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Abstract

We propose RABBit, a Branch-and-Bound-based verifier for verifying relational
properties defined over Deep Neural Networks, such as robustness against universal
adversarial perturbations (UAP). Existing SOTA complete L∞-robustness verifiers
can not reason about dependencies between multiple executions and, as a result, are
imprecise for relational verification. In contrast, existing SOTA relational verifiers
only apply a single bounding step and do not utilize any branching strategies
to refine the obtained bounds, thus producing imprecise results. We develop
the first scalable Branch-and-Bound-based relational verifier, RABBit, which
efficiently combines branching over multiple executions with cross-executional
bound refinement to utilize relational constraints, gaining substantial precision over
SOTA baselines on a wide range of datasets and networks. Code is at this URL.

1 Introduction

Deep neural networks (DNNs) are now widely used in safety-critical fields like autonomous driving
and medical diagnosis [Amato et al., 2013], where their decisions can have serious consequences.
However, understanding and ensuring their reliability is difficult due to their complex and opaque
nature. Despite efforts to find and address vulnerabilities, such as adversarial attacks [Goodfellow
et al., 2014, Madry et al., 2018, Moosavi-Dezfooli et al., 2017] and adversarial training techniques
[Madry et al., 2018], ensuring safety remains a challenge. As a result, extensive research is focused
on formally verifying the safety of DNNs. However, most of the existing L∞ robustness verification
techniques can not handle relational properties common in practical situations. While significant
efforts have been invested in verifying the absence of input-specific adversarial examples within the
local neighborhood of test inputs, recent studies [Li et al., 2019a] emphasize that input-specific attacks
are impractical regardless. Conversely, practical attack scenarios [Liu et al., 2023, Li et al., 2019b,a]
involve the creation of universal adversarial perturbations (UAPs) [Moosavi-Dezfooli et al., 2017],
which are crafted to impact a substantial portion of inputs from the training distribution. RaVeN
[Banerjee et al., 2024b] and subsequently RACoon [Banerjee and Singh, 2024] showed that since
the same adversarial perturbation is applied to multiple inputs, the executions on different perturbed
inputs are related, exploiting the relationship between different executions significantly improves
the precision of the verifier. Despite RaVeN and RACoon’s ability to leverage cross-executional
dependencies, both of them remain imprecise as they only apply a single bounding step and lack
refinement using branching strategies used in SOTA complete non-relational verifiers.

Key challenges: For precise relational verification, we need efficient algorithms that can effectively
combine branching strategies over multiple executions with bounding techniques that can leverage
cross-executional dependencies. Theoretically, MILP (Mixed Integer Linear Programming) can
exactly encode DNN executions with piecewise linear activation functions like ReLU over any input
regions specified by linear inequalities. However, the associated MILP optimization problem is
computationally expensive. For instance, encoding k executions of a DNN with nr ReLU activations
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introduces O(nr × k) integer variables in the worst case. As the cost of MILP optimization grows
exponentially with the number of integer variables, even SOTA off-the-shelf solvers like Gurobi
[Gurobi Optimization, LLC, 2018] struggle to verify small DNNs for a relational property over k
executions within a reasonable time limit. For scalability, SOTA non-relational verifiers like α, β-
CROWN [Wang et al., 2021] design custom "Branch and Bound" (BaB) solvers using more scalable
differentiable optimization techniques such as gradient descent. However, these verifiers ignore
dependencies between multiple executions, resulting in imprecise relational verification. Conversely,
the SOTA relational verifier RACoon uses parametric linear relaxation for each activation to avoid
integer variables and employs gradient descent to learn parameters that leverage cross-executional
dependencies for verification. This method, however, introduces imprecision due to the replacement of
non-linear activations with parametric linear approximations. Therefore, precise relational verification
requires scalable algorithms that can: a) scale to the large DNNs used in this paper, b) effectively
reduce imprecision from parametric linear relaxations, and c) utilize cross-executional dependencies.

Our contributions: We advance the state-of-the-art in relational DNN verification by:

• Efficiently combining branching strategies over multiple DNN executions with a cross-executional
bounding method that utilizes dependencies between DNN’s outputs from different executions
while reducing imprecision resulting from parametric linear relaxations.

• Developing two "branch and bound" algorithms, each with its own advantages - a) strong bounding:
applies cross-execution bounding at each step, branching over all executions. This method provides
tighter bounds than RACoon (cross-executional bound refinement without branching) and α, β-
CROWN (branching without cross-executional bound refinement), b) strong branching: applies
cross-execution bounding only at the start to derive fixed linear approximations for each execution.
These approximations are then used to branch independently over each execution, exploring more
branches per execution.

• Combining strong bounding and branching results into an efficiently optimizable MILP instance
that leverages the benefits of both techniques, outperforming each individually.

• Performing extensive experiments on popular datasets and various DNNs (standard and robustly
trained) to showcase the precision improvement over the current SOTA baselines.

2 Related Works

Non-relational DNN verifiers: Given a logical input specification ϕ and an output specification
ψ, DNN verifiers formally prove that for all inputs x satisfying ϕ, the output N(x) of the DNN
satisfies ψ. If the verification process fails, the verifier generates a counter-example where the output
specification ψ does not hold. DNN verifiers are broadly divided into three main types based on
their ability to prove properties: - (i) sound but incomplete verifiers which may not always prove
property even if it holds [Gehr et al., 2018, Singh et al., 2018, 2019b,a, Zhang et al., 2018, Xu et al.,
2020, 2021], (ii) complete verifiers that can always prove the property if it holds [Wang et al., 2018,
Gehr et al., 2018, Bunel et al., 2020a,c, Bak et al., 2020, Ehlers, 2017, Ferrari et al., 2022, Fromherz
et al., 2021, Wang et al., 2021, Palma et al., 2021, Anderson et al., 2020, Zhang et al., 2022a] and (iii)
verifiers with probabilistic guarantees [Cohen et al., 2019, Li et al., 2022]. Beyond the commonly
studied L∞ robustness verification problem, several works adapt DNN verification techniques for
specific applications, such as robustness against image rotation [Singh et al., 2019b, Balunovic et al.,
2019], incremental verification [Ugare et al., 2023, 2024], interpretability [Banerjee et al., 2024a],
and certifiable training [Mueller et al., 2023, Palma et al., 2024, Jiang and Singh, 2024].

