Under review as a conference paper at ICLR 2026

ADAPTING WORLD MODELS WITH
LATENT-STATE DYNAMICS RESIDUALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulation-to-reality reinforcement learning (RL) faces the challenge of reconciling
discrepancies between simulated and real-world dynamics, which can degrade agent
performance. When real data is scarce, a promising approach involves learning
corrections to simulator forward dynamics represented as a residual error function,
however this operation is impractical with high-dimensional states such as images.
To overcome this, we propose ReDRAW, a latent-state autoregressive world model
pretrained in simulation and calibrated to a target environment through residual
corrections of latent-state dynamics rather than of explicit observed states. Using
this adapted world model, ReDRAW enables RL agents to be optimized with
imagined rollouts under corrected dynamics and then deployed in the real world.
In multiple vision-based DeepMind Control Suite domains and a physical robot
visual lane-following task, ReDRAW effectively models changes to dynamics and
avoids overfitting in low data regimes where traditional transfer methods fail.

1 INTRODUCTION

Training robot control policies with reinforcement learning (RL) in real-world environments is
inherently expensive, time-consuming, and risky because it requires extensive interactions with
physical systems. Simulation provides a promising alternative as it offers a controlled, cost-effective,
and parallelizable setting for generating data and training capable policies. However, leveraging
simulated environments effectively is challenging due to inaccuracies in their representation of
agent observations and dynamics. These inaccuracies create a sim-to-real gap, where simulated
environments fail to correctly capture every relevant detail of real-world physics. This gap arises
when real-world dynamics are only partially understood or are too expensive to model accurately. As
a result, agents trained in simulation often struggle to successfully transfer their policies directly to
real-world settings without additional adaptation [20].

One approach to addressing this gap is to use a small amount of real-world data to learn corrections
to simulated transition functions, known as residual dynamics corrections. These corrections adjust
the simulated dynamics to better match the real world, allowing for more accurate training of control
policies [20; 35; 10]. However, this approach relies on the ability to efficiently learn corrections,
which is difficult when the state information is represented in high-dimensional formats such as
images. In these cases, significant feature engineering is often required to extract compact and
meaningful state representations for learning residuals.

This work introduces a novel method for learning residual dynamics corrections directly in the
latent state space of learned world models, eliminating the need for explicit feature engineering.
Specifically, we build on latent-state world models such as Dreamer [13; 14; 15] that encode high-
dimensional observations into compact latent states. These latent states can then be used to predict
future dynamics, rewards, policy values, and optimal actions. World models enable RL agents to
gather experience using synthetic trajectories in latent space, significantly reducing the need for
real-world interactions.

Focusing on fully-observable robot domains, we propose a Markov Decision Process (MDP) world-
model architecture, DRAW (Dynamics-Residual Adaptable World model), that encodes observations
solely into a discrete latent state representation that better supports data-efficient transfer learning.
After pretraining DRAW on simulated data, its weights are frozen to provide a fixed latent-state space
during adaptation. A small offline dataset of real-world trajectories is then used to learn a residual

Under review as a conference paper at ICLR 2026

Step 1. Pretrain World Model in Simulation Step 2. Train Dynamics Residual with Real Data
X0 Fo ¢ Y o b &
Decoders ;ﬂ; Decoders én% Decoders W

Z1
Add Residual el B%

Forward 1o Logits

Dynamics
(frozen) +
A

ao a
zp k zy k Z2 20
) BE\ Gy E\ G2 ﬁa)
> Forward > Forward

K K K

"2¢ 2 "2
[} Chy] Sy 5] [} # (5]

: : Dynamics

Encoder Residual Encoder
(frozen) (frozen)

Encoder Encoder Encoder

4 4 A
i 1N S § N
an an an an av
X0 X X2 X0 X1

Figure 1: (Left) The DRAW world model is trained to encode states into a discrete latent represen-
tation without additional components, from which states, rewards, terminations, and future latent
states are predicted. An RL agent can be trained in the world model via synthetic rollouts. (Right)
The DRAW world model is frozen. Using a small reward-free dataset, world model dynamics are
calibrated to a target environment by training an added residual error correction on latent state
dynamics predictions. The RL agent can then be trained under rectified dynamics.

function in this fixed latent space. This function corrects the world model’s dynamics, enabling it to
more accurately represent real-world behavior. We refer to this residual-calibrated model as Rectified
DRAW (ReDRAW). RL agents can be trained with ReDRAW using imagined rollouts, producing
policies that perform well in the real environment. Importantly, we do not require reward labels from
the real environment to make this calibration, extending ReDRAW’s applicability to real scenarios
where rewards can be difficult to measure.

We evaluate ReDRAW on four vision-based DeepMind Control Suite (DMC) environments and
further demonstrate the real-world usability of ReDRAW in sim-to-real applications by adapting
from simulation to a physical real-time visual-navigation task on a Duckiebot robot [33]. Our
experimental results suggest that ReDRAW outperforms traditional transfer learning methods in
small data regimes to adapt to mismatched dynamics and avoids overfitting without early stopping. In
real robot experiments, Re-DRAW successfully performs simulation-to-reality dynamics adaptation
with only 10K real steps (~17-minute demonstration), transferring from simulation with synthetic
visual inputs to real-world images collected on the robot.

CONTRIBUTIONS

1. We propose a new world-model architecture for dynamics adaptation in fully observable
visual-control domains. DRAW encodes all state information into a single discrete latent
space suitable for transfer in low-data regimes.

2. We demonstrate that the ReDRAW architectural extension can learn residual corrections
in the latent space of DRAW to efficiently transfer between domains with mismatched
dynamics, using only a small amount of offline target-domain data without reward labels.

3. We show that our method adapts dynamics from simulation to reality while also zero-shot
transferring latent-state encoders from synthetic to real robot images.

4. Additionally, we open-source the code for our Unreal Engine [8] Duckiebot visual-control
simulator to help facilitate further sim-to-real transfer research. Code and videos are
available at https://redraw—-research.github.io/project/.

2 PRELIMINARIES

2.1 RELATED WORK

Many existing methods calibrate or learn corrections to explicit state-transition models to better
represent real dynamics during training [3; 2; 28], including through the use of error-correcting

https://redraw-research.github.io/project/

Under review as a conference paper at ICLR 2026

residuals on simulation dynamics [20; 35; 10]. A limitation is that such explicit-state-based methods
break down when all or part of the state representation is high-dimensional (e.g., images).

Latent-state world models like Dreamer [13; 14; 15] model dynamics and rewards for environments
with high-dimensional input spaces in a condensed learned state representation, enabling sample-
efficient training of RL agents within this compressed model of the environment. In Section 4.1.2, we
show that Dreamer is prone to overfitting when pretrained on a source environment (a simulation) and
finetuned on a small offline dataset of transitions from a target environment with modified dynamics
(the real world). This is a major issue when real-world evaluation is logistically challenging and only
doable in limited quantities.

In this work, for fully observable environments, we find that along with a few other architectural
changes (Section 3.1, Appendix F.1), representing the latent state with only a discrete representation
(as opposed to e.g., with a GRU state) allows the world model to be frozen after pretraining and
its latent-state dynamics calibrated using an added error-correcting residual component. Compared
to DreamerV3 [15], on the same offline datasets, we see a remarkably improved robustness to
transfer-time overfitting with the proposed ReDRAW method.

Other approaches like physics domain randomization [34; 29; 7] and system-parameter identifica-
tion [37; 1] use a configurable simulator along with expert knowledge of how simulated and real
dynamics may differ to train agents that are robust to a variety of real physics. Often, a simulator
cannot represent real dynamics under any parameterization, and differences between sim and real
physics may not be known. For ReDRAW, we do not rely on configurable simulator physics or
privileged insight into the discrepancies between environment dynamics. Offline RL techniques
[25; 9; 26] can also learn policies from fixed real datasets, but they require real reward labels, which
we assume unavailable since rewards can be challenging to measure in many real-world settings.

