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ABSTRACT
Transformer-based deep learning is currently the state-of-the-art in
manyNLP and IR tasks. However, fine-tuning such Transformers for
specific tasks, especially in scenarios of ever-expanding volumes of
data with constant re-training requirements and budget constraints,
is costly (computationally and financially) and energy-consuming.
In this paper, we focus on Instance Selection (IS) – a set of meth-
ods focused on selecting the most representative documents for
training, aimed at maintaining (or improving) classification effec-
tiveness while reducing total time for training (or fine-tuning). We
propose E2SC-IS – Effective, Efficient, and Scalable Confidence-
Based IS – a two-step framework with a particular focus on Trans-
formers and large datasets. E2SC-IS estimates the probability of
each instance being removed from the training set based on scalable,
fast, and calibrated weak classifiers. E2SC-IS also exploits iterative
heuristics to estimate a near-optimal reduction rate. Our solution
can reduce the training sets by 29% on average while maintaining
the effectiveness in all datasets, with speedup gains up to 70%, scal-
ing for very large datasets (something that the baselines cannot do).
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1 INTRODUCTION
Automatic Text Classification (ATC) approaches can be employed
as helpful tools, allowing for the analysis and organization of large
amounts of data. ATC has had increasing importance in challenging
scenarios, including relevance feedback [19], sentiment analysis [6],
product reviews [30], among many others. Being a supervised task,
ATC has benefited from applications that constantly produce high
volumes of (labeled) data (e.g., large-scale social networks, such as
Twitter), in which users can manually classify messages, advertise-
ments, and products, producing a large volume of annotations [18].
The costs of obtaining large amounts of labeled data can also be
ameliorated by approaches such as crowd [42] and soft labeling [39].

ATC has recently experienced tremendous advances, mainly due
to the introduction of Transformer-based deep learning approaches,
considered the current state-of-the-art (SOTA) [15]. These ap-
proaches can be divided into two steps: (i) pre-training; and (ii)
domain transfer. The pre-train step involves learning the model
weights employing an unsupervised task (e.g., Next Sentence Predic-
tion [15]). The fine-tuning step is supervised, applied to a domain-
specific labeled dataset and allows for further model optimization.
According to Andrew Ng [37], there are two main reasons for
the successful results. The first one is the amount of data used to
pre-train these models – the GPT-3 model [4], for instance, was pre-
trained on 45TB of textual data. The second reason is the possibility
of reusing and adapting the general pre-trained model in multiple
tasks by just fine-tuning the model´s last layers for the specific task,
which is considerably faster than training from scratch for each task.

Despite faster, fine-tuning is still a costly process that demands
expensive computational resources in terms of computational power
and memory demands. For instance, the fine-tuning process on the
MEDLINE dataset, used in our experiments only for one transformer
(XLNET), takes approximately 80 hours of uninterrupted processing
using specialized GPU hardware. Indeed, there are several scenar-
ios in which adopting fine-tuned deep-learning approaches can
be challenging (if not impractical) despite potential effectiveness
gains. For instance, consider a textual classifier applied in a scenario
that requires continuous re-training (e.g., fraud detection[29], prod-
uct tagging[2], and recommendation[9]). Due to the continuous
changes in the data stream source, these models need constant re-
training to reflect modifications in the interest domain. Constantly
re-training (fine-tuning) themodel, as mentioned, can be very costly
– computationally and financially. The practical solution is usually
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increasing the time between consecutive model training, delaying
the learning of the temporal changes in the input data, which, in
turn, can affect the effectiveness of the task[36].

Another practical scenario is the challenge posed by using deep
learning models in the context of companies and research groups
with financial budget constraints. In both contexts, the application
and experimentation of these models are limited to the available re-
sources. Moreover, there is often the need to run thousands of exper-
iments to propose scientifically-sound or practical (commercial) ad-
vances regarding the SOTA. For instance, for this paper, we run four
thousand experiments using SOTA Transformers corresponding to
about 4,200 hours (175 days) of experiments. Any reductions could
bring benefits from several perspectives (financial, energy, etc.).

Given these scenarios of ever-expanding volumes of data with
constant re-training requirements, budget constraints, and high-
demanding energy models, it is desirable to develop new effective,
efficient, and scalable strategies to handle those issues properly. Two
(costly) alternatives are developing new deep learning algorithms
or more efficient hardware. Another way to ameliorate these prob-
lems is through data engineering [10]. In particular, we focus on
Instance Selection (IS) techniques. In contrast to traditional Fea-
ture Selection approaches, in which the main objective is to select
the most informative terms, ISmethods are focused on selecting the
most representative instances for the training set [17]. The intuition
behind IS is to remove potentially noisy or redundant instances
from the original training set and improve performance in terms of
total time training time while keeping or even improving effective-
ness. IS methods should simultaneously guarantee the following
constraints tripod: (1) training set reduction; (2) high effectiveness;
and (3) high efficiency. In sum, the main objective of Instance Se-
lection methods is to maintain (or even improve) classification model
effectiveness through an additional preprocessing step while reducing
total time – in the case to train (or fine-tune) the Transformer models.

Despite its potential, the application of IS methods for ATC, es-
pecially in the deep learning scenario, has been under-investigated.
Indeed, most of the IS methods have been proposed and studied only
on small tabular datasets and the selected instances were applied as
input only to weak classifiers (e.g. KNN). In contrast, the datasets in
ATC are unstructured, larger, and more complex. As deep learning
transformers approaches have a high cost in terms of computational
resources, mainly when dealing with large training data, we believe
they constitute an ideal scenario for applying IS techniques.

As far as we know, [12] was the first work that extensively stud-
ied the behavior of these IS techniques in the context of transformer
approaches (such as BERT, RoBERTa, BART, and GPT) in the ATC
field. The authors established that IS methods were able to reduce
the training set by up to 90% while maintaining effectiveness, with
total time speedups between 1.04 and 2.24 times. However, the
best-considered instance selection methods were able to respect the
“tripod” restrictions (effectiveness x reduction x total cost) in just
about half of the tested datasets. In the remaining datasets, espe-
cially the large ones, the use of IS approaches caused an overhead
in terms of the total time to generate the model. Therefore, despite
the potential, there is much room for developing new IS methods
focused on transformer-based architectures and large 1 datasets.

1We consider large-scale datasets for ATC, those with more than 100K documents [47].

In this context, themain contribution of this paper is the proposal
of E2SC-IS – Effective, Efficient, and Scalable Confidence-based
Instance Selection – a novel two-step framework2 aimed at large
datasets with a special focus on transformer-based architectures.
E2SC-IS is a technique that satisfies the tripod´s constraints and
is applicable in real-world scenarios, including datasets with thou-
sands of instances. E2SC´s overall structure can be seen in Figure 1.

Figure 1: The proposed E2SC-IS Framework.

E2SC-IS´s first step (Fig. 1a) aims to assign a probability to each
instance being removed from the training set (𝛼). We adopt an exact
KNN model to estimate the probability of removing instances, as it
is considered a calibrated3 and computationally cheap model [8].
Our first hypothesis (H1) is that high confidence (if the model
is calibrated to the correct class, known in training) positively cor-
relates with redundancy for the sake of building a classification
model. Accordingly, we keep the hard-to-classify instances (proba-
bly located in the decision border regions), weighted by confidence,
for the next step, in which we partially remove only the easy ones.

As the second step of our method – Figure 1(b) – we propose to
estimate a near-optimal reduction rate (𝛽 parameter) that does not
degrade the deep model’s effectiveness by employing a validation
set and a weak but fast classifier. Our second hypothesis (H2) is
that we can estimate the effectiveness behavior of a robust model
(deep learning) through the analysis and variation of selection rates
in a weaker model. For this, again, we explore KNN. More specif-
ically, we introduce an iterative method that statistically compares,
using the validation set, the KNNmodel’s effectiveness without any
data reduction against the model with iterative data reduction rates.
In this way, we can estimate a reduction rate that does not affect the
KNN model’s effectiveness. Last, considering the output of these
two steps together (Figure 1(c)), 𝛽% instances are randomly sampled,
weighted by the 𝛼 distribution, to be removed from the training set.