Relational DNN verifier: Existing relational verifiers fall into two main categories based on the type
of relational properties they can handle: (i) verifiers for properties such as UAP and fairness, which
are defined across multiple executions of the same DNN [Zeng et al., 2023, Khedr and Shoukry,
2023, Meyer et al., 2024, Banerjee et al., 2024b, Banerjee and Singh, 2024, Banerjee et al., 2024c],
and (ii) verifiers for properties like local DNN equivalence, defined over multiple executions of
different DNNs on the same input [Paulsen et al., 2020, 2021]. For relational properties defined
across multiple executions of the same DNN, existing verifiers [Khedr and Shoukry, 2023] reduce the
verification problem to an L∞ robustness problem by constructing a "product DNN" that includes
multiple copies of the same DNN. However, the relational verifier in [Khedr and Shoukry, 2023]
treats all k executions of the DNN as independent, which results in a loss of precision. On the other
hand, [Zeng et al., 2023] (referred to as the I/O formulation) tracks the relationships between inputs
used in multiple executions at the input layer, but it does not maintain the relationships between the
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outputs fed into the subsequent hidden layers. As a result, it achieves only limited improvement
over baseline verifiers that treat all executions independently. RaVeN [Banerjee et al., 2024b] uses
DiffPoly a abstract intepretation based framework to track linear relationships between the outputs at
all layers resulting from multiple executions of the same DNN. While RaVeN is significantly more
precise than the I/O formulation, tracking linear constraints at each layer across all DNN executions
can be computationally expensive. The SOTA relational verifier RACoon [Banerjee and Singh,
2024] improves the scalability of RaVeN while maintaining RaVeN’s precision by introducing a
new gradient-descent based bounding strategy called cross-executional bound refinement, as detailed
in Section 3. There exist, probabilistic verifiers, [Xie et al., 2021, Zhang et al., 2022b] based on
randomized smoothing [Cohen et al., 2019] for verifying relational properties. However, these
works can only give probabilistic guarantees on smoothed models which have high inference costs.
Similar to [Banerjee et al., 2024b, Banerjee and Singh, 2024], in this work, we focus on deterministic
relational verifiers for DNNs with ReLU activation. However, RABBit can be extended to activations
like Sigmoid with branching methods [Shi et al., 2024] and parametric bounds [Wu et al., 2023].

3 Preliminaries

We provide background on "branch and bound" (BaB) based non-relational DNN verification, as well
as DNN safety properties that can be encoded as relational properties.

Non-relational DNN verification: For a single execution, non-relational DNN verification focuses
on proving that, for all perturbations x+δδδ of a given input x specified by ϕ, the network’s output y =
N(x+ δδδ) meets a specified logical condition ψ. Commonly, safety properties such as L∞ robustness
encode the output condition (ψ) as a linear inequality or a conjunction of linear inequalities over the
DNN output y ∈ Rnl . For instance, an output property could be expressed as ψ(y) = (cTy ≥ 0),
where c ∈ Rnl . Generally, even for DNNs with piecewise-linear activation functions and input
constraints defined by linear inequalities, complete verification—i.e., always proving the property
or finding a counterexample—is an NP-complete problem. Given a DNN N : Rn0 → Rnl and a
property defined by (ϕ, ψ), scalable yet sound (but incomplete) verifiers approximate the network’s
behavior by computing a linear approximation specified by L ∈ Rn0 and b ∈ R. For any input x
satisfying ϕ, this linear approximation ensures that LTx + b ≤ cTN(x). The verifier then aims
to show that LTx + b ≥ 0 for all x that satisfy ϕ, which implies cTN(x) ≥ 0. While LTx + b
provides a valid lower bound for cTN(x), it may lack precision. To enhance this precision for
piecewise-linear activations, state-of-the-art non-relational verifiers use a branch-and-bound (BaB)
method. In each branching step, the problem is divided into smaller subproblems, while the bounding
method computes a valid lower bound for each subproblem.

Branching for piecewise linear activation: The non-relational verifier computes L by replacing
non-linear activations with linear relaxations, which introduces imprecision. However, for piecewise
linear activations like ReLU, it is possible to consider each linear piece separately as different
subproblems, avoiding the need for imprecise linear relaxations. For instance, for y = ReLU(x),
branching on x and considering the cases x ≤ 0 and x ≥ 0 allows decomposing ReLU(x) into
two distinct linear pieces. Still in the worst case decomposing all ReLU nodes in a DNN results
in exponential blowup making it practically infeasible. Therefore, SOTA non-relation verifiers like
α, β-CROWN [Wang et al., 2021] greedily pick a small subset of ReLU nodes for branching while
using linear relaxations for the rest. We explain the bounding step used for each subproblem below.

Bounding with parameter refinement: Obtaining sound linear relaxations of activations σ like
ReLU, which are not used for branching, involves computing linear lower bounds σl(x) and upper
bounds σu(x) that contain all possible outputs of σ w.r.t all inputs x satisfying ϕ. That is, for all
possible input values x of σ, σl(x) ≤ σ(x) ≤ σu(x) holds. SOTA non-relational verifiers, such
as α, β-CROWN, improve precision by using parametric linear relaxations instead of static linear
bounds and refine the parameters to facilitate verification of the property (ϕ, ψ). For example,
for ReLU(x), the parametric lower bound is ReLU(x) ≥ α × x with α ∈ [0, 1]. Since α × x
remains a valid lower for any α ∈ [0, 1], this allows optimizing α while ensuring the bound remains
mathematically correct. Each branched ReLU say y = ReLU(x), introduces two subproblems each
with one additional constraint x ≤ 0 (or, x ≥ 0) where ReLU behaves as a linear function i.e. y = 0
(or, y = x) respectively. To obtain the lower bound of LTx + b over inputs satisfying ϕ with the
additional branching constraints α, β-CROWN convert the constrained optimization problem into an
unconstrained one by looking at the Lagrangian dual. The dual replaces each branching constraint by
augmenting the minimization objective LTx+ b with additional terms i.e. LTx+ b+β+x for x ≤ 0

3



or LTx + b + β−x for x ≥ 0 where β+ ≥ 0 and β− ≤ 0. Overall, at high level, α, β-CROWN
computes parametric linear approximations L(ααα,βββ)Tx+ b(ααα,βββ) and refine the parameters α, β to
facilitate verification of (ϕ, ψ).

