation [28, 29, 30],
subject to the constraint that the policy is entropy-regularized. Given a dataset of N expert trajectories
each of length T : D = {τi}Ni=1, τ = (s1:T , a1:T) sampled from the expert policy in environment P
with occupancy measure ρD := ρπP , ML-IRL aims to solve the following optimization problem:

max
θ

E(st,at)∼D

[
T∑

t=0

γt log π̂θ(at|st)

]
, s.t. π̂θ(a|s) = argmax

π̂∈Π
Eρπ̂

P
[Rθ(s, a) +H(π̂(·|s)] (3)

where the policy is implicitly parameterized by the reward parameters θ.

It can be shown that for sufficiently large T → ∞, MCE-IRL and ML-IRL are equivalent under
linear reward parameterization [28, 29], however (3) permits non-linear reward parameterization

2

through the following surrogate optimization problem:

max
θ

EρD [Rθ(s, a)]− Eρπ̂
P
[Rθ(s, a)] , s.t. π̂θ(a|s) = argmax

π̂∈Π
Eρπ̂

P
[Rθ(s, a) +H(π̂(·|s)] (4)

(4) can be efficiently solved via alternating training of the learner policy and the reward function,
similar to Generative Adversarial Network (GAN)-based algorithms [31, 32, 33, 34, 35, 36]. However,
these methods all require access to the ground truth environment dynamics or a high quality simulator
in order to compute or sample from the learner occupancy measure ρπ̂P .

2.3 Offline Model-Based IRL & RL

Existing offline model-based IRL algorithms such as [10, 11] adapt (4) using a two-stage process.
First, an estimate P̂ of the environment dynamics is obtained from the offline dataset, e.g., using
maximum likelihood estimation. Then, P̂ is fixed and used in place of P to compute ρπ̂

P̂
while

optimizing (4). However, this simple replacement incurs a gap between (4) and (3) which scales with
the dynamics model error and the estimated value [13]. This puts a high demand on the accuracy of
the estimated dynamics.

A related challenge is to prevent the policy from exploiting inaccuracies in the estimated dynamics,
which can lead to erroneously high value estimates. This has been extensively studied in both online
and offline model-based RL literature [37, 38, 39, 40]. The majority of recent offline model-based
RL methods combat model-exploitation via a notion of “pessimism”, which penalizes the learner
policy from visiting states where the model is likely to be incorrect [37]. These pessimistic penalties
are often designed based on quantifying uncertainty about transition dynamics through the estimated
model [41, 42]. Drawing on these advances, recent offline IRL methods also incorporate pessimistic
penalties into their RL subroutine [13, 12, 14]. However, designing pessimistic penalties involves
nontrivial decisions to ensure that they can accurately capture out-of-distribution samples [43].

An alternative approach to avoid model-exploitation is to perform policy training against the worst-
case dynamics in out-of-distribution states [44], similar to robust MDP [45, 46]. Rigter et al. [47]
implemented this idea in the RAMBO algorithm and showed that it is competitive with pessimistic
penalty-based approaches while requiring no penalty design and significantly less tuning. We will
show that robust MDP corresponds to a sub-problem of IRL under the Bayesian formulation.

We list additional related work in Appendix A.

3 A Bayesian Approach to Model-based IRL

We consider model-based IRL under a Bayesian framework (BM-IRL), where the observed expert
decisions are the results of the unknown reward function Rθ1(s, a) and their internal model of the
environment dynamics P̂θ2(s

′|s, a).

We denote the concatenated parameters with θ = {θ1, θ2} and condition the policy on θ as π̂(a|s; θ)
to emphasize that the expert configuration is determined by both the reward and dynamics parameters.

Upon observing a finite set of expert demonstrations D, BM-IRL aims to compute the posterior
distribution P(θ|D) given a choice of a prior distribution P(θ):

P(θ|D) ∝ P(D|θ)P(θ) =
N∏
i=1

T∏
t=1

π̂(ai,t|si,t; θ)P(θ) (5)

where we have omitted
∏N

i=1

∏T
t=1 P (si,t+1|si,t, ai,t) from the likelihood because it does not depend

on θ.

We consider a class of prior distributions of the form:

P(θ) ∝ exp

(
λ

N∑
i=1

T∑
t=1

log P̂θ2(si,t+1|si,t, ai,t)

)
(6)

3

where the prior precision hyperparameter λ represents how accurate we believe the expert’s model of
the environment is.

Let L(θ) := 1
NT logP(θ|D). It can be easily verified that

L(θ) = E(s,a,s′)∼D

[
log π̂(a|s; θ) + λ log P̂θ2(s

′|s, a)
]

In this paper, we consider finding a Maximum A Posteriori (MAP) estimate of the BM-IRL model by
solving the following bi-level optimization problem:

max
θ

L(θ), s.t. π̂(a|s; θ) = argmax
π̂∈Π

Eρπ̂
P̂
[Rθ(s, a) +H(π̂(·|s))] (7)

Note that this formulation differs from (3) and the two-stage approach (see Figure 1) because it
includes the log likelihood of the internal dynamics in the objective (weighted by λ).

It should be noted that obtaining the full posterior distribution (or an approximation) is feasible using
popular approximate inference methods (e.g., stochastic variational inference or Langevin dynamics
[48, 49]) and does not significantly alter the proposed estimation principles and algorithms.

3.1 Naive Solution

We start by presenting a naive solution to (7) which can be seen as an extension of the tabular
simultaneous reward-dynamics estimation algorithms [18, 19] to the high-dimensional setting.

Solving (7) requires: 1) computing the optimal policy with respect to θ, and 2) computing the gradient
∇θ log π̂(a|s; θ) which requires inverting the policy optimization process itself. Both operations can
be done exactly in the tabular setting as in prior works but are intractable in high-dimensional settings.
We propose to overcome the intractability using sample-based approximation.

