
TopKLoRA

Anonymous Author(s)
Affiliation
Address
email

Abstract

Model diffing finds the representational differences between a base and a fine-1

tuned model. However, current sparse dictionary learning based methods are2

trained post-hoc on a reconstruction loss, which results in features that often3

fail to be functionally causal for model behaviour. In this work, we introduce4

TopKLoRA – a LoRA-like adapter, which retains LoRA’s adapter-style deployment5

and low-rank updates while exposing a input-conditioned, discrete selection of6

feature directions that provide controllable levers for the model behaviour, unlike7

reconstruction-trained features. Different from standard LoRA, we do not train8

a low-rank dense adapter, but instead a high-rank sparse adapter by applying the9

TopK sparsity in the adapter space, incentivising interpretability, while retaining the10

conceptual idea of LoRA. Each active component in the adapter space corresponds11

to a rank-1 “feature direction”, and the per-example update has a low effective12

rank of at most k with k≪ dmodel. In our experiments, we train adapters across13

three adapter dimensions and k combinations for instruction-following supervised14

fine-tuning (SFT) and safety direct preference optimisation (DPO) of the Gemma15

2 2B model. We demonstrate maintained downstream task performance on the16

Real Toxicity Prompts benchmark [Gehman et al., 2020] relative to a dense LoRA17

measured by the Perspective API score. Moreover, we identify interpretable and18

causal features in the sparse space through autointerp and ablation studies along19

each rank-1 feature direction. This method provides interpretable model diffing20

information “for free” without degrading downstream task performance. More21

broadly, this work demonstrates the effectiveness of incorporating intrinsically22

interpretable model segments trained on the downstream loss. We publish the code23

at: https://anonymous.4open.science/r/lora_interp-C60424

1 Introduction25

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or26

a desired property, such as safety alignment [Dai et al., 2023] or instruction following [Ouyang27

et al., 2022, Zhang et al., 2025]. Analysing how this procedure alters internal computations of a28

neural network can help diagnose vulnerabilities and ultimately, enhance future AI safety efforts.29

For example, Arditi et al. [2024] leverage their insights to design a novel jailbreaking method and30

explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:31

systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour32

changes emerge.33

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce34

entirely new circuits, with changes concentrated in a subset of layers and well-approximated by35

low-rank subspaces [Zhou and Srikumar, 2022, Aghajanyan et al., 2020]. The success of diff-pruning36

[Guo et al., 2021], task-vector arithmetic [Ilharco et al., 2023], and Low Rank Adaptation (LoRA)-37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/lora_interp-C604


x ∈ Rdmodel
Frozen layer

W
+ y

A
r × dmodel

TopK
select k

B
dmodel × r

∆y = B(m⊙ z)latent z = Ax ∈ Rr masked m⊙ z

active latent masked / zeroed

Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output.
Pre-TopK z shows all r components; post-TopK m⊙ z keeps only k solid entries.

style adapters [Hu et al., 2021, Bałazy et al., 2024, Bensaïd et al., 2025] is consistent with this38

picture.39

Most prior model-diffing work relies on sparse dictionary learning (SDL): sparse autoencoders (SAEs)40

[Cunningham et al., 2023] or crosscoders (CCs) [Lindsey et al., 2024]. These SDL-based methods41

are trained post-hoc to reconstruct model activations via a high-dimensional sparse bottleneck that42

seeks to approximate monosemantic features from polysemantic ones. However, SDL optimises43

reconstruction loss rather than causal faithfulness and can suffer from non-identifiability [Leask et al.,44

2025], feature splitting [Chanin et al., 2025c], absorption [Chanin et al., 2025b], and hedging [Chanin45

et al., 2025a], which limits its usefulness for precise diffing. Additionally, this training scheme46

introduces an additional error component which cannot be attributed to the studied model’s internal47

computations or downstream performance.48

We introduce TopKLoRA, a LoRA-like parameter-efficient fine-tuning (PEFT) adapter, trained on49

the downstream loss, that exposes a discrete, input-conditional set of feature directions that can be50

probed causally and is additionally optimized for monosemanticity. We empirically show that this51

adapter is both useful and interpretable, matching parameter-efficient fine-tuning (PEFT) alternatives,52

while learning top-k latents which are monosemantic by SAE metrics. Finally, causal ablation study53

shows that ablating a single latent reliably moves outputs as measured by changes in model loss.54

