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ABSTRACT

Residual Networks (ResNets) can be interpreted as dynamic systems, which are
systems whose state changes over time and can be described with ordinary dif-
ferential equations (ODEs) (Haber et al., 2018; |Weinan| [2017). Specifically, the
dynamic systems interpretation views individual residual blocks as ODEs. Nu-
merical techniques for solving ODEs result in an approximation; and therefore
contain an error term. If an ODE is stiff it is likely that this error is amplified and
becomes dominating in the solution calculations, which negatively affects the ac-
curacy of the approximated solution (Burden et al., [2015). Therefore, stiff ODEs
are often numerically unstable. In this paper we leverage the dynamic systems
interpretation to perform a novel theoretical analysis of ResNets by leveraging
findings and tools from numerical analysis of ODEs. Specifically, we perform
block level stiffness analysis of ResNets. We find that residual blocks towards
the end of ResNet models exhibit increased stiffness and that there is a statisti-
cally significant correlation between stiffness and model accuracy and loss. Based
on these findings, we propose that ResNets behave as stiff numerically unstable
ODEs.

1 INTRODUCTION

There are three theoretical interpretations of Residual Networks (ResNets): (1) unraveled ResNets,
(2) unrolled iterative estimation, and (2) dynamical systems. The unravelled interpretation views
ResNets as a collection of 2™ paths along which the input data flows, where n is the number of
residual blocks (Veit et al.,[2016). The unrolled iterative estimation interpretation explains ResNets
as iterative approximators, where the first estimate provided by the first layer and is progressively
refined by subsequent layers (Greff et al 2017). Finally, the dynamical systems view interprets
ResNets as discretized dynamical systems, where ResNets are seen as ordinary differential equa-
tions (ODEs) (Haber et al., [2018}; [Chen et al., 2018; [Lu et al., [2018)). Specifically, the dynamical
systems interpretation regards ResNets’s residual blocks as a series of forward Euler discretizations
of an initial value ODE. This connection between residual blocks and ODEs can be leveraged for
novel theoretical analyses that further our understanding and interpretation of ResNets. In this paper
we perform a stiffness analysis of ResNets and their residual blocks by leveraging findings from
numerical analysis of ODEs.

Stiffness is an interesting property of an ODE that has important implications. If a differential
equation is stiff, the solution to the equation will have an unpredictable error that will negatively
affect the accuracy of the approximated solution (Burden et al., 2015). Therefore, stiff ODEs are
often numerically unstable and their solutions have accuracy issues (Seinfeld et al.,|1970; [Shampine
& Gear, |1979)).

There is no rigorous definition of stiffness; however there are certain phenomena that indicate that
a problem may be stiff. One way to assess stiffness of an ODE is to analyze the eigenvalues of
the Jacobian of the ODE. Specifically, if the eigenvalues of the Jacobian differ greatly in magnitude
(Butcher}, 2008; [Bui & Buil |1979) or if a large portion of the eigenvalues have negative real parts
(Burden et al.l [2015)), it is likely that the ODE is stiff. Unfortunately, there are no specific thresh-
olds regarding what constitutes a high variation in magnitude of eigenvalues or high proportion of
eigenvalues with negative real parts.
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In this paper we investigate whether ResNets exhibit some of the characteristics that can indicate
stiffness. Specifically, we focus on analyzing the eigenvalues of the Jacobian of individual residual
blocks with respect to their inputs in ResNet18, ResNet34, and ResNet50. Using these eigenvalues
we calculate (1) the stiffness index and (2) proportion of eigenvalues with negative real parts for
each residual block and target label, where the stiffness index captures the degree of variation of the
eigenvalues magnitude (Kim et al., 2021}

We find stiffness significantly varies with respect to different residual blocks. Specifically, we find
that residual blocks towards the end of the network indicate increased stiffness, i.e.: they have a high
stiffness index and also a high proportion of eigenvalues with negative real parts. For example, the
last block in ResNet50 has a stiffness index of -35.32 and 31.96% of the eigenvalues of its Jacobian
have negative real parts.