Due to the assumptions of states with high-dimensional image components, fixed simulator physics,
and no real-reward labels, few existing works are meaningfully comparable in our setting. Ex-
periments in this work primarily compare the ReDRAW adaptation method to other methods for
fine-tuning a latent-state world model. In Appendix D, we also compare physics domain randomiza-
tion on our robot sim-to-real task, which performs proportionally to how well the simulator can be
configured to represent a distribution of potential real physics conditions. An extended related-work
discussion is available in Appendix B, including a comparison of the high-level assumptions made by
ReDRAW with other methods in Table 2.

2.2 PROBLEM DEFINITION

We consider two MDPs, denoted as My, and M,.,, which share the same state space, action space,
and reward function, but differ in their transition dynamics. Formally, each MDP is defined by a tuple
M; = (X, A, R,~, P;), with a shared state space X, action space A, reward function upon entering a
state R : X — R, discount factor v € [0, 1), and stochastic transition function P; for ¢ € {sim, real}.

Our objective is to find a policy 7., that achieves high expected discounted cumulative reward in
Micats I reat = Ex by [Zfi oY R(z;)]. To capture logistic challenges common in real robot settings,
we have access to a limited amount of offline reward-free data (x¢, a;, ¢4+1) from M. To make
up for this, we can collect a large amount of online reward-labeled experience (2, at, Tt41,7++1)
in My,. Our method aims to produce a well-performing agent in M., by learning a compressed
latent-state world model to emulate the simulation’s dynamics and reward functions. We then calibrate
this world model’s latent dynamics on the limited real transition data such that a performant agent
can be trained by collecting synthetic experience in the rectified world model.

Finally, sim-to-real transfer poses two challenges: adapting dynamics and transferring perception.
Our proposed ReDRAW method addresses dynamics adaptation. For perception, we apply standard
zero-shot techniques like image augmentation and camera-parameter randomization to ReDRAW
and every baseline, outlined in Section 4.2.1.

3 METHOD

In this section, we describe our MDP world model architecture DRAW (Figure 1, Left) and its
counterpart with calibrated dynamics, ReDRAW (Figure 1, Right). We first define the DRAW model,

Under review as a conference paper at ICLR 2026

how it represents latent states and dynamics, and how it is trained. Then we describe how we facilitate
sample efficient transfer learning of dynamics by training a residual error correction on latent-state
transitions, creating the ReDRAW world model.

3.1 DRAW ARCHITECTURE AND PRETRAINING

We use DRAW to model an MDP by encoding state inputs into a compressed stochastic latent
representation using variational inference. Similar to DreamerV3 [15], our latent representation is
trained via objectives for state and reward reconstruction along with future latent-state prediction.
We then train an actor—critic reinforcement-learning agent on latent-state inputs by autoregressively
rolling out synthetic trajectories as experience and using reconstructed rewards as a learning signal.
Finally, the actor can be deployed to the environment by encoding immediate state inputs as latent
states and providing these encodings to the actor. Figure 1 (Left) depicts connections during DRAW
world model training, while Figure 5 in Appendix A depicts actor—critic training and deployment.

We model the latent state purely as a single stochastic multi-categorical discrete variable z; € Z. z;
is a K(-tuple of conditionally independent categorical variables, each represented as a 1-hot vector
of length V. We denote z; as the latent state encoded from the immediate state x; (1) and 2; as the
latent state predicted via world model dynamics from the previous latent state and action (5). We
denote i; € REXN a5 the logits for the multi-categorical distribution of Z; and 6; = softmax(i;) as
the K concatenated normalized probability vectors. To estimate gradients in the sampling step for z;
or z;, we use the straight-through estimator [4; 14].

By compressing all state information into a single discrete representation z;, we aim to provide a
well-structured encoding of the underlying state x;, enabling the learning of generalizable functions,
such as residual corrections, from limited data using z; as input. Illustrated in Figure 1 (Left), we
define our DRAW world model and actor—critic agent, respectively parameterized by € and ¢, as:

State Encoder z; ~ qg(2¢|x¢) €)) Reward 7 ~ po(7¢|ze) (6)
Forward Dynamics 4y = fo(2¢—1,6¢—1,01—1) 2) Continuation é ~ pg(éelze) (7)
Forward Belief 6; = pg(2¢]2z¢-1,6¢—-1,a:—1) (3) State Decoder Iy ~ pg(Z¢]z:) (8)

= softmax (i) 4 Policy a; ~ mg(ar|ze) (9)

Forward Sample 2, ~ MultiCategorical(6;) (5) Value Function vy = Vy(2z) (10)

We represent all functions in DRAW as multi-layer perceptrons (MLPs) except for image compo-
nents of the state encoder and decoder, which are convolutional (CNNs). Interestingly, we found
that providing &;_; as an input to the forward dynamics function fy significantly increased our
downstream adaptation performance. We speculate that this is because 6,_1 helps provide a gradient
signal for learning features relevant for long-term dynamics predictions without adding additional
dimensionality to state prediction outputs. We provide ablations on this design choice in Appendix F.1.

We optimize DRAW on Mj;, with a prediction loss Lpreq to reconstruct states, rewards, and episode
terminations, as well as a dynamics loss Lgy, and a representation loss Ly, to learn latent-state
dynamics under a predictable representation. Drawing subtrajectories ¢ from a buffer of interaction
experience, the world-model loss function £(0) is:

T
E(Q) - EqG(ZI:T‘C) Z 5pred£;t)red(9) + ﬁdynﬁfiyn(a) + Brepﬁsep(e) ’ (11)

t=1

where T is the length of (, and fort =1,...,T"

Eéred(ﬂ)i —Inpg(ze|zt) — Inpe(re|ze) — Inpe(ce|2t) (12)
ﬁéyn(e)i[ﬂ)[%(ztmtﬂ|p9(2t|2t—17[Tt—hat—1)H1 (13)
‘Cfep(e)i[]])[qe(zﬂxt)'|p§(2t|zt71>&tflvatfl))Hla (14)

with D the Kullback-Leibler divergence, [-]; denoting clipping to 1 any value below 1, corresponding
to free bits [23], and 8 a stopped-gradient copy of 6.

We train the actor—critic agent with the same procedure and losses as DreamerV3, providing the
DRAW world model state 2; as agent inputs during imagined rollouts and z; during data collection

Under review as a conference paper at ICLR 2026

and evaluation. When training the actor—critic, we seed synthetic rollouts with starting states xg
drawn from the same experience buffer as used for world-model training. We do not backpropagate
value gradients through dynamics, and we train the policy using the Reinforce objective [41] with
normalized returns and critic baselines [15].

We alternate mini-batch updates between the world model and the actor—critic. During source
environment pretraining, updates are interleaved with online data collection. Since we cannot fully
predict which trajectories in Mj;,, will best facilitate learning transferable features and dynamics for
M,q1, we employ Plan2Explore [36] to provide intrinsically motivated exploration, encouraging the
collection of a highly diverse set of source-environment trajectories.

3.2 ADAPTATION VIA LATENT DYNAMICS RESIDUALS

After pretraining the DRAW world model online in the M;,, environment with a large amount of
data, we propose the ReDRAW architecture and method to use a small offline dataset of transitions
from the target environment to calibrate DRAW’s dynamics to match M, using a latent-state error
residual.

We model the dynamics residual using an MLP §,, that predicts a correction é; to the forward-
dynamics logit vector ;. This correction produces a modified transition distribution /“, from
which forward latent-state predictions 2/°“/ are sampled to approximate M,.,;. We formulate the
calibrated dynamics as:

Gt = fo(ze-1,67% a;_1) (15) 67 = po .y (21 21,60 1) (17)
&= 0y(z—1,a1-1) (16) = softmax(; + &) (18)
zreal ~, MultiCategorical (67¢4). (19)

To train the residual on real data, we freeze the world-model weights 6 and only optimize the
parameters 1) of the residual network d,;. In the transfer phase, we only optimize the actor—critic agent
and a new loss L5(1)) on the rectified world-model dynamics. Our objective is to predict corrections
é; of u; so that our new dynamics predictions &{e“l match the observed encoder distribution over
latent states collected in M,.,. The loss function for the residual is:

T
L5(t) = Egyeroricrany | D Dldgg(zela)l1pg . (35 201,674, ar-1)] |- (20)

t=1

Since we consider fully observable environments, the target encoder latent-state distribution gg (z¢| ;)
depends solely on x; and can be frozen after pretraining in Mg, if the collected source-environment
data adequately covers the state space. As a result, the latent-state representation for ReDRAW in
My 1s unchanged from DRAW in M.