In this section, we focus on approximating the gradient of the policy ∇θ log π̂(a|s; θ) and construct-
ing a surrogate objective similar to (4) to perform simultaneous estimation. We can show that
∇θ log π̂(a|s; θ) has the following form (see Appendix B for all proofs and derivations):

∇θ log π̂(a|s; θ) = ∇θQθ(s, a)− Eã∼π̂(·|s;θ)[∇θQθ(s, ã)] (8)

where ∇θQθ(s, a) = [∇θ1Qθ(s, a),∇θ2Qθ(s, a)] is the concatenation of reward and dynamics
gradients defined as:

∇θ1Qθ(s, a) = Eρπ̂
P̂
(s̃,ã|s,a) [∇θ1Rθ1(s̃, ã)] (9)

∇θ2Qθ(s, a) = Eρπ̂
P̂
(s̃,ã|s,a)

[
γ
∑
s′

Vθ(s
′)∇θ2 P̂θ2(s

′|s̃, ã)

]
(10)

Given (9) and (10) are tractable to compute using sample-based approximation of expectations,
we construct the following surrogate objective L̃(θ) with the same gradient as the original MAP
estimation problem (7):

L̃(θ) = E(s,a)∼D[Eθ(s, a)]− Es∼D,a∼π̂[Eθ(s, a)] + λE(s,a,s′)∼D[log P̂θ2(s
′|s, a)] (11)

where

Eθ(s, a) = Eρπ̂
P̂
(s̃,ã|s,a) [Rθ1(s̃, ã) + γEVθ(s̃, ã)] , EVθ(s, a) =

∑
s′

P̂θ2(s
′|s, a)Vθ(s

′) (12)

Optimizing (11) (subject to the same policy constraint) is now the same as optimizing (7) but tractable.

An interesting consequence of maximizing the first two terms of (11) alone (excluding the prior) is
that we both increase the reward and modify the internal dynamics to generate states with higher
expected value (EV) upon taking expert actions then following the learner policy π̂, and we do the
opposite when taking learner actions. Intuitively, reward and dynamics play complementary roles in
determining the value of actions and thus should be regularized [50, 16, 51]. Otherwise, one cannot
disentangle the effect of truly high reward and falsely optimistic dynamics. Our prior (6) alleviates
this unidentifiability to some extent.

4

3.2 Robust BM-IRL

We now present our main observation that robustness emerges from the BM-IRL formulation under
the dynamics accuracy prior (6).

We start by analyzing a discounted, full-trajectory version of the BM-IRL likelihood (7). Note that
discounting does not change the optimal solution to (7) under expressive reward and dynamics model
class; nor does it require infinite data because we can truncate the summation at T = int

(
1

1−γ

)
and obtain nearly the same estimator as with infinite sequence length. Using a result from [13], we
decompose the discounted likelihood as follows (see Appendix B.2):

EP (τ)

[∞∑
t=0

γt log π̂(at|st; θ)

]
= EP (τ)

[∞∑
t=0

γt (Qθ(st, at)− Vθ(st))

]

= EρD

[
Rθ1(st, at)

]
− Eµ

[
Vθ(s0)

]
︸ ︷︷ ︸

ℓ(θ)

+ γEρD

[
Es′∼P̂θ2

(·|st,at)
Vθ(s

′)− Es′′∼P (·|st,at)Vθ(s
′′)

]
︸ ︷︷ ︸

T1

(13)

where T1 corresponds to the value difference under the real and estimated dynamics. We can show that
T1 is negligible if the estimated dynamics is accurate, e.g. E(s,a)∼P (τ)DKL(P (·|s, a)||P̂ (·|s, a)) ≤ ϵ
for sufficiently small ϵ, under the expert data distribution, which can be achieved by setting a large λ.
Then, T1 can be dropped and the discounted likelihood reduces to ℓ(θ).

ℓ(θ) highlights the reason why the proposed BM-IRL approach can be robust to limited dataset. It
poses the offline IRL problem as maximizing the cumulative reward of expert trajectories in the
real environment, and minimizing the cumulative reward generated by the learner in the estimated
dynamics with respect to both reward and dynamics. In other words, it aims to find performance-
matching reward and policy under the worst-case dynamics, which is trained adversarially outside the
offline data distribution. This connects BM-IRL with the robust MDP approach to offline model-based
RL [44, 47]. We refer to this version of BM-IRL as robust model-based IRL (RM-IRL).

3.3 Proposed Algorithms

We now propose two scalable algorithms to find the MAP solution to (7) via the surrogate objective
(11). The first algorithm (BM-IRL; 1) applies the naive solution, while the second algorithm
(RM-IRL; 2) exploits the observation in section 3.2 to derive a more efficient algorithm for high λ.

The estimation problem (7) has an inherently nested structure where, for each update of parameters θ
(the outer problem), we have to solve for the optimal policy π̂(a|s; θ) (the inner problem). Follow-
ing recent ML-IRL approaches [29, 13], we perform the nested optimization using two-timescale
stochastic approximation [52, 53], where the inner problem is solved via stochastic gradient updates
on a faster time scale than the outer problem. For both algorithms, we solve the inner problem
using Model-Based Policy Optimization (MBPO; [39]) which uses Soft Actor-Critic (SAC; [26]) in a
dynamics model ensemble.

BM-IRL: For the BM-IRL outer problem, we estimate the expectations in (11) and (12) via sampling
and perform coordinate-ascent optimization. Specifically, for each update step, we first sample a
mini-batch of state-action pairs (s, a) ∼ D and a mini-batch of (fake) actions afake ∼ π̂(·|s; θ) and
simulate both (s, a) and (s, afake) forward in the estimated dynamics P̂ to get the real and fake
trajectories τreal, τfake. We then optimize the reward function first by taking a single gradient step to
optimize the following objective function:

max
θ1

E(s,a)∼D,ρπ̂
P̂
(s̃,ã|s,a) [Rθ1(s̃, ã)]− Es∼D,afake∼π̂(·|s;θ),ρπ̂

P̂
(s̃,ã|s,afake) [Rθ1(s̃, ã)] (14)

Lastly, we optimize the dynamics model by taking a few gradient steps (a hyperparameter) to
optimize the following objective function using on-policy rollouts branched from mini-batches of

5

expert state-actions as in RAMBO [47]:

max
θ2

λ1E(s,a)∼D,ρπ̂
P̂
(s̃,ã|s,a) [EVθ2(s̃, ã)]− λ1Es∼D,afake∼π̂(·|s,;θ),ρπ̂

P̂
(s̃,ã|s,afake) [EVθ2(s̃, ã)]

+ λ2E(s,a,s′)∼D

[
log P̂θ2(s

′|s, a)
] (15)

where we have introduced weighting coefficients λ1 and λ2 to facilitate tuning the prior precision
λ and dynamics model learning rate. We estimate the dynamics gradient using the REINFORCE
method with baseline.

RM-IRL: We adapt the BM-IRL algorithm slightly for the RM-IRL outer problem, where we only
simulate a single trajectory for each state in the mini-batch and update the reward using the following
objective:

max
θ1

EρD [Rθ1(s, a)]− Eρπ̂
P̂
[Rθ1(s, a)] (16)

For the dynamics update, we set λ2 ≫ λ1 and drop the first term in (15):

max
θ2

− λ1Es∼D,afake∼π̂(·|s;θ),ρπ̂
P̂
(s̃,ã|s,afake) [EVθ2(s̃, ã)] + λ2E(s,a,s′)∼D

[
log P̂θ2(s

′|s, a)
]

(17)

We provide additional details and pseudo code for the proposed algorithms in Appendix C.

