© ®©® N O o A~ W N =

26
27
28
29
30
31
32
33

34
35
36
37

TopKLoRA

Anonymous Author(s)
Affiliation
Address

email

Abstract

Model diffing finds the representational differences between a base and a fine-
tuned model. However, current sparse dictionary learning based methods are
trained post-hoc on a reconstruction loss, which results in features that often
fail to be functionally causal for model behaviour. In this work, we introduce
TopKLoRA — a LoRA-like adapter, which retains LoRA’s adapter-style deployment
and low-rank updates while exposing a input-conditioned, discrete selection of
feature directions that provide controllable levers for the model behaviour, unlike
reconstruction-trained features. Different from standard LoRA, we do not train
a low-rank dense adapter, but instead a high-rank sparse adapter by applying the
TopK sparsity in the adapter space, incentivising interpretability, while retaining the
conceptual idea of LoRA. Each active component in the adapter space corresponds
to a rank-1 “feature direction”, and the per-example update has a low effective
rank of at most k with k < djode1- In our experiments, we train adapters across
three adapter dimensions and k& combinations for instruction-following supervised
fine-tuning (SFT) and safety direct preference optimisation (DPO) of the Gemma
2 2B model. We demonstrate maintained downstream task performance on the
Real Toxicity Prompts benchmark [[Gehman et al., [2020] relative to a dense LoORA
measured by the Perspective API score. Moreover, we identify interpretable and
causal features in the sparse space through autointerp and ablation studies along
each rank-1 feature direction. This method provides interpretable model diffing
information “for free” without degrading downstream task performance. More
broadly, this work demonstrates the effectiveness of incorporating intrinsically
interpretable model segments trained on the downstream loss. We publish the code
at: https://anonymous.4open.science/r/lora_interp-C604

1 Introduction

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or
a desired property, such as safety alignment [Dai et al., 2023] or instruction following [[Ouyang
et al.| |2022] [Zhang et al.,[2025]]. Analysing how this procedure alters internal computations of a
neural network can help diagnose vulnerabilities and ultimately, enhance future Al safety efforts.
For example, |Arditi et al.| [2024] leverage their insights to design a novel jailbreaking method and
explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:
systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour
changes emerge.

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce
entirely new circuits, with changes concentrated in a subset of layers and well-approximated by
low-rank subspaces [Zhou and Srikumar, 2022} |Aghajanyan et al., [2020]]. The success of diff-pruning
[Guo et al.,[2021]], task-vector arithmetic [Ilharco et al.| [2023]], and Low Rank Adaptation (LoRA)-

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/lora_interp-C604

38
39

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54

55

56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71

Frozen layer
dimode 4{ y
x € [R%model W

latent z = Az € R" masked m © z Ay =B(m® z)

A ; TopK ‘
7 X dmodel : select k '

B active latent masked / zeroed

Amodel X T

Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output.
Pre-TopK =z shows all components; post-TopK m ® z keeps only & solid entries.

style adapters [Hu et al., 2021} Batazy et al., 2024, Bensaid et al.| 2025] is consistent with this
picture.

Most prior model-diffing work relies on sparse dictionary learning (SDL): sparse autoencoders (SAEs)
[Cunningham et al.,|2023|] or crosscoders (CCs) [Lindsey et al.,|2024]. These SDL-based methods
are trained post-hoc to reconstruct model activations via a high-dimensional sparse bottleneck that
seeks to approximate monosemantic features from polysemantic ones. However, SDL optimises
reconstruction loss rather than causal faithfulness and can suffer from non-identifiability [Leask et al.|
2025]), feature splitting [|Chanin et al., 2025c¢]], absorption [Chanin et al.,[2025b], and hedging [Chanin
et al.l 2025a], which limits its usefulness for precise diffing. Additionally, this training scheme
introduces an additional error component which cannot be attributed to the studied model’s internal
computations or downstream performance.

We introduce TopKLoRA, a LoRA-like parameter-efficient fine-tuning (PEFT) adapter, trained on
the downstream loss, that exposes a discrete, input-conditional set of feature directions that can be
probed causally and is additionally optimized for monosemanticity. We empirically show that this
adapter is both useful and interpretable, matching parameter-efficient fine-tuning (PEFT) alternatives,
while learning top-k latents which are monosemantic by SAE metrics. Finally, causal ablation study
shows that ablating a single latent reliably moves outputs as measured by changes in model loss.