DNN relational properties: Relational properties defined for a DNN N : Rn0 → Rnl defined over
k executions of N are specified by the tuple (Φ,Ψ). Here, Φ : Rn0×k → {true, false} (the input
specification) encodes the input region Φt ⊆ Rn0×k encompassing all potential inputs corresponding
to each of the k executions ofN . Furthermore, the safety property we expect the outputs of all k execu-
tions of N to satisfy is specified by Ψ : Rnl×k → {true, false} (the output specification). Given N ,
an input specification Φ and an output specification Ψ, DNN relational verification seeks to formally
prove whether ∀x∗

1, . . . ,x
∗
k ∈ Rn0 .Φ(x∗

1, . . . ,x
∗
k) =⇒ Ψ(N(x∗

1), . . . N(x∗
k)) or otherwise provide

a counterexample. The inputs to the k executions ofN are denoted by x∗
1, . . . ,x

∗
k and the correspond-

ing outputs are denoted by N(x∗
1), . . . , N(x∗

k). For the i-th execution, commonly, the input region
ϕit is a L∞ region around a fixed point xi ∈ Rn0 defined as ϕit = {x∗

i ∈ Rn0 | ∥x∗
i − xi∥∞ ≤ ϵ}

and the corresponding output specification ψi(N(x∗
i )) =

∧m
j=1(ci,j

TN(x∗
i ) ≥ 0). Consequently,

Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1(x

∗
i ∈ ϕit)

∧
Φδ(x∗

1, . . . ,x
∗
k) where Φδ(x∗

1, . . . ,x
∗
k) encodes the relation-

ship between the inputs used in different execution and Ψ(N(x∗
1), . . . , N(x∗

k)) =
∧k

i=1 ψ
i(N(x∗

i )).
Following this, we describe relational properties encoding important DNN safety configurations.

UAP verification: In a UAP attack, given a DNN N , the adversary aims to find an adversarial
perturbation with a bounded L∞ norm that maximizes the rate at which N misclassifies when the
same adversarial perturbation is applied to all inputs from the distribution. The UAP verification
problem aims to find the worst-case accuracy of N against the UAP adversary. We refer to this
worst-case accuracy as UAP accuracy in the rest of the paper. As shown by Theorem 2 in [Zeng
et al., 2023], it is possible to statistically estimate the UAP accuracy of N with respect to the input
distribution if one can determine the UAP accuracy of N on k randomly selected images. We focus
on the k-UAP verification problem for the rest of the paper as improving the precision of k-UAP
verification directly improves the UAP accuracy on the input distribution [Banerjee and Singh, 2024].
The k-UAP verification problem is fundementally different from local L∞ robustness verification
since the same adversarial perturbation is applied across the set of inputs. Thus, improving precision
for the UAP verification problem requires a relational verifier that can exploit dependencies between
the perturbed inputs. We provide the Φ and Ψ of the UAP verification problem in Appendix A.1.

4 Cross-executional BaB
The key distinction between relational and non-relational DNN verification is the dependency between
different DNN executions, which necessitates that any precise relational verifier utilizes these cross-
execution dependencies. For instance, for k-UAP problem with two images x1, x2 consider the
scenario where both x1 and x2 have valid adversarial perturbations δ1δ1δ1 and δ2δ2δ2 but no common
perturbation say δδδ that works for both x1 and x2. In this case, any non-relational verification that does
not account for cross-execution dependencies can never prove the absence of a common perturbation
given that both x1, x2 have valid adversarial perturbations. This highlights the importance of
utilizing cross-executional dependencies. The SOTA relational verifier RACoon [Banerjee and Singh,
2024] leverages cross-execution dependencies to jointly optimize the ααα parameters from different
executions, significantly improving the precision of relational verification. However, RACoon only
uses parametric linear relaxations for non-linear activations and lacks a branching step, resulting in
reduced precision, as confirmed by our experimental results in Section 6. To address this, we propose
two separate BaB algorithms, each with its benefits, described in Sections 4.1 and 4.2. Finally, we
combine the results to formulate an efficiently optimizable MILP instance in Section 5

4.1 Strong Bounding

Before going into the details, we briefly review the cross-executional bound refinement proposed in
RACoon. For k-UAP, given any subset S of the k executions, RACoon can verify the absence of any
common perturbation that works for all executions in S with cross-executional bound refinement. For
all i ∈ S, let (Li(αααi),bi(αααi)) denote the parametric linear approximations corresponding to the i-th
execution. Then the optimal value t∗ = maxαααi,λi

−ϵ×∥
∑

i∈S λi×Li(αααi)∥1+
∑

i∈S λi×ai(αααi) ≥ 0
proves the absence of a common perturbation δδδ for S. Here, ϵ is the perturbation bound i.e. ∥δδδ∥∞ ≤ ϵ,
ai(αααi) = bi(αααi)+Li(αααi)

Txi and λi ∈ [0, 1] with
∑

i∈S λi = 1 are the cross-executional parameters
that relate linear approximations from different execution enabling joint optimization over αααis. Next,
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we detail the first BaB method - strong bounding that combines cross-executional bounding with
branching methods to verify the absence of common perturbation for any subset of n = |S| executions.

Branching and bounding: For n ≤ k executions, we construct a "product DNN" by duplicating the
DNN n times, one for each execution. Formally, a product DNN is a function Nn : Rn0×n → Rnl×n

with Nn(x1, . . . ,xn) = [N(x1), . . . , N(xn)]
T . At each branching step, we greedily select a subset

of unbranched ReLU activations from the product DNN and branch on them, while using parametric
linear relaxations for the rest. We adapt existing greedy branching heuristics, such as BaBSR [Bunel
et al., 2020b], for selecting the candidate ReLU activations. The heuristic computes a score for each
unbranched ReLU activation in the product DNN, and we branch on the activations with the highest
scores. Next, we detail the bounding method applied to each subproblem resulting from branching.
Since the number of subproblems can be large, the bounding method needs to be fast yet capable
of leveraging both branching constraints and cross-executional dependencies. However, the cross-
executional bound refinement from RACoon can not handle branching constraints, while the bounding
step from α, β-CROWN does not utilize dependencies across executions. Hence, we develop a three-
step algorithm for obtaining the optimal value t∗ with fast gradient descent-based methods. First,
we replace these branching constraints by introducing dual variables βββ , resulting in new parametric
linear approximations (Li(αααi,βββi), bi(αααi,βββi)) for each subproblem for all i ∈ S. Then for each
subproblem, we introduce additional variables λi for each execution with constraints λi ∈ [0, 1]
and

∑
i∈S λi = 1. These λis relate linear approximations from different executions capturing

cross-executional dependencies. This reduces finding t∗ for each subproblem to the following
optimization problem t∗ = maxαααi,βββi,λi

−ϵ × ∥
∑

i∈S λi × Li(αααi,βββi)∥1 +
∑

i∈S λi × ai(αααi,βββi).
Here, ai(αααi,βββi) = bi(αααi,βββi) + Li(αααi,βββi)

Txi. Finally, we apply projected gradient ascent to refine
parameters (αααi,βββi, λi). The detailed derivation of the bounding step and the proof of correctness is
in Appendix B. Precision gains of strong bounding over the baselines are in Section 6.2. Suppose,
F(S) denotes the set of subproblems then Theorem 4.1 proves the absence of common perturbation
for the subset of executions S.