3.4 Performance Guarantees

In this section, we study how policy and dynamics estimation error affect learner performance in the
real environment. Using lemma 4.1 from [54] which decomposes the real environment performance
gap between the expert and the learner into their policy and model advantages in the estimated
dynamics, we arrive at the follow performance bound (see Appendix B.3):

Theorem 3.1. Let ϵπ̂ = −E(s,a)∼dπ
P
[log π̂P̂ (a|s)] be the policy estimation error and

ϵP̂ = E(s,a)∼dπ
P
DKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics estimation error. Let Rmax =

maxs,a |Rθ(s, a)|+ log |A|. Assuming bounded expert-learner marginal state-action density ratio∥∥∥dπ̂
P (s,a)

dπ
P (s,a)

∥∥∥
∞

≤ C, we have the following (absolute) performance bound for the IRL agent:

|JP (π̂)− JP (π)| ≤
1

1− γ
ϵπ̂ +

γ(C + 1)Rmax

(1− γ)2
√
2ϵP̂ (18)

This bound shows that the performance gap between the IRL agent and the expert is linear with
respect to the discount factor in the policy estimation error and quadratic in the dynamics estimation
error. Thus, ensuring small dynamics estimation error is essential and prior simultaneous estimation
approaches such as [18] which do not explicitly encourage dynamics accuracy are not expected to
perform well in general.

4 Experiments

We aim to answer the following questions with our experiments: 1) How does the dynamics accuracy
prior affect agent behavior? 2) How well does BM-IRL and RM-IRL perform compared to SOTA
offline IRL algorithms? We investigate Q1 using a Gridworld environment. We investigate Q2 using
the standard D4RL dataset on MuJoCo continuous control benchmarks.

4.1 Gridworld Example

To understand the behavior of the BM-IRL algorithm, we use a 5x5 deterministic gridworld envi-
ronment where the expert travels from the lower left to the upper right corner using a policy with a
discount factor of γ = 0.7. We represent the reward function as the log probability of the target state:
log P̃ (s), where the upper right corner has a target probability of 1.

6

We parameterize both reward and dynamics using softmax of logits. Using 100 expert trajectories
of length 50, we trained 3 BM-IRL agents with λ ∈ {0.001, 0.5, 10}. As a comparison, we also
trained a two-stage IRL agent whose dynamics model was fixed after an initial maximum likelihood
pretraining step and its reward was estimated using the same gradient update rule as BM-IRL in (14).

The ground truth and estimated target state probabilities are shown in the first row of Figure 2. All
agents correctly estimated that the upper right corner has the highest reward, although not with the
same precision as the ground truth sparse reward. BM-IRL agents with λ = 0.5 and λ = 10 were
able to assign high reward only to states close to the true goal state, where as the BM-IRL agent with
λ = 0.001 and the two-stage IRL agent assigned high rewards to state much further away from the
true goal state.

Figure 2: Gridworld experiment results. Ground truth and estimated target state distributions (softmax
of reward; Row 1) and sample path of estimated policy in estimated dynamics (Row 2) for two-stage
and BM-IRL agents with λ = [0.001, 0.5, 10]. BM-IRL agents with higher λ obtain more accurate
reward estimates and commit fewer illegal transitions.
We visualize the estimated dynamics models by sampling 100 imagined rollouts using the estimated
policies in the second row of Figure 2. This figure shows that the BM-IRL(λ = 0.001) agent, which
corresponds roughly to Herman et al.’s simultaneous estimation algorithm where no (or a very weak)
prior is used [18], and the two-stage IRL agent would take significantly more illegal transitions (i.e.,
diagonal transitions) than BM-IRL agent with higher λ. Comparing among BM-IRL agents, we see
that increasing λ decreases the number of illegal transitions. In contrast to the two-stage IRL agent
whose illegal transitions are rather random, the illegal transitions generated by BM-IRL agents with
lower λ have a strong tendency to point towards the goal state. This corroborates with our analysis
that BM-IRL learns optimistic dynamics under the expert distribution.

4.2 MuJoCo Benchmarks

We study the performance of the proposed algorithms in the MuJoCo continuous control benchmark
[55] provided by the D4RL dataset [56]. Following prior IRL evaluation protocols, our IRL agents
maintain two datasets: 1) a transition dataset is used to trained the dynamics model and the actor-
critic networks and 2) an expert dataset is used to train the reward function. The transition dataset is
selected from one of the following: medium, medium-replay, and medium-expert, where medium-
expert has the highest quality with the most complete coverage of expert trajectories. We fill the
expert dataset with 10 randomly sampled D4RL expert trajectories. For each evaluation environment
(HalfCheetah, Hopper, Walker2D) and transition dataset, we train our algorithms offline for a fixed
number of epochs and repeat this process for 5 random seeds. After the final epoch, we evaluate
the agent for 10 episodes in the corresponding environment. For both BM-IRL and RM-IRL, we set
λ1 = 0.01, λ2 = 1 to encourage an accurate dynamics model under the offline data distribution. We
provide additional implementation and experimental details in Appendix D.

For the baseline algorithms, we choose Behavior Cloning (BC) and ValueDICE [57], both of which
are model-free offline imitation learning algorithms and they do not use the transition dataset. For

7

Figure 3: MuJoCo benchmark performance using 10 expert trajectories from the D4RL dataset. Bar
heights and error bars represent the means and standard deviations of normalized scores, respectively,
over 5 random seeds. Baseline algorithm performances are taken from [13].

SOTA offline model-based IRL algorithms, we compare with the following: 1) ML-IRL uses a similar
two-timescale algorithm but operates in a two-stage fashion with a pessimistic penalty which adapts
to the learner policy’s state-action visitation [13], 2) CLARE performs marginal density matching
with a mixture of expert and transition datasets weighted by the in-distributionness of non-expert
state-action pairs [12]. We expect our algorithms to outperform CLARE whose marginal density
matching method requires a larger expert dataset to work well as shown in [13, 12]. We also expect
to perform similarly to ML-IRL, but better when adversarial model training is more appropriate than
ensemble-based pessimistic penalty for a given dataset. Lastly, we expect BM-IRL to perform better
than RM-IRL since BM-IRL solves the simultaneous estimation problem exactly.