2 Methodology

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A €
R7*dmoel and B € R%mow1 X7 where 1 < dpodel, making the r-dimensional space low-rank. At infer-
ence time, for input x € R% the layer output is computed as Wx + SAWx =Wax + % BAz,
where W is a frozen weight matrix of the fine-tuned base model layer, and « is a parameter modulating
update strength.

Unlike standard LoRA, we expand into an r-dimensional adapter space, with r on the order of, or
larger than dpoqe1. At inference, we select the top-k£ components of the encoded vector z = Awx, thus
computing m = TopK(z, k) € {0,1}" (hard top-k with straight-through) and apply the modified
update AW = B (m ® z) = Y .., miz b;. While the adapter contains more parameters than a
dense LoRA, the per-example update remains low-rank since at most & adapter space dimensions are
non-zero with k << dpodel-

Furthermore, we use the straight-through estimator (STE) [Bengio et al., [2013]] for training the
adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the
forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we
compute the SoftMax distribution over latents, parametrised by a temperature 7, which decreases
to € = 0 during training time according to its schedule. We ensure that the probability mass is

72
73
74

75

76
77
78
79

80

81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96

Loss Name Purpose Default Weight

DPO Loss Preference learning (core) 1.0

Decorrelation Monosemanticity (uncorrelated latents) 107
Mass Enforce k-sparsity in gates 1073
Orthogonality (A) Disentangle latent directions (A matrix) 1074
Orthogonality (B) Disentangle latent directions (B matrix) 107*
Li(z) Sparsity in latent activations 107°
Usage Covariance Balanced latent usage 1074

Table 1: Overview of loss functions, their purposes, and default weights

equal to k, which also has its own, very short schedule to encourage early exploration. To prevent
the emergence of polysemanticity in the adapter space, we apply regularisation losses, which are
presented in Table |1} alongside their default coefficients.

3 Experiments

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B
model [Team et al.,|2024] via supervised fine-tuning with a dense LoRA adapter for the instruction
following task on the Alpaca dataset [[Taori et al., [2023]]. Next, we merge the PEFT weights and

run a direct preference optimisation training with our sparse TopKLoRA on the hh-rlhf helpfulness

and harmlessness dataset [Bai et al., 2022]. We report experiments with r, k € {(1024, 128 3B,

8), (512, 64 37, 4), (512,128 37, 2)}H Moreover, we use a linear schedule for the sofi-TopK

temperature, starting from 0.1 at the beginning of training and decreasing to 0.005 at the last training
step. Moreover, we set the a = 2r to account for the significant sparsity in the adapter dimension
and help make the updates more significant. We train all DPO adapters for 7500 steps.

We evaluate the quality of the adapter in two dimensions: its usefulness for the downstream task and
the interpretability of the adapter space latents. We evaluate on the RealToxicityPrompts challenging
subset, scoring model completions with the Perspective API TOXICITY attribute|?| We classify
a completion as toxic if its toxicity score is > 0.5 [Gehman et al., [2020]. We also control for
deteriorated model behaviour by running an instruction-following evaluation [Zhou et al.|[2023]. On
the other hand, we investigate the causal structure of the adapter space latents through an ablation
study, in which we set the activations of a single feature to zero throughout the generation process.
We then compute the change in the model output’s negative log-likelihood. This is a very useful
metric to observe in this setting, because it is additive over tokens and examples, and therefore, we
can aggregate and quantify the feature’s ablation impact over many output generations. Additionally,
we use the Delphi autointerp package [Paulo et al., [2025]] to score the interpretability of the adapter
latents.

Base model Dense LoRA

Benchmark/Metric (SFT) (SFT + DPO) TopKLoRA (SFT + DPO)
rs12, k2 7256, k4 T1024, ks
Real Toxicity Prompts (%) | 68.05 - 43.20 45.78 34.36
Instruction following (strict) 1 24.77 24.58 23.84 23.84 23.84
Avg. absolute A perplexity - - 0.18 0.29 0.60

