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Abstract

Model diffing finds the representational differences between a base and a fine-tuned
model. Leading approaches use sparse-dictionary learning [Lindsey et al., |[2024]).
However, these methods are trained post-hoc on a reconstruction loss, which results
in features that often fail to be functionally causal for model behaviour [Braun
et al.| 2024]). In this work, we introduce TopKLoRA — a LoRA-like adapter, which
retains LoORA’s adapter-style deployment and low-rank updates while exposing
an input-conditioned, discrete selection of feature directions that provide con-
trollable levers for the model behaviour, unlike reconstruction-trained features.
Different from standard LoRA, we do not train a low-rank dense adapter, but
instead a high-rank sparse adapter by applying the TopK sparsity in the adapter
space, incentivising interpretability, while retaining the conceptual idea of LoRA.
Each active component in the adapter space corresponds to a rank-1 “feature di-
rection”, and the per-example update has a low effective rank of at most k£ with
k < dmodel- In our experiments, we train adapters across four adapter dimen-
sions and £ combinations for a harmfulness-reduction task with direct preference
optimisation (DPO) of a supervised fine-tuned Gemma 2 2B base model for in-
struction following. We demonstrate maintained downstream task performance
on the Real Toxicity Prompts benchmark [Gehman et al., 2020] relative to a
dense LoRA measured by the Perspective API score. Moreover, we identify inter-
pretable and causal features in the sparse space throughan autointerp study along
each rank-1 feature direction. This method provides interpretable model diffing
information “for free” without degrading downstream task performance. More
broadly, this work demonstrates the effectiveness of incorporating intrinsically
interpretable model segments trained on the downstream loss. We publish the code
at: https://github.com/marek357/lora_interp

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
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1 Introduction

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or
a desired property, such as safety alignment [Dai et al.l 2023]] or instruction following [[Ouyang
et al.| |2022| |Zhang et al.,[2025]. Analysing how this procedure alters internal computations of a
neural network can help diagnose vulnerabilities and ultimately, enhance future Al safety efforts.
For example, Arditi et al.|[2024] leverage their insights to design a novel jailbreaking method and
explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:
systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour
changes emerge.

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce
entirely new circuits, with changes concentrated in a subset of layers and well-approximated by
low-rank subspaces [Zhou and Srikumar;, 2022, |Aghajanyan et al., 2020]]. The success of diff-pruning
[Guo et al.,|2021]], task-vector arithmetic [[lharco et al.,[2023]], and Low Rank Adaptation (LoRA)-
style adapters [Hu et al.} 2021} Batazy et al.| 2024} Bensaid et al., [2025]] is consistent with this
picture.

Most prior model-diffing work relies on sparse dictionary learning (SDL), including sparse autoen-
coders (SAEs) [[Cunningham et al., |2023]] and crosscoders (CCs) [Lindsey et al., [2024]. These
SDL-based methods are trained post-hoc to reconstruct model activations via a high-dimensional,
sparse bottleneck that approximates monosemantic features from polysemantic ones. However, SDL.
optimises reconstruction loss rather than causal faithfulness and can suffer from non-identifiability
[Leask et al., 2025, feature splitting [[Chanin et al., 2025c]], absorption [[Chanin et al.,|2025b], and
hedging [Chanin et al.| |2025a], which limits its usefulness for precise diffing. Additionally, this
training scheme introduces an additional error component which cannot be attributed to the studied
model’s internal computations or downstream performance.

We introduce TopKLoRA, a LoRA-like adapter, trained on the downstream loss, that exposes a discrete,
input-conditional set of feature directions that can be probed causally and is additionally optimised
for monosemanticity. We empirically show that this adapter is both useful and interpretable, matching
the performance of parameter-efficient fine-tuning (PEFT) alternatives while learning top-k latents
that are monosemantic by SAE metrics.

Finally, we note that while TopKLoRA is conceptually similar in its design to an SAE, it serves
a different role. Specifically, SAEs aim to detect features which are already present in model
activations, whereas TopKLoRA injects learnt features’ steering vectors into the model. This comes
at a cost of significantly more learnable parameters than in a dense LoRA.