Notably, due to this unchanged latent-state representation between Mgy, and M.y, the frozen DRAW
M, reward function py(7¢|2;) can be reused in world-model rollouts to train the ReDRAW agent
with pg(ft|2t’€”’) in Mey, eliminating the need for reward data from M. This is particularly
beneficial since building a reward recording system in real-world scenarios, such as robotics, often
requires costly and complex setups like additional sensors or feedback mechanisms, which may be
infeasible in certain environments.

Finally, given the ReDRAW world model with dynamics adapted to match M., the actor—critic can
learn a high-performing policy for the new environment by training in the world model under the new
rectified dynamics, using 2/ as input during training. In our experiments, we alternate agent and
world-model training during adaptation to measure the agent’s performance as world model training
progresses.

4 EXPERIMENTS

We evaluate ReDRAW in two distinct settings: (1) adapting from DeepMind Control (DMC) [38]
environments to modified counterparts with changed physics, and (2) transferring from a simulation

Under review as a conference paper at ICLR 2026

in Unreal Engine to a real robot visual lane-following task using the Duckietown [33] platform. Our
experiments address three main questions:

1. How do latent-space residuals compare to traditional finetuning methods in correcting
world-model dynamics under limited target-domain data?

2. How do data quantity and collection policies influence transfer performance?

3. Can ReDRAW effectively close the sim-to-real gap in a robotics task with visual inputs?

4.1 DEEPMIND CONTROL EXPERIMENTS

4.1.1 DMC DOMAINS

We first consider four pairs of source and target environments from the DMC suite, each pair having
the same state and reward structure but mismatched dynamics. We use original environments from
DMC as sources, while the target environments introduce physics modifications such as applied
wind, external torque, or reversed actions. For a detailed description, refer to Appendix I. These
differences in dynamics between source and target environments are substantial enough to require
policy adaptation for optimal performance. Although dynamics differ between source and target, the
state spaces, reward functions, and episode termination conditions remain unchanged. To maintain
full observability, we represent the state as an image paired with a vector of joint velocities. In
Appendix H, we also demonstrate comparable performance using framestacking for the same purpose.

To pretrain on each source environment, we collect 9 million environment steps (4.5e6 decision
steps with an action repeat of 2) using Plan2Explore [36], which promotes diverse state visitation
rather than narrowly exploiting the original environment’s reward function. After this phase, we
adapt to each target environment using a small offline dataset of 40K decision steps (equivalent to 80
episodes), gathered by an expert policy in the target domain.

4.1.2 COMPARISON WITH FINETUNING

We compare ReDRAW with several baselines that attempt to adapt a pretrained world model to the
new domain. Critically, except where noted with *, the methods we test do not use reward labels or
train with a reward-reconstruction objective during the adaptation phase. These baselines include:

DRAW/DreamerV3 Zeroshot: We take the source-trained DRAW or DreamerV3 agent and deploy
it in the target environment without any adaptation.

DRAW/DreamerV3 Finetune: The world model and agent are finetuned on the target-domain
offline dataset. To mitigate overfitting on the small dataset, we freeze the world model encoder and
decoder parameters and only retrain the agent and dynamics components. For DRAW this entails
optimizing only fs with Lgy,. Analogously, for DreamerV3, the RSSM recurrent prior and posterior
components are updated while leaving the observation feature embeddings and decoders unchanged.

DRAW/DreamerV3 Finetune (No Freeze)*: Every component, including the encoder and decoder,
is finetuned using all original world model loss terms. These are the only two baselines requiring
access to reward data during adaptation.

DRAW New Dyn: The entire world model is frozen after pretraining, but instead of learning a
residual addition to fy, we train a new dynamics function 57 = 9y(6¢, 2¢—1, ar—1) with a similar
capacity to dy, and conditioned on the next-latent-state distribution &, predicted by the frozen source
dynamics (Eq. 3). This method demonstrates an alternate way to leverage frozen dynamics predictions

learned from the source environment. Other variations of this baseline are investigated in Appendix G.

Figure 2 shows the returns in each target domain as a function of offline updates on each target
dataset. Zero-shot deployment without adaptation fares poorly in these altered dynamics. Finetuning
approaches initially improve in some cases but all eventually overfit to the small dataset. The No
Freeze* variations are quicker to overfit than their partially frozen counterparts.

In contrast, ReDRAW’s latent-space residual method attains a sustained level of high-performance
and avoids overfitting during the 3 million updates (1-3 days of training) we test on. This highlights
a critical benefit of the ReDRAW transfer method: once ReDRAW reaches high performance in
the target domain, it demonstrates a remarkable resistance to performance degradation. ReDRAW’s

Under review as a conference paper at ICLR 2026

£ Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)
=3
@ 500
14
@ 400
g
§ 300 1
< 200k
§ 1oofee
»§ 100
§ 0
w 0 M 2M 3M 0 M 2M 3M 0 M 2M 3M 0 M M 3M

Offline Updates Offline Updates Offline Updates Offline Updates

—— ReDRAW (Ours) —— DRAW Finetune e DRAW Finetune (No Freeze)* —— DRAW Zeroshot
DRAW New Dyn —— Dreamer Finetune oo Dreamer Finetune (No Freeze)* Dreamer Zeroshot

Figure 2: Average evaluation episode return transferring from each DMC environment to a modified
variant of it given 40K offline target environment transition samples. Shaded regions indicate the
standard error of the mean over 4 seeds for each method. ReDRAW consistently achieves high returns
in the target environments and avoids overfitting.

ability to avoid overfitting for long periods of time makes it highly applicable to sim-to-real scenarios
where validation testing on a real robot often cannot practically be done repeatedly and educated
guesses need to be reliably made regarding stopping conditions of the training process.

ReDRAW excels at maintaining a high degree of validation performance by preserving existing
dynamics predictions learned in simulation where data is abundant and using the limited target data
to learn a low-complexity adjustment to those predictions. Comparing ReDRAW with DRAW New
Dyn, we see that while both approaches utilize both the previous state and the frozen simulation
dynamics predictions, the residual operation appears to play a key role in limiting the complexity of
the changes made to the original world model dynamics, allowing ReDRAW to avoid overfitting.

4.1.3 DATA POLICIES AND QUANTITY

£ Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)
=1
@ 500
14
(0] 400 e Ny S—
=4 i
g 300
< 200 ;
5 l
~§ 100,
§ 0
w 0 M 2M 3M 0 M M 3M
Offline Updates Offline Updates Offline Updates Offline Updates
—— Plan2Explore -> 40K Expert Demo Plan2Explore -> 20K Expert Demo Plan2Explore -> 10K Expert Demo
—— Plan2Explore -> 40K Random Demo —— Online Exploit Exploration -> 40K Expert Demo

Figure 3: Impact of offline adaptation dataset size and source/target domain data collection strategies
on ReDRAW. Expert demonstrations consistently provide useful target domain data for adaptation.
Collecting diverse simulation experience with a method like Plan2Explore is essential for good
transfer performance.

Figure 3 examines the effect of data collection on ReDRAW’s transfer performance by ablating: (i)
the diversity of source-domain experience, contrasting Plan2Explore simulation data collection with
the exploit policy, and (ii) the quality and quantity of target-domain transitions, comparing expert
demonstrations versus random actions and varying expert dataset sizes (40K, 20K, 10K). In our
default configuration (Plan2Explore — 40K Expert Demo), ReDRAW attains the strongest transfer
performance.