We perform a correlation analysis between stiffness and model accuracy/loss and show that they are
correlated and that their correlation is statistically significant. In particular, we calculate the pearson
correlation, which ranges from -1 to 1, where positive values indicate positive linear relationships
and negative values indicate inverse relationships. We also compute the p-value of the correlation
coefficients, where a p-value less or equal to 0.05 is considered statistically significant. For example,
given ResNet18’s last residual block, the stiffness index has a negative correlation with accuracy of
-0.36 and the percentage of negative eigenvalues has a positive correlation with loss of 0.34. The
stiffness index of the last residual block in ResNet34 has a negative correlation with accuracy of
-0.20 and the percentage of negative eigenvalues has a negative correlation with accuracy of -0.38.
Finally, given the last block in ResNet50, the correlation between the stiffness index and accuracy is
-0.27 and the correlation between the percent of negative eigenvalues and loss is 0.25.

Based on these findings we propose that ResNets can be interpreted as not only as ODEs, but specif-
ically as stiff ODEs, which are numerically unstable. This interpretation could be another possible
explanation of why DNNs are susceptible to adversarial examples.

The rest of the paper is organized as follows. Section [2] provides related work, Section [3| provides
a detailed explanation of the dynamic systems interpretation of ResNets, which is the basis of this
paper. Section (4| describes our stiffness analysis, which investigates whether individual residual
blocks behave as stiff ODEs. Finally, Section [5 reports the results of our analysis and Section [6]
summarizes our conclusions.

2 RELATED WORK

There is a large body of numerical analysis literature that studies stiffness; however, in this paper
we are the first ones to connect the concepts of stiffness and ResNets via the dynamical systems
interpretation (Haber et al) 2018 Weinan, 2017) to propose that ResNets can be viewed as stiff
ODEs. Prior related works primarily focus on the challenges of solving stiff ODEs, which are prone
to yielding unreliable results due to their stiffness.

To get an overview of on topic of stiff ODEs, please refer to Seinfeld et al.| (1970), who provide a
review of numerical integration techniques for stiff ODEs. Additionally, (Shampine & Gear, [1979)
describe the meaning of stiffness, why do stiff problems arise, how they can be recognized, and
also compare the approprietness of different solution methods. Kaps & Rentrop| (1979) propose
generalized Runge-Kutta methods of order four with stepsize control as a solution method for stiff
ODEs. Because stiff ODEs often contain varying time scales, |[Engquist & Tsai| (2005) propose
heterogeneous multiscale methods for stiff ODEs and show promising stability and convergence
results. [Enright (1978) develop a matrix updating technique that aims to reduce the computational
cost of matrix operations needed for solving stiff ODEs. Other works are domain specific such
as (Young & Boris| [1977), which proposes a new method for solving stiff ODEs describing the
chemical kinetics of reactive flow problems.

One of the most recent works that focuses on solving stiff ODEs is [Kim et al.| (2021)), who leverage
neural ODEs. Neural ODEs have been introduced by (Chen et al.,[2018)) as a form of new continuous
depth deep learning models that parametrize ODEs with a neural network and learn the underlying
dynamic system. Kim et al.|(2021) study learning neural ODEs on data generated from two classical
stiff systems, ROBER (Robertson, |1967) and POLLU (Verwer, [1994)), which describe the dynamics
of species concentrations in stiff chemical reaction systems. They propose a new derivative calcu-
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lation that can be used for neural network backpropagation and output normalization techniques for
learning stiff ODEs with neural ODEs.

The dynamic systems interpretation views ResNets as a discretized forward Euler method, which is
known to be a numerically unstable solution to an ODE (Press et al.,[1992). [Li et al.| (2020) leverage
this fact to establish a link between numerical stability of ResNets and their adversarial robustness.
They propose modifications to the ResNet architecture that effectively replace the numerically un-
stable forward (explicit) Euler method with backward (implicit) Euler method, which is numerically
stable. Their experiments show that the modificantion improves adversarial robustness.

3 DYNAMICAL SYSTEMS INTERPRETATION OF RESNETS

Dynamical system is a system whose state changes with time (Arrowsmith & Placel [1990). Dy-
namical systems can be discrete or continuous depending on whether the time variable is discrete
or continuous. Given a dynamical system defined by function f, time variable ¢, and state x, an
iteration of discrete dynamical system can be described as x;4+1 = f(z:), while a continuous system
is represented as a differential equation dx/dt = f’(z). Differential equations are especially useful
for describing non-linear equations, e.g.: calculating the angular position of a swinging pendulum is
a canonical dynamic system that can be solved via differential equations (Brin & Stuck, [2002).

