
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTING WORLD MODELS WITH
LATENT-STATE DYNAMICS RESIDUALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulation-to-reality reinforcement learning (RL) faces the challenge of reconciling
discrepancies between simulated and real-world dynamics, which can degrade agent
performance. When real data is scarce, a promising approach involves learning
corrections to simulator forward dynamics represented as a residual error function,
however this operation is impractical with high-dimensional states such as images.
To overcome this, we propose ReDRAW, a latent-state autoregressive world model
pretrained in simulation and calibrated to a target environment through residual
corrections of latent-state dynamics rather than of explicit observed states. Using
this adapted world model, ReDRAW enables RL agents to be optimized with
imagined rollouts under corrected dynamics and then deployed in the real world.
In multiple vision-based DeepMind Control Suite domains and a physical robot
visual lane-following task, ReDRAW effectively models changes to dynamics and
avoids overfitting in low data regimes where traditional transfer methods fail.

1 INTRODUCTION

Training robot control policies with reinforcement learning (RL) in real-world environments is
inherently expensive, time-consuming, and risky because it requires extensive interactions with
physical systems. Simulation provides a promising alternative as it offers a controlled, cost-effective,
and parallelizable setting for generating data and training capable policies. However, leveraging
simulated environments effectively is challenging due to inaccuracies in their representation of
agent observations and dynamics. These inaccuracies create a sim-to-real gap, where simulated
environments fail to correctly capture every relevant detail of real-world physics. This gap arises
when real-world dynamics are only partially understood or are too expensive to model accurately. As
a result, agents trained in simulation often struggle to successfully transfer their policies directly to
real-world settings without additional adaptation [20].

One approach to addressing this gap is to use a small amount of real-world data to learn corrections
to simulated transition functions, known as residual dynamics corrections. These corrections adjust
the simulated dynamics to better match the real world, allowing for more accurate training of control
policies [20; 35; 10]. However, this approach relies on the ability to efficiently learn corrections,
which is difficult when the state information is represented in high-dimensional formats such as
images. In these cases, significant feature engineering is often required to extract compact and
meaningful state representations for learning residuals.

This work introduces a novel method for learning residual dynamics corrections directly in the
latent state space of learned world models, eliminating the need for explicit feature engineering.
Specifically, we build on latent-state world models such as Dreamer [13; 14; 15] that encode high-
dimensional observations into compact latent states. These latent states can then be used to predict
future dynamics, rewards, policy values, and optimal actions. World models enable RL agents to
gather experience using synthetic trajectories in latent space, significantly reducing the need for
real-world interactions.

Focusing on fully-observable robot domains, we propose a Markov Decision Process (MDP) world-
model architecture, DRAW (Dynamics-Residual Adaptable World model), that encodes observations
solely into a discrete latent state representation that better supports data-efficient transfer learning.
After pretraining DRAW on simulated data, its weights are frozen to provide a fixed latent-state space
during adaptation. A small offline dataset of real-world trajectories is then used to learn a residual

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Forward
Dynamics

(frozen)

Step 1. Pretrain World Model in Simulation

Minimize KL

Decoders

Encoder

Decoders

Encoder

Forward
Dynamics

Minimize KL

Decoders

Encoder

Forward
Dynamics

Encoder
(frozen)

Minimize KL

Dynamics
Residual

+
Add Residual

to Logits

Step 2. Train Dynamics Residual with Real Data

Encoder
(frozen)

.

Figure 1: (Left) The DRAW world model is trained to encode states into a discrete latent represen-
tation without additional components, from which states, rewards, terminations, and future latent
states are predicted. An RL agent can be trained in the world model via synthetic rollouts. (Right)
The DRAW world model is frozen. Using a small reward-free dataset, world model dynamics are
calibrated to a target environment by training an added residual error correction on latent state
dynamics predictions. The RL agent can then be trained under rectified dynamics.

function in this fixed latent space. This function corrects the world model’s dynamics, enabling it to
more accurately represent real-world behavior. We refer to this residual-calibrated model as Rectified
DRAW (ReDRAW). RL agents can be trained with ReDRAW using imagined rollouts, producing
policies that perform well in the real environment. Importantly, we do not require reward labels from
the real environment to make this calibration, extending ReDRAW’s applicability to real scenarios
where rewards can be difficult to measure.