Source-Domain Data: Collecting source trajectories with Plan2Explore consistently yields high
returns after adaptation. When we replace Plan2Explore with the exploit policy as the pretraining
data collection policy, critical source transitions that may help in the prediction of the target dynamics
are missed and transfer performance is reduced significantly. This demonstrates that exploratory
breadth in simulation rather than narrowly optimizing the source reward is essential for learning
latent features that are useful for downstream residual corrections to match altered physics.

7

Under review as a conference paper at ICLR 2026

(a) Digital Twin Simulation (b) Real Robot Environment (c) Sim State Image (d) Real State Image

Figure 4: (a) Digital-twin simulation constructed using Gaussian splatting [21]. (b) Real-world robot
lane-following environment. (c) Simulation state image component. (d) Real-world state image
component. The agent is tasked to drive quickly around the track while staying near the lane center
using an egocentric camera and velocity sensor. We train our DRAW world model in simulation
and calibrate its dynamics with ReDRAW on a small dataset of human demonstrations with mixed
optimality, producing a successful agent in the real environment.

Target-Domain Data: Adapting with expert demonstrations consistently yields effective transfer,
while using a dataset of random actions can either help or hurt transfer performance in comparison.
We speculate that expert data is useful for modeling pertinent dynamics for performing well while
high-entropy actions may additionally be useful in modeling failure scenarios for the agent to avoid.
Investigating the quantity of target-domain data, reducing the size of the expert dataset leads to a drop
in average return with 20K samples and a further drop along with overfitting in Cup Catch with 10K
samples. Taken together, these results indicate a practical lower bound on required expert data for
robust transfer with ReDRAW.

4.2 DUCKIEBOT SIM-TO-REAL TRANSFER

Finally, we evaluate ReDRAW in a sim-to-real robotic lane-following task using the Duckietown
platform [33]. Here, the agent controls a wheeled robot to navigate around a track while remaining
centered in its lane. The state space includes a forward-facing camera image plus egocentric forward
and yaw velocity values, and actions are defined as continuous forward and yaw target velocities
in [—1, 1]. To provide a simulation to transfer from, we construct an environment in Unreal Engine
using a Gaussian splat [21] reconstruction of the robot’s environment to mimic the robot’s state space.
Figures 4a and 4b show the digital twin and real environment, respectively. We also implement the
simulation with a rough approximation of real dynamics, although details like precise handling while
driving and control rate (6Hz sim vs 10Hz real) still differ from the real robot.

The Duckiebot receives rewards proportional to its projected velocity along the lane-center path
but instead incurs penalties when it deviates too far from this path. When moving forward, we
also penalize the agent proportionally to its yaw velocity to encourage smooth driving. Simulation
episodes terminate either when the robot leaves the track, with a large penalty applied, or after 200
steps. Exact experiment details are presented in Appendix C.

4.2.1 BRIDGING THE SIM-TO-REAL VISION GAP

Despite efforts to recreate the real environment, visual disparities between the simulation and real
environment still exist (Figure 4c vs 4d). Although our main focus in this paper is adapting dynamics,
we employ visual randomization [40] along with image augmentation [5] for all compared methods
to bridge the sim-to-real vision gap. Each episode, we randomize the simulation camera’s mounted
location on the robot, camera tilt, and its field of view. We also apply image augmentations at
train time to both sim and real image inputs to learn world-model image encoders robust to task-
irrelevant features like lighting, color hue, and background furniture placement. Similar to [22],
we train with augmented inputs, but the world-model decoder still reconstructs the original images
as targets in L4, thus focusing the latent-space features on task-relevant elements rather than the
irrelevant augmentations we apply. We apply this asymmetric decoding objective to both DRAW
and DreamerV3. ReDRAW trains its residual with augmented inputs but has no decoding objective
during transfer learning since its latent-state representation is fixed.

Under review as a conference paper at ICLR 2026

Table 1: Mean and SEM performance on the real Duckiebots lane-following task aggregated over 5
episodes each for 4 training seeds. Agents are given 300 steps (30 seconds) to complete a lap from a
fixed starting position. Center Offset denotes distance from the lane center. Absence of a Lap Time
indicates all runs either failing to complete a lap or terminating early by driving off the track.

Transfer Sim to Unmodified Real Transfer Sim to Actions-Reversed Real

Avg Dense AvgLap Avg Center Avg Dense Avg Lap Avg Center

Method Reward (1) Time (sec) (1) Offset (1) Reward (1) Time (sec) (1) Offset (1)
Dreamer Zeroshot -1.18 +0.23 - 6.86 £056 -2.35 +023 - 13.36 +1.13
Dreamer Finetune -0.87 + 033 - 545 +155 -1.61 057 - 7.75 £ 153

DRAW Zeroshot 0.07 006 22.41 +073 5.12 + 041 -2.72 +0.42 - 9.39 + 135
ReDRAW (Ours) 0.38 +o002 22.75 +026 2.47 026 0.39 £003 24.21 +1.15 2.10 +039

4.2.2 TRANSFERRING TO THE REAL ROBOT

We pretrain DRAW and DreamerV3 in simulation using 600K random actions followed by 1.4 million
online steps with Plan2Explore. On the real robot, we collect a small offline adaptation dataset of 1e4
timesteps (~17 minutes) using human demonstrations employing a mixture of safe random actions
and semi-proficient driving. Table 1 compares performance using this offline dataset to adapt to two
variations of the real environment, unmodified real, where minor physics disparities between sim
and real are the natural result of inaccurate dynamics modeling, and actions-reversed real, where
actions (in adaptation data and deployment) are inverted, requiring large but regular adaptation to
drive successfully. We adapt RekDRAW and DreamerV3 Finetune for 2e5 offline updates. All methods
are evaluated for 5 episodes each over 4 training seeds. We additionally compare to physics domain
randomization, in which the world models and agents are trained with a randomized physics training
regime that other methods do not have access to, in Appendix D.

In unmodified real, DRAW zeroshot is able to successfully drive despite never seeing real data
but incurs low rewards by veering far from the lane center. DreamerV3 zeroshot fails, driving off
the track in all lap attempts. We speculate that DreamerV3 zeroshot fails while DRAW zeroshot
succeeds because DreamerV3’s recurrent model observes out-of-distribution sequences under changed
dynamics, resulting in inaccurate latent-state predictions. DRAW and ReDRAW are non-recurrent in
deployment time and cannot suffer from this same issue. Similar to DMC experiments, DreamerV3
Finetune fails to adapt, possibly due to overfitting, and ReDRAW achieves significantly higher average
dense rewards than DRAW zeroshot by training with corrected dynamics and staying close to the
lane center.

In the more extreme actions-reversed real transfer task, ReDRAW is the only method that successfully
adapts and completes laps on the real robot due to the incompatibility of zero-shot policies to this
environment and the limited real data in the case of DreamerV3 Finetune. These results demonstrate
that ReDRAW can be effectively used to adapt dynamics from simulation to reality using a limited
offline real dataset without rewards, and that ReDRAW can be combined with visual adaptation
methods to do so.

5 LIMITATIONS AND FUTURE WORK

A potential limitation of ReDRAW is that it maintains high target-environment performance over
many updates and avoids overfitting in-part due to the low complexity of the residual component. This
suggests that only conceptually simple changes to dynamics may effectively be modeled with low
amounts of data, warranting future investigation. Our method for collecting a broad set of simulation
training data via Plan2Explore is also heuristic. We would like to investigate the problem of guiding
simulation data collection for better transferability by adopting exploration policies informed by the
offline target-environment data. Finally, we want to explore if residual adaptation methods can be
meaningfully applied to foundation world models, efficiently converting them from generators of
plausible dynamics to generators of specific dynamics.

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Adam Allevato, Elaine Schaertl Short, Mitch Pryor, and Andrea Thomaz. Tunenet: One-shot
residual tuning for system identification and sim-to-real robot task transfer. In Conference on
Robot Learning, pp. 445-455. PMLR, 2020.