Prior works (Haber et al.l 2018 Weinan, 2017) have shown that ResNets can be interpreted as
ordinary differential equations, where ordinary signifies that the differential equation contains a
function with respect to only one (as opposed to multiple) independent variable.

The ResNet architecture consists of a convolutional input layer followed by residual blocks with
identity skip connections and a fully connected output layer. The identity skip connections allow
ResNets to skip a block; and therefore, find the optimal number of layers. A residual block shown
in Figure|l|is the building block of ResNets. It is composed of two convolutional layers and can be
defined as:

Tip1 = F(xs, Ws) + a3, (1)

where F' is the residual module and W; are its parameters.

Conv layer

relu

Conv layer

Flx, W) +x =%,

F(xi, Wi)

relu
Figure 1: Residual Block

Without loss of generality, Equation [T]can be written as follows with an additional parameter h.
Tip1 = hF(x;, W) + x4 2
Equation 2] can be rearranged as:

Tit+1 — Ti

—— F(zi, W) 3)

For a sufficiently small » in Equation 3] the residual block becomes:
x(t) = F(x(t), W(t)),z(0) = zo for 0 <t < T, 4)
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where x(0) and x(T) correspond to the input and output feature maps and T to the depth of the
residual network.

The Euler forward method is an explicit method for solving ODEs using the following formula:
Tip1 = x; + hf(zi, W), &)
which has the same form as Equation[2]and where h represents the step size.

The equivalence of ResNets and ODENets can be demonstrated with a simple example shown in
Figure[2] which compares the results of classical ResNets with ODENets that we fitted to a randomly
generated set of numerical inputs and outputs.

159" o Exact solution

—— Resnet predictions
104 —— ODE Net predictions (Euler)

output
o

~-104

—15 4

T T T T T T T
-3 -2 -1 0 1 2 3
input

Figure 2: ResNets correspond to ODENets, which replace residual block with ODEs

4 STIFFNESS ANALYSIS OF RESNETS

4.1 STIFFNESS

Numerical solution to an ODE is an approximation; and therefore contains an error term. If an ODE
is stiff it is likely that this error is amplified and becomes dominating in the solution calculations
(Burden et al., |2015). Therefore, stiff ODEs are often numerically unstable. Typically, stiff ODE
equations are problems for which explicit methods do not work (Hairer & Wanner, |1996;[2002).

Stiff systems derive their name from the motion of spring and mass systems that have large spring
constants, and are common, for example, in the study of vibrations, chemical reactions, electrical
circuits (Burden et al} 2015)), and control theory (Kaps & Rentropl [1979). There is no rigorous
mathematical definition of stiffness; however certain indicators can be used to assess if an ODE is
stiff. One of those indicators are the eigenvalues of the Jacobian of the function in the ODE, where
the Jacobian is a matrix that consists of first order partial derivatives of a function and is defined
in Equation @ Residual blocks can be viewed as functions; and therefore, we can compute their
Jacobians. Moreover, because because the Jacobians of residual blocks are square matrices, we can
compute their eigenvalues.

. 9f1(x) 9f1(x)

, oo ot ] v Ji1(x) ) 8?61 ) 831671 ©
il oz V7 fon() Ofm(x)  Ofm(x)
0x1 axn

Eigenvalues are characteristic scalar values, which have special properties and can be computed
only for square matrices via eigenvalue decomposition. Given a square matrix A, if there is a vector
X € R™ # 0 such that

AX =)2X @)
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for some scalar A, then A is the eigenvalue of A (Layton & Sussmanl 2017). Eigenvalue decompo-
sition of a square matrix A yields three matrices: @, V, and Q! such that A = QVQ~'. In this
matrix factorization, () is a square matrix that contains eigenvectors in its columns, V' is a diagonal
matrix that contains eigenvalues on its diagonal, and Q! is simply a transpose of Q.

Stiff ODEs cause severe numerical integration problems and their solutions are typically associated
with stability and accuracy problems (Seinfeld et al.,[1970). Both individual and systems of ODEs
can be stiff (Chapra & Canale} [1986)). An example of a single stiff ODE is:

d

CTZ — —1000y + 3000 — 2000 (8)
For an initial value y(0) = 0, the analytical solution is:

y =3 —0.998e 1090t _ 9 002t 9)

Figure [3] compares an approximate and exact solution to the example stiff ODE in Equation[§] We
approximate the solution using an explicit Euler method, but even with a step size as small as 0.0015,
the approximate solution is very inaccurate and unstable.