The specific research questions (RQ’s) we aim to answer are:
RQ1. Is E2SC-IS capable of reducing the training set while keeping
classifier effectiveness for each investigated scenario (dataset)? How
does E2SC-IS compare with other SOTA IS approaches regarding this
tradeoff? RQ1´s goal is to investigate and compare our proposal
with SOTA IS baselines regarding the tradeoff between the first two
constraints of the ”tripod“: effectiveness and training set reduction.
RQ2.What is the impact of applying E2SC-IS in the text classifi-
cation models’ total construction time? We propose assessing the
effect of the application of the IS approaches investigated in RQ1
regarding the third pillar of the tripod in the context of potential
time reductions for the full process, which comprises the total
times for preprocessing stages (including IS step) and ML training

2To guarantee the reproducibility of our solution, all the code, the documentation of
how to run it and datasets are available on: https://github.com/waashk/e2sc-is/
3A calibrated classifier[38] is one whose probability class predictions correlate well
with the classifier´s accuracy, e.g., for those instances predicted with 80% of confidence
the classifiers is correct in the prediction is roughly 80% of the cases.

https://github.com/waashk/e2sc-is/
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model. Particularly, regarding the ML training model, we focus on
the time to train the Transformers used as classifiers.
RQ3. How flexible is the E2SC-IS framework to adjust to different
application/task requirements? As mentioned, the traditional IS
strategies do not scale for the big data scenario (e.g., datasets with
more than 100K instances). RQ3´s main objective is to demon-
strate the flexibility of E2SC-IS by showing how its steps can be
modified to accommodate different requirements posed by distinct
scenarios, mainly those associated with big data.
In our experimental evaluation, we compare E2SC-IS with six

robust state-of-the-art instance selection baseline methods consid-
ering as input of the best of six deep learning text classification
methods in a large benchmark with 19 datasets. Our solution man-
aged to significantly reduce the training sets (by 27% on average;
maximum of 60%) while maintaining the same levels of effectiveness
in 18 datasets (RQ1), with speedups of 1.25 on average (RQ2) (maxi-
mum of 2.04). To demonstrate the flexibility (RQ3) of our framework
to cope with large datasets, we propose two modifications. The first
one replaces the interactive strategy to optimize the parameter 𝛽
with a heuristic based on extracting statistical characteristics of the
input dataset. The second modification replaces the exact KNNwith
an approximate solution with logarithmic complexity, allowing a
more scalable and efficient search for the nearest neighbors.

Our enhanced solution managed to increase the reduction rate
of the training sets (to 29% on average) while maintaining the
same levels of effectiveness in all datasets (RQ1), with speedups
of 1.37 on average (RQ2). In addition, the framework scaled to the
large datasets (RQ3), reducing them by up to 40% while statistically
maintaining the same effectiveness with speedups of 1.70x.

2 RELATEDWORK
The literature categorizes IS methods according to the adopted para-
digm [12]: condensation [20], editing [45], hybrid [26], density [31],
clustering based [35] and spatial hyperplane [7]. Briefly, conden-
sation algorithms remove noise by creating subsets, which later
reduce the number of instances. In contrast, editing algorithms re-
move noisy instances employing filters. Hybrid algorithms attempt
to combine condensation and editing paradigms. Density-based
approaches try to keep those present in denser regions. Similarly,
clustering-based strategies first perform a method to aggregate
instances and then select instances from each cluster. Last, Spatial
HyperPlane algorithms divide the hyperplane space of the features
by choosing representative instances of each subspace later. As we
will detail below, E2SC-IS can be classified as a hybrid IS method.

In [12], the authors compared the most traditional and recent
IS approaches applying them in the ATC context. None of the an-
alyzed approaches respected the “tripod” restrictions (effectiveness
vs. reduction vs. total cost) for all tested datasets. Despite that, we
selected the six best IS methods as baselines to compare with our
approach. In the following, we detail all the baseline IS methods.

The Condensed Nearest Neighbor (CNN) [20], a popular method
within the condensation category, starts from a solution set 𝑆 con-
taining a random instance of each class. It iteratively predicts the
class for each instance 𝑥 in the original set of instances T, includ-
ing in 𝑆 the misclassified instances. CNN’s authors consider the
instances close to the classification boundary as the most repre-
sentative ones. As these instances are more challenging to classify

due to the diversity usually present in these areas, CNN’s estimator
considers, in each iteration, only instances present in 𝑆 . The time
complexity of CNN is 𝑂 (𝑛3), where 𝑛 is the size of the original set.

In [26], the authors proposed Local Set-based Smoother (LSSm),
an editing approach, and Local Set Border Selector (LSBo), a hybrid
approach. Both methods leverage the concept of local set (LS), a
set of instances in a sub-region of the feature space hyperplane,
such that all instances that make up the LS are of the same class.
In other words, considering an instance 𝑥 , LS(𝑥 ) can be defined as
the set of instances 𝑦 such that the euclidean distance between 𝑥

and 𝑦 is less than the euclidean distance between 𝑥 and its nearest
neighbor of another class (a.k.a. the nearest enemy of 𝑥 – ne(𝑥 )).

In LSSM the set 𝑆 is composed of instances that have usefulness
higher than harmfulness (𝑢 (𝑒) > ℎ(𝑒)), both concepts formally
defined in the respective work. An instance 𝑒 with high usefulness
has importance/influence for many other instances and thus should
belong to the solution set 𝑆 . The time complexity of LSSm is𝑂 (𝑛2).
In turn, LSBo starts with noise removal by applying LSSM. Next, it
calculates the local sets and orders the instances according to their
LSC. Finally, inserts 𝑒 into S if there is no intersection between 𝑒’
local set and 𝑆 . Since decision boundary instances will be computed
and inserted first into the set S, these instances (𝑒) will enable the
correct (further) classification of the instances belonging to its LS.
Like LSSm, the time complexity of LSBo is 𝑂 (𝑛2).

Other representative hybrid algorithms include IB1, IB2, IB3 [1]
methods. Likewise the condensation methods, IB1 starts with an
empty solution set S, then finds the most similar instance y for
each sample x present in the original set T. If the distance 𝑑 (𝑥,𝑦) is
greater than a given threshold, it includes 𝑥 in the solution set 𝑆 . IB2
only inserts the erroneously classified instances into the solution set
S, verifying whether the class of both instances 𝑥 and𝑦 are the same.
It includes 𝑥 in the solution set 𝑆 when it is not. The objective of IB2
is to find and insert in S instances closest to the decision boundary.
Finally, IB3 is the direct extension of IB2 – which selects and stores
only the wrongly classified instances. However, IB3 is based on a
“wait and see” strategy choosing the instances that generated the
best classifiers given the selected records. IB3 achieved the best
results compared to the other two and will be used as one of our
baselines. The time complexity of IB3 algorithm is 𝑂 (𝑛2 log(𝑛)).

Most density techniques are based on the concept of local density
– a function that evaluates an instance 𝑥 by considering examples
from the same class of 𝑥 , which might lead to both reduction and
effectiveness improvements. As these algorithms have only a local
view of the dataset, both reduction and effectiveness can be limited
to the algorithm knowledge of the specific class. To address these
limitations, the authors in [31] propose two global density-based
IS algorithms called global density-based instance selection (GDIS)
and enhanced global density-based instance selection (EGDIS).
GDIS uses the relevance function to assess each instance’s impor-
tance. In summary, the number of neighbors from the same class of
an instance x determines the relevance of that instance. In the tabu-
lar data, GDIS achieves good classification accuracy values but with
a decrease in reduction rate. EGDIS addresses this issue using an
irrelevance function that determines the number of neighbors from
another class. Since EGDIS presents the best trade-off between re-
duction and accuracy, with an𝑂 (𝑛2) complexity, we will focus on it.
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Finally, the Curious Instance Selection (CIS) [35] is a clustering-
based strategy that incorporates the notions of intrinsic reward
and curiosity. CIS starts by clustering the instances, where each
cluster is considered a system state. Starting without any cluster
in the solution, the reward agent selects a new cluster of instances
in each loop episode to join the already selected clusters (state).
The intrinsic reward is proportional to the decrease in the learner’s
prediction error. The algorithm’s output is a matrix representing
the trade-off between model improvement and the selected data
size. The time complexity of the CIS method is 𝑂 (𝑛3).