2 Methodology55

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A ∈56

Rr×dmodel and B ∈ Rdmodel×r, where r≪dmodel, making the r-dimensional space low-rank. At infer-57

ence time, for input x ∈ Rdmodel , the layer output is computed as Wx+ α
r ∆W x = Wx+ α

rBAx,58

where W is a frozen weight matrix of the fine-tuned base model layer, and α is a parameter modulating59

update strength.60

Unlike standard LoRA, we expand into an r-dimensional adapter space, with r on the order of, or61

larger than dmodel. At inference, we select the top-k components of the encoded vector z = Ax, thus62

computing m = TopK(z, k) ∈ {0, 1}r (hard top-k with straight-through) and apply the modified63

update ∆W = B
(
m ⊙ z

)
=

∑
i≤r mizi bi. While the adapter contains more parameters than a64

dense LoRA, the per-example update remains low-rank since at most k adapter space dimensions are65

non-zero with k≪dmodel.66

Furthermore, we use the straight-through estimator (STE) [Bengio et al., 2013] for training the67

adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the68

forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we69

compute the SoftMax distribution over latents, parametrised by a temperature τ , which decreases70

to ϵ ≈ 0 during training time according to its schedule. We ensure that the probability mass is71

2



Loss Name Purpose Default Weight

DPO Loss Preference learning (core) 1.0
Decorrelation Monosemanticity (uncorrelated latents) 10−4

Mass Enforce k-sparsity in gates 10−3

Orthogonality (A) Disentangle latent directions (A matrix) 10−4

Orthogonality (B) Disentangle latent directions (B matrix) 10−4

L1(z) Sparsity in latent activations 10−5

Usage Covariance Balanced latent usage 10−4

Table 1: Overview of loss functions, their purposes, and default weights

equal to k, which also has its own, very short schedule to encourage early exploration. To prevent72

the emergence of polysemanticity in the adapter space, we apply regularisation losses, which are73

presented in Table 1, alongside their default coefficients.74

3 Experiments75

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B76

model [Team et al., 2024] via supervised fine-tuning with a dense LoRA adapter for the instruction77

following task on the Alpaca dataset [Taori et al., 2023]. Next, we merge the PEFT weights and78

run a direct preference optimisation training with our sparse TopKLoRA on the hh-rlhf helpfulness79

and harmlessness dataset [Bai et al., 2022]. We report experiments with r, k ∈ {(1024, 128 375−−→80

8), (512, 64
375−−→ 4), (512, 128

375−−→ 2)}1. Moreover, we use a linear schedule for the soft-TopK81

temperature, starting from 0.1 at the beginning of training and decreasing to 0.005 at the last training82

step. Moreover, we set the α = 2r to account for the significant sparsity in the adapter dimension83

and help make the updates more significant. We train all DPO adapters for 7500 steps.84

We evaluate the quality of the adapter in two dimensions: its usefulness for the downstream task and85

the interpretability of the adapter space latents. We evaluate on the RealToxicityPrompts challenging86

subset, scoring model completions with the Perspective API TOXICITY attribute.2 We classify87

a completion as toxic if its toxicity score is ≥ 0.5 [Gehman et al., 2020]. We also control for88

deteriorated model behaviour by running an instruction-following evaluation [Zhou et al., 2023]. On89

the other hand, we investigate the causal structure of the adapter space latents through an ablation90

study, in which we set the activations of a single feature to zero throughout the generation process.91

We then compute the change in the model output’s negative log-likelihood. This is a very useful92

metric to observe in this setting, because it is additive over tokens and examples, and therefore, we93

can aggregate and quantify the feature’s ablation impact over many output generations. Additionally,94

we use the Delphi autointerp package [Paulo et al., 2025] to score the interpretability of the adapter95

latents.96

Benchmark/Metric
Base model

(SFT)
Dense LoRA
(SFT + DPO) TopKLoRA (SFT + DPO)

r512, k2 r256, k4 r1024, k8

Real Toxicity Prompts (%) ↓ 68.05 – 43.20 45.78 34.36
Instruction following (strict) ↑ 24.77 24.58 23.84 23.84 23.84

Avg. absolute ∆ perplexity – – 0.18 0.29 0.60

Table 2: Evaluation results overview

1(r, a
t−→ b) means that the k-schedule started with k0 = a and decreased to kfin = b after t steps

2https://perspectiveapi.com

3

https://perspectiveapi.com


Layer r_1024_k_8 r_512_k_4 r_512_k_2

Mean max similarity

q_proj 0.102845 0.091316 0.088707
k_proj 0.149477 0.138138 0.125140
v_proj 0.127600 0.125957 0.113251
o_proj 0.089529 0.086073 0.088531
gate_proj 0.065675 0.059650 0.064525
up_proj 0.074255 0.072050 0.072426
down_proj 0.099231 0.093674 0.096016

Gini coefficient

q_proj 0.502393 0.494265 0.500751
k_proj 0.501150 0.489989 0.492175
v_proj 0.491284 0.492119 0.495181
o_proj 0.631085 0.552331 0.448209
gate_proj 0.452591 0.455563 0.461901
up_proj 0.500934 0.447149 0.450106
down_proj 0.556170 0.639031 0.641702