Theorem 4.1. If minF(S) maxαααi,βββi,λi
−ϵ×∥

∑
i∈S λi×Li(αααi,βββi)∥1 +

∑
i∈S λi× ai(αααi,βββi) ≥ 0

then executions in S do not have a common perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ.

Proof: The detailed proof is in the Appendix B.

While strong bounding effectively combines cross-executional refinement with branching, it has the
following drawbacks that led to the development of the 2nd BaB method. First, strong bounding
branches over all executions simultaneously, which limits the number of branches explored per
execution within a fixed timeout compared to branching on individual executions. For instance, if
strong bounding solves m subproblems for n executions, then assuming each execution branched
uniformly, each execution gets only m

1
n subproblems. In contrast, given the same timeout, branching

individually allows exploring m
n subproblems per execution. Second, strong bounding only proves

the absence of common perturbation, a relaxation of the k-UAP problem. To mitigate this, RACoon
uses parameter refinement to obtain linear approximations and formulate a MILP, providing a more
precise bound on k-UAP accuracy. However, for strong bounding, as the number of subproblems
increases and each subproblem has a different linear approximation, formulating a MILP with each
linear approximation is practically infeasible. Restricting the number of linear approximations can
help accommodate MILP formulation by compromising on the strong cross-executional bounding.

4.2 Strong Branching

Unlike strong bounding, strong branching explores more branches by branching on each execution
independently. Additionally, for each execution, we aim to keep the number of linear approximations
small post-branching, ensuring the MILP instance using these approximations remains easy to
optimize. To limit the number of linear approximations for each execution i, we fix a set of linear
coefficients {L1, . . . ,Lm} called "target coefficients" and for each j ∈ [m], Lj ∈ Rn0 compute
valid lower bound b∗j of the following optimization problem minδδδ c

TN(xi + δδδ)− LT
j (xi + δδδ) with

∥δδδ∥∞ ≤ ϵ using BaB. In this case, for all δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ the refined bias b∗j and Lj remain
a valid lower bound of cTN(xi + δδδ) i.e. LT

j (xi + δδδ) + b∗j ≤ cTN(xi + δδδ). Moreover, since we only
refine the bias, the number of linear approximations remains the same as at the start of BaB, even
after branching. Next, we describe how we utilize cross-execution dependencies while branching on
each execution independently.
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Selecting targets: To select target coefficients, we greedily pick subsets of executions and run
cross-executional refinement from RACoon without branching on each subset of executions. We
describe the greedy selection strategy in Section 5. For each set of executions, we add the linear
approximations obtained by cross-executional refinement to the corresponding executions’ target
sets. Cross-executional refinement ensures for each execution set the parameters corresponding to the
linear approximations are tailored for the relational verification.

Bounding and branching: Given a target coefficient Lt ∈ Rn0 , since finding the exact solution
of minδδδ c

TN(xi + δδδ)− LT
t (xi + δδδ) is computationally expensive, strong branching aims to obtain

a tight mathematically correct lower bound on the difference cTN(xi + δδδ) − LT
t (xi + δδδ). For

any subproblem, let (L(ααα,βββ), b(ααα,βββ)) denote the parametric linear approximation. Then for this
particular subproblem, for all ααα,βββ , L(ααα,βββ)T (xi + δδδ) + b(ααα,βββ) ≤ cTN(xi + δδδ) and subsequently:

max
ααα,βββ

min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
T (xi + δδδ) + b(ααα,βββ) ≤ min

∥δδδ∥∞≤ϵ
cTN(xi + δδδ)− LT

t (xi + δδδ) (1)

The optimal solution of the max-min problem in Eq. 1 provides a mathematically correct lower bound
of minδδδ c

TN(xi + δδδ)− LT
t (xi + δδδ) for each subproblem. However, it is hard to solve a max-min

problem with scalable differentiable optimization techniques like gradient descent typically used for
large DNNs considered in this paper. Instead, we compute a closed form of the inner minimization
problem reducing the optimization instance to a more tractable maximization problem (Theorem 4.2).

Theorem 4.2. For any ααα,βββ , if L(ααα,βββ) ∈ Rn0 and b(ααα,βββ) ∈ R then min∥δδδ∥∞≤ϵ(L(ααα,βββ) −
Lt)

T (x+ δδδ) + b(ααα,βββ) = −ϵ× ∥L(ααα,βββ)− Lt∥1 + (L(ααα,βββ)− Lt)
Tx+ b(ααα,βββ).

Proof: The proof is in Appendix C.

We apply a projected gradient ascent to optimize the maximization with the closed form obtained
above (Appendix C.1). The proof of the correctness of the bounding method is in Appendix C.
Note the proof of correctness does not necessitate the optimizer to find the global optimum. This
is important since gradient ascent may not always converge to the global optimum. Since strong
branching branch on each execution independently we reuse the branching strategy of α, β-CROWN.

5 RABBit
In this section, we detail the algorithm (Algo. 1) that combines the results from strong bounding and
strong branching to formulate the MILP. Running strong bounding on all 2k − 1 non-empty subsets
of k executions is impractical. Therefore, we use a greedy approach to select subsets of executions
for strong bounding. Similarly, for strong branching, we greedily select the target linear coefficients.
First, we describe both greedy strategies before moving on to the MILP formulation.

Elimination of individually verified executions: RABBit maintains a list of unverified indices and
eliminates any executions that can be verified individually and does not consider them for subsequent
steps (lines 3, 8, and 13 in Algo. 1). For instance, for k-UAP verification, we do not need to consider
those executions that are proved to have no adversarial perturbation δδδ such that ∥δδδ∥∞ ≤ ϵ. Pruning
individually verified executions improves the runtime without any compromise on the precision of
the relational verifier (see Theorem B.1 [Banerjee and Singh, 2024]).

Greedy target coefficient selection: RABBit first runs RACoon which in turn executes an incom-
plete non-relational verifier α-CROWN [Xu et al., 2021] eliminating the verified executions (line 8
in Algo. 1). Subsequently, for target selection, RABBit greedily picks the first kt (hyperparameter)
executions based on si the lower bound on ψi(N(xi + δδδ)) as computed by α-CROWN, prioritizing
executions with higher si (line 9). Intuitively, for unverified executions, si measures the maximum
violation of the output specification ψi(N(xi + δδδ)) and thus leads to the natural choice of picking
executions with smaller violations. For each selected execution i, we choose up to m target coeffi-
cients by iterating over all subsets i ∈ S considered by RACoon, and selecting linear approximations
corresponding to the top m subsets.The cross-executional lower bound t∗ from RACoon decides the
priority of each subset S. Subsets S with higher t∗ indicate smaller violations and are more likely to
be verified for the absence of a common perturbation, making them suitable for target selection.