Similarly to IB3, which also belongs to the hybrid category,E2SC-
IS chooses the instances that do not negatively affect the model
construction if removed, based on whether an auxiliary model clas-
sifies them correctly or not. Differently from IB3, E2SC-IS does not
remove the misclassified instances but instead assigns them as hard-
to-classify, diminishing their probability of removal from the train-
ing for a second stage. In fact, for each correctly-predicted instance,
our proposal assigns the probability to be removed proportionally to
the KNN confidence prediction. Besides, we propose a near-optimal
reduction rate through iterative processes or heuristic-based meth-
ods to avoid negatively impacting the deep model’s effectiveness.
E2SC achieves higher effectiveness at a lower cost (total time) than
the current state-of-the-art, as our experiments shall demonstrate.

3 THE PROPOSED FRAMEWORK: E2SC-IS
Given a set of instances𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑀 } , the proposed E2SC-IS
framework consists of two main steps. The first step (Figure 1 (a))
aims at estimating a distribution 𝛼 (𝑥) assigning a probability of 𝑥𝑖
being removed from the training set, due to redundancy or lack of
informativeness for the sake of constructing a classification model.
The second step (Figure 1 (b)) estimates the 𝛽 parameter, defined
as the near-optimal dataset-specific reduction rate of training in-
stances that does not degrade themodel’s effectiveness. Considering
the output of these two steps together (Figure 1(c), 𝛽% instances are
randomly sampled, weighted by the 𝛼 distribution, to be removed
from the training set. As themain objective of the ISmethods is to re-
duce the computational cost of the most expensive training step, the
proposed approach has the following pre-defined constraints: (i.)
the estimated function 𝑓𝛼 must be calibrated and computationally
cheap (fast) to learn; and (ii.) the beta parameter optimization must
be computationally inexpensive to compute and a reasonable esti-
mation of the ideal reduction rate – the one that removes the maxi-
mum of instances without degrading the deep model’s effectiveness.

As long as both prerequisites are maintained, the E2SC steps´
can be adapted or configured to accommodate different require-
ments posed by distinct text classification scenarios, given that it
can still achieve the reduction, effectiveness and efficiency goals.
We present next a first instantiation for both steps of E2SC.

3.1 Fitting 𝛼 Parameters
E2SC-IS first step assigns a probability to each instance being re-
moved from the training set (𝛼 (𝑥)). The first hypothesis (H1) of
E2SC-IS is that high classification confidence (considering a (weak)
calibrated model) positively correlates with redundancy for the
sake of building a (strong) classification model. A requirement for
this hypothesis is that the chosen weak method for this step must
be calibrated (i). In the first E2SC-IS instantiation, we adopt as 𝑓

the brute-force (exact search) k-nearest neighbor (KNN) model to
estimate the probability of removing instances. In Section 3.1.1, we
partially verify H1 by demonstrating that KNN is a calibrated model.
The correlation of confidence with redundancy for model construc-
tion will be indirectly captured in the experiments in Section 4.6.1
that aim to answer our RQs. As we shall see, our experiments
demonstrate that removing high-confidence predicted instances
with KNN does not negatively affect the effectiveness of the Trans-
former model. Finally, as the main objective of IS is to reduce the
total application cost, in Section 3.1.1, we demonstrate that KNN
is computationally inexpensive for our purposes.

For now, we focus on how we fit the 𝛼 parameters. The proposed
method starts by estimating the 𝛼 parameters of a probability dis-
tribution over a set of distinct classes Y = {𝑦1, ..., 𝑦𝑐 , ..., 𝑦𝐶 } given
an encoded instance 𝑥 , as 𝑃 (𝑌 = 𝑦𝑐 |𝑥) ∼ 𝑓𝛼 (𝑥).

The output of 𝑓 is probabilities 𝑝1, ..., 𝑝𝑐 , ..., 𝑝𝐶 of each class in
Y, where 𝑝𝑐 corresponds to the degrees of confidence that 𝑓 pre-
dicted for each class 𝑦𝑐 . For the KNN model, the probability 𝑝𝑐 of
an instance 𝑥 is given by the ratio between the number of nearest
neighbors belonging to class 𝑐 and the total number of evaluated
neighbors (𝑘). The predicted class is 𝑦 = argmax𝑐∈{1,..,𝐶 } 𝑓𝛼 (𝑥).

The 𝛼 estimation starts partitioning the instances set into p-folds,
containing training and validation splits. The method fits the param-
eters 𝑓𝛼 (𝑥)𝑖 in each fold 𝑖 using the training split and applies the
adjusted function to predict the text’s class in the validation split,
generating 𝑃𝑅 (𝑥)𝑖 . At the end of this step, all instances have been
assigned to the 𝑦𝑐 class with degrees of confidence 𝑝𝑐 . In addition,
these training and validation partitions are saved, enabling to per-
form, in the next stage of E2SC (Section 3.2), the iterative statistical
comparison correctly, considering the same validation sets.

Thus, considering H1, correctly-predicted instances with higher
degrees of confidence can be removed under the assumption that
they can be considered redundant for the strong model learning
phase. On the other hand, we define the misclassified instances as
hard to classify, being kept in the training set (𝑃𝑅 (𝑥) = 0), as

𝑃𝑅 (𝑥) =
{
𝑃 (𝑦 = 𝑦 |𝑥) 𝑦 == 𝑦

0 otherwise
, and 𝑦 is 𝑥´s real class.

Next, the 𝛼 (𝑥) parameters are obtained by normalizing 𝑃𝑅 (𝑥).
Consequently, 𝛼 can be considered a probability distribution as
its sum is up to 1.0. We keep in the training set all the hard-to-
classify instances, and, based on the next 𝛽 parameter optimization
(reduction rate), we will partially remove only the easy instances.
3.1.1 Hypothesis and Requirement Verification. The weak
model to be adopted by ES2C-IS has to be: (i) calibrated; (ii) efficient,
since the main objective of IS is to reduce the total application cost
of a robust Transformer-based approach; and (iii) effective, enabling
good confidence estimates. Next, we will compare the adopted KNN
model to some candidate weak classifiers, including SVM, Random
Forest (RF), Naive Bayes (NB), and Nearest Centroid (NC)4.

H1. Verification Is KNN a calibrated model? If the class predic-
tion probabilities outputted by a classifier have a high correlation
with the frequency with which the classifier correctly predicts the
instances belonging to that probability range, this classifier is said
to be calibrated [38]. For example, in instances predicted with
80% confidence, a calibrated classifier is correct in roughly 80% of
4For those classifiers, we adopted the same procedures and hyperparameters as in [13].
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the cases. As our proposed framework removes instances based
on prediction confidence, it is of paramount importance that the
adopted classifier be calibrated. In [8], the authors provided graph-
ical evidence that KNN is indeed a calibrated classifier. To confirm
this result, we analyze the behavior of the weak classifiers using
the Brier Score (BS) [3], a scoring rule applied to measure the accu-
racy of probabilistic predictions, thus, a proper metric to estimate
the model calibration. According to [3], 𝐵𝑆 = 1

𝑛

∑𝑛
𝑖=1

∑𝐶
𝑐=1 (𝑃 (𝑌 =

𝑦𝑐 |𝑥𝑖 ) − 𝑜𝑐𝑖 )2, where 𝑜𝑐𝑖 is binary indicator setted to 1 if 𝑦𝑐 is 𝑥𝑖 ’
real class, 0 otherwise. BS ranges from 0 to 2 – the closer to zero, the
better, achieving more calibrated probability estimations. The ob-
tained BS scores for each candidate weak classifier were: KNN=0.4,
SVM=0.7, RF=0.5, NB=0.5, and NC=0.8. Based on these, KNN is the
most calibrated classifier among the considered (weak) ones.