Figure 3 shows the results of our algorithms and the comparisons reported in [13]. In the Hopper
environment, all algorithms performed similarly on all datasets, except for BM-IRL and ML-IRL
having lower performance with much larger variance on the medium dataset. In the HalfCheetah
and Walker2D environments, our algorithms and ML-IRL performed significantly better. BM-IRL
and RM-IRL outperformed other algorithms in 6/9 settings, and in 2/9 settings, the differences from
the best algorithm were very small. The only case where the best algorithm, ML-IRL, significantly
outperformed our algorithms was HalfCheetach medium-replay. This is mostly likely because in
this environment, the medium-replay dataset has much less coverage on expert trajectories so that
adversarial model training might have been too conservative.

As we expected, BM-IRL outperformed RM-IRL in 7/9 settings. The only case where its mean
performance was significantly lower was Hopper medium where BM-IRL performance had large
variance. However, as we explain in the section 5, this is because BM-IRL has higher training
instability where its peak performance was in fact on par with RM-IRL.

5 Limitations

A limitation of the proposed algorithms is that BM-IRL can have less stable training dynamics
than RM-IRL where its evaluation performance may alternate between periods of near optimal
performance and periods of medium performance (thus the larger variance in Figure 3). While
stability is a known issue for training energy-based models using contrastive divergence objectives
(i.e., objective (11)) [58], we believe the current issue is related to BM-IRL’s two-sample path method
having weaker and noisier learning signal. Another source of instability is likely introduced by
simultaneously training the dynamics model, which may be improved in future work by adding
Lipschitz regularizations [59].

6 Conclusion

We showed that inverse reinforcement learning under a Bayesian simultaneous estimation framework
gives rise to robust policies. This yielded a set of novel offline model-based IRL algorithms achieving
SOTA performance in the MuJoCo continuous control benchmarks without ad hoc pessimistic penalty
design. An interesting future direction is to identify appropriate priors to robustly infer reward and
internal dynamics from sub-optimal and biased human demonstrators.

8

Acknowledgments

A. Garcia would like to acknowledge partial support from the Army Research Office grant W911NF-
22-1-0213. M. Hong and S. Zeng are supported by NSF grant CIF-1910385. The authors would also
like to acknowledge Marc Rigter for answering questions about the RAMBO algorithm.

References
[1] A. Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,

page 2, 2000.

[2] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.

[3] T. Phan-Minh, F. Howington, T.-S. Chu, S. U. Lee, M. S. Tomov, N. Li, C. Dicle, S. Findler,
F. Suarez-Ruiz, R. Beaudoin, et al. Driving in real life with inverse reinforcement learning.
arXiv preprint arXiv:2206.03004, 2022.

[4] S. Yamaguchi, H. Naoki, M. Ikeda, Y. Tsukada, S. Nakano, I. Mori, and S. Ishii. Identification
of animal behavioral strategies by inverse reinforcement learning. PLoS computational biology,
14(5):e1006122, 2018.

[5] J. Rust. Optimal replacement of gmc bus engines: An empirical model of harold zurcher.
Econometrica: Journal of the Econometric Society, pages 999–1033, 1987.

[6] D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for cars that
coordinate with people: leveraging effects on human actions for planning and active information
gathering over human internal state. Autonomous Robots, 42:1405–1426, 2018.

[7] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668.
JMLR Workshop and Conference Proceedings, 2010.

[8] J. Spencer, S. Choudhury, A. Venkatraman, B. Ziebart, and J. A. Bagnell. Feedback in imitation
learning: The three regimes of covariate shift. arXiv preprint arXiv:2102.02872, 2021.

[9] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer. Imitating driver behavior with
generative adversarial networks. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages
204–211. IEEE, 2017.

[10] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Visual adversarial imitation learning using
variational models. Advances in Neural Information Processing Systems, 34:3016–3028, 2021.

[11] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and F. Meier. Model-based inverse
reinforcement learning from visual demonstrations. arXiv preprint arXiv:2010.09034, 2020.

[12] S. Yue, G. Wang, W. Shao, Z. Zhang, S. Lin, J. Ren, and J. Zhang. Clare: Conserva-
tive model-based reward learning for offline inverse reinforcement learning. arXiv preprint
arXiv:2302.04782, 2023.

[13] S. Zeng, C. Li, A. Garcia, and M. Hong. Understanding expertise through demonstrations:
A maximum likelihood framework for offline inverse reinforcement learning. arXiv preprint
arXiv:2302.07457, 2023.

[14] J. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun. Mitigating covariate shift in
imitation learning via offline data with partial coverage. Advances in Neural Information
Processing Systems, 34:965–979, 2021.

9

[15] C. Baker, R. Saxe, and J. Tenenbaum. Bayesian theory of mind: Modeling joint belief-desire
attribution. In Proceedings of the annual meeting of the cognitive science society, volume 33,
2011.

[16] S. Reddy, A. D. Dragan, and S. Levine. Where do you think you’re going?: Inferring beliefs
about dynamics from behavior. arXiv preprint arXiv:1805.08010, 2018.

[17] D. Jarrett, A. Hüyük, and M. Van Der Schaar. Inverse decision modeling: Learning interpretable
representations of behavior. In International Conference on Machine Learning, pages 4755–
4771. PMLR, 2021.

[18] M. Herman, T. Gindele, J. Wagner, F. Schmitt, and W. Burgard. Inverse reinforcement learning
with simultaneous estimation of rewards and dynamics. In Artificial Intelligence and Statistics,
pages 102–110. PMLR, 2016.

[19] Z. Wu, P. Schrater, and X. Pitkow. Inverse rational control: Inferring what you think from how
you forage. arXiv preprint arXiv:1805.09864, 2018.

[20] T. Makino and J. Takeuchi. Apprenticeship learning for model parameters of partially observable
environments. arXiv preprint arXiv:1206.6484, 2012.

[21] F. Schmitt, H.-J. Bieg, M. Herman, and C. A. Rothkopf. I see what you see: Inferring sensor
and policy models of human real-world motor behavior. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[22] Z. Gong and Y. Zhang. What is it you really want of me? generalized reward learning with
biased beliefs about domain dynamics. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2485–2492, 2020.

[23] L. Chan, D. Hadfield-Menell, S. Srinivasa, and A. Dragan. The assistive multi-armed bandit.
In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
354–363. IEEE, 2019.

[24] N. Desai, A. Critch, and S. J. Russell. Negotiable reinforcement learning for pareto optimal
sequential decision-making. Advances in Neural Information Processing Systems, 31, 2018.

[25] G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized markov decision
processes. arXiv preprint arXiv:1705.07798, 2017.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[27] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[28] A. Gleave and S. Toyer. A primer on maximum causal entropy inverse reinforcement learning.
arXiv preprint arXiv:2203.11409, 2022.