2 Methodology

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A €
R7*dmoel and B € R X" where r < dmogel. At inference time, for input 2z € R%md | the layer
output is computed as Wx + & AW x = Wz + < BAx, where W is a frozen weight matrix of the
fine-tuned base model layer, and « is a parameter modulating update strength. Hence, the weight
update space (which is R%mo X dmosel dimensional) is low-rank.

Unlike standard LoRA, in TopKLoRA we expand into an 7-dimensional adapter space, with
r on the order of, or larger than dy.q. At inference, we select the top-k components of the
encoded vector z = Az, thus computing m = TopK(z, k) € {0,1}" and apply the modified update
AWzx =B (m ® z) = Y .. M;z b;. While the adapter contains more parameters than a dense
LoRA, the per-example update remains low-rank since at most k adapter space dimensions are
non-zero with k < dyodel- This architecture is presented in Figure

Furthermore, we use the straight-through estimator (STE) [Bengio et al., [2013]] for training the
adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the
forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we
compute the Sof tMax distribution over latents, parametrised by a temperature 7, which decreases to
€ ~ ( during training time according to its schedule. We rescale the probability mass to sum to k,
which also has its own, very short schedule to encourage early exploration. To prevent the emergence
of polysemanticity in the adapter space, we apply a decorrelation loss.
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Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output,
scaled by «/r. Pre-TopK z shows all  components; post-TopK m @ z keeps only k solid entries.

3 Experiments

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B model
[Team et al., | 2024]] via supervised fine-tuning with a dense LoRA adapter for the instruction following
task on the Alpaca dataset [Taori et al., 2023]]. Next, we merge the PEFT weights and run a direct
preference optimisation training with our sparse TopKLoRA on the harmlessness split of the hh-rlhf
dataset [Bai et al., 2022]]. Specifically, we attach our adapters to all modules in the 18th layer of
the Gemma 2 model. We constrain our study to a single layer to remove confounding cross-layer
effects, leaving an analysis of attaching the TopKLoRA to all layers in the model for future work.
The choice of the 18th layer was made after a layer sweep in which we identified layers with the
highest impact on toxic vs safe outputs using gradient-based attribution. We report experiments with
r,k € {(8192,1024 — 64), (4096,512 — 32),(1024,128 — 8), (512,64 — 4)}ﬂ Moreover, we
use a linear schedule for the soft-TopK temperature, starting from 0.1 at the beginning of training
and decreasing to 0.005 at the last training step. Moreover, we set the a = 2r to account for the
significant sparsity in the adapter dimension and help make the updates more significant. We train all
DPO adapters for 7500 steps. For baselines, we train four dense LoRA adapters with rank r» = 8§,
r=16,r = 32, and r = 64.

We evaluate the adapter’s quality in two ways: its usefulness for the downstream task and the
interpretability of the adapter’s space latents. To assess the former, we use the RealToxicityPrompts
challenging subset and score model completions using the Perspective API TOXICITY attributeE]
We classify a completion as toxic if its toxicity score is > 0.5 [[Gehman et al.| 2020]. We also
control for deteriorated model behaviour by running an instruction-following evaluation [Zhou et al.,
2023]]. Additionally, we use the Delphi autointerp package [Paulo et al.,[2025]] to explain and score
individual adapter latents, treating them as SAE features to evaluate the adapter’s interpretability.
Importantly, due to time constraints, we uniformly sample 150 latents from each module and interpret
this subset. Therefore, the analysis in Section[4.2]should be read as a partial snapshot of TopKLoRA’s
interpretability rather than a comprehensive assessment. Additionally, we use the detection task’s
[Paulo et al.l 2025]] accuracy as the measure of interpretability. Moreover, we use the Qwen/Qwen3-
30B-A3B-Thinking-2507 reasoning model to generate feature explanations and to predict detection
task outcomes. We provide examples of highly interpretable features and their detection scores in