Requirement Verification. Is KNN an efficient model? Achiev-
ing these three (potentially conflicting) requirements – calibration,
efficiency, and effectiveness – at the same time is hard, so we hope
to choose the classifier with the best tradeoff among them. Table 1
presents weak classifier candidates applied to some of the datasets
we used in our experiments5, with their respective results regarding
the two remaining aspects: effectiveness and total time.

KNN SVM RF NB NC
dataset Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s)
Books 81.1(0.5) 157.01 84.1(0.4) 5098.1 74.4(0.5) 3830.8 73.3(0.6) 1.86 62.7(0.7) 1.23
20NG 80.4(0.5) 54.46 89.1(0.7) 2114.8 85.9(0.5) 4615.4 77.4(0.5) 3.44 68.3(0.8) 1.44
ACM 61.3(1.4) 73.86 68.0(0.7) 1434.2 61.7(1.2) 4753.8 40.7(0.8) 3.38 50.5(1.6) 1.11
Twitter 51.2(3.9) 3.04 63.4(1.8) 107.45 38.8(0.6) 497.3 31.4(0.7) 0.40 46.1(1.0) 1.08

Table 1: Effectiveness and Efficiency of Weak-Classifiers.
SVM and RF are the most effective classifiers but have the highest

cost (which is consistent with previous works in the literature [10]).
When compared to KNN, these strategies are between 19x to 163x
slower. Although NB and NC are notably faster than KNN (between
2x and 127x), they have the lowest effectiveness. In the end, KNN
is the classifier with the best tradeoff effectiveness-efficiency.

3.2 Optimizing the 𝛽 Parameter
At the end of the first step, all instances have been assigned with
an 𝛼 (𝑥) value. The second step aims at finding the optimal 𝛽 value,
defined as the proportion of instances to remove without degrad-
ing the 𝑓𝛼 (𝑥) model effectiveness. Our second hypothesis (H2) is
that we can estimate the effectiveness of a transformer-based model
(robust model) through the behavior of the KNN (weak) model by
analyzing its selection rate variation (verified in Section 3.2).

For now, we focus on how we estimate the 𝛽 parameter. We start
by defining 𝛽 with an initial value 𝛽 (0) and simulate the removal
of the corresponding proportion from the training set on each fold
weighted by 𝛼 (𝑥). We then re-estimate 𝑓𝛼 (𝑥 (𝛽 ) ) on the shortest
training split and measure its effectiveness on the validation split.
We then leverage a statistical test (t-test) to compare the effective-
ness of 𝑓𝛼 (𝑥) and 𝑓𝛼 (𝑥 (𝛽 ) ). If they are equivalent, we increment 𝛽
as follows: 𝛽 (𝑖+1) = 𝛽 (𝑖 )+𝛿 . Otherwise, we have already reached the
optimal value equal to 𝛽 (𝑖 ) . We repeat this process while the model
trained with a fraction of instances remains statistically equivalent
to the model trained with the complete instances set. Given that
the idea is to iterate as long as it is equivalent, the chosen 𝑓𝛼 (𝑥)
model must be efficient and reliable to result in an effective cost
reduction of the fine-tuning of a robust model.
5Results with other datasets not shown for space reasons are similar.

H2 Verification. Can we estimate the effectiveness behavior of
a robust model through the behavior of the KNN model? We verify
whether KNN can be used as a weak classifier for this purpose.
For this, we generated the correlation between the effectiveness
of the best classifier (Transformer) per dataset (Table 3) and the
effectiveness of KNN. Details of the experimental setup are given
in Section 4. In Figure 2, it is possible to visually grasp a very high
correlation between KNN and the best Transformer models The Per-
son’s correlation between the KNN and the best models is 𝑟 = 0.84.
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Macro-F1 - Best Classification Model (Table 3)

Figure 2: Correlation between KNN and Transformers models.

3.3 Time Complexity
E2SC-IS complexity is related to the KNN (O(𝑁 2), where 𝑁 is the
number of instances). In step 1, KNN is applied 𝑝 times, where 𝑝 is
the number of training-validation partitions. Since 𝑝 is constant and
𝑝 << 𝑁 , it is asymptotically dominated by 𝑁 . In step 2, we run the
KNN iteratively to achieve the reduction optimization. Considering
both steps, the KNN is applied at most 𝑝 × ( 1

𝛿
) times6. In practice,

𝑝

𝛿
is also << 𝑁 . Therefore, E2SC-IS complexity is O(𝑁 2)).

4 EXPERIMENTS
4.1 Datasets
To evaluate the IS methods, we consider 19 real-world datasets
(Table 2) collected from various sources in two broad ATC tasks [5,
27, 33, 34, 41]: i) topic classification; and ii) sentiment analysis.

Task Dataset Size Dim. # Classes Density Skewness

To
pi
c

DBLP 38,128 28,131 10 141 Imbalanced
Books 33,594 46,382 8 269 Imbalanced
ACM 24,897 48,867 11 65 Imbalanced
20NG 18,846 97,401 20 96 Balanced
OHSUMED 18,302 31,951 23 154 Imbalanced
Reuters90 13,327 27,302 90 171 Extremely Imbalanced
WOS-11967 11,967 25,567 33 195 Balanced
WebKB 8,199 23,047 7 209 Imbalanced
Twitter 6,997 8,135 6 28 Imbalanced
TREC 5,952 3,032 6 10 Imbalanced
WOS-5736 5,736 18,031 11 201 Balanced

Se
nt
im

en
t

SST1 11,855 9,015 5 19 Balanced
pang_movie 10,662 17,290 2 21 Balanced
Movie Review 10,662 9,070 2 21 Balanced
vader_movie 10,568 16,827 2 19 Balanced
MPQA 10,606 2,643 2 3 Imbalanced
Subj 10,000 10,151 2 24 Balanced
SST2 9,613 7,866 2 19 Balanced
yelp_reviews 5,000 23,631 2 132 Balanced

Table 2: Datasets Statistics

4.2 Data Representation and Preprocessing
The TFIDF representation is input to all IS methods, including our
proposed method. Before creating the TFIDF matrix, we removed
stopwords and kept features appearing in at least two documents.
We normalized the TF-IDF product result using the L2-norm.

6As defined in Section 4.4, in our experiments, we fixed the maximum value for 𝑝

𝛿

ratio as 100, but it is usually much smaller than this in practice.



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Washington Cunha, Celso França, Guilherme Fonseca, Leonardo Rocha, & Marcos André Gonçalves

Several alternative representations could be used in our exper-
iments, including (i) static embeddings such as FastText [23] and
(ii) contextual embeddings built by Transformer architectures,
through a fine-tuned model or a zero-shot approach. Despite the
lower dimensionality compared to TFIDF, all these representations
have high density. As demonstrated in [10], the high density as-
sociated with the static embeddings leads to a slowing down of
the classification methods on 31 times compared to TFIDF due to
the high cost of processing all non-zero dimensions. Besides, [12]
demonstrated that directly using contextual embeddings as input
for IS methods is either inefficient (due to distance calculations
with dense vectors) or ineffective, or both. Considering all these
reasons, the TF-IDF representation is used as input to all IS meth-
ods, leaving for feature work the design of new IS methods that can
better operate with high-density static or contextual embeddings.

In practice, we first construct the TFIDF matrix representation of
the documents for the IS stage, and then, we use the corresponding
raw document chosen as input for the Transformers classifiers.