[29] S. Zeng, M. Hong, and A. Garcia. Structural estimation of markov decision processes in
high-dimensional state space with finite-time guarantees. arXiv preprint arXiv:2210.01282,
2022.

[30] S. Zeng, C. Li, A. Garcia, and M. Hong. Maximum-likelihood inverse reinforcement learning
with finite-time guarantees. arXiv preprint arXiv:2210.01808, 2022.

[31] S. K. S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imitation
learning methods. In Conference on Robot Learning, pages 1259–1277. PMLR, 2020.

10

[32] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[33] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation learning as
f-divergence minimization. In International Workshop on the Algorithmic Foundations of
Robotics, pages 313–329. Springer, 2021.

[34] C. Finn, P. Christiano, P. Abbeel, and S. Levine. A connection between generative adver-
sarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

[35] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine learning, pages 49–58. PMLR, 2016.

[36] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[37] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[38] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

[39] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in Neural Information Processing Systems, 32, 2019.

[40] T. Jafferjee, E. Imani, E. Talvitie, M. White, and M. Bowling. Hallucinating value: A pitfall
of dyna-style planning with imperfect environment models. arXiv preprint arXiv:2006.04363,
2020.

[41] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[42] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810–21823,
2020.

[43] C. Lu, P. Ball, J. Parker-Holder, M. Osborne, and S. J. Roberts. Revisiting design choices
in offline model based reinforcement learning. In International Conference on Learning
Representations, 2021.

[44] M. Uehara and W. Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. arXiv preprint arXiv:2107.06226, 2021.

[45] A. Nilim and L. El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

[46] G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

[47] M. Rigter, B. Lacerda, and N. Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

[48] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[49] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

11

[50] S. Armstrong and S. Mindermann. Occam’s razor is insufficient to infer the preferences of
irrational agents. Advances in neural information processing systems, 31, 2018.

[51] R. Shah, N. Gundotra, P. Abbeel, and A. Dragan. On the feasibility of learning, rather than
assuming, human biases for reward inference. In International Conference on Machine Learning,
pages 5670–5679. PMLR, 2019.

[52] V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

[53] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale framework for bilevel optimization:
Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170, 2020.

[54] A. Vemula, Y. Song, A. Singh, J. A. Bagnell, and S. Choudhury. The virtues of laziness in
model-based rl: A unified objective and algorithms. arXiv preprint arXiv:2303.00694, 2023.

[55] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[56] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[57] I. Kostrikov, O. Nachum, and J. Tompson. Imitation learning via off-policy distribution matching.
arXiv preprint arXiv:1912.05032, 2019.

[58] Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Improved contrastive divergence training of
energy based models. arXiv preprint arXiv:2012.01316, 2020.

[59] K. Asadi, D. Misra, and M. Littman. Lipschitz continuity in model-based reinforcement learning.
In International Conference on Machine Learning, pages 264–273. PMLR, 2018.

[60] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In IJCAI, volume 7,
pages 2586–2591, 2007.

[61] J. Choi and K.-E. Kim. Map inference for bayesian inverse reinforcement learning. Advances
in neural information processing systems, 24, 2011.

[62] A. J. Chan and M. van der Schaar. Scalable bayesian inverse reinforcement learning. arXiv
preprint arXiv:2102.06483, 2021.

[63] M. Kwon, S. Daptardar, P. R. Schrater, and X. Pitkow. Inverse rational control with partially
observable continuous nonlinear dynamics. Advances in neural information processing systems,
33:7898–7909, 2020.

[64] N. Lambert, B. Amos, O. Yadan, and R. Calandra. Objective mismatch in model-based
reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

[65] C. Grimm, A. Barreto, S. Singh, and D. Silver. The value equivalence principle for model-based
reinforcement learning. Advances in Neural Information Processing Systems, 33:5541–5552,
2020.

[66] A.-m. Farahmand, A. Barreto, and D. Nikovski. Value-aware loss function for model-based
reinforcement learning. In Artificial Intelligence and Statistics, pages 1486–1494. PMLR, 2017.

[67] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

12

Supplemental Materials for: A Bayesian Approach to Robust Inverse
Reinforcement Learning

A Additional Related Work

Bayesian IRL: Ramachandran and Amir [60] first proposed a Bayesian formulation of IRL to solve
the reward ambiguity problem. A MAP inference approach was proposed in [61] and a variational
inference approach was proposed in [62]. Their formulations considers non-entropy-regularized
policies and the dynamics model is fixed during reward inference. In contrast, simultaneous estimation
of reward and dynamics can potentially infer the demonstrator’s biased beliefs about the environment,
which is desirable for psychology and human-robot interaction studies [15, 19, 16]. Despite the
attractiveness, simultaneous estimation is challenging because of the need to invert the agent’s
planning process, especially in continuous domains. Reddy et al. [16] avoids this by representing
agent discrete action policies using neural network-parameterized Q functions and regularizing
the Bellman error to be small over the entire state-action space. This method however cannot be
straightforwardly adapted to the continuous action case. Kwon et al. [63] avoids this by first training
a task-conditioned policy on a distribution of environments with known parameters using meta
reinforcement learning and then use the meta-trained policy to guide parameter inference. This
precludes the method from being used in general settings with unknown task distributions. To our
knowledge, our proposed algorithms are the first to address simultaneous estimation in general
environments.

Decision-aware model learning: Decision-aware model learning aims to solve the objective mis-
match problem in model-based RL [64]. Many proposed methods in this class use value-targeted
regression similar to our model loss in (15) [65, 66]. Our analysis and that of Vemula et al. [54]
suggest that value-targeted model objectives may be related to robust objectives. Furthermore,
since the set of value-equivalent models only shrink for increasingly larger set of policy and values
[65], using value-aware model objective alone may not be optimal and additional prediction-based
regularizations may be needed.

B Missing Proofs

B.1 Proofs For Section 3.1

Derivation of BM-IRL Gradients (section 3.1). Recall the definition of the optimal entropy-
regularized policy and value functions:

π̂(a|s; θ) = exp(Qθ(s, a))∑
ã exp(Qθ(s, ã))

Qθ(s, a) = Rθ1(s, a) + γEs′∼P̂θ2
(·|s,a)[Vθ(s

′)]

Vθ(s) = log
∑
ã

exp(Qθ(s, ã))

(19)

The gradient of the policy log likelihood in terms of the Q function gradient is obtained as follows:

∇θ log π̂(a|s; θ) = ∇θQθ(s, a)−∇θVθ(s)

= ∇θQθ(s, a)−
1

Zθ
∇θ

∑
ã

exp(Qθ(s, ã))

= ∇θQθ(s, a)−
1

Zθ

∑
ã

exp(∇θQθ(s, ã))

= ∇θQθ(s, a)− Eã∼π̂(·|s;θ)[∇θQθ(s, ã)]

(20)

where Zθ =
∑

a′ exp(Qθ(s, a
′)) is the normalizer.