Selection of subsets of executions for strong bounding: Thereafter, until timeout ζ, we run strong
bounding on subsets of executions from individually unverified executions I . For each subset S ⊆ I ,
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Algorithm 1 RABBit

1: Input: N , (Φ,Ψ), k, kt, timeout ζ
2: Output: M.
3: I ← {} ▷ Unverified indices
4: L ← {} ▷ Linear approximations
5: C ← {} ▷ Cross-verified executions
6: s← {} ▷ Lower bounds from α-Crown
7: M← 0 ▷ Initialize verified UAP accuracy
8: (I,L, C, s)← RACoon(N , (Φ,Ψ), k)
9: I1 ← top-kt indices from I based on s

10: for i ∈ I1 do
11: b∗i ← StrongBranching(ϕi, ψi,L[i])
12: if Verified(ϕi, ψi,L[i], b∗i ) then
13: I ← I \ {i}
14: end if
15: UpdateBias(L[i], b∗i )

16: M←MILP(L,Φ,Ψ, k, I , C)
17: M← max (M(Φ,Ψ),Opt(M))
18: end for
19: I2 ← top-kt indices from I based on s
20: while time() < ζ do
21: S ← Greedily select subset of I2
22: tS ← StrongBounding(S,Φ,Ψ)
23: if tS ≥ 0 then
24: C ← Append(C, S)
25: M←MILP(L,Φ,Ψ, k, I , C)
26: M← max (M,Opt(M))
27: end if
28: end while
29: return M

the cross-executional bound obtained by RACoon on S decides its priority. However, considering all
non-empty subsets of I can be expensive. Instead, similar to strong branching, we first pick top-kt
executions (I2) from I (Algo 1 line 19). We sort all non-empty subsets S ⊆ I2 based on their priority
and, in each iteration, run strong bounding on the highest-priority subset that has not been scheduled
yet (Algo 1 line 22). Given a large timeout, RABBit would eventually select all subsets from I2.

MILP Formulation: The MILP formulation uses both the refined biases from strong branching (line
11) and the subsets S of executions verified for the absence of common perturbation from strong
bounding (line 22) to compute final verified UAP accuracy. RABBit MILP formulation involves
three steps. First, we deduce linear constraints between the input and output of N for each unverified
execution using linear approximations of N with refined bias obtained by strong branching. Secondly,
we add constraints for each subset S verified for the absence of common perturbation with strong
bounding. Then, similar to the current SOTA baseline [Banerjee and Singh, 2024], we encode the
output specification Ψ as a MILP objective, introducing only O(k) integer variables. Finally, we use
an off-the-shelf MILP solver [Gurobi Optimization, LLC, 2018] to optimize the MILP.
Ψ encoding: First, we show the MILP objective M that encodes Ψ. We introduce binary variables
zi ∈ {0, 1} for each individually unverified execution in I where for any perturbation δδδ ∈ Rn0 and
∥δδδ∥∞ ≤ ϵ, zi = 1 implies ψi(N(xi + δδδ)) = True. Then the finding the worst case UAP accuracy is
equivalent to the following M = 1

k ×
(
(k − |I|) +min∥δ∥∞≤ϵ

∑
i∈I zi

)
.

Constraints encoding: We add constraints from strong bounding, strong branching, and from
the linear approximation obtained from the call to RACoon (Algo. 1 line 8). Suppose for any
subset S ⊆ I , strong bounding verifies the absence of common perturbation. Then for all δδδ ∈ Rn0

and ∥δδδ∥∞ ≤ ϵ at least one of the executions from S will always satisfy the corresponding output
specification. Hence, for every such S we add the constraint:

∑
i∈S zi ≥ 1. Now, let for any

i ∈ I , {(L1
i , b

1
i ), . . . , (L

m
i , b

m
i )} denote set of linear approximation with bmi either coming from

RACoon or from strong branching. Then we add the following constraints zi ≥ z′i, z
′
i = (oi ≥ 0),

oi ≥ LjT
i (xi + δδδ) + bji where j ∈ [m], and oi ∈ R, z′i are new real and integer variables respectively.

Limitations: Although RABBit outperforms SOTA verifiers in relational verification, like all
deterministic verifiers, whether relational or non-relational (including ours), do not scale to deep
neural networks (DNNs) trained on very large datasets such as ImageNet. RABBit is sound but
incomplete, meaning it may not be able to prove certain relational properties even if they are true.
Note that all complete non-relational verifiers are also incomplete for relational properties since they
do not track any dependencies between executions.

6 Experimental Evaluation
We evaluate the effectiveness of RABBit on multiple relational properties such UAP accuracy (
Table 1) and top-k accuracy (Appendix Table 5), DNNs, and datasets. In our evaluation, we compare
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Table 1: RABBit Efficacy Analysis for Worst-Case UAP Accuracy

Dataset Network Training Perturbation CROWN α−CROWN α, β−CROWN MN-BaB GCP-CROWN I/O RACoon Strong Strong RABBit
Structure Method Bound (ϵ) Bounding Branching

ConvSmall Standard 1/255 44.8 45.4 62.2 55.0 61.8 45.4 45.4 63.8 (+1.6) 63.2 (+1.0) 65.4 (+3.2)
ConvSmall DiffAI 5/255 44.4 49.6 53.8 55.0 53.8 50.4 51.6 59.0 (+4.0) 59.0 (+4.0) 59.8 (+4.8)

CIFAR10 ConvSmall SABR 2/255 75.2 75.8 79.4 80.0 80.0 76.8 78.2 83.0 (+3.0) 83.8 (+3.8) 84.0 (+4.0)
ConvSmall CITRUS 2/255 74.8 76.0 79.2 79.6 79.6 77.0 78.8 82.8 (+3.2) 83.2 (+3.6) 83.6 (+4.0)
ConvBig DiffAI 2/255 46.6 51.8 61.2 61.6 61.2 53.2 54.8 62.8 (+1.2) 62.6 (+1.0) 63.0 (+1.6)

ConvSmall Standard 0.07 53.0 59.4 83.6 77.4 84.2 60.0 60.6 84.2 (+0.0) 84.2 (+0.0) 84.8(+0.6)
ConvSmall DiffAI 0.13 51.8 57.0 76.6 77.0 77.0 57.2 58.4 79.0 (+2.0) 78.6 (+1.6) 80.0 (+3.0)

MNIST ConvSmall SABR 0.15 27.0 38.0 50.4 51.2 60.2 42.2 45.8 62.6 (+2.4) 62.2 (+2.0) 63.4 (+3.2)
ConvSmall CITRUS 0.15 28.8 41.6 73.0 69.2 73.0 41.6 44.6 74.0 (+1.0) 73.4 (+0.4) 74.6 (+1.6)

RABBit against SOTA baselines, including non-relational verifiers CROWN [Zhang et al., 2018],
α-CROWN [Xu et al., 2021], α, β-CROWN [Wang et al., 2021], MN-BaB [Ferrari et al., 2022],
GCP-CROWN [Zhang et al., 2022a], as well as relational verifiers I/O Formulation [Zeng et al., 2023]
and RACoon. As previously noted, RaVeN adds linear constraints for each layer, which restricts its
scalability as the number of executions k increases. Therefore, we compare RABBit with RaVeN
for a smaller execution count of k = 5, as shown in Appendix Table 4. Additionally, we show that:
a) given the same time, RABBit always outperforms the SOTA BaB-based non-relational verifier
α, β-CROWN; b) strong bounding computes a tighter bound on t∗ than α, β-CROWN; and c) we
provide an ablation study on ϵ and k used by RABBit.