Section and Appendix



Method Config Toxicity | Prompt acc (strict) T Instr. acc (strict) 1
Base (SFT) - 0.681 (0.00%) 0.226 (0.0%) 0.339 (0.0%)
TopKLoRA (TopKLoRA)  r=512, k=4 0.658 (—3.25%) 0.214 (—5.3%) 0.338 (—0.3%)
r=1024, k=8 0.659 (—3.19%) 0.220 (—2.7%) 0.339 (0.0%)
r=4096, k=32  0.642 (—5.70%) 0.211 (—6.6%) 0.331 (—2.4%)
r=8192, k=64  0.643 (—5.51%) 0.218 (—3.5%) 0.338 (—0.3%)
Dense LoRA (benchmark) r=8 0.662 (—2.76%) 0.222 (—1.8%) 0.337 (—0.6%)
r=16 0.666 (—2.08%) 0.216 (—4.4%) 0.337 (—0.6%)
r=32 0.666 (—2.21%) 0.216 (—4.4%) 0.339 (0.0%)
r=64 0.661 (—2.82%) 0.218 (—3.5%) 0.336 (—0.9%)

Table 1: TopKLoRA vs. dense LoRA on Gemma 2 2B. We report mean toxicity on the challenging
subset of RealToxicityPrompts (|.) and IFEval strict accuracies for prompts/instructions (7). Numbers
in parentheses are the relative percentage change vs. the SFT base, with the best performing method
per column in bold. Adapters are trained with DPO on the harmlessness split of HH-RLHF and
attached to layer 18.

4 Results

4.1 Overall performance and trade-offs

Downstream performance. Table [T] reports mean toxicity on RealToxicityPrompts and strict
IFEval accuracies. Across the settings we tried, TopKLoRA configurations are at least competitive
with dense LoRA on the toxicity metric at comparable instruction adherence. The best toxicity we
observe is for r=4096, k=32 (0.642; —5.7% vs. the SFT base), while r=1024, k=8 yields a smaller
reduction (0.659; ~3.2%) with adherence close to the base on IFEval (instructions). These differences
are modest in magnitude and specific to our training protocol (DPO on HH-RLHF harmlessness,
adapters on layer 18), so we treat these results as indicative rather than definitive.

Trade-offs and sensitivity. Two patterns recur in our runs. First, the more pronounced adherence
drops appear on prompt-strict rather than instruction-strict accuracy, consistent with harmlessness
tuning introducing additional hedging early in responses—which IFEval’s prompt-scoring penalises.
Second, for fixed r, reducing k aggressively does not reliably improve toxicity and can reduce
adherence, suggesting diminishing returns from extreme sparsity. Increasing k from 8 — 32 tends to
lower toxicity at the cost of small adherence changes, exposing a tunable knob that likely requires task-
and deployment-specific calibration. We view these as preliminary observations pending targeted
ablations and statistical repeat runs.

4.2 Interpretable safety features

We observe several latents that align with safety/toxicity cues, listed in Table |2} These latents are
consistent with the observed toxicity reductions: several detect explicit toxic content (racial slurs,
harm/violence verbs) while others activate around refusal/legal/deflection patterns.

5 Limitations and future work

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by
design. Due to time constraints, our evaluations were limited to the safety setting and lacked a direct
comparison with a crosscoder baseline. The most significant limitation of this study is how we treat
the TopKLoRAlatents — we assume they work the same way as SAE features. However, SAEs attempt
to detect a feature already present in the model activations, whereas our adapter injects features,
previously missing, into these activations. This means that using the highest-activating tokens as
the scaffolding for autointerp analysis is most likely not the most accurate choice. Moreover, in this

3(r,a — b) means that the k-schedule started with ko = a and decreased to ki, = b after 375 steps
“https://perspectiveapi.com
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Feature (short description) Detection Accuracy T Location

Racial terms in racially charged contexts 0.80 self_attn (q_proj, 223)
Verbs denoting harm or violence 0.76 self_attn (q_proj, 48)
“the” in questions seeking harmful methods 0.79 self_attn (q_proj, 75)
“way” indicating a method 0.83 mlp (proj_proj, 1082)
Legality-related terms (legal contexts) 0.76 self_attn (k_proj, 1638)
Deflection phrasing (“difficult”/“tough”) 0.76 mlp (proj_proj, 8022)
Apology marker (“sorry”) in refusals 0.77 mlp (proj_proj, 6367)
Hesitation token “Hmm” 0.81 self_attn (q_proj, 311)
Hesitation token “Hmmm” (start of response) 0.81 self_att (k_proj, 7260)
“address” in PII contexts 0.78 self_attn (q_proj, 402)