13

Recall ρπ̂
P̂
(s̃, ã|s, a) is the discounted state-action occupancy measure starting from pair (s, a). We

define for any function f(s, a):

Eρπ̂
P̂
(s̃,ã|s,a)[f(s, a)] = Eτ∼(P̂ ,π̂)

[∞∑
t=0

γtf(s, a)

∣∣∣∣s0 = s, a0 = a

]
(21)

We now derive Q function gradients with respect to the reward parameters θ1 and dynamics parameters
θ2, respectively.

∇θ1Qθ(s, a) = ∇θ1Rθ1(s, a) + γEs′∼P̂θ2
(·|s,a)[∇θ1Vθ(s

′)]

= ∇θ1Rθ1(s, a) + γEs′∼P̂θ2
(·|s,a),a′∼π̂(·|s′;θ)[∇θ1Qθ(s

′, a′)]

= ∇θ1Rθ1(s, a) + γEs′∼P̂θ2
(·|s,a),a′∼π̂(·|s′;θ)

[
∇θ1Rθ1(s

′, a′) + γEs′′∼P̂θ2
(·|s′,a′),a′′∼π̂(·|s′′;θ)[∇θ1Qθ(s

′′, a′′)]

]
= ∇θ1Rθ1(s, a) + Eτ∼(P̂ ,π̂)

[∞∑
h=1

γh∇θ1Rθ1(sh, ah)

∣∣∣∣s0 = s, a0 = a

]
= Eρπ̂

P̂
(s̃,ã|s,a) [∇θ1Rθ1(s̃, ã)]

(22)

In line two we used the result that ∇ϕVθ(s) for both ϕ = θ1 and ϕ = θ2 corresponds to the second
term in (20) .

∇θ2Qθ(s, a) = ∇θ2Rθ1(s, a) +∇θ2γEs′∼P̂θ2
(·|s,a)[Vθ(s

′)]

= γ
∑
s̃

Vθ(s̃)∇θ2 P̂θ2(s̃|s, a) + γEs′∼P̂θ2
(·|s,a),a′∼π̂(·|s′;θ)[∇θ2Qθ(s

′, a′)]

= γ
∑
s̃

Vθ(s̃)∇θ2 P̂θ2(s̃|s, a) + γEs′∼P̂θ2
(·|s,a),a′∼π̂(·|s′;θ)

[
γ
∑
s̃

Vθ(s̃)∇θ2 P̂θ2(s̃|s′, a′) + γEs′′∼P̂θ2
(·|s′,a′),a′′∼π̂(·|s′′;θ)[∇θ2Qθ(s

′′, a′′)]

]

= γ
∑
s̃

Vθ(s̃)∇θ2 P̂θ2(s̃|s, a) + Eτ∼(P̂ ,π̂)

[∞∑
h=1

γh+1
∑
s̃

Vθ(s̃)∇θ2 P̂θ2(s̃|sh, ah)
∣∣∣∣s0 = s, a0 = a

]

= Eρπ̂
P̂
(s̃,ã|s,a)

[
γ
∑
s′

Vθ(s
′)∇θ2 P̂θ2(s

′|s̃, ã)

]
(23)

We make a quick remark on the identifiability of simultaneous estimation.

Remark B.1. Simultaneous reward-dynamics estimation of the form (5) without specific assumptions
on the prior P (θ) is in general unidentifiable.

Proof. Let R ∈ R|S||A| and P ∈ R|S||A|×|S|
+ ,

∑
s′ P

a
ss′ = 1, Q ∈ R|S||A| and V ∈ R|S| be a set

of Bellman-consistent reward, dynamics, and value functions in matrix form. Let P′ ̸= P be an
alternative dynamics model. We can always find an alternative reward R′ = R+∆R, where:

∆R = (Q−Q)− γ(P′V −PV)

= −γ∆PV
(24)

without changing the value functions and optimal entropy-regularized policy.

14

Remark B.1 implies that existing simultaneous estimation approaches which do not use explicit or
implicit regularizations, such as the SERD algorithm by [18], cannot in general accurately estimate
expert reward. Paired with theorem 3.1, it shows that these algorithms cannot in general achieve good
performance.

B.2 Proofs For Section 3.2

Derivation of discounted likelihood (13).

EP (τ)

[∞∑
t=0

γt log π̂(at|st; θ)

]

= EP (τ)

[∞∑
t=0

γt (Qθ(st, at)− Vθ(st))

]

= EP (τ)

[∞∑
t=0

γt
(
Rθ1(st, at) + γEs′∼P̂θ2

(·|st,at)
[Vθ(s

′)]
)]

− EP (τ)

[∞∑
t=0

γtVθ(st)

]

= EP (τ)

[∞∑
t=0

γtRθ1(st, at)

]
− Eµ

[
Vθ(s0)

]

+ EP (τ)

[∞∑
t=0

γt+1Es′∼P̂θ(·|st,at)
[Vθ(s

′)]

]
− EP (τ)

[∞∑
t=1

γtVθ(st)

]

= EP (τ)

[∞∑
t=0

γtRθ1(st, at)

]
− Eµ

[
Vθ(s0)

]

+ EP (τ)

[∞∑
t=0

γt+1Es′∼P̂θ(·|st,at)
[Vθ(s

′)]

]
− EP (τ)

[∞∑
t=0

γt+1Es′∼P (·|st,at)[Vθ(s
′)]

]

= Eρπ
P

[
Rθ1(st, at)

]
− Eµ

[
Vθ(s0)

]
︸ ︷︷ ︸

ℓ(θ)

+ γEρπ
P

[
Es′∼P̂θ(·|st,at)

Vθ(s
′)− Es′′∼P (·|st,at)Vθ(s

′′)

]
︸ ︷︷ ︸

T1

(25)

The following lemma shows that T1 is negligible if the estimated dynamics is accurate under the
expert distribution, which is available from the offline dataset.
Lemma B.2. Let ϵ = E(s,a)∼P (τ)DKL(P (·|s, a)||P̂ (·|s, a)) and Rmax = maxs,a |Rθ(s, a)| +
log |A|, it holds that

|T1| ≤ γRmax

(1− γ)2

√
2ϵ (26)