We evaluate ReDRAW on four vision-based DeepMind Control Suite (DMC) environments and
further demonstrate the real-world usability of ReDRAW in sim-to-real applications by adapting
from simulation to a physical real-time visual-navigation task on a Duckiebot robot [33]. Our
experimental results suggest that ReDRAW outperforms traditional transfer learning methods in
small data regimes to adapt to mismatched dynamics and avoids overfitting without early stopping. In
real robot experiments, ReDRAW successfully performs simulation-to-reality dynamics adaptation
with only 10K real steps (∼17-minute demonstration), transferring from simulation with synthetic
visual inputs to real-world images collected on the robot.

CONTRIBUTIONS

1. We propose a new world-model architecture for dynamics adaptation in fully observable
visual-control domains. DRAW encodes all state information into a single discrete latent
space suitable for transfer in low-data regimes.

2. We demonstrate that the ReDRAW architectural extension can learn residual corrections
in the latent space of DRAW to efficiently transfer between domains with mismatched
dynamics, using only a small amount of offline target-domain data without reward labels.

3. We show that our method adapts dynamics from simulation to reality while also zero-shot
transferring latent-state encoders from synthetic to real robot images.

4. Additionally, we open-source the code for our Unreal Engine [8] Duckiebot visual-control
simulator to help facilitate further sim-to-real transfer research. Code and videos are
available at https://redraw-research.github.io/project/.

2 PRELIMINARIES

2.1 RELATED WORK

Many existing methods calibrate or learn corrections to explicit state-transition models to better
represent real dynamics during training [3; 2; 28], including through the use of error-correcting

2

https://redraw-research.github.io/project/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

residuals on simulation dynamics [20; 35; 10]. A limitation is that such explicit-state-based methods
break down when all or part of the state representation is high-dimensional (e.g., images).

Latent-state world models like Dreamer [13; 14; 15] model dynamics and rewards for environments
with high-dimensional input spaces in a condensed learned state representation, enabling sample-
efficient training of RL agents within this compressed model of the environment. In Section 4.1.2, we
show that Dreamer is prone to overfitting when pretrained on a source environment (a simulation) and
finetuned on a small offline dataset of transitions from a target environment with modified dynamics
(the real world). This is a major issue when real-world evaluation is logistically challenging and only
doable in limited quantities.

In this work, for fully observable environments, we find that along with a few other architectural
changes (Section 3.1, Appendix F.1), representing the latent state with only a discrete representation
(as opposed to e.g., with a GRU state) allows the world model to be frozen after pretraining and
its latent-state dynamics calibrated using an added error-correcting residual component. Compared
to DreamerV3 [15], on the same offline datasets, we see a remarkably improved robustness to
transfer-time overfitting with the proposed ReDRAW method.

Other approaches like physics domain randomization [34; 29; 7] and system-parameter identifica-
tion [37; 1] use a configurable simulator along with expert knowledge of how simulated and real
dynamics may differ to train agents that are robust to a variety of real physics. Often, a simulator
cannot represent real dynamics under any parameterization, and differences between sim and real
physics may not be known. For ReDRAW, we do not rely on configurable simulator physics or
privileged insight into the discrepancies between environment dynamics. Offline RL techniques
[25; 9; 26] can also learn policies from fixed real datasets, but they require real reward labels, which
we assume unavailable since rewards can be challenging to measure in many real-world settings.

Due to the assumptions of states with high-dimensional image components, fixed simulator physics,
and no real-reward labels, few existing works are meaningfully comparable in our setting. Ex-
periments in this work primarily compare the ReDRAW adaptation method to other methods for
fine-tuning a latent-state world model. In Appendix D, we also compare physics domain randomiza-
tion on our robot sim-to-real task, which performs proportionally to how well the simulator can be
configured to represent a distribution of potential real physics conditions. An extended related-work
discussion is available in Appendix B, including a comparison of the high-level assumptions made by
ReDRAW with other methods in Table 2.

2.2 PROBLEM DEFINITION

We consider two MDPs, denoted as Msim and Mreal, which share the same state space, action space,
and reward function, but differ in their transition dynamics. Formally, each MDP is defined by a tuple
Mi = (X,A,R, γ, Pi), with a shared state space X , action space A, reward function upon entering a
state R : X → R, discount factor γ ∈ [0, 1), and stochastic transition function Pi for i ∈ {sim, real}.

