TopKLoRA

Marek Masia Lukas Vierlin
University of Oxford University of Oxford
marek.masiak@dtc.ox.ac.uk lukas.vierling@cs.ox.ac.uk
Christian Schroeder de Wit Nicola Cancedd
University of Oxford FAIR, Meta
cs@robots.ox.ac.uk ncan@meta.com

Constantin Venhof
University of Oxfor
constantin@robots.ox.ac.uk

Abstract

Model diffing finds the representational differences between a base and a fine-tuned
model. Leading approaches use sparse-dictionary learning [Lindsey et al., |[2024]).
However, these methods are trained post-hoc on a reconstruction loss, which results
in features that often fail to be functionally causal for model behaviour [Braun
et al.| 2024]). In this work, we introduce TopKLoRA — a LoRA-like adapter, which
retains LoORA’s adapter-style deployment and low-rank updates while exposing
an input-conditioned, discrete selection of feature directions that provide con-
trollable levers for the model behaviour, unlike reconstruction-trained features.
Different from standard LoRA, we do not train a low-rank dense adapter, but
instead a high-rank sparse adapter by applying the TopK sparsity in the adapter
space, incentivising interpretability, while retaining the conceptual idea of LoRA.
Each active component in the adapter space corresponds to a rank-1 “feature di-
rection”, and the per-example update has a low effective rank of at most k£ with
k < dmodel- In our experiments, we train adapters across four adapter dimen-
sions and £ combinations for a harmfulness-reduction task with direct preference
optimisation (DPO) of a supervised fine-tuned Gemma 2 2B base model for in-
struction following. We demonstrate maintained downstream task performance
on the Real Toxicity Prompts benchmark [Gehman et al., 2020] relative to a
dense LoRA measured by the Perspective API score. Moreover, we identify inter-
pretable and causal features in the sparse space throughan autointerp study along
each rank-1 feature direction. This method provides interpretable model diffing
information “for free” without degrading downstream task performance. More
broadly, this work demonstrates the effectiveness of incorporating intrinsically
interpretable model segments trained on the downstream loss. We publish the code
at: https://github.com/marek357/lora_interp

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

*Equal contribution
TEqual supervision

https://github.com/marek357/lora_interp

1 Introduction

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or
a desired property, such as safety alignment [Dai et al.l 2023]] or instruction following [[Ouyang
et al.| |2022| |Zhang et al.,[2025]. Analysing how this procedure alters internal computations of a
neural network can help diagnose vulnerabilities and ultimately, enhance future Al safety efforts.
For example, Arditi et al.|[2024] leverage their insights to design a novel jailbreaking method and
explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:
systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour
changes emerge.

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce
entirely new circuits, with changes concentrated in a subset of layers and well-approximated by
low-rank subspaces [Zhou and Srikumar;, 2022, |Aghajanyan et al., 2020]]. The success of diff-pruning
[Guo et al.,|2021]], task-vector arithmetic [[lharco et al.,[2023]], and Low Rank Adaptation (LoRA)-
style adapters [Hu et al.} 2021} Batazy et al.| 2024} Bensaid et al., [2025]] is consistent with this
picture.

Most prior model-diffing work relies on sparse dictionary learning (SDL), including sparse autoen-
coders (SAEs) [[Cunningham et al., |2023]] and crosscoders (CCs) [Lindsey et al., [2024]. These
SDL-based methods are trained post-hoc to reconstruct model activations via a high-dimensional,
sparse bottleneck that approximates monosemantic features from polysemantic ones. However, SDL.
optimises reconstruction loss rather than causal faithfulness and can suffer from non-identifiability
[Leask et al., 2025, feature splitting [[Chanin et al., 2025c]], absorption [[Chanin et al.,|2025b], and
hedging [Chanin et al.| |2025a], which limits its usefulness for precise diffing. Additionally, this
training scheme introduces an additional error component which cannot be attributed to the studied
model’s internal computations or downstream performance.