6.1 Experiment Setup

Networks. We use standard convolutional architectures, such as ConvSmall and ConvBig, which are
used to evaluate both SOTA relational [Banerjee and Singh, 2024] and non-relational verifiers [Wang
et al., 2021] (see Table 1). We provide the details of the DNN architectures in the Appendix D.1.
We use networks trained using both standard training methods and robust training strategies, such
as DiffAI [Mirman et al., 2018], SABR [Mueller et al., 2023], and CITRUS [Xu and Singh, 2024].
Our experiments utilize publicly available pre-trained DNNs sourced from the CROWN repository
[Zhang et al., 2020], α, β-CROWN repository [Wang et al., 2021], and ERAN repository [Singh
et al., 2019b]. The clean accuracies of these networks are reported in Appendix D.2.

Implementation details and hyperparameters. We implemented our method in Python with
Pytorch V1.11 on top of SOTA complete non-relational verifier α, β-CROWN [Wang et al., 2021].
We used Gurobi V11.0 as the off-the-shelf MILP solver. For both strong bounding and strong
branching, we use Adam [Kingma and Ba, 2014] for parameter learning and run it for 20 iterations
on each subproblem. We set the value of kt = 10 for CIFAR-10 and kt = 24 for MNIST networks
respectively. We use a single NVIDIA A100-PCI GPU with 40 GB RAM for bound refinement
and an Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz with 64 GB RAM for MILP optimization.
For any relational property with k executions, we give an overall timeout of k minutes (averaging 1
minute/execution) to RABBit and all baselines. Each MILP instance gets a timeout of 10 minutes. We
issue the MILP optimization call on line 25 of Algo. 1 in a separate thread for runtime optimization,
ensuring that the MILP optimization process does not unnecessarily block the subsequent iterations
of the while loop (line 20 of Algo. 1).

6.2 Experimental Results

Effectiveness of RABBit: Table 1 compares the results of RABBit to all baselines across different
datasets (column 1) and DNN architectures (column 2) trained with various methods (column 3), with
ϵ values defining the L∞ bound of δδδ in column 4. For each DNN and ϵ, we run RABBit and all the
baselines on 10 relational properties each defined with k = 50 randomly selected inputs, and report
the worst-case UAP accuracy averaged over the 10 properties. Note that for each DNN, we exclude
inputs misclassified by the DNN. We compare the performance of RABBit against SOTA relational
and complete non-relational verifiers as well as against strong bounding and strong branching.
The results in Table 1 demonstrate that strong bounding, strong branching, and RABBit all outperform
the existing SOTA verifiers on all DNNs and ϵ. Notably, RABBit gains up to +4.8% and up to +3.2%
improvement in the worst-case UAP accuracy (averaged over 10 runs) for CIFAR10 and MNIST
DNNs, respectively. RABBit also efficiently scales to the largest verifiable DNN architectures such
as ConvBig, conferring up to +1.6% improvement in worst-case UAP accuracy. In some cases,
strong bounding outperforms strong branching, while in others, strong branching outperforms strong
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bounding, highlighting the importance of both methods. RABBit combines the strengths of both
strong branching and strong bounding, producing the best results overall.

(a) DiffAI (CIFAR10) (b) SABR (CIFAR10) (c) CITRUS (CIFAR10)

Figure 1: Average Worst Case k-UAP accuracy vs Time for ConvSmall CIFAR10 DNNs.

Time vs UAP Accuracy Analysis: Fig. 1 shows timewise the worst-case UAP accuracy (averaged
over 10 runs) for different ConvSmall CIFAR10 networks with k = 50 on ϵ values from Table 1. Note
that RABBit invokes RACoon, which in turn calls α-CROWN and eliminates verified executions
(Line 7 in Algorithm 1). Hence, for a fair comparison, we also run α-CROWN first for α, β-CROWN
and then run α, β-CROWN only on the unverified indices. For all DNNs, RABBit consistently
outperforms the SOTA BaB-based non-relational verifier α, β-CROWN at all timestamps. This
confirms that the improved precision shown in Table 1 is not dependent on the specific timeout value.

(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10)

Figure 2: Timewise Analysis of Average % Improvement in t∗ with Strong Bounding (CIFAR10)

(a) DiffAI (MNIST) (b) CITRUS (MNIST)

Figure 3: Timewise Analysis of Average % Improvement in t∗ with Strong Bounding (MNIST)

Evaluating Bound Improvement: In Figs 2 and 3, we present a timewise analysis of the improve-
ment in t∗ with strong bounding over α, β-CROWN and RACoon. For this experiment, we use DiffAI
and CITRUS ConvSmall networks with epsilon values from Table 1. For each network and ϵ, we
select 30 executions at random and compute the percentage improvement in t∗ with strong bounding
over RACoon and α, β-CROWN.We also report the average improvement and 95% confidence
intervals for all cases in Table 6 in Appendix G. The results demonstrate that the t∗ with strong
bounding is significantly tighter compared to the bounds from the SOTA verifiers α, β-CROWN and
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RACoon at all timestamps. Furthermore, strong bounding improves t∗ on average by up to 108.7%
for CIFAR10 networks and 57.7% for MNIST networks. These results highlight the importance of
leveraging dependencies across executions during both branching and bounding to improve precision.

Different ϵ and k values: Fig. 4 shows the results of RACoon, α, β-CROWN, and RABBit for
k-UAP verification of CIFAR10 ConvSmall DNNs for 5 different ϵ values and k = 50. RABBit
outperforms RACoon and α, β-CROWN for all evaluated ϵ values, notably improving the worst case
k-UAP accuracy by up to 4.8%. Similarly, we analyze the performance of RACoon, α, β-CROWN,
and RABBit for k-UAP verification of CIFAR10 ConvSmall DNNs with different k values. As
presented in Fig. 5, for all k values, RABBit is more precise than both baselines. Expectedly, the
worst-case k-UAP accuracy for relational verifiers is higher with larger k values as it is easier to
prove the absence of a common perturbation with larger k.