Proof.

|T1| =

∣∣∣∣∣
∞∑
t=0

γt+1E(st,at)∼P (τ)

[∑
s′

Vθ(s
′)
(
P̂ (s′|st, at)− P (s′|st, at)

)]∣∣∣∣∣
(1)

≤
∞∑
t=0

γt+1E(st,at)∼P (τ)

[∑
s′

|Vθ(s
′)|
∣∣∣P̂ (s′|st, at)− P (s′|st, at)

∣∣∣]
(2)

≤
∞∑
t=0

γt+1∥Vθ(·)∥∞E(st,at)∼P (τ)

[∥∥∥P̂ (·|st, at)− P (·|st, at)
∥∥∥
1

]
(3)

≤
∞∑
t=0

γt+1∥Vθ(·)∥∞
√
2E(st,at)∼P (τ)DKL(P ||P̂)

=
γ

1− γ
∥Vθ(·)∥∞

√
2ϵ

15

where (1) follows from Jensen’s inequality, (2) follows from Holder’s inequality, and (3) follows
from Pinsker’s inequality.

Finally, given H(π(·|s)) = −
∑

a π(a|s) log π(a|s) ≤ −
∑

a π(a|s) log
1

|A| = log |A|, we have

∥Vθ(·)∥∞ ≤ E [
∑∞

t=0 γ
t (maxs,a |Rθ(s, a)|+ log |A|)] = Rmax

1−γ .

B.3 Proofs For Section 3.4

We first restate a slight modification of the result from [54], which decomposes the real environment
performance gap between the expert and the learner into their policy and model advantages in the
estimated dynamics:
Lemma B.3. (Performance difference via advantage in model; Lemma 4.1 in [54]) Let dπP denote the
marginal state-action distribution following policy π in environment P . The following relationship
holds:

E(s,a)∼dπ
P

[
log π̂P̂ (a|s)

]
= Es∼dπ

P

[
Ea∼πQ

π̂
P̂
(s, a)− V π̂

P̂
(s)
]

(27)

= (1− γ)Es∼µ

[
V π
P (s)− V π̂

P (s)
]︸ ︷︷ ︸

Performance difference in real environment

(28)

+ γE(s,a)∼dπ̂
P

[
Es′∼PV

π̂
P̂
(s′)− Es′′∼P̂V

π̂
P̂
(s′′)

]︸ ︷︷ ︸
Model disadvantage under learner distribution

(29)

+ γE(s,a)∼dπ
P

[
Es′∼P̂V

π̂
P̂
(s′)− Es′′∼PV

π̂
P̂
(s′′)

]︸ ︷︷ ︸
Model advantage under expert distribution

(30)

The performance bound in theorem 3.1 can be obtained from lemma B.3 as follow:
Theorem B.4. (Restate of theorem 3.1) Let ϵπ̂ = −E(s,a)∼dπ

P
[log π̂P̂ (a|s)] be the policy estimation

error and ϵP̂ = E(s,a)∼dπ
P
DKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics estimation error. Let Rmax =

maxs,a |Rθ(s, a)|+ log |A|. Assuming bounded expert-learner marginal state-action density ratio∥∥∥dπ̂
P (s,a)

dπ
P (s,a)

∥∥∥
∞

≤ C, we have the following (absolute) performance bound for the IRL agent:

|JP (π̂)− JP (π)| ≤
1

1− γ
ϵπ̂ +

γ(C + 1)Rmax

(1− γ)2
√
2ϵP̂ (31)

Proof.

|JP (π̂)− JP (π)| =
∣∣Es∼µ

[
V π̂
P (s)− V π

P (s)
]∣∣

≤ 1

1− γ
ϵπ̂

+
γ

1− γ
E(s,a)∼dπ

P

[∣∣∣∣dπ̂P (s, a)dπP (s, a)

(
Es′∼PV

π̂
P̂
(s′)− Es′′∼P̂V

π̂
P̂
(s′′)

)∣∣∣∣]
+

γ

1− γ
E(s,a)∼dπ

P

[∣∣Es′∼P̂V
π̂
P̂
(s′)− Es′′∼PV

π̂
P̂
(s′′)

∣∣]
≤ 1

1− γ
ϵπ̂

+
γ

1− γ

∥∥∥∥dπ̂P (·, ·)dπP (·, ·)

∥∥∥∥
∞

∥∥V π̂
P̂
(·)
∥∥
∞ E(s,a)∼dπ

P

[∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥
1

]
+

γ

1− γ

∥∥V π̂
P̂
(·)
∥∥
∞ E(s,a)∼dπ

P

[∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥
1

]
=

1

1− γ
ϵπ̂ +

γ(C + 1)Rmax

(1− γ)2
√
2ϵP̂

(32)

where the last line uses results from lemma B.2.

16

C Further Algorithm Details and Pseudo Code

We estimate the dynamics gradient in (15) and (17) using the REINFORCE method with baseline:

∇θ2EVθ(s, a) =
∑
s′

Vθ(s
′)∇θ2 P̂θ2(s

′|s, a)

= Es′∼P̂ (·|s,a)

[
(Vθ(s

′)− b(s, a))∇θ2 log P̂θ2(s
′|s, a)

]
Following Rigter et al. [47], we set the baseline to b(s, a) = Qθ(s, a)−Rθ1(s, a) to reduce gradient
variance and further normalize Vθ(s

′) − b(s, a) across the mini-batch to stabilize training. In the
continuous-control setting, the value function can be estimated as Vθ(s) = Ea∼π̂θ

[Qθ(s, a) −
log π̂(a|s; θ)] with a single sample. We apply this gradient for a fixed number of steps for dynamics
model training, which is a hyperparameter.

Pseudo code for the proposed algorithms are listed in Algorithm 1 and Algorithm 2.

Algorithm 1 Bayesian Model-based IRL (BM-IRL)

Require: Dataset D = {τ}, dynamics model P̂θ2(s
′|s, a), reward model Rθ1(s, a), hyperparameters

λ1, λ2

1: for k = 1 : K do
2: Run MBPO to update learner policy π̂(a|s; θ) and value function Qθ(s, a) in dynamics P̂
3: Sample real trajectory τreal starting from (s, a) ∼ D and following P̂ and π̂

4: Sample fake trajectory τfake starting from s ∼ D, afake ∼ π̂(·|s; θ) and following P̂ and π̂
5: Sample (s, a, s′) ∼ D for dynamics model training
6: Evaluate (14) and take a gradient step
7: Evaluate (15) and take a few gradient steps.
8: end for

Algorithm 2 Robust Model-based IRL (RM-IRL)

Require: Dataset D = {τ}, dynamics model P̂θ2(s
′|s, a), reward model Rθ1(s, a), hyperparameters

λ1, λ2

1: for k = 1 : K do
2: Run MBPO to update learner policy π̂(a|s; θ) and value function Qθ(s, a) in dynamics P̂
3: Sample real trajectory τreal ∼ D
4: Sample fake trajectory τfake starting from s ∼ D and following P̂ and π̂
5: Sample (s, a, s′) ∼ D for dynamics model training
6: Evaluate (16) and take a gradient step
7: Evaluate (17) and take a few gradient steps
8: end for

D Implementation Details

Our implementation2 builds on top of the official RAMBO implementation3 [47].

