Stable and Uncertainty-Aware Local Post-hoc Explanations Using Active Learning

Modern machine learning systems often deploy complex black-box models, giving predictions without any transparent reasoning.
Research in post-hoc explainable Al (XAI) seeks to mitigate these challenges by generating interpretable, model-agnostic
explanations. Attribution based explainers like LIME [1] approximate the behaviour of black box models by fitting simple,
interpretable models on synthetic perturbations of an input. In methods like LIME the perturbations are generated randomly,
which leads to inconsistent explanations and weak control over the locality. Recent works emphasize the need for reproducible
and uncertainty aware explanations, although current extensions largely rely on heuristic or uniform sampling strategies.

Our work proposes EAGLE (Expected Active Gain for Local Explanations), an information-theoretic, active learning based
framework that produces stable, uncertainty-aware (as shown in Figure: [T]), local post-hoc explanations. We model the local
surrogate as a Bayesian linear regressor and treat sampling for perturbations as an active learning problem. We adapt two
principled acquisition functions for the Bayesian linear regression model: Expected Information Gain (EIG), which seeks
perturbations that minimise posterior uncertainty about explanation parameters, and Bayesian Active Learning by Disagreement
(BALD), which selects samples where surrogate predictions disagree the most, thereby targeting epistemic uncertainty. Unlike
variance-based heuristics, EIG and BALD provide principled criteria for balancing exploration and exploitation during sampling.

Figure 1: Uncertainty-aware explanations (color intensity = confidence) for bee and necklace images using BALD, EIG, and FS.

We conduct experiments on five benchmark datasets: COMPAS, German credit, Adult income, Diabetes, and MNIST, with
comparisons to standard LIME [1] and Focus Sampling (FS) [2] as baselines. Stability is measured across three criteria: (i)
reproducibility of explanations across repeated runs, measured by Jaccard similarity, (ii) sensitivity of explanations to local
perturbations, assessed through local Lipschitz continuity, and (iii) stability in the context of structured acquisition, measured
using exploration—exploitation probabilities, Relative Input stability(RIS), and Neighborhood Stability Index(NSI). Together,
these metrics allow us to evaluate not only whether explanations are consistent, but also whether they remain reliable under
diverse perturbation regimes.
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Figure 2: Assessing % increase in stability over LIME using FS, EIG and BALD

Our results demonstrate that principled acquisition strategies markedly improve both stability and reproducibility of local
explanations. While LIME and FS remain heavily exploitative, reflected in very high RIS values (52.44 for LIME) and near-zero
or negative NSI (0 and —0.13), EIG and BALD achieve positive NSI (0.48 and 0.46) with substantially lower RIS (1.68 and 0.84),
indicating coherent and uncertainty-aware neighborhoods. This translates into consistently higher average Jaccard similarity, with
BALD reaching similarity scores 0.886 on COMPAS and 0.787 on German dataset, and EIG surpassing BALD on Adult(.794)
and Diabetes datasets(0.634) , while LIME and FS trail behind. Notably, EIG yields the strongest gains in Lipschitz stability
over LIME across all five benchmarks , with BALD also showing substantial improvements and FS offering modest increase
(Figure: [2). Through these experiments we demonstrate that exploration—exploitation choices govern not only where samples are
drawn, but also the proportionality of explanation changes and their reliability across neighborhoods. Sampling, when guided by
information gain, yields explanations that are markedly more stable, and faithful to the underlying black box model.
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