Table 2: Evaluation results overview

'(r, ats b) means that the k-schedule started with ko = a and decreased to ky;,, = b after ¢ steps
"https://perspectiveapi.com

https://perspectiveapi.com

97

98

99
100
101
102
103
104
105

106
107
108
109
110
111

112

113
114
115

116

117
118

119
120
121

122
123
124
125

Layer r 1024 k 8 r_ 512 k4 r 512 k 2

Mean max similarity

q_proj 0.102845 0.091316 0.088707
k_proj 0.149477 0.138138 0.125140
V_proj 0.127600 0.125957 0.113251
0_proj 0.089529 0.086073 0.088531
gate_proj 0.065675 0.059650 0.064525
up_proj 0.074255 0.072050 0.072426

down_proj 0.099231 0.093674 0.096016

Gini coefficient

q_proj 0.502393 0.494265 0.500751
k_proj 0.501150 0.489989 0.492175
V_proj 0.491284 0.492119 0.495181
0_proj 0.631085 0.552331 0.448209
gate_proj 0.452591 0.455563 0.461901
up_proj 0.500934 0.447149 0.450106

down_proj 0.556170 0.639031 0.641702

Table 3: Mean max similarity and Gini coefficient by layer

4 Results

The adapters perform well on the downstream task, with the largest adapter (r1924 and kg) performing
the best, as demonstrated in Table[2] The value for Dense LoRA Real Toxicity Prompts is missing due
to an eval that crashed during our final experiments and will be rerun to collect the value. Controlling
for the degradation in model outputs by running an instruction following evaluation, we observe
a small decrease in model performance across all r/k combinations. This can be attributed to the
DPO process itself, which makes the model more cautious in its responses, potentially refusing some
instructions. Moreover, in our ablation study, we observe a significant average impact on perplexity,
indicating a strong causal relationship between the adapter space features and model performance.

Interestingly, we observe a very high activation range in the self-attention o_proj matrix, coupled
with a high Gini coefficient, which indicates that the adapter tends to have very “bursty” and useful
features. Moreover, the gate_proj has the most distinct features as per our duplication proxy (mean
max similarity), which is consistent with the idea that the gate modulates the semantic information
passed to the MLP in a transformer decoder layer. Given the nature of the DPO safety fine-tuning
task, we expect to find safety-related features in that adapter.

5 Limitations and future work

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by
design. Due to time constraints, our evaluations were limited, and we were unable to report full
results. The results presented in this paper offer a promising “sign of life” for this idea.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effec-
tiveness of language model fine-tuning, 2020. URL https://arxiv.org/abs/2012.13255|

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction, 2024. URL https:
//arxiv.org/abs/2406.11717.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario

https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717

126
127
128

129
130
131

132
133
134

135
136

137
138

139
140
141

142
143
144

145
146
147

148
149
150

151
152
153

154
155

156
157
158

159
160
161

162
163
164

165
166
167

168
169
170
171
1

J
N

Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
URL https://arxiv.org/abs/2204.05862,

Klaudia Batazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters, 2024. URL https://arxiv.org/abs/2405.
17604.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308.
3432,

David Bensaid, Noam Rotstein, Roy Velich, Daniel Bensaid, and Ron Kimmel. Singlora: Low rank
adaptation using a single matrix, 2025. URL https://arxiv.org/abs/2507.05566.

David Chanin, Tom4s Dulka, and Adria Garriga-Alonso. Feature hedging: Correlated features break
narrow sparse autoencoders, 2025a. URL https://arxiv.org/abs/2505.11756.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,
2025b. URL https://arxiv.org/abs/2409.14507.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders,
2025c. URL https://arxiv.org/abs/2409.14507.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.org/
abs/2309.08600.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL https://arxiv,
org/abs/2310.12773,

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning, 2021. URL https://arxiv.org/abs/2012.07463,

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al Moubayed,
Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of analysis, 2025.
URL https://arxiv.org/abs/2502.04878,

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing, Oct 2024. URL https:
//transformer-circuits.pub/2024/crosscoders/index.html!

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2507.05566
https://arxiv.org/abs/2505.11756
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2409.14507
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2012.07463
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2502.04878
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2203.02155

173
174

175
176
177

178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197

199
200
201
202
203
204
205
206
207
208
209
210
211
212

213
214
215

216
217
218

219
220

Gongalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of

features in large language models, 2025. URL https://arxiv.org/abs/2410.13928|

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogoziniska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,
Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,
Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi

Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A
survey, 2025. URL https://arxiv.org/abs/2308.10792.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny

Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL
https://arxiv.org/abs/2311.07911.

Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes bert, 2022. URL

https://arxiv.org/abs/2106.14282.

https://arxiv.org/abs/2410.13928
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2106.14282

	Introduction
	Methodology
	Experiments
	Results
	Limitations and future work