D.1 MuJoCo Benchmarks

For the MuJoCo benchmarks described in section 4.2, we follow standard practices in model-based
RL.

2https://github.com/rw422scarlet/bmirl_tf
3https://github.com/marc-rigter/rambo

17

https://github.com/rw422scarlet/bmirl_tf
https://github.com/marc-rigter/rambo

D.1.1 Dynamics Pre-training

We use an ensemble of K = 7 neural networks where each network outputs the mean and covariance
parameters of a Gaussian distribution over the difference between the next state and the current state
δ = s′ − s:

P̂
(k)
θ2

(δ|s, a) = N (δ|µ(k)
θ2

(s, a),Σ
(k)
θ2

(s, a)) (33)

Each network is a 4-layer feedforward network with 200 hidden units and Sigmoid linear unit (SiLU)
activation function. For the initial pre-training step, we maximize the likelihood of dataset transitions
using a batch size of 256 and early stop when all models stop improving for more than 1 percent.
We then select the 5 best models in terms of mean-squared-error on a 10 % holdout validation set.
During model rollouts, we randomly pick one of the 5 best models (elites) to sample the next state.

Table 1: Shared hyperparameters across different environments
Hyparameter BM-IRL RM-IRL

SA
C

+
M

B
PO

critic learning rate 3e-4 3e-4
actor learning rate 3e-4 3e-4
discount factor (γ) 0.99 0.99

soft target update parameter (τ) 5e-3 5e-3
target entropy -dim(A) -dim(A)

minimum temperature (α) 0.1 0.001
batch size 256 256
real ratio 0.5 0.5

model retain epochs 5 5
training epochs 500 300
steps per epoch 1000 1000

D
yn

am
ic

s

model networks 7 7
elites 5 5

adv. rollout batch size 1000 256
adv. rollout steps 10 10
adv. update steps 50 50

adv. loss weighting (λ1) 0.01 0.01
supervised. loss weighting (λ2) 1 1

learning rate 1e-4 1e-4
adv. update steps 50 50

R
ew

ar
d

max reward 10 10
rollout batch size 1000 64

rollout steps 40 100
l2 penalty 1e-3 1e-3

learning rate 1e-4 1e-4
update steps 1 1

Table 2: Environment-specific hyperparameters
Environment Hyperparameter BM-IRL

model rollout batch size 50000
HalfCheetah model rollout steps 5

model rollout frequency 250
model rollout batch size 10000

Hopper model rollout steps 40
model rollout frequency 250
model rollout batch size 10000

Walker2d model rollout steps 40
model rollout frequency 250

18

D.1.2 Policy Training

Our policy training process follows MBPO [39] which uses SAC with automatic temperature tuning
[67]. Shared hyperparameters across different environments are listed in Table 1 and environment-
specific hyperparameters are listed in Table 2. For the actor and critic, we use feedforward neural
networks with 2 hidden layers of 256 units and ReLU activation. We train the actor and critic
networks using a combination of real and simulated samples. We use a real ratio of 0.5, which is
standard practice in model-based RL and IRL. We found that BM-IRL requires a higher minimum
temperature to stablize training, which is set to α = 0.1.

We found that different MuJoCo environments require different model rollout hyperparameters, simi-
lar to what’s reported in [43]. Specifically, Hopper and Walker2d only work with significantly larger
rollout steps. We decrease their rollout batch size to reduce computational overhead. HalfCheetah on
the other hand works better with smaller rollout steps and larger rollout batch size. In contrast to Lu
et al. [43], we did not use different rollout hyperparameters for different datasets.

D.1.3 Reward and Dynamics Training

We use 10 random trajectories from the D4RL MuJoCo expert dataset after removing all expert
trajectories that resulted in terminal states.

We use the same network architecture as the actor-critic to parameterize the reward function. We
further clip the reward function to a maximum range of ±10 and apply l2 regularization on all weights
with a penalty of 0.001.

As described in the main text, we update the reward function by simulating sample trajectories and
taking a single gradient step. For RM-IRL, we randomly sample expert trajectory segments of length
“rollout steps” and use the first step as the start of our simulated sample paths.

We update the dynamics using on-policy rollouts branched from the dataset state-actions. We use the
same batch size for reward and dynamics rollouts, which is 1000 for BM-IRL and 256 for RM-IRL.
Because only the first step in BM-IRL’s real sample paths come from the dataset, it requires a larger
batch size to iterate more data samples. We also train BM-IRL for more epochs than RM-IRL.

To compute the dynamics log likelihood in the REINFORCE gradient in (33), we treat the ensemble
as a uniform mixture and compute the likelihood as:

P̂θ2(δ|s, a) =
1

K

K∑
k=1

P̂
(k)
θ2

(δ|s, a) (34)

We set the dynamics adversarial loss weighting to λ1 = 0.01 for both BM-IRL and RM-IRL. We found
this to work better than what’s in the official RAMBO implementation, which is λ1 = 0.0768. Note
that the RAMBO author reported λ1 = 3e-4 in their paper but forget to average their REINFORCE
loss over the mini-batch of size 256 in their implementation, which is instead treated as a sum by
default by TensorFlow. We empirically found that small λ1 leads to severe model exploitation.

19

	Introduction
	Preliminaries
	Markov Decision Process
	Inverse Reinforcement Learning
	Offline Model-Based IRL & RL

	A Bayesian Approach to Model-based IRL
	Naive Solution
	Robust BM-IRL
	Proposed Algorithms
	Performance Guarantees

	Experiments
	Gridworld Example
	MuJoCo Benchmarks

	Limitations
	Conclusion
	Additional Related Work
	Missing Proofs
	Proofs For Section 3.1
	Proofs For Section 3.2
	Proofs For Section 3.4

	Further Algorithm Details and Pseudo Code
	Implementation Details
	MuJoCo Benchmarks
	Dynamics Pre-training
	Policy Training
	Reward and Dynamics Training

