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Abstract

Model diffing finds the representational differences between a base and a fine-1

tuned model. However, current sparse dictionary learning based methods are2

trained post-hoc on a reconstruction loss, which results in features that often3

fail to be functionally causal for model behaviour. In this work, we introduce4

TopKLoRA – a LoRA-like adapter, which retains LoRA’s adapter-style deployment5

and low-rank updates while exposing a input-conditioned, discrete selection of6

feature directions that provide controllable levers for the model behaviour, unlike7

reconstruction-trained features. Different from standard LoRA, we do not train8

a low-rank dense adapter, but instead a high-rank sparse adapter by applying the9

TopK sparsity in the adapter space, incentivising interpretability, while retaining the10

conceptual idea of LoRA. Each active component in the adapter space corresponds11

to a rank-1 “feature direction”, and the per-example update has a low effective12

rank of at most k with k≪ dmodel. In our experiments, we train adapters across13

three adapter dimensions and k combinations for instruction-following supervised14

fine-tuning (SFT) and safety direct preference optimisation (DPO) of the Gemma15

2 2B model. We demonstrate maintained downstream task performance on the16

Real Toxicity Prompts benchmark [Gehman et al., 2020] relative to a dense LoRA17

measured by the Perspective API score. Moreover, we identify interpretable and18

causal features in the sparse space through autointerp and ablation studies along19

each rank-1 feature direction. This method provides interpretable model diffing20

information “for free” without degrading downstream task performance. More21

broadly, this work demonstrates the effectiveness of incorporating intrinsically22

interpretable model segments trained on the downstream loss. We publish the code23

at: https://anonymous.4open.science/r/lora_interp-C60424

1 Introduction25

Fine-tuning is a popular method for customising a pre-trained base model for a specific task or26

a desired property, such as safety alignment [Dai et al., 2023] or instruction following [Ouyang27

et al., 2022, Zhang et al., 2025]. Analysing how this procedure alters internal computations of a28

neural network can help diagnose vulnerabilities and ultimately, enhance future AI safety efforts.29

For example, Arditi et al. [2024] leverage their insights to design a novel jailbreaking method and30

explain the phenomenon of adversarial suffixes. We refer to this comparative analysis as model diffing:31

systematically contrasting pre- and post-fine-tuned models to identify where and how behaviour32

changes emerge.33

Empirically, fine-tuning updates typically modulate pre-existing mechanisms rather than introduce34

entirely new circuits, with changes concentrated in a subset of layers and well-approximated by35

low-rank subspaces [Zhou and Srikumar, 2022, Aghajanyan et al., 2020]. The success of diff-pruning36

[Guo et al., 2021], task-vector arithmetic [Ilharco et al., 2023], and Low Rank Adaptation (LoRA)-37
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Figure 1: TopKLoRA. A wide latent (r) is computed and a TopK gate selects k active latents per
token. The up-projection B applies at most k rank-1 directions and adds to the frozen layer output.
Pre-TopK z shows all r components; post-TopK m⊙ z keeps only k solid entries.

style adapters [Hu et al., 2021, Bałazy et al., 2024, Bensaïd et al., 2025] is consistent with this38

picture.39

Most prior model-diffing work relies on sparse dictionary learning (SDL): sparse autoencoders (SAEs)40

[Cunningham et al., 2023] or crosscoders (CCs) [Lindsey et al., 2024]. These SDL-based methods41

are trained post-hoc to reconstruct model activations via a high-dimensional sparse bottleneck that42

seeks to approximate monosemantic features from polysemantic ones. However, SDL optimises43

reconstruction loss rather than causal faithfulness and can suffer from non-identifiability [Leask et al.,44

2025], feature splitting [Chanin et al., 2025c], absorption [Chanin et al., 2025b], and hedging [Chanin45

et al., 2025a], which limits its usefulness for precise diffing. Additionally, this training scheme46

introduces an additional error component which cannot be attributed to the studied model’s internal47

computations or downstream performance.48

We introduce TopKLoRA, a LoRA-like parameter-efficient fine-tuning (PEFT) adapter, trained on49

the downstream loss, that exposes a discrete, input-conditional set of feature directions that can be50

probed causally and is additionally optimized for monosemanticity. We empirically show that this51

adapter is both useful and interpretable, matching parameter-efficient fine-tuning (PEFT) alternatives,52

while learning top-k latents which are monosemantic by SAE metrics. Finally, causal ablation study53

shows that ablating a single latent reliably moves outputs as measured by changes in model loss.54

2 Methodology55

A dense Low-rank Adapter (LoRA) is a PEFT method, parametrised by two matrices: A ∈56

Rr×dmodel and B ∈ Rdmodel×r, where r≪dmodel, making the r-dimensional space low-rank. At infer-57

ence time, for input x ∈ Rdmodel , the layer output is computed as Wx+ α
r ∆W x = Wx+ α

rBAx,58

where W is a frozen weight matrix of the fine-tuned base model layer, and α is a parameter modulating59

update strength.60

Unlike standard LoRA, we expand into an r-dimensional adapter space, with r on the order of, or61

larger than dmodel. At inference, we select the top-k components of the encoded vector z = Ax, thus62

computing m = TopK(z, k) ∈ {0, 1}r (hard top-k with straight-through) and apply the modified63

update ∆W = B
(
m ⊙ z

)
=

∑
i≤r mizi bi. While the adapter contains more parameters than a64

dense LoRA, the per-example update remains low-rank since at most k adapter space dimensions are65

non-zero with k≪dmodel.66

Furthermore, we use the straight-through estimator (STE) [Bengio et al., 2013] for training the67

adapter, where we use an ordinary TopK operator to identify the highest-activating latents during the68

forward pass, but use a soft-TopK version of that operator for the backwards pass. Specifically, we69

compute the SoftMax distribution over latents, parametrised by a temperature τ , which decreases70

to ϵ ≈ 0 during training time according to its schedule. We ensure that the probability mass is71
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Loss Name Purpose Default Weight