[2] Elena Arcari, Maria Vittoria Minniti, Anna Scampicchio, Andrea Carron, Farbod Farshidian,
Marco Hutter, and Melanie N Zeilinger. Bayesian multi-task learning mpc for robotic mobile
manipulation. IEEE Robotics and Automation Letters, 2023.

[3] Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models
facilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619-629. PMLR, 2021.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[5] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. ISSN 2078-2489. doi: 10.3390/info11020125. URL
https://www.mdpi.com/2078-2489/11/2/125.

[6] Anthony Rocco Cassandra. Exact and approximate algorithms for partially observable Markov
decision processes. Brown University, 1998.

[7] Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned
sim-to-real transfer. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1290-1296. IEEE, 2021.

[8] Epic Games. Unreal engine, 2024. URL https://www.unrealengine.com.

[9] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pp. 2052-2062. PMLR,
2019.

[10] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. Sim-to-real
transfer with neural-augmented robot simulation. In Conference on Robot Learning, pp. 817—
828. PMLR, 2018.

[11] David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[12] Danijar Hafner. Dreamerv3: Mastering diverse domains through world modeling. https:
//github.com/danijar/dreamerv3, 2023. GitHub repository.

[13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2019.

[14] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2020.

[15] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[16] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for
continuous control. In The Twelfth International Conference on Learning Representations,
2023.

[17] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model
predictive control. In International Conference on Machine Learning, pp. 8387-8406. PMLR,
2022.

[18] Yiwen Hou, Haoyuan Sun, Jinming Ma, and Feng Wu. Improving offline reinforcement learning
with inaccurate simulators. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5162-5168. IEEE, 2024.

10

https://www.mdpi.com/2078-2489/11/2/125
https://www.unrealengine.com
https://github.com/danijar/dreamerv3
https://github.com/danijar/dreamerv3

Under review as a conference paper at ICLR 2026

[19] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12627-12637, 2019.

[20] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Miiller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982-987, 2023.

[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

[22] Kyungmin Kim, JB Lanier, Pierre Baldi, Charless Fowlkes, and Roy Fox. Make the perti-
nent salient: Task-relevant reconstruction for visual control with distractions. arXiv preprint
arXiv:2410.09972, 2024.

[23] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

[24] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

[25] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning
for offline reinforcement learning. Advances in neural information processing systems, 33:
1179-1191, 2020.

[26] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[27] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High
performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470,
2021.

[28] Anton Mallasto, Karol Arndt, Markus Heinonen, Samuel Kaski, and Ville Kyrki. Affine
transport for sim-to-real domain adaptation. arXiv preprint arXiv:2105.11739,2021.

[29] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pp. 1162—-1176. PMLR, 2020.

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99-106, 2021.

[31] Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan, et al. When
to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning.
Advances in Neural Information Processing Systems, 35:36599-36612, 2022.

[32] Haoyi Niu, Tianying Ji, Bingqi Liu, Haocheng Zhao, Xiangyu Zhu, Jianying Zheng, Pengfei
Huang, Guyue Zhou, Jianming Hu, and Xianyuan Zhan. H2o0+: an improved framework for
hybrid offline-and-online rl with dynamics gaps. arXiv preprint arXiv:2309.12716, 2023.

[33] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal Cap, Yu Fan
Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, et al. Duckietown: an open, inexpensive and
flexible platform for autonomy education and research. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1497-1504. IEEE, 2017.

[34] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real

transfer of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pp. 3803-3810. IEEE, 2018.

11

Under review as a conference paper at ICLR 2026

[35] Alexander Schperberg, Yusuke Tanaka, Feng Xu, Marcel Menner, and Dennis Hong. Real-
to-sim: Predicting residual errors of robotic systems with sparse data using a learning-based
unscented kalman filter. In 2023 20th International Conference on Ubiquitous Robots (UR), pp.
27-34. IEEE, 2023.

[36] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, pp. 8583-8592. PMLR, 2020.

[37] Zilin Si, Zirui Zhu, Arpit Agarwal, Stuart Anderson, and Wenzhen Yuan. Grasp stability
prediction with sim-to-real transfer from tactile sensing. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7809-7816. IEEE, 2022.

[38] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[39] Gabriele Tiboni, Karol Arndt, and Ville Kyrki. Dropo: Sim-to-real transfer with offline domain
randomization. Robotics and Autonomous Systems, 166:104432, 2023.

[40] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30.
IEEE, 2017.

[41] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229-256, 1992.

[42] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Day-
dreamer: World models for physical robot learning. Conference on Robot Learning, 2022.

[43] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environ-

ment. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11097-11107, 2020.

12

Under review as a conference paper at ICLR 2026

A ACTOR-CRITIC TRAINING AND DEPLOYMENT

Train RL Agent in Imagination Deployment Time

Fo 2o Bt e

Decoders Decod ﬁ ;n; i
ag a a
2o, zy 2oy 21 22y
i i i i3
Eﬂi 0 Log
o ’ Eﬂ
o0 o) L)
o t
Dynamics
Residual

Encoder Encoder Encoder

- N R R

Actor/Critic State Inputs: Z; (Zo for initial state) Actor State Inputs: Z;

Figure 5: (Left) The actor and critic are trained by interacting with the world model. Starting from
an environment state sampled from the replay buffer, the world model generates imagined rollouts
using actions provided by the actor. The residual component is omitted during DRAW pretraining.
(Right) At deployment, only the encoder and actor modules are utilized. The immediate environment
state is processed by the encoder, and the actor generates an action based on z; sampled from o.

B EXTENDED RELATED WORK

Table 2: Comparison of alternative methods against key desiderata. ReDRAW uses a small reward-
free real-world dataset to calibrate a learned dynamics model of a simulation and match the real
environment. ReDRAW uses a latent-state representation to maintain compatibility with high-
dimensional state components like images, and it is agnostic to the types of discrepancies between
simulation and real dynamics.

Method NoReal High-Dimensional No Conﬁgurgble Simulator Low Real
Rewards Image Inputs or Disparity Insight Data
ReDRAW (Ours) v v v v
World Model Finetuning v v 4 X
Adapting Explicit State Transitions v X 4 v
Offline RL X 4 v v
Physics Domain Randomization v v X v

This research lies at the intersection of sim-to-real dynamics transfer and RL with latent-state world
models.

B.1 TRANSFERRING DYNAMICS WITH EXPLICIT REPRESENTATIONS

Sim-to-real transfer of dynamics aims to adapt existing simulators or dynamics models used for
planning and policy optimization to better match real-world environments. One way to transfer
dynamics from simulation to reality is to calibrate predefined simulator physics parameters to match
the target environment, either directly from real data [37] or as a correction to existing parameters
[1]. However, doing so can be insufficient if no good approximation of the real environment exists
in the space spanned by the allowed range of these parameters. In such cases, a more expressive
modification of the simulator state transition function may be needed.

Along these lines, Ball et al. [3] and Arcari et al. [2] calibrate linear error models on simulator
transition dynamics using real data for policy adaptation and, respectively, model predictive control.
Similarly, Mallasto et al. [28] use affine transport to adapt simulator state dynamics models to real
domains. Golemo et al. [10] train an LSTM conditioned on state—action history to predict a state
transition residual, and Schperberg et al. [35] efficiently adapt a neural-network state-dynamics

13

Under review as a conference paper at ICLR 2026

residual by using Unscented Kalman Filtering. Kaufmann et al. [20] employ k-nearest neighbor
regression and Gaussian process residuals on transition dynamics and state encodings to calibrate
their simulator for drone racing at an expert human level.

Each of these methods relies on the assumption that the environment state can be represented with a
compact vector representation with which a generalizable dynamics correction can be learned with
a relatively low-complexity model and small real-data requirements. We consider the case where
the components of the state are instead in a high-dimensional format like images and we do not
have a predefined mapping from these states to such a necessary compact vector representation. To
adapt simulation transition dynamics under these more difficult conditions, we propose to learn a
latent-state world model of the simulation and then train a residual correction on the world model’s
dynamics to match transitions in the real environment.