4.3 Text Classification Methods
As mentioned, our goal is to study and compare our proposed
method against the SOTA IS techniques in the context of the Trans-
former classification approaches – notably the SOTA in classifica-
tion in several domains [12]: BERT [15], RoBERTa [28], Distil-
BERT [40], BART [25], AlBERT [24], and XLNet [46].

Given the large number of hyperparameters to be tuned, per-
forming a grid search with cross-validation is not feasible for all
of them. As a result, to determine the optimum hyperparameter,
we applied the methodology from [11]. Therefore, we fixed the
initial learning rate as 5𝑒−5, the max number of epochs as 20, and
5 epochs as patience. Finally, we perform a grid search on max_len
(150 and 256) and batch_size (16 and 32) since these specified values
directly impact efficiency and effectiveness.

Task Method Datasets

Topic

RoBERTa OHSUMED TREC WOS-5736 AGNews

BERT DBLP Books ACM WebKB

BART Reuters90 Twitter MEDLINE

XLNet 20NG WOS-11967

Sentiment
RoBERTa

SST1 pang_movie MR vader_movie

MPQA SST2 yelp_reviews Yelp_2013

BERT Subj

Table 3: Best ATC Approach by Dataset

We aim to apply the IS methods in the best possible scenario (top-
best-ATC-method) for each of the considered datasets. We define as
the best approach (by dataset), the one with the highest effective-
ness (MacroF1) among all. We comprehensively compared all the
previous Transformers approaches. Due to space limitations, we pro-
vide an online table 7 containing the results of all methods. The sum-
mary of results of the best approaches by dataset is shown in Table 3.

4.4 Instance Selection Methods
We consider as baselines a set of six IS methods described in Sec-
tion 2, namely: Condensed Nearest Neighbor (CNN); Instance Based
3 (IB3); Local Set-based Smoother (LSSm); Local Set Border Selector
(LSBo); Enhanced Global Density-based IS (EGDIS); and Curious
7https://shorturl.at/hFJUZ

Instance Selection (CIS). All parameters for the IS methods were
defined with grid-search, using cross-validation in the training set.
Table 4 shows the range of parameter values for each IS method
we evaluate. The best parameter in each range is marked in bold.

method parameters method parameters
CNN

n_neighbors: [1, 3, 5, 10]
EGDIS n_neighbors: [1, 3, 5, 10]

LSSm

CIS

iterations: 100*|k_cluster|
LSBo learner: Decision Tree

IB3 Confidence Acceptance: 0.9
Confidence Dropping: 0.7

initial error: 0.5
discount factor: 0.01

E2SC
p: 5

𝛽 (0) = 𝛿 = 0.05
epsilon: 0.9 to 0.1 (step decay)

lr: 0.09 to 0.01 (step decay)

Table 4: Parameters of the IS methods.

4.5 Metrics and Experimental Protocol
We evaluated the instance selection methods concerning the ca-
pacity to reduce the training set, classification effectiveness and
training time. Experiments were executed on an Intel Core i7-5820K
with 6-Core and 12-Threads, running at 3.30GHz, 64Gb RAM, and
a GeForce GTX TITAN X (12GB) and Ubuntu 19.04.

According with [26], reduction mean is defined 𝑅 =

∑𝑘
𝑖=0

|𝑇𝑖 |−|𝑆𝑖 |
|𝑇𝑖 |

𝑘
,

where 𝑇 is the original training set, 𝑆 is the solution set containing
the selected instances by the IS method being evaluated, and 𝑘 is
the number of folds adopted in our experiments (10 folds).

We evaluated the classification effectiveness using Macro Av-
eraged F1 (MacroF1)[43] due to skewness in the datasets. We em-
ployed the paired t-test with a 95% confidence level to compare
the average outcomes from our cross-validation experiments. This
method is preferred over signed-rank tests for testing hypotheses
about mean effectiveness and is robust to potential violations of the
normality assumption in this context[22, 44]. Finally, we applied
the Bonferroni correction [21] to account for multiple tests.

In order to analyze the cost-effectiveness tradeoff, we also eval-
uate each method’s cost in terms of the total time required to build
the model. The Speedup is calculated as 𝑆 =

𝑇𝑤𝑜

𝑇𝑤
, where 𝑇𝑤 is the

total time spent on model construction using the IS approach, and
𝑇𝑤𝑜 is the total time spent on execution without the IS phase.

4.6 Experimental Results - Analyses
4.6.1 RQ1. Is E2SC-IS capable of reducing the training set while
keeping classifier effectiveness for each investigated scenario (dataset)?
In these experiments, we consider the premise that the construc-
tion time of a deep-learning model is fundamentally related to the
amount of training data [12]. In Table 5, we present the results
regarding the average reduction rate achieved by each selection
method. The darker a cell, the larger the reduction achieved by the
corresponding method in the respective dataset.

According to the green scale, CIS, EGDIS, LSBo, and IB3 have
the highest reduction rates: on average, 61.2%, 57.7%, 56.5%, and,
48.7%, respectively. The highest reduction rate is for CIS applied
to DBLP (82.0%). The lowest reduction rates are obtained by LSSM
(on average 15.3%) followed by E2SC-IS (26.9%). Thus, considering
only the reduction criterion, the first four algorithms stand out.
However, the impact on the effectiveness is what, in fact, matters.
As we shall see, there is a significant negative impact of the most
expressive reductions on effectiveness. In any case, these results
show that all strategies can reduce the training set size.

https://shorturl.at/hFJUZ
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task dataset E2SC CNN LSSm LSBo EGDIS CIS IB3

To
pi
c

DBLP 45.0% 52.4% 17.4% 72.8% 62.0% 82.0% 40.0%
Books 14.0% 32.1% 8.8% 63.7% 62.0% 80.0% 15.0%
ACM 20.0% 47.1% 19.0% 67.7% 55.0% 46.0% 56.0%
20NG 21.0% 27.9% 0.5% 23.2% 68.0% 50.0% 5.0%

OHSUMED 20.0% 45.5% 21.9% 69.8% 57.0% 80.0% 53.0%
Reuters90 35.0% 50.7% 28.4% 76.9% 54.0% 67.0% 1.0%
WOS-11967 50.0% 45.4% 22.1% 68.4% 57.0% 77.0% 54.0%
WebKB 42.0% 42.9% 24.1% 71.1% 53.0% 57.0% 52.0%
Twitter 35.0% 51.0% 18.0% 70.0% 59.0% 77.0% 60.0%
TREC 11.0% 31.3% 18.4% 37.8% 39.0% 22.0% 41.0%

WOS-5736 50.0% 50.4% 20.1% 70.9% 62.0% 69.0% 59.0%

Se
nt
im
en
t

SST1 10.0% 18.9% 5.7% 7.7% 20.0% 60.0% 31.0%
pang_movie 10.0% 46.8% 18.8% 63.5% 63.0% 77.0% 66.0%

MR 10.0% 46.7% 3.3% 48.8% 63.0% 58.0% 67.0%
vader_movie 15.0% 47.2% 18.2% 63.3% 63.0% 75.0% 67.0%

MPQA 31.0% 64.2% 11.2% 55.3% 45.0% 19.0% 48.0%
Subj 18.0% 50.8% 21.1% 71.2% 73.0% 51.0% 73.0%
SST2 15.0% 48.4% 1.9% 5.8% 64.0% 55.0% 68.0%

yelp_reviews 60.0% 58.6% 11.1% 65.3% 77.0% 60.0% 69.0%
Average 26.9% 45.2% 15.3% 56.5% 57.7% 61.2% 48.7%

Table 5: Percentage of reduction of the training set size.