We introduce TopKLoRA, a LoRA-like adapter, trained on the downstream loss, that exposes a discrete,
input-conditional set of feature directions that can be probed causally and is additionally optimised
for monosemanticity. We empirically show that this adapter is both useful and interpretable, matching
the performance of parameter-efficient fine-tuning (PEFT) alternatives while learning top-k latents
that are monosemantic by SAE metrics.

Finally, we note that while TopKLoRA is conceptually similar in its design to an SAE, it serves
a different role. Specifically, SAEs aim to detect features which are already present in model
activations, whereas TopKLoRA injects learnt features’ steering vectors into the model. This comes
at a cost of significantly more learnable parameters than in a dense LoRA.

2 Methodology

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A €
R7*dmoel and B € R X" where r < dmogel. At inference time, for input 2z € R%md | the layer
output is computed as Wx + & AW x = Wz + < BAx, where W is a frozen weight matrix of the
fine-tuned base model layer, and « is a parameter modulating update strength. Hence, the weight
update space (which is R%mo X dmosel dimensional) is low-rank.

Unlike standard LoRA, in TopKLoRA we expand into an 7-dimensional adapter space, with
r on the order of, or larger than dy.q. At inference, we select the top-k components of the
encoded vector z = Az, thus computing m = TopK(z, k) € {0,1}" and apply the modified update
AWzx =B (m ® z) = Y .. M;z b;. While the adapter contains more parameters than a dense
LoRA, the per-example update remains low-rank since at most k adapter space dimensions are
non-zero with k < dyodel- This architecture is presented in Figure

Furthermore, we use the straight-through estimator (STE) [Bengio et al., [2013]] for training the
adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the
forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we
compute the Sof tMax distribution over latents, parametrised by a temperature 7, which decreases to
€ ~ (during training time according to its schedule. We rescale the probability mass to sum to k,
which also has its own, very short schedule to encourage early exploration. To prevent the emergence
of polysemanticity in the adapter space, we apply a decorrelation loss.

F I
latent z = Ax € R" masked m © z Ay =<2 B(m®2)
A TopK | B
" —’ dmOde] >< 7‘

B active latent masked / zeroed

Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output,
scaled by «/r. Pre-TopK z shows all components; post-TopK m @ z keeps only k solid entries.

3 Experiments

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B model
[Team et al., | 2024]] via supervised fine-tuning with a dense LoRA adapter for the instruction following
task on the Alpaca dataset [Taori et al., 2023]]. Next, we merge the PEFT weights and run a direct
preference optimisation training with our sparse TopKLoRA on the harmlessness split of the hh-rlhf
dataset [Bai et al., 2022]]. Specifically, we attach our adapters to all modules in the 18th layer of
the Gemma 2 model. We constrain our study to a single layer to remove confounding cross-layer
effects, leaving an analysis of attaching the TopKLoRA to all layers in the model for future work.
The choice of the 18th layer was made after a layer sweep in which we identified layers with the
highest impact on toxic vs safe outputs using gradient-based attribution. We report experiments with
r,k € {(8192,1024 — 64), (4096,512 — 32),(1024,128 — 8), (512,64 — 4)}ﬂ Moreover, we
use a linear schedule for the soft-TopK temperature, starting from 0.1 at the beginning of training
and decreasing to 0.005 at the last training step. Moreover, we set the a = 2r to account for the
significant sparsity in the adapter dimension and help make the updates more significant. We train all
DPO adapters for 7500 steps. For baselines, we train four dense LoRA adapters with rank r» = 8§,
r=16,r = 32, and r = 64.