—— Approximate, step size = 0.0015 —— Approximate, step size = 0.0015
0.0 — Exact 0.0 —— Exact

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.00 0.02 0.04 0.06 0.08 0.10
t t

(a) Exact vs approximate solution on a time interval (b) Exact vs approximate solution on a time interval
from 0.0 to 0.006 from 0.0 to 0.1

Figure 3: Solutions to stiff ODEs have accuracy and stability issues

4.2 STIFFNESS ANALYSIS

In section [3] we have explained how ResNets can be interpreted as a discretized forward Euler
method applied to an initial value ODE as per the dynamic systems interpretation (Haber et al.,
2018} [Weinan, |2017). Prior works have shown that the forward Euler method is numerically unsta-
ble (Press et al., [1992)) and attempted to modify ResNets to increase their stability (Li et al.l 2020).
Additionally, the phenomenon of adversarial examples (Goodfellow et al.,[2015])) that produce incor-
rect predictions when passed as inputs into ResNets, can be viewed as a manifestation of numerical
instability (DeVore et al} [2021). Adversarial examples are inputs that have been carefully crafted
with the goal of fooling a neural network. They add small virtually imperceivable perturbations
to initial inputs such that the inputs appear legitimate and unaltered, but still cause the network to
output an incorrect prediction. Numerically stable methods are resilient to small changes in initial
data or conditions such that their output does not result in a dramatic change in the solution to the
problem (Burden et al.| 2015). Given these issues and the fact that the explicit methods for solving
ODE:s are likely to fail if a problem is stiff, it is possible that ResNets are stiff and numerically
unstable.

To investigate this, we perform a numerical analysis to test whether ResNets exhibit characteristics
of stiff ODEs. Specifically, we focus on analyzing the eigenvalues of the Jacobian of each residual
block with respect to the block inputs. Using these eigenvalues, for each residual block, we calculate
(1) the stiffness index and (2) what proportion of eigenvalues contain negative real parts according
to equations [T0]and [[T] respectively.

4.2.1 STIFFNESS INDEX

A problem is stiff if the eigenvalues of the Jacobian of the function described by the ODE differ
greatly in magnitude, which can be measured by the stiffness index (Kim et al.,2021). The stiffness
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index is defined in Equation[I0] where \; corresponds to the eigenvalues of the Jacobian matrix and
Re represent the real part of a complex number.
max(Re(A\;))

5= min(Re(\;))

(10)

4.2.2 PERCENT OF EIGENVALUES WITH NEGATIVE REAL PARTS

Another indication of stiffness is if majority of those eigenvalues have negative real parts (Heath &
Munsonl 1996). We calculate this metric as follows.
count(Re()\;) > 0)

pP—
count(A;)

(1)

4.2.3 COMPUTATIONAL COMPLEXITY

Computing the Jacobian of a residual block and its eigenvalues is computationally expensive. Given
a residual block with input and output dimension equal ton : F' : R" — R", to obtain the Jacobian
matrix of ' we need to compute the first partial derivative of each input dimension with respect to
each output dimension, which yields a n x n matrix. Therefore, the larger the inputs and residual
blocks, the more more computational power is required to compute the Jacobian and its eigenvalues.
We have performed experiments on GPUs as much as 80GB memory; however, that was still not
sufficient for larger ResNet architectures or larger inputs. For this reason we focus on ResNetl8,
ResNet34, and ResNet50 that have been pre-trained on CIFAR10. Specifically, we compute the
Jacobian of every residual block with respect to each input to perform the analysis. To illustrate the
computational time complexity we provide the number of elements in the Jacobian matrix and the
number of eigenvalues of the Jacobian for CIFAR10 ResNet18 and ResNet34 in Table[I0]and [IT]in
the Appendix, which show that each block produces several million of these elements. For example,
the first block of both ResNet18 and ResNet34 produces over 268 million Jacobian matrix elements
and over 16 million eigenvalues.