The application of the IS methods to the best classifiers in each
dataset (Table 3)) is seen in Table 6. The NoSel column corresponds
to the results with no training set reduction. We observe in Ta-
ble 6 that E2SC-IS is the method that has more statistical ties – 18
datasets (out of 19) – compared to the classification using the com-
plete training set: 10 (out of 11) topic datasets and all sentiment ones.
The second best IS approach is LSSm according to this criterion,
which was able to maintain the effectiveness levels in 16 cases, fol-
lowed by CNN – statistically equivalent results in 11 of 19 datasets.
Last, CIS, EGDIS, and LSBo (methods with the highest reduction
rates) did not perform well, being only able to tie with NoSel in a
maximum of 9 different datasets. This demonstrates that excessive
reduction is usually detrimental to the Transformer´s effectiveness.

dataset NoSel E2SC CNN LSSm LSBo EGDIS CIS IB3

To
pi
c

DBLP 81.7(0.5) 79.9(0.6) 79.1(0.8) 81.1(0.8) 79.1(0.6) 76.6(0.8) 74.0(1.3) 79.5(0.5)

Books 89.5(0.2) 89.0(0.3) 85.9(1.5) 88.8(0.5) 84.0(0.5) 84.1(0.6) 80.3(0.5) 72.4(0.4)

ACM 71.8(1.0) 70.3(1.4) 67.3(0.8) 69.6(1.3) 63.8(1.5) 65.7(1.1) 68.5(1.0) 66.6(0.6)

20NG 87.4(0.8) 86.3(0.7) 82.1(1.2) 88.0(0.5) 86.6(0.5) 79.6(0.4) 81.4(0.9) 82.0(0.4)

OHSUMED 77.8(1.2) 76.1(1.3) 73.3(0.4) 73.8(0.5) 68.8(1.2) 67.6(3.3) 61.2(2.0) 71.2(2.0)

Reuters90 42.2(2.1) 41.8(2.1) 42.2(2.0) 41.2(2.1) 39.8(2.0) 42.4(2.6) 24.1(7.1) 42.3(2.0)

WOS-11967 87.0(0.7) 85.1(0.7) 85.0(1.2) 86.4(0.9) 84.9(0.6) 84.3(0.9) 66.1(4.4) 84.7(0.8)

WebKB 83.2(2.1) 80.9(1.5) 81.9(1.6) 80.6(1.8) 76.2(2.1) 80.5(1.4) 80.5(1.9) 80.8(1.8)

Twitter 79.0(2.1) 77.6(2.1) 77.0(2.3) 75.3(1.9) 75.9(1.6) 76.8(2.2) 73.4(1.6) 76.9(1.9)

TREC 95.5(0.5) 95.3(1.3) 94.0(1.0) 95.0(0.7) 95.0(1.1) 92.5(3.2) 92.4(0.4) 93.8(1.3)

WOS-5736 90.5(0.9) 89.0(1.0) 89.2(0.7) 88.0(1.1) 86.5(1.4) 88.4(1.3) 55.4(9.9) 88.4(1.0)

Se
nt
im

en
t

SST1 53.8(1.3) 52.8(0.7) 48.0(1.4) 53.4(0.9) 53.2(0.9) 53.4(1.0) 52.2(0.9) 53.3(1.0)

pang_movie 89.0(0.4) 88.5(0.6) 88.2(0.8) 88.5(0.5) 88.0(0.6) 86.8(0.8) 86.9(0.5) 87.1(0.6)

MR 89.0(0.7) 88.6(0.5) 63.6(15.4) 89.0(0.6) 39.3(12.3) 86.5(1.0) 88.0(0.6) 87.3(0.8)

vader_movie 91.3(0.5) 91.1(0.7) 90.9(0.5) 90.8(0.7) 90.5(0.4) 89.9(0.6) 89.1(0.8) 91.3(0.7)

MPQA 90.2(0.8) 89.2(0.9) 87.0(1.8) 90.0(0.7) 89.9(0.6) 87.9(0.6) 90.0(0.7) 88.7(0.7)

Subj 97.0(0.3) 96.8(0.3) 96.4(0.5) 95.4(0.7) 95.6(0.5) 96.2(0.4) 96.7(0.4) 96.2(0.5)

SST2 93.2(0.6) 93.1(0.4) 60.7(11.7) 92.9(0.5) 93.0(0.7) 91.7(0.7) 92.0(0.8) 92.0(0.8)

yelp_reviews 97.9(0.4) 97.1(0.4) 97.2(0.3) 97.7(0.3) 97.4(0.3) 96.8(0.9) 97.3(0.4) 97.0(0.5)

Table 6: Macro-F1 - IS approaches (columns) in each dataset (rows)
considering the best classifier (Table 3). Cells in bold and green back-
ground are statistically equivalent to no instance selection (NoSel).

In sum, both experiments indicate an affirmative answer for RQ1
– E2SC-IS is capable of reducing the training set while maintaining
effectiveness in the vast majority of the cases, achieving the best
reduction-effectiveness tradeoff among all methods.

4.6.2 RQ2. What is the impact of applying E2SC-IS in the text
classification models’ total construction time? Selecting only the

most representative instances should, intuitively, reduce model con-
struction time. By answering RQ1, we demonstrated that E2SC-IS
reduced the training set while maintaining effectiveness. How-
ever, adding an IS extra step during the model’s pre-construction
may cause some time overhead. Indeed, applying an IS method, in
some cases, may end up costing even more than building the model
with all the data, if the IS step is not cheap enough.

task dataset E2SC CNN LSSm LSBo EGDIS CIS IB3

To
pi
c

DBLP 1.26 1.10 0.83 1.11 1.83 0.10 0.68
Books 1.02 1.04 0.80 1.09 1.91 0.25 0.61
ACM 1.11 1.44 0.94 1.35 1.94 0.46 1.12
20NG 1.17 1.35 1.04 1.21 2.49 1.15 0.83

OHSUMED 1.25 1.49 1.06 1.89 1.58 0.39 1.38
Reuters90 1.35 1.62 1.22 2.49 1.93 0.96 0.82
WOS-11967 1.56 1.38 1.06 2.20 2.11 0.87 1.56
WebKB 1.52 1.39 1.09 2.36 1.63 0.75 1.37
Twitter 1.27 1.67 0.98 1.89 1.93 0.45 1.66
TREC 1.07 1.30 1.12 1.24 1.31 0.21 1.23

WOS-5736 1.58 1.54 1.09 2.30 2.08 1.33 1.78

Se
nt
im
en
t

SST1 1.09 1.22 0.95 0.84 1.21 0.21 0.89
pang_movie 1.02 1.49 1.05 1.57 2.13 0.53 1.55

MR 1.03 1.19 0.92 1.09 2.03 0.28 1.53
vader_movie 1.06 1.59 1.09 1.54 2.12 0.53 0.89

MPQA 1.19 2.18 0.86 1.33 1.60 0.07 0.85
Subj 1.14 1.63 1.07 1.72 2.90 0.52 1.87
SST2 1.06 1.46 0.87 0.81 2.21 0.31 1.80

yelp_reviews 2.04 2.09 1.15 2.30 3.13 1.45 2.84
Average 1.25 1.48 1.01 1.60 2.00 0.57 1.33

Table 7: SpeedUp on Total Application Cost of the IS Methods
applied to the best ATC approach in each dataset.

We consider the total cost as: preprocessing + IS application +
training time to build the model. As such, each IS strategy impacts
the application time differently. Therefore, for IS methods to be at-
tractive, they must provide efficiency improvements. In Table 7, we
assess the impact of reducing the training set and if applying IS does
compensate in the end for model building. In other words, we com-
pare the Speedups (Sec. 4.5) of each IS approach using the respec-
tive (best) classifier for each dataset. We have a color scale for each
dataset (row): the greener, the higher speedup; the redder, the higher
the computational cost (average execution time) compared to NoSel.

As seen in Table 6, E2SC-IS achieved excellent effectiveness
results and produced attractive training set reductions (on average
26.9%). As we can visually grasp, E2SC-IS also achieved satisfactory
overall speedup improvements (predominantly light green). The av-
erage speed-up for our proposed approach is 1.25 (varying between
1.02 and 2.04), producing time improvements in all scenarios.