We evaluate the adapter’s quality in two ways: its usefulness for the downstream task and the
interpretability of the adapter’s space latents. To assess the former, we use the RealToxicityPrompts
challenging subset and score model completions using the Perspective API TOXICITY attributeE]
We classify a completion as toxic if its toxicity score is > 0.5 [[Gehman et al.| 2020]. We also
control for deteriorated model behaviour by running an instruction-following evaluation [Zhou et al.,
2023]]. Additionally, we use the Delphi autointerp package [Paulo et al.,[2025]] to explain and score
individual adapter latents, treating them as SAE features to evaluate the adapter’s interpretability.
Importantly, due to time constraints, we uniformly sample 150 latents from each module and interpret
this subset. Therefore, the analysis in Section[4.2]should be read as a partial snapshot of TopKLoRA’s
interpretability rather than a comprehensive assessment. Additionally, we use the detection task’s
[Paulo et al.l 2025]] accuracy as the measure of interpretability. Moreover, we use the Qwen/Qwen3-
30B-A3B-Thinking-2507 reasoning model to generate feature explanations and to predict detection
task outcomes. We provide examples of highly interpretable features and their detection scores in

Section and Appendix

Method Config Toxicity | Prompt acc (strict) T Instr. acc (strict) 1
Base (SFT) - 0.681 (0.00%) 0.226 (0.0%) 0.339 (0.0%)
TopKLoRA (TopKLoRA) r=512, k=4 0.658 (—3.25%) 0.214 (—5.3%) 0.338 (—0.3%)
r=1024, k=8 0.659 (—3.19%) 0.220 (—2.7%) 0.339 (0.0%)
r=4096, k=32 0.642 (—5.70%) 0.211 (—6.6%) 0.331 (—2.4%)
r=8192, k=64 0.643 (—5.51%) 0.218 (—3.5%) 0.338 (—0.3%)
Dense LoRA (benchmark) r=8 0.662 (—2.76%) 0.222 (—1.8%) 0.337 (—0.6%)
r=16 0.666 (—2.08%) 0.216 (—4.4%) 0.337 (—0.6%)
r=32 0.666 (—2.21%) 0.216 (—4.4%) 0.339 (0.0%)
r=64 0.661 (—2.82%) 0.218 (—3.5%) 0.336 (—0.9%)

Table 1: TopKLoRA vs. dense LoRA on Gemma 2 2B. We report mean toxicity on the challenging
subset of RealToxicityPrompts (|.) and IFEval strict accuracies for prompts/instructions (7). Numbers
in parentheses are the relative percentage change vs. the SFT base, with the best performing method
per column in bold. Adapters are trained with DPO on the harmlessness split of HH-RLHF and
attached to layer 18.

4 Results

4.1 Overall performance and trade-offs

Downstream performance. Table [T] reports mean toxicity on RealToxicityPrompts and strict
IFEval accuracies. Across the settings we tried, TopKLoRA configurations are at least competitive
with dense LoRA on the toxicity metric at comparable instruction adherence. The best toxicity we
observe is for r=4096, k=32 (0.642; —5.7% vs. the SFT base), while r=1024, k=8 yields a smaller
reduction (0.659; ~3.2%) with adherence close to the base on IFEval (instructions). These differences
are modest in magnitude and specific to our training protocol (DPO on HH-RLHF harmlessness,
adapters on layer 18), so we treat these results as indicative rather than definitive.

Trade-offs and sensitivity. Two patterns recur in our runs. First, the more pronounced adherence
drops appear on prompt-strict rather than instruction-strict accuracy, consistent with harmlessness
tuning introducing additional hedging early in responses—which IFEval’s prompt-scoring penalises.
Second, for fixed r, reducing k aggressively does not reliably improve toxicity and can reduce
adherence, suggesting diminishing returns from extreme sparsity. Increasing k from 8 — 32 tends to
lower toxicity at the cost of small adherence changes, exposing a tunable knob that likely requires task-
and deployment-specific calibration. We view these as preliminary observations pending targeted
ablations and statistical repeat runs.