B.2 WORLD MODELS WITH LATENT STATE SPACES

World models [11] with latent state spaces are environment models in which planning and policy
learning can be more efficient than with environment states due to a succinct representation of
environment states and dynamics. Dreamer [13; 14; 42; 15] models environments in the stochastic
POMDP [6] by encoding observations as latent states and reconstructing future latent states, rewards,
and observations. The Dreamer architecture allows agents to then train on synthetic experience by
rolling out “imagined” trajectories inside of the world model. TD-MPC [17; 16] models deterministic
fully observable MDPs by similarly reconstructing future latent states and rewards, as well as task
value functions. TD-MPC2 [16] has shown good results learning shared features from a suite
of environments to quickly transfer to new ones, while we focus on transferring from a single
environment to a similar target environment by avoiding overfitting to limited data.

Concerning exploration with world models, collecting diverse source trajectories was crucial in our ex-
periments for learning transferable features and dynamics. To achieve this, we use Plan2Explore [36],
a method compatible with both Dreamer and our proposed DRAW architecture, which trains an
auxiliary RL agent alongside the exploit policy to maximize model uncertainty in latent dynamics
predictions, promoting wide-reaching exploration.

B.3 DOMAIN RANDOMIZATION

Domain randomization is widely used for sim-to-real transfer by exposing policies to diverse varia-
tions in images [40; 19] or dynamics [34; 29]. In the case of variations with different optimal policies,
training on a broad distribution of environment conditions can yield an overly conservative policy.
Methods like [39; 7] partially mitigate this issue by leveraging real data to calibrate the parameters
of a training-time dynamics domain randomization distribution to more closely represent the target
environment.

Similar to the system-parameter-identification methods [37; 1] mentioned in Section B.1, domain
randomization relies on having a configurable simulator with parameters that, if set correctly, can
sufficiently represent real-world dynamics at training time. Domain randomization thus requires the
practitioner to have A) an understanding of which dynamics parameters are likely to be mismatched
between simulation and reality, and B) a simulator that allows those specific parameters to be
configured. In practice, the nature of disparities between the training-time simulator and adaptation-
time real environment may not be known, and the simulator may not be customizable along the
necessary parameter dimensions (or at all).

With ReDRAW, we provide a dynamics adaptation method that is agnostic to the types of MDP
physics disparities between the source and target environment, however, to do so, ReDRAW relies on
being able to zero-shot perception from simulation to real. Given the availability of simulators with
high-fidelity visuals like [27; 43; 8] and advances in 3D-reconstruction techniques like neural radiance
fields [30] and Gaussian splatting [21] (as we employ in this paper), we believe this can often be a
worthwhile tradeoff. In our duckiebots robot sim-to-real experiment, as described in Section 4.2.1,
we apply image augmentations and limited camera-parameter randomization to ReDRAW and every
baseline. With the exception of the physics domain randomization baseline in Appendix D, we do
not vary simulator physics.

14

Under review as a conference paper at ICLR 2026

B.4 OFFLINE RL

Offline RL approaches aim to learn well-performing policies from fixed datasets, usually while
avoiding taking out of distribution actions that are not well represented in the data [9; 25; 24]. In
cases like ours where offline real data is limited but online data from an error-prone simulator is
abundant, methods like [31; 32; 18] train on both real and simulated data by down-weighting the
effects of updates from simulated transitions with dynamics that differ from the offline real data.
However, to train a policy given offline real data, these methods require access to reward real reward
labels. Real-reward data can often be difficult to collect on physical robots, and we do not assume
access to reward labels in the offline real dataset. Instead, our proposed ReDRAW method learns a
reward function conditioned on the current latent state and leverages a fixed latent-state encoding
between simulation and the real environment to reuse this reward function in the real-calibrated world
model.

C DUCKIEBOTS EXPERIMENT DETAILS

Simulation Reward Details In simulation, the agent is densely rewarded at each timestep with a
value in [0, 1] proportional to its projected velocity along the lane center unless its location is more
than Scm from the lane center, in which case it incurs a penalty of -1. When moving forward, we
additionally provide a dense penalty proportional to egocentric yaw velocity to encourage turning
while at speed. The simulation episode horizon is 200 steps, slightly more than enough time to
complete a lap. We do not provide a termination signal when the horizon is reached. We terminate
early with a done signal and a penalty of -100 if the agent drives off the track.

We provide the agent with reward data during simulation pretraining, and we do not provide reward
labels in training data collected from the real environment. In order to measure test-time deployment
performance, during real evaluation only, we record the robot’s location with an HTC Vive motion
tracker to measure equivalent simulation rewards, lap times, and the robot’s distance from the lane
center. Information recorded from the motion tracker is not provided to the agent or world model.

Image Augmentations During simulation pretraining and offline adaptation to real data, we apply
image augmentations to world model encoder inputs, but we still train decoder objectives on the
original non-augmented images. Figure 6b shows original images (bottom) and their augmented
counterparts (top) for both simulation and the real environment offline human demonstration dataset.
In world model training for DRAW/ReDRAW and Dreamer, we apply new image augmentations to
each mini-batch after it is sampled from the experience buffer.

(a) Simulation Images with Augmentations (b) Real-world Images with Augmentations

Figure 6: Comparison of image observations in simulation and the real world. (Top): Augmented
images. (Bottom): Original images.

D COMPARISON WITH PHYSICS DOMAIN RANDOMIZATION

We conduct an additional comparison in the Duckiebots domain in which we train DRAW and
DreamerV3 with dynamics domain randomization. After pretraining with Plan2Explore in simulation
with dynamics domain randomization for 1.4M timesteps, we zero-shot transfer to the target real
environments. To represent both the possible range of real robot speeds and the per-step variations
in speed present during real-world execution, we vary the simulator’s forward and yaw velocity
coefficients by a random value each timestep. A coefficient of 1.0 represents the default simulator
scaling for forward and yaw velocity. At the start of each episode, for each parameter, we sample a
mean scale uépisode,i € {forward vel,yaw vel} from N'(1,0.1). Then, in each timestep, we sample

independent per-step parameter scales from A/ (0.01). Additionally, in every timestep, we

4
:uepisode ’

15

Under review as a conference paper at ICLR 2026

Table 3: Mean and SEM performance on the real Duckiebots lane-following task aggregated over 5
episodes each for 4 training seeds. Agents are given 300 steps (30 seconds) to complete a lap from a
fixed starting position. Center Offset denotes distance from the lane center. Absence of a Lap Time
indicates all runs either failing to complete a lap or terminating early by driving off the track. In the
Duckiebots domain, physics Domain Randomization (DR) underperforms against other zeroshot and
transfer-learning approaches.

Transfer Sim to Unmodified Real Transfer Sim to Actions-Reversed Real

Method Avg Dense Avg Lap Avg Center Avg Dense Avg Lap Avg Center
Reward (1) Time (sec) (]) Offset () Reward (T) Time (sec) (}) Offset (])
Dreamer Zeroshot -1.18 +0.23 - 6.86 056 -2.35 +0.23 - 13.36 +1.13
Dreamer DR -0.19 +o.14 - 5.04 £156 -1.53 +047 - 5.46 + 1.64
Dreamer Finetune -0.87 + 033 - 545 +155 -1.61 +057 - 7.75 £ 153
DRAW Zeroshot 0.07 +006 22.41 +073 5.12 £041 -2.72 +042 - 9.39 +135
DRAW DR -0.32 o012 23.75 £156 826 +138 -2.81 +£033 7.15 £ 181

ReDRAW (Ours) 0.38 +002 22.75 +026 2.47 +026 0.39 003 24.21 +1.15 2.10 +039

uniformly sample the on-body position and tilt of the robot’s camera within a small range of values
to simulate oscillations and shocks encountered while driving.