CNN has an average speedup of 1.48 – higher than E2SC. How-
ever, considering all tripod requirements simultaneously (effectiveness-
reduction-efficiency), CNN achieved satisfactory results in just 11
datasets. LSSm is the second most costly method (predominantly
light green with several red cells). Its low reduction rate, added to
its high computational cost, makes the process as a whole not justi-
fiable, given its effectiveness losses. The average speed-up for this
approach is 1.01. The effectiveness losses of EGDIS (11 datasets),
LSBo (10), and IB3 (11) also make them poor choices, despite the
good speedups. Overall, E2SC-IS achieved the best tradeoff among
all methods, considering all the tripod requirements.

4.6.3 RQ3. How flexible is the E2SC-IS framework to adjust to
different application/task requirements? As mentioned, traditional
IS strategies do not scale for the big data scenario [12], i.e.,
datasets with more than 100K instances [47]. In this section, we
investigate whether our solution can overcome this barrier and, if
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not, whether E2SC-IS is flexible enough to be adapted to deal with
the challenges posed by the task. In other words, we want to demon-
strate that our proposal´s steps can be modified to accommodate
different requirements posed by distinct (big data) scenarios.

Scenarios and Datasets. In addition to the datasets present in
Table 2, to demonstrate the flexibility and scalability of E2SC in big
data scenarios, we included in our experimentation three new spe-
cific datasets with thousands of documents (ranging from 127K to
860K) and different levels of skewness. Table 8 shows their statistics.

Dataset Size Dim. # Classes Density Skewness

AGNews 127,600 39,837 4 37 Balanced
Yelp_2013 335,018 62,964 6 152 Imbalanced
MEDLINE 860,424 125,981 7 77 Extremely Imbalanced

Table 8: Large Datasets Statistics

E2SC-IS Framework Instantiation. Preliminary experiments
confirmed that the previously proposed solution did not scale to the
new scenarios due to (i) time and (ii) memory consumption restric-
tions. Time consumption (i) is related to the cost of the iterative
near-optimum reduction rate search process. For instance, consider-
ing AGNews only, our first instantiation took to select the instances
approximately the same time to train the best Transformer with
the complete training (no selection). In other words, applying IS
would not be viable. The memory consumption problem (ii) is re-
lated to the adoption of the exact KNN solution in the first step of
the framework. For instance, according to estimations, considering
the largest dataset present in this work (MEDLINE 860K), finding
the exact KNN solution would require approximately 2TB of RAM.
Thus, to enable the application of our framework in large datasets,
we propose two main modifications to our framework.

Modification 1 (M1): Heuristic-Based 𝛽 Parameter. The first
problem is the time spent selecting the instances when a large
amount of labeled data is available. Although KNN is relatively
computationally cheap, iterating it several times to obtain the op-
timal beta value can be expensive in large collections – e.g., CIS
baseline is based on a weak model (KMeans), but its cost is notori-
ously high due to a large number of iterations over its weak learner.

Therefore, we propose tomodifyE2SC-IS´s second step, optimiz-
ing the parameter 𝛽 using some heuristics based on the statistical
properties of the input dataset. The heuristics comprise two rules.
First, we extract two properties of each dataset: document density
and a binary feature indicating whether the document class distribu-
tion is balanced or not. These heuristics are based on general obser-
vations and lessons learned from the experimental results obtained
with the small-to-medium datasets. First, we observed that: (1)
in general, high skewness is detrimental to effectiveness and confi-
dence estimates [14], meaning that we should be more conservative
in the reductions for these cases, especially not to harm the smaller
classes, whose instances may have lower confidence. We observed
that the obtained reduction rate by the automatic iteration in these
imbalanced datasets (9 out of 19) was, on average, 28.1%. We con-
sider 25% a conservative approach based on the mean of the results
for these datasets (28.1% for imbalanced and 26.9% for all datasets)
and the median (31% for this subset and 20% for all datasets).

Second, in balanced datasets, another issue that may affect the
effectiveness and induce low confidence in some instances is the
lack of data, usually materialized as short documents in the textual

datasets. Indeed, we observed that in datasets with less than 100
words per document (low density) – 7 (out of 19), our iterative ap-
proach achieved low reductions (between 10% to 21%). In the remain-
ing three balanced and high-density datasets, our approach reduced
the data, on average, by half (53%). Based on such empirical evidence,
we propose the following rules, which are computed very fast:
Rule 1: if the documents class distribution is imbalanced or ex-
tremely imbalanced, then reduce by 25%.
Rule 2: if the documents class distribution is balanced and the
average density is low (less than 100), the fixed reduction is 25%.
Otherwise, the reduction is 50%.
Modification 2 (M2): Approximated 𝛼 Parameters. To further

scale the application of kNN within our framework, we propose to
exploit an approximate kNN solution, more specifically, a strategy
that searches for nearest neighbors through the fast approximate
nearest neighbor search: HNSW[32], a logarithmic complexity so-
lution. The main question is whether this solution produces (i) good
classification results and (ii) good probability estimates.

Macro-F1 Time (s)
Exact Approximate Exact Approximate

To
pi

c DBLP 77.09(0.69) 76.64(0.66) 44.66 8.12
Reuters90 31.45(2.10) 30.83(2.15) 8.73 1.29
WOS-11967 72.68(0.84) 72.38(1.07) 6.01 2.82

Se
nt

. pang_movie 73.29(1.08) 72.75(1.42) 3.81 0.95
vader_movie 74.32(0.93) 73.45(1.34) 3.67 0.95
yelp_reviews 83.65(1.41) 82.76(1.33) 1.20 0.96

Table 9: Comparison Exact vs. Approximate KNN
Table 9 shows the results of experiments comparing the Macro-

F1 using the exact and the approximate KNN (both adopting 𝑘 = 10).
In all cases (results are similar in all datasets, not shown due to space
constraints), both solutions are statistically equivalent in MacroF1.
On the other hand, the approximate solution is between 1.25x to
6.75x faster than the exact one. The second issue, i.e., whether the
probabilities estimates are good enough for our goals, will we be
assessed indirectly in the experiments described next.

Second Instantiation Complexity. Considering M2, the com-
plexity of the first step is reduced to O(𝑙𝑜𝑔(𝑁 )). Furthermore,
adopting M1, the second step becomes constant (O(1)). Therefore,
considering both modifications, we achieve a logarithmic solution
(O(𝑙𝑜𝑔(𝑁 ))), feasible for large datasets.

Experimental Results. As in the previous experiments, the
E2SC-IS was applied to the best classification approach in each
dataset (see Table 3)). In Table 10, we present the reduction, effec-
tiveness and speedup results. We also present the 𝛽 reduction rate
variation. As before, the NoSel column corresponds to the results
with no training set reduction, and bold values with green cells
correspond to statistically equivalent results to the classifier trained
without any selection (NoSel). In Table 10, in addition to consider-
ing a binary scenario (“statistical tie - (win) vs. loss”), we included a
third scenario for analysis, which includes an “acceptable loss”, cor-
responding to a scenario in which a potential reduction in training
set size would compensate for the loss in effectiveness. For the sake
of simplicity, here we considered a general, arbitrary rate of 5% of
loss, which could be different for each dataset and situation [12].