Table 3: Mean max similarity and Gini coefficient by layer

4 Results97

The adapters perform well on the downstream task, with the largest adapter (r1024 and k8) performing98

the best, as demonstrated in Table 2. The value for Dense LoRA Real Toxicity Prompts is missing due99

to an eval that crashed during our final experiments and will be rerun to collect the value. Controlling100

for the degradation in model outputs by running an instruction following evaluation, we observe101

a small decrease in model performance across all r/k combinations. This can be attributed to the102

DPO process itself, which makes the model more cautious in its responses, potentially refusing some103

instructions. Moreover, in our ablation study, we observe a significant average impact on perplexity,104

indicating a strong causal relationship between the adapter space features and model performance.105

Interestingly, we observe a very high activation range in the self-attention o_proj matrix, coupled106

with a high Gini coefficient, which indicates that the adapter tends to have very “bursty” and useful107

features. Moreover, the gate_proj has the most distinct features as per our duplication proxy (mean108

max similarity), which is consistent with the idea that the gate modulates the semantic information109

passed to the MLP in a transformer decoder layer. Given the nature of the DPO safety fine-tuning110

task, we expect to find safety-related features in that adapter.111

5 Limitations and future work112

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by113

design. Due to time constraints, our evaluations were limited, and we were unable to report full114

results. The results presented in this paper offer a promising “sign of life” for this idea.115

References116

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effec-117

tiveness of language model fine-tuning, 2020. URL https://arxiv.org/abs/2012.13255.118

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel119

Nanda. Refusal in language models is mediated by a single direction, 2024. URL https:120

//arxiv.org/abs/2406.11717.121

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn122

Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson123

Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,124

Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario125

4

https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717


Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.126

Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.127

URL https://arxiv.org/abs/2204.05862.128

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-129

tion with extremely small number of parameters, 2024. URL https://arxiv.org/abs/2405.130

17604.131

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through132

stochastic neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308.133

3432.134

David Bensaïd, Noam Rotstein, Roy Velich, Daniel Bensaïd, and Ron Kimmel. Singlora: Low rank135

adaptation using a single matrix, 2025. URL https://arxiv.org/abs/2507.05566.136

David Chanin, Tomáš Dulka, and Adrià Garriga-Alonso. Feature hedging: Correlated features break137

narrow sparse autoencoders, 2025a. URL https://arxiv.org/abs/2505.11756.138

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph139

Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,140

2025b. URL https://arxiv.org/abs/2409.14507.141

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph142

Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,143

2025c. URL https://arxiv.org/abs/2409.14507.144

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-145

coders find highly interpretable features in language models, 2023. URL https://arxiv.org/146

abs/2309.08600.147

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong148

Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL https://arxiv.149

org/abs/2310.12773.150

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-151

toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint152

arXiv:2009.11462, 2020.153

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff154

pruning, 2021. URL https://arxiv.org/abs/2012.07463.155

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,156

and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:157

//arxiv.org/abs/2106.09685.158

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,159

Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:160

//arxiv.org/abs/2212.04089.161

Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al Moubayed,162

Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of analysis, 2025.163

URL https://arxiv.org/abs/2502.04878.164

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher165

Olah. Sparse crosscoders for cross-layer features and model diffing, Oct 2024. URL https:166

//transformer-circuits.pub/2024/crosscoders/index.html.167

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong168

Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,169

Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and170

Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL171

https://arxiv.org/abs/2203.02155.172

5

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2507.05566
https://arxiv.org/abs/2505.11756
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2012.07463
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2502.04878
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2203.02155


Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of173

features in large language models, 2025. URL https://arxiv.org/abs/2410.13928.174

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy175

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.176

https://github.com/tatsu-lab/stanford_alpaca, 2023.177

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya178

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan179

Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,180

Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,181

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,182

Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,183

Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia184

Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris185

Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,186

Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric187

Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary188

Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,189

Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha190

Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost191

van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,192

Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,193

Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,194

Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel195

Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,196

Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,197

Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad198

Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,199

Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep200

Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh201

Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien202

M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan203

Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,204

Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,205

Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,206

Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,207

Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav208

Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena209

Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,210

and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL211

https://arxiv.org/abs/2408.00118.212

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi213

Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A214

survey, 2025. URL https://arxiv.org/abs/2308.10792.215

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny216

Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL217

https://arxiv.org/abs/2311.07911.218

Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes bert, 2022. URL219

https://arxiv.org/abs/2106.14282.220

6

https://arxiv.org/abs/2410.13928
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2106.14282

	Introduction
	Methodology
	Experiments
	Results
	Limitations and future work

