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Abstract

Model diffing finds the representational differences between a base and a fine-
tuned model. However, current sparse dictionary learning based methods are
trained post-hoc on a reconstruction loss, which results in features that often
fail to be functionally causal for model behaviour. In this work, we introduce
TopKLoRA — a LoRA-like adapter, which retains LoRA’s adapter-style deployment
and low-rank updates while exposing a input-conditioned, discrete selection of
feature directions that provide controllable levers for the model behaviour, unlike
reconstruction-trained features. Different from standard LoRA, we do not train
a low-rank dense adapter, but instead a high-rank sparse adapter by applying the
TopK sparsity in the adapter space, incentivising interpretability, while retaining the
conceptual idea of LoRA. Each active component in the adapter space corresponds
to a rank-1 “feature direction”, and the per-example update has a low effective
rank of at most k with k < djode1- In our experiments, we train adapters across
three adapter dimensions and k& combinations for instruction-following supervised
fine-tuning (SFT) and safety direct preference optimisation (DPO) of the Gemma
2 2B model. We demonstrate maintained downstream task performance on the
Real Toxicity Prompts benchmark [[Gehman et al., [2020] relative to a dense LoORA
measured by the Perspective API score. Moreover, we identify interpretable and
causal features in the sparse space through autointerp and ablation studies along
each rank-1 feature direction. This method provides interpretable model diffing
information “for free” without degrading downstream task performance. More
broadly, this work demonstrates the effectiveness of incorporating intrinsically
interpretable model segments trained on the downstream loss. We publish the code
at: https://anonymous.4open.science/r/lora_interp-C604

1 Introduction

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or
a desired property, such as safety alignment [Dai et al., 2023] or instruction following [[Ouyang
et al.| |2022] [Zhang et al.,[2025]]. Analysing how this procedure alters internal computations of a
neural network can help diagnose vulnerabilities and ultimately, enhance future Al safety efforts.
For example, |Arditi et al.| [2024] leverage their insights to design a novel jailbreaking method and
explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:
systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour
changes emerge.

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce
entirely new circuits, with changes concentrated in a subset of layers and well-approximated by
low-rank subspaces [Zhou and Srikumar, 2022} |Aghajanyan et al., [2020]]. The success of diff-pruning
[Guo et al.,[2021]], task-vector arithmetic [Ilharco et al.| [2023]], and Low Rank Adaptation (LoRA)-
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Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output.
Pre-TopK =z shows all  components; post-TopK m ® z keeps only & solid entries.

style adapters [Hu et al., 2021} Batazy et al., 2024, Bensaid et al.| 2025] is consistent with this
picture.

Most prior model-diffing work relies on sparse dictionary learning (SDL): sparse autoencoders (SAEs)
[Cunningham et al.,|2023|] or crosscoders (CCs) [Lindsey et al.,|2024]. These SDL-based methods
are trained post-hoc to reconstruct model activations via a high-dimensional sparse bottleneck that
seeks to approximate monosemantic features from polysemantic ones. However, SDL optimises
reconstruction loss rather than causal faithfulness and can suffer from non-identifiability [Leask et al.|
2025]), feature splitting [|Chanin et al., 2025c¢]], absorption [Chanin et al.,[2025b], and hedging [Chanin
et al.l 2025a], which limits its usefulness for precise diffing. Additionally, this training scheme
introduces an additional error component which cannot be attributed to the studied model’s internal
computations or downstream performance.

We introduce TopKLoRA, a LoRA-like parameter-efficient fine-tuning (PEFT) adapter, trained on
the downstream loss, that exposes a discrete, input-conditional set of feature directions that can be
probed causally and is additionally optimized for monosemanticity. We empirically show that this
adapter is both useful and interpretable, matching parameter-efficient fine-tuning (PEFT) alternatives,
while learning top-k latents which are monosemantic by SAE metrics. Finally, causal ablation study
shows that ablating a single latent reliably moves outputs as measured by changes in model loss.

2 Methodology

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A €
R7*dmoel and B € R%mow1 X7 where 1 < dpodel, making the r-dimensional space low-rank. At infer-
ence time, for input x € R% the layer output is computed as Wx + SAWx =Wax + % BAz,
where W is a frozen weight matrix of the fine-tuned base model layer, and « is a parameter modulating
update strength.

Unlike standard LoRA, we expand into an r-dimensional adapter space, with r on the order of, or
larger than dpoqe1. At inference, we select the top-k£ components of the encoded vector z = Awx, thus
computing m = TopK(z, k) € {0,1}" (hard top-k with straight-through) and apply the modified
update AW = B (m ® z) = Y .., miz b;. While the adapter contains more parameters than a
dense LoRA, the per-example update remains low-rank since at most & adapter space dimensions are
non-zero with k << dpodel-

Furthermore, we use the straight-through estimator (STE) [Bengio et al., [2013]] for training the
adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the
forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we
compute the SoftMax distribution over latents, parametrised by a temperature 7, which decreases
to € = 0 during training time according to its schedule. We ensure that the probability mass is
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Loss Name Purpose Default Weight

DPO Loss Preference learning (core) 1.0

Decorrelation Monosemanticity (uncorrelated latents) 107
Mass Enforce k-sparsity in gates 1073
Orthogonality (A)  Disentangle latent directions (A matrix) 1074
Orthogonality (B) Disentangle latent directions (B matrix) 107*
Li(z) Sparsity in latent activations 107°
Usage Covariance  Balanced latent usage 1074

Table 1: Overview of loss functions, their purposes, and default weights

equal to k, which also has its own, very short schedule to encourage early exploration. To prevent
the emergence of polysemanticity in the adapter space, we apply regularisation losses, which are
presented in Table |1} alongside their default coefficients.