Table 2: Toxicity-reduction—relevant latents, interpreted by Delphi autointerp. Feature descriptions
have been abbreviated for brevity. Importantly, these features have been collected from all adapters.
The per-adapter breakdown is presented in Appendix

work, we do not report an ablation study due to time constraints. We aim to address these limitations
in future work. Finally, we believe that the results presented in this paper offer a promising “sign of
life” for the TopKLoRA adapter idea.
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A Interpretable features

In this section, we provide a list of all features that were scored with at least 75% accuracy in the
detection task using the Delphi autointerp package. Importantly, we reiterate that, due to constraints
on available compute resources and time, we randomly sampled 150 latents from each module and ran
autointerp on them. Hence, the adapters might contain significantly more interesting features which
were omitted in this study. The features and their prediction accuracies are presented in Table 3]

Table 3: Interpretable features (detection accuracy > 0.75) discovered via Delphi autointerp.

Score Feature description Location
r=1024 k=8
0.800 The preposition “in” in prepositional phrases. self_attn (q_proj, 3)
0.910 Person names. self_attn (q_proj, 12)
0.760 Geographical and URL address tokens. self_attn (q_proj, 50)
0.770 High activation for question and exclamation marks in self_attn (q_proj, 66)
conversational dialogue.
0.810 The word “know” in expressions of ignorance. self_attn (q_proj, 140)
0.760 Key nouns and question marks in user questions. self_attn (q_proj, 164)
0.800 Racial terms in racially charged contexts. self_attn (q_proj, 223)
0.810 Hesitation token “Hmm” in assistant responses. self_attn (q_proj, 311)
0.860 Pronouns “I” and “you” in user questions about personal actions. self_attn (q_proj, 327)
0.780 The word “address” denoting a location (physical or digital) in  self_attn (q_proj, 402)
personal information contexts.
0.810 Proper nouns and numerical digits. self_attn (q_proj, 444)
0.840 Preposition “for” in standard English phrases. self_attn (q_proj, 457)
0.870 The token “go” (or “going”) as the verb in a phrasal verb self_attn (k_proj, 245)
describing an action.
0.790 The verb “put” used for placing or putting something. self_attn (k_proj, 462)
0.890 Distinctive components of location and entity proper nouns. self_attn (k_proj, 698)
0.760 Main verbs in common phrasal verbs. self_attn (k_proj, 896)
0.800 Distinctive nouns in well-known phrases or proper nouns. self_attn (v_proj, 347)
0.930 The verb “come” in any inflected form. self_attn (v_proj, 399)
0.790 Quantifiers expressing large numbers. self_attn (v_proj, 520)
0.800 Key words in proper nouns or specific phrases. self_attn (v_proj, 745)
0.790 The word “here” used to introduce a list or example. self_attn (v_proj, 914)
0.820 The word “what” in questions. mlp (gate_proj, 675)
0.820 Common compound terms and phrases starting with “short” or  mlp (gate_proj, 990)
“long”.
0.810 End-of-sequence tokens marking the start of a new user message mlp (up_proj, 644)
in a conversation.
0.800 The forward slash in URL structures. mlp (up_proj, 823)
r=4096 k=32
0.760 Activation on the digit “1” in numerical values and on the word  self_attn (q_proj, 29)
“example” in the phrase “for example”.
0.760 Verbs denoting harm or violence. self_attn (q_proj, 48)
0.860 Common conversational interjections expressing emotion. self_attn (q_proj, 58)
0.790 The word “the” in questions seeking harmful methods. self_attn (q_proj, 75)
0.840 Verb “live” used to describe residence or lifestyle. self_attn (q_proj, 189)
0.790 The word “look” in various forms and the word “people”. self_attn (q_proj, 239)
0.780 High activation for space and <eos> tokens at response endings. self_attn (q_proj, 314)
0.810 The word “does” in questions. self_attn (q_proj, 340)
0.770 First parts of proper nouns or specific terms. self_attn (q_proj, 448)
0.890 End-of-sequence tokens marking the end of assistant responses  self_attn (k_proj, 2162)
in conversational turn-taking.
0.800 Conversational acknowledgment words in dialogue. self_attn (v_proj, 1331)
0.790 Information retrieval terms. self_attn (v_proj, 1998)
0.770 Parts of proper nouns and address abbreviations in location self_attn (v_proj, 3625)