Our objective is to find a policy πreal that achieves high expected discounted cumulative reward in
Mreal, Jπ,real = Eπ,Preal [

∑∞
t=0 γ

tR(xt)]. To capture logistic challenges common in real robot settings,
we have access to a limited amount of offline reward-free data (xt, at, xt+1) from Mreal. To make
up for this, we can collect a large amount of online reward-labeled experience (xt, at, xt+1, rt+1)
in Msim. Our method aims to produce a well-performing agent in Mreal by learning a compressed
latent-state world model to emulate the simulation’s dynamics and reward functions. We then calibrate
this world model’s latent dynamics on the limited real transition data such that a performant agent
can be trained by collecting synthetic experience in the rectified world model.

Finally, sim-to-real transfer poses two challenges: adapting dynamics and transferring perception.
Our proposed ReDRAW method addresses dynamics adaptation. For perception, we apply standard
zero-shot techniques like image augmentation and camera-parameter randomization to ReDRAW
and every baseline, outlined in Section 4.2.1.

3 METHOD

In this section, we describe our MDP world model architecture DRAW (Figure 1, Left) and its
counterpart with calibrated dynamics, ReDRAW (Figure 1, Right). We first define the DRAW model,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

how it represents latent states and dynamics, and how it is trained. Then we describe how we facilitate
sample efficient transfer learning of dynamics by training a residual error correction on latent-state
transitions, creating the ReDRAW world model.

3.1 DRAW ARCHITECTURE AND PRETRAINING

We use DRAW to model an MDP by encoding state inputs into a compressed stochastic latent
representation using variational inference. Similar to DreamerV3 [15], our latent representation is
trained via objectives for state and reward reconstruction along with future latent-state prediction.
We then train an actor–critic reinforcement-learning agent on latent-state inputs by autoregressively
rolling out synthetic trajectories as experience and using reconstructed rewards as a learning signal.
Finally, the actor can be deployed to the environment by encoding immediate state inputs as latent
states and providing these encodings to the actor. Figure 1 (Left) depicts connections during DRAW
world model training, while Figure 5 in Appendix A depicts actor–critic training and deployment.

We model the latent state purely as a single stochastic multi-categorical discrete variable zt ∈ Z . zt
is a K-tuple of conditionally independent categorical variables, each represented as a 1-hot vector
of length N . We denote zt as the latent state encoded from the immediate state xt (1) and ẑt as the
latent state predicted via world model dynamics from the previous latent state and action (5). We
denote ût ∈ RK×N as the logits for the multi-categorical distribution of ẑt and σ̂t = softmax(ût) as
the K concatenated normalized probability vectors. To estimate gradients in the sampling step for zt
or ẑt, we use the straight-through estimator [4; 14].

By compressing all state information into a single discrete representation zt, we aim to provide a
well-structured encoding of the underlying state xt, enabling the learning of generalizable functions,
such as residual corrections, from limited data using zt as input. Illustrated in Figure 1 (Left), we
define our DRAW world model and actor–critic agent, respectively parameterized by θ and ϕ, as:

State Encoder zt ∼ qθ(zt|xt) (1)
Forward Dynamics ût = fθ(zt−1, σ̂t−1, at−1) (2)

Forward Belief σ̂t = pθ(ẑt|zt−1, σ̂t−1, at−1) (3)
= softmax(ût) (4)

Forward Sample ẑt ∼ MultiCategorical(σ̂t) (5)

Reward r̂t ∼ pθ(r̂t|zt) (6)
Continuation ĉt ∼ pθ(ĉt|zt) (7)

State Decoder x̂t ∼ pθ(x̂t|zt) (8)
Policy at ∼ πϕ(at|zt) (9)

Value Function vt = Vϕ(zt) (10)

We represent all functions in DRAW as multi-layer perceptrons (MLPs) except for image compo-
nents of the state encoder and decoder, which are convolutional (CNNs). Interestingly, we found
that providing σ̂t−1 as an input to the forward dynamics function fθ significantly increased our
downstream adaptation performance. We speculate that this is because σ̂t−1 helps provide a gradient
signal for learning features relevant for long-term dynamics predictions without adding additional
dimensionality to state prediction outputs. We provide ablations on this design choice in Appendix F.1.