In Table 3, we compare the performance of DRAW and DreamerV3 Domain Randomization (DR)
against other methods in the unmodified real and actions-reversed real environments. The unmodified
real environment represents a scenario in which the dynamics randomization scheme is well-informed
by potential simulator errors. In contrast, the actions-reversed real environment represents a scenario
in which a critical disparity between simulation and reality was not anticipated or captured during
randomized simulator training.

In the unmodified real environment, DRAW DR achieves low rewards by taking wide turns that cut
corners and veer far from the lane center. Because driving off the track results in a large penalty,
this behavior can be explained as taking conservative actions. The DRAW DR agent avoids taking
otherwise optimal sharp and late turns, likely because this normally optimal behavior can have a
dangerous outcome in the randomized simulation given unknown forward and yaw speed coefficients.

Dreamer DR fails in the unmodified real environment with agent behavior in most seeds staying still
and occasionally rotating. Shown in Figure 9, Dreamer consistently exhibits instability w.r.t. M;,,
returns when pretraining with randomized physics in the Duckiebots simulation environment. This
behavior was repeatedly seen in preliminary experiments under various randomization conditions both
with and without Plan2Explore. These observations suggest a possible limitation in DreamerV3’s
capacity to learn highly stochastic dynamics, although more experimentation would be needed to
fully confirm this.

In the actions-reversed real environment, both DR methods fail to drive because the reversed actions
represent an unexpected disparity between simulation and real that was not represented during
training.

In both of these real environments, despite not having access to configurable simulator physics,
ReDRAW is able to use a small amount of real transition data to calibrate its world model and drive
with a near-optimal policy.

E LEARNING CURVES DURING PRETRAINING

Figure 7 and Figure 8 show training curves in the source environments in the DMC and Duckiebot
domains, respectively. Both DRAW and DreamerV3 converge to similar performance in the source
environments. In Appendix H, we also compare ReDRAW with framestacked image components to
convey motion in lieu of joint-velocity vectors. The pretraining curves for DRAW with framestacking
are similar to the default configuration.

16

Under review as a conference paper at ICLR 2026

In Appendix D, we evaluate DRAW and Dreamer’s zero-shot performance on the real Duckiebots
environment after training with physics domain randomization. Figure 9 shows pretraining perfor-
mance on the simulated environment with episodic physics randomization applied. With physics
domain randomization, DreamerV3’s source-environment returns decrease to a suboptimal level as
training progresses.

Cup Catch Finger Turn Hard Pendulum Swingup Reacher Easy
c 500 el)n
3
& w0 e
°
>
< 300
g
Z
= 200
2
S 10
© |
< I
it ol
0 M am oM Y 0 M am oM am 0 M am 3Y am 0 2m am oM am
Source Environment Steps Source Environment Steps Source Environment Steps Source Environment Steps
—— DRAW Plan2Explore DreamerV3 Plan2Explore DRAW Plan2Explore (framestacked images)

Figure 7: Training curves during pretraining for DRAW and DreamerV3 across four environments
from DMC. Plan2Explore is used for data collection during pretraining. The mean and standard error
are shown over 4 seeds.

200 Duckiebot Lane Following Simulation

Evaluation Average Return

-100

M 1.5M 2m

Source Environment Steps

—— DRAW (Random Action and Plan2Explore) DreamerV3 (Random Action and Plan2Explore)

Figure 8: Training curves during pretraining for DRAW and DreamerV3 in the Duckiebot lane
following simulation environment. Data collection is performed using random actions for the first
0.6M steps, followed by Plan2Explore for 1.4M steps. Each episode starts from a valid random
position. The mean and standard error are shown over 4 seeds.

Duckiebot Lane Following Simulation

200 (Physics Domain Randomization Applied)

100

Evaluation Average Return

-100

0 0.5M M

Source Environment Steps

—— DRAW (Plan2Explore) DreamerV3 (Plan2Explore)

Figure 9: Training curves during pretraining for DRAW and DreamerV3 in the Duckiebot lane
following simulation environment with physics domain randomization applied.

F ARCHITECTURAL ABLATIONS

In this section, we examine how different choices for the inputs of the DRAW forward dynamics
function fp and the ReDRAW residual function d,, affect transfer performance.

17

Under review as a conference paper at ICLR 2026

F.1 FORWARD DYNAMICS INPUTS

In the default DRAW architecture, fy is conditioned on the previous latent state z;_1, the previous
action a;—_1, and the additional input of the previous latent-state dynamic distribution 641 (or a{“‘ll
for ReDRAW). In DMC environments, we compare this choice of inputs against two alternatives: (1)
the minimal sufficient set (2;—1, a;—1), and (2) conditioning on the encoder latent-state distribution
ot = qp(z¢|x). Figure 10a presents the performance of these different dynamics functions on
source environments during DRAW Plan2Explore pretraining, while Figure 10b shows their transfer

performance on target environments during offline ReDRAW adaptation.

During pretraining, most input choices yield similar source-task performance. However, during
adaptation, the default configuration, fy(z¢—1,¢—1, a:—1), consistently outperforms the alternatives,
achieving and maintaining higher performance in the target environments. We hypothesize that
because including ;1 during world model pretraining facilitates gradient propagation over multiple
timesteps, this inclusion enables the learning of features that improve long-term predictions.

This advantage is achieved without increasing the residual’s complexity, which could have otherwise

negatively impacted transfer performance. During ReDRAW adaptation, 67¢%} serves as an input to
fo(zi—1, 6{6“11, at—1). While conditioning on 6{6‘”1 increases the dimensionality of fy’s input space, it

has minimal impact on the complexity of the residual prediction §,,. Since el is already an output
of the calibrated dynamics,

67 = softmax(fo(zi—1, 67, ar—1) + 6y (2e—1, a-1)),

it can be included as an input to fy without increasing the dimensionality of the input or output spaces
of 0. This helps maintain the residual function’s simplicity, reducing the risk of overfitting.

Ablation on DRAW Dynamics Inputs (Pretraining)

Cup Catch Finger Turn Hard Pendulum Swingup Reacher Easy

c 500
E
& 400
@
<)
< 300
g
< 200
2
S 100
©
4
w 0

0

Source Environment Steps Source Environment Steps Source Environment Steps Source Environment Steps

f(z-1,61-1,81) (Default) flz-1,ai1)

Fer,0sa1)

(a) DMC source environment average return during DRAW pretraining with alternate dynamics function inputs.

Ablation on DRAW Dynamics Inputs (Adaptation)

Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)
c 500
El
& 400
)
300
g
< 200
£
S 100
g
w 0
Offline Updates Offline Updates Offline Updates Offline Updates

F(z11,67Y, a11) (Default) fzo1,ai0)

f(z-1,01-1,00-1)

(b) DMC target environment average return during ReDRAW residual adaptation with alternate dynamics
function inputs.

Figure 10: Comparison of different dynamics function architectures of DRAW during pretraining (a)
and adaptation (b).

18

Under review as a conference paper at ICLR 2026

F.2 RESIDUAL INPUTS

Next, in Figure 11, we compare the target environment transfer performance of our default residual
function, & (21, a;—1), against two alternative input configurations. The first, oy, (2,1, area ay),
conditions on the same inputs as fp, while the second, 0, (64, z;—1,a¢—1), additionally incorpo-
rates the original source environment dynamics predictions made by the frozen forward belief,

po (2t zi—1, 67 ar_1).

Although the additional inputs, 67} and 6, could theoretically provide useful information for the
residual prediction task, we observe that their inclusion leads to a decrease in target-environment
performance. We hypothesize that conditioning the residual function on an added real-valued vector,
alongside the discrete latent-state z;_1, significantly expands the space of representable residual
functions. Given the limited dataset, this increased complexity likely impairs generalization to the
target domain.

This result underscores the importance of bottlenecking state information through the compressed
discrete representation z; for effective low-data adaptation.