contexts.




Score

Feature description

Location

0.760
0.900
0.760

0.790

0.800
0.810
0.800
0.830
0.760

Quantifiers for small numbers.

Dialogue speaker labels and colon separators.

Tokens forming numerical expressions in contexts like phone
numbers, weights, and ordinals.

The “Human:” prefix marking the start of a human message in
dialogue.

The word “or” used as a conjunction for alternatives.
Questions containing the words “are” or “can”.

The verb “talk” in conversational contexts.

The word “way” used to describe a method of doing something.
The word “point” used to direct attention to information or
location.

self_attn (v_proj, 3969)
self_attn (o_proj, 1045)
self_attn (o_proj, 1374)

self_attn (o_proj, 3879)

mlp (gate_proj, 535)
mlp (gate_proj, 2230)
mlp (down_proj, 355)
mlp (down_proj, 1082)
mlp (down_proj, 1153)

0.880 The verb “give” meaning to provide. mlp (down_proj, 1779)
0.760 The word “financial” (and “financially”) in financial contexts. mlp (down_proj, 3255)
r=8192 k=64

0.810 Digits in numerical expressions and the word “help” in self_attn (q_proj, 51)

0.760

0.880
0.760

0.880
0.840
0.760
0.830

0.760
0.880
0.870

0.810

0.770
0.810

0.780
0.800
0.820

0.790
0.790
0.830
0.760

0.890
0.810
0.770

conversational phrases.

Words used in questions to specify a category (e.g., “kind”,
“type”, “sort”).

High activation on the end-of-sequence token.

Distinctive parts of brand names, place names, and URL
components.

Initial fragments of specific terms and digits within years.

The word “way” in common phrases expressing a method.

Key content words and chat speaker labels.

Tokens forming numerical expressions, including digits and the
space preceding numbers.

Legality-related terms in legal contexts.

The word “know” in knowledge-related contexts.

Key terms for specific cultural, religious, or geographical
references.

Hesitation tokens like “Hmmm” at the start of assistant
responses.

The word “keep” in common English phrases.

User identifier “Human” in chat logs and fragments of technical
terms.

The word “here” indicating the current context or situation.
Digits within numerical values.

Specific reference tokens (proper nouns, specific terms, or
contextual numbers).

Proper nouns representing geographic locations or person names.

The word “wikipedia” is a frequent activation trigger in text.
Digits in numerical sequences.

The word “difficult” or “tough” in Al deflection phrases for
sensitive topics.

The word “Human” used as a conversation label for user input.
The word “what” at the start of a question.

The word “sorry” activated in chatbot apology responses to
inappropriate requests.

self_attn (q_proj, 65)

self_attn (q_proj, 169)
self_attn (q_proj, 192)

self_attn (q_proj, 204)
self_attn (q_proj, 240)
self_attn (q_proj, 253)
self_attn (k_proj, 344)

self_attn (k_proj, 1638)
self_attn (k_proj, 6396)
self_attn (k_proj, 6570)

self_attn (k_proj, 7260)

self_attn (k_proj, 7744)
self_attn (v_proj, 4564)

self_attn (v_proj, 7149)
self_attn (v_proj, 7612)
self_attn (o_proj, 7705)

mlp (gate_proj, 2564)
mlp (gate_proj, 4722)
mlp (up_proj, 2594)
mlp (up_proj, 8022)

mlp (down_proj, 1204)
mlp (down_proj, 2854)
mlp (down_proj, 6367)
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