(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10)

Figure 4: Average Worst Case k-UAP accuracy vs ϵ for CIFAR10 DNNs.

(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10)

Figure 5: Average Worst Case k-UAP accuracy for different k values for CIFAR10 ConvSmall DNNs.

7 Conclusion
We present RABBit, a general framework for improving the precision of relational verification
of DNNs through BaB methods specifically designed to utilize dependencies across executions.
Our experiments, on various DNN architectures, and training methods demonstrate that RABBit
significantly outperforms both SOTA relational and non-relational verifiers for relational properties.
Although we focus on the worst-case UAP accuracy and top-k accuracy RABBit can be extended to
properties involving different DNNs, such as local equivalence of DNN pairs Paulsen et al. [2020] or
properties defined over an ensemble of DNNs.
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A Formal encoding of relational properties

A.1 k-UAP verification

Given a set of k points X = {x1, ...,xk}where for all i ∈ [k], xi ∈ Rn0 and ϵ ∈ R we can first define
individual input constraints used to define L∞ input region for each execution ∀i ∈ [k].ϕiin(x

∗
i ) =

∥x∗
i − xi∥∞ ≤ ϵ. We define Φδ(x∗

1, . . . ,x
∗
k) as follows:

Φδ(x∗
1, . . . ,x

∗
k) =

∧
(i,j∈[k])∧(i<j)

(x∗
i − x∗

j = xi − xj) (2)

Then, we have the input specification as Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1 ϕ

i
in(x

∗
i ) ∧ Φδ(x∗

1, . . . ,x
∗
k).

Next, we define Ψ(x∗
1, . . . ,x

∗
k) as conjunction of k clauses each defined by ψi(yi) where yi =

N(x∗
i ). Now we define ψi(yi) =

∧nl

j=1(ci,j
Tyi ≥ 0) where ci,j ∈ Rnl is defined as follows

∀a ∈ [nl].ci,j,a =


1 if a ̸= j and a is the correct label for yi

−1 if a = j and a is not the correct label for yi

0 otherwise
(3)

In this case, the tuple of inputs (x∗
1, . . . ,x

∗
k) satisfies the input specification Φ(x∗

1, . . . ,x
∗
k) iff for

all i ∈ [k], x∗
i = xi + δδδ where δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ. Hence, the relational property (Φ,Ψ)

defined above verifies whether there is an adversarial perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ that can
misclassify all k inputs. Next, we show the formulation for the worst-case UAP accuracy of the
k-UAP verification problem as described in section 3. Let, for any δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, µ(δ)
denotes the number of clauses (ψi) in Ψ that are satisfied. Then µ(δ) is defined as follows

zi(δδδ) =

{
1 ψi(N(xi + δδδ)) is True
0 otherwise

(4)

µ(δδδ) =

k∑
i=1

zi(δδδ) (5)

Since ψi(N(xi + δδδ)) is True iff the perturbed input xi + δδδ is correctly classified by N , for any
δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, µ(δδδ) captures the number of correct classifications over the set of perturbed
inputs {x1 + δδδ, . . . ,xk + δδδ}. The worst-case k-UAP accuracy M0(Φ,Ψ) for (Φ,Ψ) is as follows

M0(Φ,Ψ) = min
δδδ∈Rn0 , ∥δδδ∥≤ϵ

µ(δδδ) (6)

B Details of strong bounding

For fixed linear approximations {(L1, b1), . . . (Ln, bn)} corresponding to n executions of N if the
optimal value t∗ of the following linear program ≥ 0 then the n executions do not have a common
peturbation (from Theorem B.3. Banerjee and Singh [2024]).

min t s.t. ∥δδδ∥∞ ≤ ϵ
Li

T (xi + δδδ) + bi ≤ t ∀i ∈ [n] (7)
Now in the first step, we compute the Lagrangian dual of the linear program from Eq. 7. The
Lagrangian Dual is as follows where for all i ∈ [n], λi ≥ 0 are Lagrange multipliers.

max
0≤λi

min
t∈R,∥δδδ∥∞≤ϵ

(1−
n∑

i=1

λi)× t+
n∑

i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
We set the coefficient of the unbounded variable t to 0 to avoid cases where min

t∈R,∥δδδ∥∞≤ϵ
(1 −∑n

i=1 λi) × t +
∑n

i=1 λi ×
(
LT
i (xi + δδδ) + bi

)
= −∞. This leads to the following Lagrangian

Dual form

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
where

n∑
i=1

λi = 1
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Now for every subproblem, replacing the branching constraints by introducing dual variables
βββ results in the parametric linear approximations of N specified by (Li(αααi,βββi), bi(αααi,βββi)) for
each execution i ∈ [n]. Then the Lagrangian Dual with the parametric linear approximations
{(L1(ααα1,βββ1), b1(ααα1,βββ1)), . . . , (Ln(αααn,βββn), bn(αααn,βββn))} is as follows

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

where
n∑

i=1

λi = 1

Theorem 4.1. If minF(S) maxαααi,βββi,λi
−ϵ×∥

∑
i∈S λi×Li(αααi,βββi)∥1 +

∑
i∈S λi× ai(αααi,βββi) ≥ 0

then executions in S do not have a common perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ.

Proof. First, we show that min
∥δδδ∥∞≤ϵ

∑n
i=1 λi ×

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= −ϵ ×

∥
∑n

i=1 λi × Li(αααi,βββi)∥1 +
∑n

i=1 λi × ai(αααi,βββi).

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= min
∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi,βββi)
T (δδδ) +

n∑
i=1

λi ×
(
bi(αααi,βββi) + Li(αααi,βββi)

Txi

)
=

n∑
i=1

λi × ai(αααi,βββi) + min
∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi,βββi)
T (δδδ)

=

n∑
i=1

λi × ai(αααi,βββi)− ϵ× ∥
n∑

i=1

λi × Li(αααi,βββi)∥1 Using Hölder’s Inequality (8)

For fixed αααi,βββi, the optimal solution of the LP in Eq. 7 and subsequently of the Lagrangian gives us

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= min
∥δδδ∥∞≤ϵ

max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

provided
n∑

i=1

λi = 1 (9)

For each subproblem, for all αααi,βββi

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ) ≥ min

∥δδδ∥∞≤ϵ
max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

Hence,

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ)

≥ max
αααi,βββi

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

≥ max
αααi,βββi

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

where
n∑

i=1

λi = 1 from Eq. 9

≥ max
αααi,βββi,0≤λi

n∑
i=1

λi × ai(αααi,βββi)− ϵ× ∥
n∑

i=1

λi × Li(αααi,βββi)∥1 From Eq. 8 (10)