DPO Loss Preference learning (core) 1.0
Decorrelation Monosemanticity (uncorrelated latents) 10−4

Mass Enforce k-sparsity in gates 10−3

Orthogonality (A) Disentangle latent directions (A matrix) 10−4

Orthogonality (B) Disentangle latent directions (B matrix) 10−4

L1(z) Sparsity in latent activations 10−5

Usage Covariance Balanced latent usage 10−4

Table 1: Overview of loss functions, their purposes, and default weights

equal to k, which also has its own, very short schedule to encourage early exploration. To prevent72

the emergence of polysemanticity in the adapter space, we apply regularisation losses, which are73

presented in Table 1, alongside their default coefficients.74

3 Experiments75

We apply TopKLoRA to the toxicity reduction task by first fine-tuning the base Gemma 2 2B76

model [Team et al., 2024] via supervised fine-tuning with a dense LoRA adapter for the instruction77

following task on the Alpaca dataset [Taori et al., 2023]. Next, we merge the PEFT weights and78

run a direct preference optimisation training with our sparse TopKLoRA on the hh-rlhf helpfulness79

and harmlessness dataset [Bai et al., 2022]. We report experiments with r, k ∈ {(1024, 128 375−−→80

8), (512, 64
375−−→ 4), (512, 128

375−−→ 2)}1. Moreover, we use a linear schedule for the soft-TopK81

temperature, starting from 0.1 at the beginning of training and decreasing to 0.005 at the last training82

step. Moreover, we set the α = 2r to account for the significant sparsity in the adapter dimension83

and help make the updates more significant. We train all DPO adapters for 7500 steps.84

We evaluate the quality of the adapter in two dimensions: its usefulness for the downstream task and85

the interpretability of the adapter space latents. We evaluate on the RealToxicityPrompts challenging86

subset, scoring model completions with the Perspective API TOXICITY attribute.2 We classify87

a completion as toxic if its toxicity score is ≥ 0.5 [Gehman et al., 2020]. We also control for88

deteriorated model behaviour by running an instruction-following evaluation [Zhou et al., 2023]. On89

the other hand, we investigate the causal structure of the adapter space latents through an ablation90

study, in which we set the activations of a single feature to zero throughout the generation process.91

We then compute the change in the model output’s negative log-likelihood. This is a very useful92

metric to observe in this setting, because it is additive over tokens and examples, and therefore, we93

can aggregate and quantify the feature’s ablation impact over many output generations. Additionally,94

we use the Delphi autointerp package [Paulo et al., 2025] to score the interpretability of the adapter95

latents.96

Benchmark/Metric
Base model

(SFT)
Dense LoRA
(SFT + DPO) TopKLoRA (SFT + DPO)

r512, k2 r256, k4 r1024, k8

Real Toxicity Prompts (%) ↓ 68.05 – 43.20 45.78 34.36
Instruction following (strict) ↑ 24.77 24.58 23.84 23.84 23.84

Avg. absolute ∆ perplexity – – 0.18 0.29 0.60

Table 2: Evaluation results overview

1(r, a
t−→ b) means that the k-schedule started with k0 = a and decreased to kfin = b after t steps

2https://perspectiveapi.com
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Layer r_1024_k_8 r_512_k_4 r_512_k_2

Mean max similarity

q_proj 0.102845 0.091316 0.088707
k_proj 0.149477 0.138138 0.125140
v_proj 0.127600 0.125957 0.113251
o_proj 0.089529 0.086073 0.088531
gate_proj 0.065675 0.059650 0.064525
up_proj 0.074255 0.072050 0.072426
down_proj 0.099231 0.093674 0.096016

Gini coefficient

q_proj 0.502393 0.494265 0.500751
k_proj 0.501150 0.489989 0.492175
v_proj 0.491284 0.492119 0.495181
o_proj 0.631085 0.552331 0.448209
gate_proj 0.452591 0.455563 0.461901
up_proj 0.500934 0.447149 0.450106
down_proj 0.556170 0.639031 0.641702

Table 3: Mean max similarity and Gini coefficient by layer

4 Results97

The adapters perform well on the downstream task, with the largest adapter (r1024 and k8) performing98

the best, as demonstrated in Table 2. The value for Dense LoRA Real Toxicity Prompts is missing due99

to an eval that crashed during our final experiments and will be rerun to collect the value. Controlling100

for the degradation in model outputs by running an instruction following evaluation, we observe101

a small decrease in model performance across all r/k combinations. This can be attributed to the102

DPO process itself, which makes the model more cautious in its responses, potentially refusing some103

instructions. Moreover, in our ablation study, we observe a significant average impact on perplexity,104

indicating a strong causal relationship between the adapter space features and model performance.105

Interestingly, we observe a very high activation range in the self-attention o_proj matrix, coupled106

with a high Gini coefficient, which indicates that the adapter tends to have very “bursty” and useful107

features. Moreover, the gate_proj has the most distinct features as per our duplication proxy (mean108

max similarity), which is consistent with the idea that the gate modulates the semantic information109

passed to the MLP in a transformer decoder layer. Given the nature of the DPO safety fine-tuning110

task, we expect to find safety-related features in that adapter.111

5 Limitations and future work112

In this work, we propose a novel, efficient fine-tuning adapter that incorporates interpretability by113

design. Due to time constraints, our evaluations were limited, and we were unable to report full114

results. The results presented in this paper offer a promising “sign of life” for this idea.115
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