4.2 Interpretable safety features

We observe several latents that align with safety/toxicity cues, listed in Table |2} These latents are
consistent with the observed toxicity reductions: several detect explicit toxic content (racial slurs,
harm/violence verbs) while others activate around refusal/legal/deflection patterns.

5 Limitations and future work

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by
design. Due to time constraints, our evaluations were limited to the safety setting and lacked a direct
comparison with a crosscoder baseline. The most significant limitation of this study is how we treat
the TopKLoRAlatents — we assume they work the same way as SAE features. However, SAEs attempt
to detect a feature already present in the model activations, whereas our adapter injects features,
previously missing, into these activations. This means that using the highest-activating tokens as
the scaffolding for autointerp analysis is most likely not the most accurate choice. Moreover, in this

3(r,a — b) means that the k-schedule started with ko = a and decreased to ki, = b after 375 steps
“https://perspectiveapi.com

https://perspectiveapi.com

Feature (short description) Detection Accuracy T Location

Racial terms in racially charged contexts 0.80 self_attn (q_proj, 223)
Verbs denoting harm or violence 0.76 self_attn (q_proj, 48)
“the” in questions seeking harmful methods 0.79 self_attn (q_proj, 75)
“way” indicating a method 0.83 mlp (proj_proj, 1082)
Legality-related terms (legal contexts) 0.76 self_attn (k_proj, 1638)
Deflection phrasing (“difficult”/“tough”) 0.76 mlp (proj_proj, 8022)
Apology marker (“sorry”) in refusals 0.77 mlp (proj_proj, 6367)
Hesitation token “Hmm” 0.81 self_attn (q_proj, 311)
Hesitation token “Hmmm” (start of response) 0.81 self_att (k_proj, 7260)
“address” in PII contexts 0.78 self_attn (q_proj, 402)

Table 2: Toxicity-reduction—relevant latents, interpreted by Delphi autointerp. Feature descriptions
have been abbreviated for brevity. Importantly, these features have been collected from all adapters.
The per-adapter breakdown is presented in Appendix

work, we do not report an ablation study due to time constraints. We aim to address these limitations
in future work. Finally, we believe that the results presented in this paper offer a promising “sign of
life” for the TopKLoRA adapter idea.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effec-
tiveness of language model fine-tuning, 2020. URL https://arxiv.org/abs/2012.13255|

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction, 2024. URL https:
//arxiv.org/abs/2406.11717.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
URL https://arxiv.org/abs/2204.05862,

Klaudia Batazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters, 2024. URL https://arxiv.org/abs/2405,
17604.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308,
3432.

David Bensaid, Noam Rotstein, Roy Velich, Daniel Bensaid, and Ron Kimmel. Singlora: Low rank
adaptation using a single matrix, 2025. URL https://arxiv.org/abs/2507.05566.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv.org/
abs/2405.12241.

David Chanin, Tom4s Dulka, and Adria Garriga-Alonso. Feature hedging: Correlated features break
narrow sparse autoencoders, 2025a. URL https://arxiv.org/abs/2505.11756.

David Chanin, James Wilken-Smith, Tom4§ Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,
2025b. URL https://arxiv.org/abs/2409.14507.

David Chanin, James Wilken-Smith, Tom4s Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,
2025c. URL https://arxiv.org/abs/2409.14507.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.org/
abs/2309.08600.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL https://arxiv,
org/abs/2310.12773.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning, 2021. URL https://arxiv.org/abs/2012.07463,

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2507.05566
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2505.11756
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2012.07463
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089

Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al Moubayed,
Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of analysis, 2025.
URL https://arxiv.org/abs/2502.04878,

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing, Oct 2024. URL https:
//transformer-circuits.pub/2024/crosscoders/index.html.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Gongalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2025. URL https://arxiv.org/abs/2410.13928.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogoziniska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,
Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,
Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A
survey, 2025. URL https://arxiv.org/abs/2308.10792,

https://arxiv.org/abs/2502.04878
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2410.13928
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2308.10792

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL
https://arxiv.org/abs/2311.07911.

Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes bert, 2022. URL
https://arxiv.org/abs/2106.14282.

https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2106.14282

A Interpretable features

In this section, we provide a list of all features that were scored with at least 75% accuracy in the
detection task using the Delphi autointerp package. Importantly, we reiterate that, due to constraints
on available compute resources and time, we randomly sampled 150 latents from each module and ran
autointerp on them. Hence, the adapters might contain significantly more interesting features which
were omitted in this study. The features and their prediction accuracies are presented in Table 3]

Table 3: Interpretable features (detection accuracy > 0.75) discovered via Delphi autointerp.

Score Feature description Location
r=1024 k=8
0.800 The preposition “in” in prepositional phrases. self_attn (q_proj, 3)
0.910 Person names. self_attn (q_proj, 12)
0.760 Geographical and URL address tokens. self_attn (q_proj, 50)
0.770 High activation for question and exclamation marks in self_attn (q_proj, 66)
conversational dialogue.
0.810 The word “know” in expressions of ignorance. self_attn (q_proj, 140)
0.760 Key nouns and question marks in user questions. self_attn (q_proj, 164)
0.800 Racial terms in racially charged contexts. self_attn (q_proj, 223)
0.810 Hesitation token “Hmm” in assistant responses. self_attn (q_proj, 311)
0.860 Pronouns “I” and “you” in user questions about personal actions. self_attn (q_proj, 327)
0.780 The word “address” denoting a location (physical or digital) in self_attn (q_proj, 402)
personal information contexts.
0.810 Proper nouns and numerical digits. self_attn (q_proj, 444)
0.840 Preposition “for” in standard English phrases. self_attn (q_proj, 457)
0.870 The token “go” (or “going”) as the verb in a phrasal verb self_attn (k_proj, 245)
describing an action.
0.790 The verb “put” used for placing or putting something. self_attn (k_proj, 462)
0.890 Distinctive components of location and entity proper nouns. self_attn (k_proj, 698)
0.760 Main verbs in common phrasal verbs. self_attn (k_proj, 896)
0.800 Distinctive nouns in well-known phrases or proper nouns. self_attn (v_proj, 347)
0.930 The verb “come” in any inflected form. self_attn (v_proj, 399)
0.790 Quantifiers expressing large numbers. self_attn (v_proj, 520)
0.800 Key words in proper nouns or specific phrases. self_attn (v_proj, 745)
0.790 The word “here” used to introduce a list or example. self_attn (v_proj, 914)
0.820 The word “what” in questions. mlp (gate_proj, 675)
0.820 Common compound terms and phrases starting with “short” or mlp (gate_proj, 990)
“long”.
0.810 End-of-sequence tokens marking the start of a new user message mlp (up_proj, 644)
in a conversation.
0.800 The forward slash in URL structures. mlp (up_proj, 823)
r=4096 k=32
0.760 Activation on the digit “1” in numerical values and on the word self_attn (q_proj, 29)
“example” in the phrase “for example”.
0.760 Verbs denoting harm or violence. self_attn (q_proj, 48)
0.860 Common conversational interjections expressing emotion. self_attn (q_proj, 58)
0.790 The word “the” in questions seeking harmful methods. self_attn (q_proj, 75)
0.840 Verb “live” used to describe residence or lifestyle. self_attn (q_proj, 189)
0.790 The word “look” in various forms and the word “people”. self_attn (q_proj, 239)
0.780 High activation for space and <eos> tokens at response endings. self_attn (q_proj, 314)
0.810 The word “does” in questions. self_attn (q_proj, 340)
0.770 First parts of proper nouns or specific terms. self_attn (q_proj, 448)
0.890 End-of-sequence tokens marking the end of assistant responses self_attn (k_proj, 2162)
in conversational turn-taking.
0.800 Conversational acknowledgment words in dialogue. self_attn (v_proj, 1331)
0.790 Information retrieval terms. self_attn (v_proj, 1998)
0.770 Parts of proper nouns and address abbreviations in location self_attn (v_proj, 3625)

contexts.