Finally, if minF(S) maxαααi,βββi,λi
−ϵ× ∥

∑
i∈S λi × Li(αααi,βββi)∥1 +

∑
i∈S λi × ai(αααi,βββi) ≥ 0 then,

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ) ≥ 0 for all subproblems in F(S) using Eq. 10

Since, for all subproblems min
∥δδδ∥∞≤ϵ

max1≤i≤n ci
TN(xi + δδδ) ≥ 0,

∨n
i=1 ψ

i(N(xi + δδδ)) holds for all

δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ i.e. there does not exist any common perturbation.
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C Details of strong branching

Theorem 4.2. For any ααα,βββ , if L(ααα,βββ) ∈ Rn0 and b(ααα,βββ) ∈ R then min∥δδδ∥∞≤ϵ(L(ααα,βββ) −
Lt)

T (x+ δδδ) + b(ααα,βββ) = −ϵ× ∥L(ααα,βββ)− Lt∥1 + (L(ααα,βββ)− Lt)
Tx+ b(ααα,βββ).

Proof.

min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
T (x+ δδδ) + b(ααα,βββ)

= min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
Tδδδ + b(ααα,βββ) + (L(ααα,βββ)− Lt)

Tx

= b(ααα,βββ) + (L(ααα,βββ)− Lt)
Tx+ min

∥δδδ∥∞≤ϵ
(L(ααα,βββ)− Lt)

Tδδδ

= b(ααα,βββ) + (L(ααα,βββ)− Lt)
Tx− ϵ× ∥(L(ααα,βββ)− Lt)∥1 Using Hölder’s Inequality

C.1 Projected gradient ascent

For each αiαiαi,βββi, after each step of gradient ascent (for maximization problem), we clip αiαiαi,βββi values
to the corresponding ranges [lαil

α
il
α
i ,u

α
iu
α
iu
α
i ] [l

β
il
β
il
β
i ,u

β
iu
β
iu
β
i ] respectively. This is similar to the approach used in

the SOTA non-relational bound refinement α, β-CROWN Wang et al. [2021]. Since λi ∈ [0, 1] and∑k
i=1 λi = 1 we replace λi =

sigmoid(xi)∑k
i=1 sigmoid(xi)

where xi ∈ R. For any values of (x1, . . . , xk) ∈ Rk

the corresponding (λ1, . . . , λk) satisfy λi ∈ [0, 1] and
∑k

i=1 λi = 1. We then apply gradient ascent
(for maximization problem) on (x1, . . . , xk) without any constraints.
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D DNN Architectures

D.1 DNN Architectures:

Table 2: DNN Architecture Details

Dataset Model Type Train # Layers # Params

ConvSmall Conv Standard 4 80k
ConvSmall Conv DiffAI 4 80k

MNIST ConvSmall Conv SABR 4 80k
ConvSmall Conv CITRUS 4 80k
ConvBig Conv DiffAI 7 1.8M

ConvSmall Conv Standard 4 80k
CIFAR10 ConvSmall Conv DiffAI 4 80k

ConvSmall Conv SABR 4 80k
ConvSmall Conv CITRUS 4 80k
ConvBig Conv DiffAI 7 2.5M

D.2 Accuracies for Evaluated DNNs:

Table 3: Standard top-1 accuracy for evaluated DNNs

Dataset Model Train Accuracy (%)

ConvSmall Standard 62.9
ConvSmall DiffAI 45.9

CIFAR10 ConvSmall SABR 63.3
ConvSmall CITRUS 63.9
ConvBig DiffAI 53.8

ConvSmall Standard 97.7
ConvSmall DiffAI 96.8

MNIST ConvSmall SABR 97.9
ConvSmall CITRUS 98.5
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E Comparison of RABBit with RaVeN

Table 4: Comparison of RABBit vs RaVeN and RACoon

Dataset Network Training Method ϵ RaVeN RACoon RABBit
MNIST ConvSmall DiffAI 0.13 66.0 63.0 82.0 (+19.0)
MNIST ConvSmall SABR 0.15 51.0 50.0 66.0 (+15.0)
MNIST ConvSmall CITRUS 0.14 82.0 80.0 89.0 (+7.0)

CIFAR10 ConvSmall SABR 4.0/255 48.0 48.0 55.0 (+7.0)
CIFAR10 ConvSmall CITRUS 2.0/255 79.0 78.0 82.0 (+3.0)

F RABBit Efficacy Analysis for top-k accuracy

Table 5: Verified top-2 accuracy for RABBit vs baselines
Dataset Network Training Method ϵ α-CROWN RACoon α, β-CROWN RABBit

Avg. Acc. (%) Avg. Time (sec.) Avg. Acc. (%) Avg. Time (sec.) Avg. Acc. (%) Avg. Time (sec.) Avg. Acc. (%) Avg. Time (sec.)
CIFAR10 ConvSmall DiffAI 5/255 74.0 4.52 75.0 4.87 75.0 20.47 78.0 (+3.0) 24.27
MNIST ConvSmall DiffAI 0.13 84.0 1.20 84.0 1.42 89.0 11.03 91.0 (+2.0) 13.43

G Average Improvement in t∗ with Strong Branching

Table 6: Average Improvement in t∗ with Strong Bounding

Dataset Network Training Perturbation RACoon α, β-CROWN
Structure Method Bound (ϵ) Avg. Improvement (%) 95% CI Avg. Improvement (%) 95% CI

ConvSmall DiffAI 5/255 108.7 [93.9, 126.1] 102.5 [92.7, 115.4]
CIFAR ConvSmall CITRUS 2/255 77.9 [75.3, 81.6] 86.9 [86.2, 88.1]

ConvSmall DiffAI 5/255 57.7 [55.5, 60.2] 54.4 [53.0, 56.0]
MNIST ConvSmall CITRUS 2/255 40.8 [39.8, 41.9] 37.1 [36.4, 37.8]
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Section 1 for main claims and contributions. The main claims made in this
section and the abstract reflect the paper’s scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See end of Section 5 for the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

20



Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See experimental setup in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code to replicate the main results of this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please See Section the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See Section the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See experimental setup in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: RABBit is a deterministic verifier. The experiment "Evaluating Bound Im-
provement" (Section 6) is the only randomized experiment in the paper. We report the mean
and 95% confidence intervals of the experiment in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See experimental setup in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Submission meets all ethical guidelines after authors reviewed the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 1 and Section 7 for societal impacts of the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models with high risk for misuse were used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have only utilized publically available code, models, and datasets and
properly cited all relevant works.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code to replicate the main results of this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor human research with subject participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor human research with subject participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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