5 RESULTS

We perform a stiffness analysis of ResNet18, ResNet34 and Resnet50 with CIFARI1O test images,
and our results show that residual blocks towards the end of ResNets behave as stiff ODEs. More-
over, we show that stiffness varies with respect to different blocks as opposed to different inputs,
which means that stiffness is a property of the model itself. It also implies that our results ob-
tained using CIFAR10 images as inputs generalize across different inputs and reflect on the model
as opposed to particular inputs. Additionally, we also show that there is a statistically significant
correlation between elevated stiffness and model accuracy/loss.

5.1 RESNETIS8

ResNet18 contains eight residual blocks and in Table[2]we show that the stiffness index and percent-
age of eigenvalues with negative real parts spikes in last three blocks. The average block stiffness
index is -4.15, but the last residual block shows a significant spike in stiffness of -12.99, which is
three times higher than the average. The percentage of negative eigenvalues behaves similarly. The
average percentage of negative eigenvalues in a block is 10.04, but this percentage doubles in the
last three residual blocks. This indicates that the last three residual blocks of ResNet18 behave as
stiff ODEs.

In addition to analyzing stiffness of different blocks we also calculate the average stiffness index
and percentage of negative eigenvalues produced by different inputs with different target labels. In
table [3| we show stiffness does not change with respect to different image labels. Based on that we
conclude that it is ResNet18 itself that drives stiffness and not its inputs.

Next, we assess the significance of our finding that the last three residual blocks of ResNet18 behave
as stiff ODEs by testing if the two stiffness metrics are correlated with ResNet18’s accuracy and loss
and if those correlations are statistically significant. In Table [I] we show that the increased stiffness
in the last three blocks is correlated with ResNetl18’s accuracy and loss. For example, the last
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block acc, acc, pct loss, loss, pct
stiffness index | neg eigen values | stiffness index | neg eigen values
corr p-value | corr p-value | corr p-value | corr p-value
1 0.00 0.83 -0.01 0.67 0.01 0.76 0.00 0.87
2 0.03 0.06 -0.01 0.45 -0.02 0.19 0.01 0.45
3 -0.01 0.74 -0.06 0.00 0.02 0.17 0.06 0.00
4 -0.04 0.01 -0.10 0.00 0.04 0.03 0.10 0.00
5 0.00 0.97 -0.14 0.00 0.01 0.68 0.13 0.00
6 -0.09 0.00 -0.38 0.00 0.08 0.00 0.36 0.00
7 -0.03 0.08 -0.18 0.00 0.02 0.34 0.18 0.00
8 -0.23 0.00 -0.36 0.00 0.21 0.00 0.34 0.00
all blocks | -0.01 0.15 -0.07 0.00 0.01 0.19 0.07 0.00

Table 1: ResNetl8 correlation analysis between stiffness and accuracy/loss with statistically signif-
icant results in bold

residual block’s percentage of negative eigenvalues has a -0.36 correlation with the model accuracy
and its stiffness index has a 0.34 correlation with the model loss. The p-value of these correlations
is less than 0.05, i.e.: they are statistically significant. This means that higher proportion of negative
eigenvalues implies lower accuracy and higher stiffness index implies higher loss.

stiffness  pct of negative

block stiffness  pct of negative

index eigen values label . .
i 333 730 index eigen values
) ’ 0 -4.31 10.46
2 -5.12 2.54
1 -4.42 9.71
3 -1.28 1.96
2 -4.02 10.31
4 -4.04 4.33
3 -4.00 11.57
5 -1.30 4.35
4 -4.02 9.80
6 -4.94 19.73
5 -4.10 10.14
7 -1.28 22.65
6 -4.07 9.53
8 -12.99 21.92
all blocks -4.15 10.04 7 413 2-20
8 -4.15 9.67
9 -4.31 9.99

Table 2: ResNet18 stiffness analysis by block with
stiffness index and percent of negative eigen val-

ues with real parts over 10.00 in bold Table 3: ResNet18 stiffness analysis by label

5.2 RESNET34

ResNet34 contains sixteen blocks and similarly to ResNetl8, it is the residual blocks towards the
end of the network that exhibit increased stiffness. In Table[5|we show that the last eight blocks show
a spike in stiffness index and percentage of negative eigenvalues. The average block stiffness index
is -7.84, but it approximately doubles in most of the last eight blocks. For example, the sixteenth
block has a stiffness index of -16.82. Similar results can be observed for the percentage of negative
eigenvalues in Resnet34’s blocks. The average block contains 15.15 % of negative eigenvalues, but
that percentage is significantly higher in the last 7 blocks. For example the last block’s Jacobian
matrix has 22.34 % of negative eigenvalues and the twelfth and thirteenth blocks have 33.58 % and
34.13 % respectively.