Ablation on Residual Inputs
Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)

500

W

Evaluation Average Return

M 2M 3m 0 M 2M 3m 0 ™ 2M 3m

o

0 wm M 3m
Offline Updates Offline Updates Offline Updates Offline Updates

—— 84211, a,-1) (Default) (21,67 @ 1) — 84(61,21-1,011)

Figure 11: Comparison of different residual inputs for ReDRAW.

G LATENT RESIDUAL VS NEW DYNAMICS FUNCTION

In this section, we compare the ReDRAW latent-state dynamics residual with an alternative adapta-
tion method that also leverages frozen dynamics predictions learned from the source environment.
Specifically, we contrast using a residual with learning a new replacement dynamics function, g,
which optionally conditions on the outputs of the original source environment dynamics fy. We
evaluate three possible definitions for g,:

1. &f“’ = gy (21—1,at—1), where g, conditions on the same inputs as the ReDRAW residual.

2. 6;“’1 = gy (6, 2t—1, at—1), where gy additionally conditions on the frozen DRAW predicted
source dynamics distribution, 6; = pg(;|2i—1, 6%, a;_1).

3. 6l = 9y (3¢, 2¢—1, a1—1), where g, additionally conditions on a discrete latent-state
sample from the frozen DRAW source dynamics predictions, 2; ~ MultiCategorical(éy)
as in (5).

To train the replacement dynamics function on the offline M, dataset, we employ a dynamics loss
term equivalent to (20) used by ReDRAW:

T
Eq('(/)) = qu(zl:T\C’m) Z D[qé(zt|xt)|‘gd)(é?gaq.)] 21

t=1

Figure 12 presents the average target environment return during adaptation for ReDRAW and
all considered replacement dynamics functions. The results show that ReDRAW outperforms all
variations of the replacement function baseline, including those that incorporate predictions from the
frozen DRAW source dynamics function.

19

Under review as a conference paper at ICLR 2026

Residual vs. Learning New Dynamics Function
Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)

c
]
]
[i4
o
g
g
<
c
2
T /\,O_A._w-\.._.&c
2
[!
2
it
0 M 2m 3m 0 M M 3m 0 M M 3m 0 ™ M 3m
Offline Updates Offline Updates Offline Updates Offline Updates

ReDRAW (Ours) gp(z-1,a01) = gy(Ze, 21,001) 9¢(01,2-1,a01)

Figure 12: Comparison with a replacement dynamics function g,, with the same small capacity as the
residual network.

From this experiment, we conclude that the residual operation, which modifies DRAW dynamics
predictions without conditioning on them, is a key factor in achieving effective generalization to the
target environment.

H DMC COMPARISON WITH FRAMESTACKING

Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)

e S NS AL SR

Evaluation Average Return
n
3
8

0 1Y) 2M 3m 0 m 2M 3Mm 0 m M 3M 0 M M 3M

Offline Updates Offline Updates Offline Updates Offline Updates

ReDRAW with image and velocity vector (default) ReDRAW wiith framestacked images

Figure 13: Framestacking images achieves similar transfer performance to a single image + a joint
velocity vector in most but not all environments.

In DMC and Duckiebots environments, we ensure full observability by pairing the image state
representation with a vector of joint velocities. So long as the time-delta between images remains
consistent across source and target environments, framestacking should usually be a viable alternative
to convey velocity information. In Figure 13, we compare ReDRAW transfer performance with the
default state+velocity vector configuration against framestacking the previous and current image. In
all DMC environments except Pendulum Swingup (Actions Reversed), ReDRAW achieves virtually
the same performance with either input modality. Curiously, ReDRAW fails to transfer in the
framestacked Pendulum Swingup (Actions Reversed) environment despite matching the default
method’s performance when pretraining in the source environment (Figure 7). Possible causes for this
could include Plan2Explore adopting different (and insufficient) source environment data collection
strategies with a different state representation, inadequate image fidelity to capture precise velocity
behavior with the small target environment dataset, or a more entangled latent-state representation
due to decoding a higher-dimensional state. This experiment highlights potential directions for future
improvements to ReDRAW.

I DMC EXPERIMENT DETAILS

The state spaces for the DMC environments in this work consist of an image of the robot paired with
a vector of egocentric joint velocities. We use an action repeat of two, meaning that each episode
consists of 500 decision steps, equivalent to 1000 environment steps. Additionally, to preserve
state-based rewards, we do not sum rewards over the environment steps skipped due to action repeat.

20

Under review as a conference paper at ICLR 2026

Below, we describe each pair of source and target environments used in our DMC experiments. The
source environment corresponds to the original DMC environment, while each target environment
has modified dynamics:

e Cup Catch: The agent controls a cup to catch a ball tethered by a string. In the target
environment, a constant horizontal wind alters the ball’s trajectory, requiring the agent to
adapt by compensating for this external force.

* Finger Turn Hard: The agent rotates a hinged spinner to a specified goal orientation. In
the target environment, an external torque continuously drives the spinner, forcing the agent
to counteract this disturbance to maintain control.

* Pendulum Swingup: The agent swings a pendulum to an upright position. In the target
domain, action effects are reversed, requiring the agent to invert its control policy.

* Reacher Easy: The agent maneuvers a two-link arm to reach a target position. As in
Pendulum Swingup, actions are inverted in the target environment, posing a challenge for
direct policy transfer.

J HYPERPARAMETERS

We implement DRAW and ReDRAW code as a modification to the official DreamerV3 implementa-
tion [12]. Except where otherwise stated, we use DreamerV3 default hyperparameters for all methods,
including a batch size of 16, batch length of 64, and learning rates of 1 x 10~ for the world model
and 3 x 1075 for the actor and critic. Additional parameters specific to our method or experiments
are listed below.

Table 4: Modified or newly introduced hyperparameters used in experiments.

Hyperparameter Value
pretraining replay buffer size le7
online train ratio 512
all methods Encoder/Decoder CNN Depth 32
Encoder/Decoder MLP hidden layers 2
MLP hidden units 512
image size 64x64x3
K (number of categorical distributions) 256
N (number of categorical classes) 4
imagination horizon for actor-critic training 40
gpred }2
dyn .
DRAW/ReDRAW 5rzp 05
residual learning rate le-2
forward dynamics MLP hidden layers 1
residual MLP hidden layers 1
residual MLP hidden units 256

K COMPUTE RESOURCES

All experiments were performed on a server with 2x AMD EPYC 7763 64-core processors, 1TB
RAM, and 8x NVIDIA RTX A4500 GPUs each with 20GB of VRAM.

Each individual experiment ran on a single GPU. With the exception of Duckiebots per-minibatch
image augmentation, which took 30-40 CPU cores, most experiments required less than 8 CPU cores.
Plan2Explore pretraining experiments typically ran for 3-6 days, using less than 100GB of RAM,
and transfer-learning experiments typically ran for 1-3 days, using less than 30GB of RAM.

21

Under review as a conference paper at ICLR 2026

L LARGE LANGUAGE MODEL USAGE

Large Language Models (LLMs) were used to provide sentence-level editing suggestions while
writing this paper.

22

	Introduction
	Preliminaries
	Related Work
	Problem Definition

	Method
	DRAW Architecture and Pretraining
	Adaptation via Latent Dynamics Residuals

	Experiments
	DeepMind Control Experiments
	DMC Domains
	Comparison with Finetuning
	Data Policies and Quantity

	Duckiebot Sim-to-Real Transfer
	Bridging the Sim-to-Real Vision Gap
	Transferring to the Real Robot

	Limitations and Future Work
	Actor-Critic Training and Deployment
	Extended Related Work
	Transferring Dynamics with Explicit Representations
	World Models with Latent State Spaces
	Domain Randomization
	Offline RL

	Duckiebots Experiment Details
	Comparison With Physics Domain Randomization
	Learning Curves During Pretraining
	Architectural Ablations
	Forward Dynamics Inputs
	Residual Inputs

	Latent Residual vs New Dynamics Function
	DMC Comparison with Framestacking
	DMC Experiment Details
	Hyperparameters
	Compute Resources
	Large Language Model Usage