Score

Feature description

Location

0.760
0.900
0.760

0.790

0.800
0.810
0.800
0.830
0.760

Quantifiers for small numbers.

Dialogue speaker labels and colon separators.

Tokens forming numerical expressions in contexts like phone
numbers, weights, and ordinals.

The “Human:” prefix marking the start of a human message in
dialogue.

The word “or” used as a conjunction for alternatives.
Questions containing the words “are” or “can”.

The verb “talk” in conversational contexts.

The word “way” used to describe a method of doing something.
The word “point” used to direct attention to information or
location.

self_attn (v_proj, 3969)
self_attn (o_proj, 1045)
self_attn (o_proj, 1374)

self_attn (o_proj, 3879)

mlp (gate_proj, 535)
mlp (gate_proj, 2230)
mlp (down_proj, 355)
mlp (down_proj, 1082)
mlp (down_proj, 1153)

0.880 The verb “give” meaning to provide. mlp (down_proj, 1779)
0.760 The word “financial” (and “financially”) in financial contexts. mlp (down_proj, 3255)
r=8192 k=64

0.810 Digits in numerical expressions and the word “help” in self_attn (q_proj, 51)

0.760

0.880
0.760

0.880
0.840
0.760
0.830

0.760
0.880
0.870

0.810

0.770
0.810

0.780
0.800
0.820

0.790
0.790
0.830
0.760

0.890
0.810
0.770

conversational phrases.

Words used in questions to specify a category (e.g., “kind”,
“type”, “sort”).

High activation on the end-of-sequence token.

Distinctive parts of brand names, place names, and URL
components.

Initial fragments of specific terms and digits within years.

The word “way” in common phrases expressing a method.

Key content words and chat speaker labels.

Tokens forming numerical expressions, including digits and the
space preceding numbers.

Legality-related terms in legal contexts.

The word “know” in knowledge-related contexts.

Key terms for specific cultural, religious, or geographical
references.

Hesitation tokens like “Hmmm” at the start of assistant
responses.

The word “keep” in common English phrases.

User identifier “Human” in chat logs and fragments of technical
terms.

The word “here” indicating the current context or situation.
Digits within numerical values.

Specific reference tokens (proper nouns, specific terms, or
contextual numbers).

Proper nouns representing geographic locations or person names.

The word “wikipedia” is a frequent activation trigger in text.
Digits in numerical sequences.

The word “difficult” or “tough” in Al deflection phrases for
sensitive topics.

The word “Human” used as a conversation label for user input.
The word “what” at the start of a question.

The word “sorry” activated in chatbot apology responses to
inappropriate requests.

self_attn (q_proj, 65)

self_attn (q_proj, 169)
self_attn (q_proj, 192)

self_attn (q_proj, 204)
self_attn (q_proj, 240)
self_attn (q_proj, 253)
self_attn (k_proj, 344)

self_attn (k_proj, 1638)
self_attn (k_proj, 6396)
self_attn (k_proj, 6570)

self_attn (k_proj, 7260)

self_attn (k_proj, 7744)
self_attn (v_proj, 4564)

self_attn (v_proj, 7149)
self_attn (v_proj, 7612)
self_attn (o_proj, 7705)

mlp (gate_proj, 2564)
mlp (gate_proj, 4722)
mlp (up_proj, 2594)
mlp (up_proj, 8022)

mlp (down_proj, 1204)
mlp (down_proj, 2854)
mlp (down_proj, 6367)

10

	Introduction
	Methodology
	Experiments
	Results
	Overall performance and trade-offs
	Interpretable safety features

	Limitations and future work
	Interpretable features