Table [6] shows that stiffness does not seem to vary with respect to different input labels, which
is the same conclusion made in case of ResNetl8. Compared to Table [5] which shows a block
level analysis, the stiffness index and percentage of negative eigenvalues is virtually constant across
different input image labels.

Similarly to ResNet18, we perform a correlation analysis to assess the impact of stiffness observed
in the latter half of ResNet34’s blocks on its accuracy and loss. Table ] shows that the residual
blocks with increased stiffness have a statistically significant correlation with the model’s accuracy
and loss. For example, the last block’s stiffness index has a -0.20 correlation with the model’s
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acc, acc, pct loss, loss, pct

stiffness index | neg eigen values | stiffness index | neg eigen values
corr p-value | corr p-value | corr p-value | corr p-value
-0.07 0.02 -0.01 0.74 0.05 0.09 0.00 0.94
0.02 0.44 0.01 0.79 -0.03 0.37 -0.01 0.80
-0.02 0.42 0.02 0.56 0.02 0.53 -0.02 0.54
-0.01 0.73 0.03 0.39 0.00 0.95 -0.02 0.52
-0.01 0.82 -0.02 0.48 -0.01 0.82 0.02 0.59
0.06 0.03 0.00 0.94 -0.07 0.03 0.00 0.89
0.05 0.09 -0.12 0.00 -0.04 0.17 0.12 0.00
-0.07 0.02 -0.22 0.00 0.04 0.19 0.23 0.00
-0.07 0.03 -0.26 0.00 0.06 0.05 0.26 0.00
-0.17 0.00 -0.32 0.00 0.17 0.00 0.31 0.00
-0.22 0.00 -0.31 0.00 0.21 0.00 0.30 0.00
-0.11 0.00 -0.23 0.00 0.10 0.00 0.22 0.00
0.05 0.08 -0.21 0.00 -0.05 0.12 0.21 0.00
0.04 0.18 -0.05 0.08 -0.02 0.41 0.08 0.01
-0.23 0.00 -0.34 0.00 0.21 0.00 0.33 0.00

16 -0.20 0.00 -0.38 0.00 0.18 0.00 0.35 0.00
all blocks | -0.01 0.11 -0.05 0.00 0.01 0.13 0.05 0.00

block

S S G G —
I Sr i e =N-N-CIN - NV I N S

Table 4: ResNet34: Correlation analysis between stiffness and accuracy/loss with statistically sig-
nificant results in bold

accuracy and that the percentage of negative eigenvalues in the last block have a 0.35 correlation
with the model’s loss.

block stiffness  pct of negative

index eigen values

1 -3.34 3.10
2 -5.24 2.81
3 -5.91 2.78 i i
4 21,10 2.50 label  SIess pzitg(;infagl?ntze
5 -6.00 4.78 0 -7.82 1594
6 -5.69 4.10

1 =177 14.12
7 -5.29 5.15

2 -71.79 15.69
8 -1.73 7.83

3 -7.88 17.14
9 -14.56 11.91

4 -7.51 15.31
10 -9.47 25.78

5 -7.98 15.44
11 -10.46 30.69

6 -7.79 14.58
12 -13.05 33.58

7 -8.00 14.36
13 -11.26 34.13

8 -7.96 14.49
14 -1.85 25.56 9 7.84 14.42
15 -13.59 25.39 — '
16 -16.82 22.34 . i i

L > =15 Table 6: ResNet34 stiffness analysis by label

Table 5: ResNet34 stiffness analysis by block with
stiffness index and percent of negative eigen val-
ues with real parts over 10.00 in bold

5.3 RESNET50

Due to computation constraints explained in Section for ResNet50, a larger architecture, we
compute the stiffness index and percentage of negative eigenvalues only for its sixteenth block,
which is the last residual block. The last residual block Jacobian is the smallest from all blocks
as shown in Tables |10 and and is therefore the least computationally expensive. Moreover, the
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results from our stiffness analysis on both ResNet18 and ResNet34 show that stiff residual blocks
reside towards the end of the network architecture.