Applying the proposed heuristics rules (Step 2), note that for the
3 datasets, the suggested removal rate is fixed in 25%. For this reduc-
tion rate, the second proposed instantiation – E2SC#2 – obtained



An Effective, Efficient, and Scalable Confidence-Based Instance Selection Framework for Transformer-Based Text Classification SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

AGNews yelp_2013 MEDLINE

NoSel
E2SC#2

NoSel
E2SC#2

NoSel
E2SC#2

β=20% β=25% β=35% β=50% β=65% β=75% β=80% β=85% β=20% β=25% β=30% β=35% β=40% β=20% β=25% β=35% β=50% β=65%
Macro-F1 94.2(0.2) 94.0(0.2) 93.9(0.2) 93.7(0.2) 93.2(0.1) 92.6(0.2) 91.3(0.4) 89.6(0.2) 86.6(0.8) 64.4(0.6) 64.2(0.4) 63.8(0.4) 63.3(0.1) 63.0(0.5) 62.4(0.6) 82.2(0.2) 81.7(0.3) 81.6(0.3) 81.2(0.6) 80.2(0.5) 77.9(0.7)
speedUp - 1.627x 1.708x 2.047x 2.502x 3.610x 4.761x 6.011x 7.476x - 1.285x 1.301x 1.445x 1.551x 1.595x - 1.452x 1.548x 1.781x 2.033x 3.304x

Table 10: Reduction-Effectiveness-Speedup Results for E2SC in Large Datasets Scenarios

results statistically equivalent to NoSel in all caseswhile producing
speedups ranging from 1.301x (yelp_2013) up to 1.708x (AGNews).

Note that our method has a fixed beta based on the proposed
heuristic (25%), but we evaluate other reduction ratios for the sake
of analysis. This analysis demonstrates that the proposed Heuristic-
Based 𝛽 Parameter, despite effective, can be considered somewhat
conservative since there is room for further reductions in some
datasets without any effectiveness losses, e.g., yelp_2013 and MED-
LINE, to up to 40% and 35% respectively, with further speedups. In
AGNews, our heuristics induced the maximum reduction possible
without any loss. In the future, we will investigate efficient ways
to improve our heuristics toward achieving such potential.

Last, also for the sake of analysis, in the scenario of effectiveness
losses under 5% compared to NoSel – orange background – E2SC#2
could increase its reduction rate further (up to 80% – AGNews), pro-
ducing even larger speedups - 3.3x (MEDLINE) and 6.0x (AGNews).

In sum, the results demonstrate the flexibility of our proposal by
modifying its steps to accommodate different requirements in a big
data scenario, solidifying its practical applicability.

Enhanced Results in Small-to-Medium datasets. We analyze
the behavior of E2SC#2 in the smaller datasets, further demonstrat-
ing the flexibility of our solution. In Table 11, we present the results
regarding our two proposed instantiations of the E2SC-IS frame-
work, concerning: (i) the average reduction rate; (ii) Transformer
effectiveness (Macro-F1); and (iii) SpeedUps.

Reduction Effectiveness (Macro-F1) SpeedUp
task dataset E2SC E2SC#2 NoSel E2SC E2SC#2 E2SC E2SC#2

To
pi

c

DBLP 45.0% 25.0% 81.7(0.5) 79.9(0.6) 80.7(0.6) 1.26 1.25
Books 14.0% 25.0% 89.5(0.2) 89.0(0.3) 88.8(0.5) 1.02 1.29
ACM 20.0% 25.0% 71.8(1.0) 70.3(1.4) 70.2(1.0) 1.11 1.29
20NG 21.0% 25.0% 87.4(0.8) 86.3(0.7) 86.2(0.8) 1.17 1.30

OHSUMED 20.0% 25.0% 77.8(1.2) 76.1(1.3) 75.8(1.5) 1.25 1.34
Reuters90 35.0% 25.0% 42.2(2.1) 41.8(2.1) 43.3(2.6) 1.35 1.43

WOS-11967 50.0% 50.0% 87.0(0.7) 85.1(0.7) 85.0(0.7) 1.56 1.96
WebKB 42.0% 25.0% 83.2(2.1) 80.9(1.5) 82.6(2.3) 1.52 1.33
Twitter 35.0% 25.0% 79.0(2.1) 77.6(2.1) 78.4(2.1) 1.27 1.28
TREC 11.0% 25.0% 95.5(0.5) 95.3(1.3) 94.9(1.2) 1.07 1.18

WOS-5736 50.0% 50.0% 90.5(0.9) 89.0(1.0) 89.2(0.8) 1.58 1.88

Se
nt

im
en

t

SST1 10.0% 25.0% 53.8(1.3) 52.8(0.7) 52.4(1.3) 1.09 1.29
pang_movie 10.0% 25.0% 89.0(0.4) 88.5(0.6) 88.5(0.6) 1.02 1.26

MR 10.0% 25.0% 89.0(0.7) 88.6(0.5) 88.3(0.7) 1.03 1.21
vader_movie 15.0% 25.0% 91.3(0.5) 91.1(0.7) 90.8(0.6) 1.06 1.25

MPQA 31.0% 25.0% 90.2(0.8) 89.2(0.9) 89.4(1.0) 1.19 1.03
Subj 18.0% 25.0% 97.0(0.3) 96.8(0.3) 96.8(0.3) 1.14 1.24
SST2 15.0% 25.0% 93.2(0.6) 93.1(0.4) 92.9(0.6) 1.06 1.20

yelp_reviews 60.0% 50.0% 97.9(0.4) 97.1(0.4) 97.2(0.4) 2.04 1.98
Average 26.9% 28.9% 1.25 1.37

Table 11: Tripod Results in Small-to-Medium datasets

As Table 11 demonstrates, this second instantiation has an aver-
age reduction rate slightly higher than the previous one (28.9%). We
also observe that E2SC#2 is statistically equivalent in all datasets
compared to the classification using the complete training set (RQ1).
As we can visually grasp, E2SC#2 also achieved satisfactory overall
speedup improvements (darker green than the first instantiation).
The average E2SC#2 speedup is higher – 1.37 – producing time

improvements in all scenarios (RQ2). This last result demonstrates
that the proposed modifications were able to enhance the results
in the small-to-medium datasets, considering all constraints.

Indeed, some specific cases are interesting to pinpoint. In both
DBLP and Twitter, although the reductions produced by E2SC#2
were smaller compared to the first instantiation, the speedups were
almost the same due to compensations in the overall time produced
by the modifications in the IS phase. Moreover, in Reuters90, WOS-
11967, and WOS-5736, there were speedup gains despite smaller or
equivalent training set reductions, also caused by compensations in
time produced by a faster strategy in the IS phase. In these cases, the
reductions in time of the IS step obtainedwithE2SC#2were enough
to accelerate the speedups, even in the face of smaller reductions.

In sum, both experiments indicate an affirmative answer forRQ3
– E2SC-IS is flexible to adjust to different application requirements,
being able to, in all cases, reduce the training set and maintain
effectiveness, while providing significant efficiency improvements.

5 CONCLUSION
In this paper, we proposed E2SC-IS – a novel two-step framework
aimed at large datasets with a special focus on transformers architec-
tures. E2SC-IS brings innovation to the IS field in terms of (i) the ex-
ploitation of calibrated weak classifiers (exact and approximate) to
estimate the probability of utility of an instance in the training phase
of a Transformer and (ii) the introduction of iterative processes and
heuristics, learned from an extensive experimental evaluation of IS
alternatives, to estimate the ideal reduction rates. Our experiments
demonstrated that E2SC-IS can achieve the best results in terms of
effectiveness, reduction, and speedupwhen compared to the current
state-of-the-art in the field. Indeed, In our extensive experimental
evaluation with 22 datasets, comparing against six SOTA IS base-
lines and six Transformers classifiers, our final solution managed to
reduce the training sets by almost 30% on averagewhilemaintaining
the same levels of effectiveness in all datasets, with speedup im-
provements of up to 70%. E2SC-IS was also flexible to be adapted to
scale to large datasets, which is hard with the baselines. Our results
are interesting from both perspectives, theoretical (e.g., Transform-
ers can indeed be trained with less data without losing effectiveness)
and practical, allowing for savings in energy and budgets.

In the future, we will investigate how to refine our proposed
heuristics for learning near-optimal reduction rates. We will also
investigate how to use v-Usable Information [16] as a metric to help
improve removal probabilities. We intend to introduce E2SC into
AutoML solutions as a step in a data pipeline. Last but not least,
it would be interesting to investigate the use of our framework in
an unlabeled deep-learning pre-training stage, e.g., for building a
large language model from scratch more efficiently.
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