3 Experiments

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B
model [Team et al.,|2024] via supervised fine-tuning with a dense LoRA adapter for the instruction
following task on the Alpaca dataset [[Taori et al., [2023]]. Next, we merge the PEFT weights and

run a direct preference optimisation training with our sparse TopKLoRA on the hh-rlhf helpfulness

and harmlessness dataset [Bai et al., 2022]. We report experiments with r, k € {(1024, 128 3B,

8), (512, 64 37, 4), (512,128 37, 2)}H Moreover, we use a linear schedule for the sofi-TopK

temperature, starting from 0.1 at the beginning of training and decreasing to 0.005 at the last training
step. Moreover, we set the a = 2r to account for the significant sparsity in the adapter dimension
and help make the updates more significant. We train all DPO adapters for 7500 steps.

We evaluate the quality of the adapter in two dimensions: its usefulness for the downstream task and
the interpretability of the adapter space latents. We evaluate on the RealToxicityPrompts challenging
subset, scoring model completions with the Perspective API TOXICITY attribute|?| We classify
a completion as toxic if its toxicity score is > 0.5 [Gehman et al., [2020]. We also control for
deteriorated model behaviour by running an instruction-following evaluation [Zhou et al.|[2023]. On
the other hand, we investigate the causal structure of the adapter space latents through an ablation
study, in which we set the activations of a single feature to zero throughout the generation process.
We then compute the change in the model output’s negative log-likelihood. This is a very useful
metric to observe in this setting, because it is additive over tokens and examples, and therefore, we
can aggregate and quantify the feature’s ablation impact over many output generations. Additionally,
we use the Delphi autointerp package [Paulo et al., [2025]] to score the interpretability of the adapter
latents.

Base model Dense LoRA

Benchmark/Metric (SFT) (SFT + DPO) TopKLoRA (SFT + DPO)
rs12, k2 7256, k4 T1024, ks
Real Toxicity Prompts (%) | 68.05 - 43.20 45.78 34.36
Instruction following (strict) 1 24.77 24.58 23.84 23.84 23.84
Avg. absolute A perplexity - - 0.18 0.29 0.60

Table 2: Evaluation results overview

'(r, ats b) means that the k-schedule started with ko = a and decreased to ky;,, = b after ¢ steps
"https://perspectiveapi.com
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Layer r 1024 k 8 r_ 512 k4 r 512 k 2

Mean max similarity

q_proj 0.102845 0.091316 0.088707
k_proj 0.149477 0.138138 0.125140
V_proj 0.127600 0.125957 0.113251
0_proj 0.089529 0.086073 0.088531
gate_proj 0.065675 0.059650 0.064525
up_proj 0.074255 0.072050 0.072426

down_proj 0.099231 0.093674 0.096016

Gini coefficient

q_proj 0.502393 0.494265 0.500751
k_proj 0.501150 0.489989 0.492175
V_proj 0.491284 0.492119 0.495181
0_proj 0.631085 0.552331 0.448209
gate_proj 0.452591 0.455563 0.461901
up_proj 0.500934 0.447149 0.450106

down_proj 0.556170 0.639031 0.641702

Table 3: Mean max similarity and Gini coefficient by layer

4 Results

The adapters perform well on the downstream task, with the largest adapter (r1924 and kg) performing
the best, as demonstrated in Table[2] The value for Dense LoRA Real Toxicity Prompts is missing due
to an eval that crashed during our final experiments and will be rerun to collect the value. Controlling
for the degradation in model outputs by running an instruction following evaluation, we observe
a small decrease in model performance across all r/k combinations. This can be attributed to the
DPO process itself, which makes the model more cautious in its responses, potentially refusing some
instructions. Moreover, in our ablation study, we observe a significant average impact on perplexity,
indicating a strong causal relationship between the adapter space features and model performance.

Interestingly, we observe a very high activation range in the self-attention o_proj matrix, coupled
with a high Gini coefficient, which indicates that the adapter tends to have very “bursty” and useful
features. Moreover, the gate_proj has the most distinct features as per our duplication proxy (mean
max similarity), which is consistent with the idea that the gate modulates the semantic information
passed to the MLP in a transformer decoder layer. Given the nature of the DPO safety fine-tuning
task, we expect to find safety-related features in that adapter.

5 Limitations and future work

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by
design. Due to time constraints, our evaluations were limited, and we were unable to report full
results. The results presented in this paper offer a promising “sign of life” for this idea.
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