As shown in Table [8] the stiffness index of the last residual block in ResNet50 is 35.32, which is
higher than any block stiffness index in ResNet18 or ResNet34. The percentage of negative eigen-
values is 31.96%, which is also high. Similarly to ResNet18 and ResNet34, Table E] demonstrates
that the stiffness indicators do not significantly vary in response to different inputs. Finally, Table
shows that the stiffness index is about 20% correlated with ResNet50’s accuracy and loss and that
the correlation is statistically significant.

block acc, acc, pct loss, loss, pct
stiffness index | neg eigen values | stiffness index | neg eigen values
corr p-value | corr p-value | corr p-value | corr p-value
16 | -0.27 0.00 | 0.20 0.00 | 0.25 0.00 | -0.15 0.00

Table 7: ResNet50: Correlation analysis between stiffness and accuracy/loss with statistically sig-
nificant results in bold

stiffness  pct of negative

label . .
index eigen values
0 -31.28 31.91
1 -39.61 28.23
: < 2 -32.26 32.79
block “index “eigen vapues. }ooBas o
16 -35.32 31.96 5 3433 3637
. : : 6 -39.56 27.23
Table 8: ResNet50 stiffness analysis of last block 7 41.05 3017
8 -37.34 27.77
9 -36.30 33.14

Table 9: ResNet50 stiffness analysis by label
6 CONCLUSION

In this paper we leverage the dynamic systems interpretation of ResNets that views them as ODEs
whose solutions are equivalent to forward Euler discretization of an initial value ODE. We perform
a novel stiffness analysis whose results lead to our proposal that ResNets can be interpreted as stiff
ODE:s. Solutions involving stiff ODEs have numerical problems that cause poor accuracy and sta-
bility, because the error term in the approximate solution becomes dominating. While stiffness does
not have a rigorous mathematical definition, there are some analyses that can be performed to as-
sess whether its is likely that an ODE is stiff. In this paper we focus on studying the eigenvalues
of the Jacobian matrix that is created by computing the first partial derivatives of a residual block
with respect to its inputs. Specifically, using the eigenvalues we compute the stiffness index and
percentage of negative eigenvalues with real parts for each residual block to perform a stiffness
analysis. Our results show that residual blocks towards the end of ResNets exhibit a high stiffness
index and high percentage of negative eigenvalues. We also show that stiffness varies with respect
to different blocks as opposed to types of inputs, which indicates that stiffness is an inherent prop-
erty of some residual blocks. To assess the significance of these results we perform a correlation
analysis, which indicates that stiffness has a statistically significant correlation with a model’s accu-
racy and loss. Based on these findings we conclude that some residual blocks in ResNets (specif-
ically the ones in the latter half of the architecture) correspond to stiff ODEs. Therefore, we pro-
pose that ResNets could viewed not only as ODEs as per the dynamic systems interpretation, but
specifically as stiff ODEs, which are numerically unstable. Our stiffness analysis along with in-
structions for reproducing results are available at: https://anonymous.4open.science/
r/Stiffness-Analysis—ResNets-18D2/README .md.
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A APPENDIX

block elements eigenvalues
oc in Jacobian  in Jacobian
1 268,435,456 16,777,216

2 268,435,456 16,777,216
block elements eigenvalues 3 268,435,456 16,777,216

in Jacobian in Jacobian 4 134,217,728 8,388,608

1 268,435,456 16,777,216 5 67,108,864 8,388,608

2 268,435,456 16,777,216 6 67,108,864 8,388,608

3 134,217,728 8,388,608 7 67,108,864 8,388,608

4 67,108,864 8,388,608 8 33,554,432 4,194,304

5 33,554,432 4,194,304 9 16,777,216 4,194,304

6 16,777,216 4,194,304 10 16,777,216 4,194,304

7 8,388,608 2,097,152 11 16,777,216 4,194,304

8 4,194,304 2,097,152 12 16,777,216 4,194,304

total 801,112,064 62,914,560 13 16,777,216 4,194,304

14 8,388,608 2,097,152

Table 10: ResNet18 number of Jacobian elements 15 4,194,304 2,097,152
and eigenvalues 16 4,194,304 2,097,152

total  1,275,068,416 115,343,360

Table 11: ResNet34 number of Jacobian elements
and eigenvalues
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