We optimize DRAW on Msim with a prediction loss Lpred to reconstruct states, rewards, and episode
terminations, as well as a dynamics loss Ldyn and a representation loss Lrep to learn latent-state
dynamics under a predictable representation. Drawing subtrajectories ζ from a buffer of interaction
experience, the world-model loss function L(θ) is:

L(θ) = Eqθ(z1:T |ζ)

[
T∑
t=1

βpredLtpred(θ) + βdynLtdyn(θ) + βrepLtrep(θ)

]
, (11)

where T is the length of ζ, and for t = 1, . . . , T :

Ltpred(θ)=̇− ln pθ(xt|zt)− ln pθ(rt|zt)− ln pθ(ct|zt) (12)

Ltdyn(θ)=̇[D[qθ̄(zt|xt)||pθ(ẑt|zt−1, σ̂t−1, at−1)]]1 (13)

Ltrep(θ)=̇[D[qθ(zt|xt)||pθ̄(ẑt|zt−1, σ̂t−1, at−1))]]1, (14)

withD the Kullback–Leibler divergence, [·]1 denoting clipping to 1 any value below 1, corresponding
to free bits [23], and θ̄ a stopped-gradient copy of θ.

We train the actor–critic agent with the same procedure and losses as DreamerV3, providing the
DRAW world model state ẑt as agent inputs during imagined rollouts and zt during data collection

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and evaluation. When training the actor–critic, we seed synthetic rollouts with starting states x0
drawn from the same experience buffer as used for world-model training. We do not backpropagate
value gradients through dynamics, and we train the policy using the Reinforce objective [41] with
normalized returns and critic baselines [15].

We alternate mini-batch updates between the world model and the actor–critic. During source
environment pretraining, updates are interleaved with online data collection. Since we cannot fully
predict which trajectories in Msim will best facilitate learning transferable features and dynamics for
Mreal, we employ Plan2Explore [36] to provide intrinsically motivated exploration, encouraging the
collection of a highly diverse set of source-environment trajectories.

3.2 ADAPTATION VIA LATENT DYNAMICS RESIDUALS

After pretraining the DRAW world model online in the Msim environment with a large amount of
data, we propose the ReDRAW architecture and method to use a small offline dataset of transitions
from the target environment to calibrate DRAW’s dynamics to match Mreal using a latent-state error
residual.

We model the dynamics residual using an MLP δψ that predicts a correction êt to the forward-
dynamics logit vector ût. This correction produces a modified transition distribution σ̂real

t , from
which forward latent-state predictions ẑreal

t are sampled to approximate Mreal. We formulate the
calibrated dynamics as:

ût = fθ(zt−1, σ̂
real
t−1, at−1) (15)

êt = δψ(zt−1, at−1) (16)
σ̂real
t = pθ,ψ(ẑ

real
t |zt−1, σ̂

real
t−1, at−1) (17)

= softmax(ût + êt) (18)

ẑreal
t ∼ MultiCategorical(σ̂real

t). (19)

To train the residual on real data, we freeze the world-model weights θ and only optimize the
parameters ψ of the residual network δψ . In the transfer phase, we only optimize the actor–critic agent
and a new loss Lδ(ψ) on the rectified world-model dynamics. Our objective is to predict corrections
êt of ût so that our new dynamics predictions σ̂real

t match the observed encoder distribution over
latent states collected in Mreal. The loss function for the residual is:

Lδ(ψ) = Eqθ̄(z1:T |ζreal)

[
T∑
t=1

D[qθ̄(zt|xt)||pθ̄,ψ(ẑreal
t |zt−1, σ̂

real
t−1, at−1)]

]
. (20)

Since we consider fully observable environments, the target encoder latent-state distribution qθ(zt|xt)
depends solely on xt and can be frozen after pretraining in Msim if the collected source-environment
data adequately covers the state space. As a result, the latent-state representation for ReDRAW in
Mreal is unchanged from DRAW in Msim.

Notably, due to this unchanged latent-state representation between Msim and Mreal, the frozen DRAW
Msim reward function pθ(r̂t|ẑt) can be reused in world-model rollouts to train the ReDRAW agent
with pθ(r̂t|ẑreal

t) in Mreal, eliminating the need for reward data from Mreal. This is particularly
beneficial since building a reward recording system in real-world scenarios, such as robotics, often
requires costly and complex setups like additional sensors or feedback mechanisms, which may be
infeasible in certain environments.

Finally, given the ReDRAW world model with dynamics adapted to match Mreal, the actor–critic can
learn a high-performing policy for the new environment by training in the world model under the new
rectified dynamics, using ẑreal

t as input during training. In our experiments, we alternate agent and
world-model training during adaptation to measure the agent’s performance as world model training
progresses.

4 EXPERIMENTS

We evaluate ReDRAW in two distinct settings: (1) adapting from DeepMind Control (DMC) [38]
environments to modified counterparts with changed physics, and (2) transferring from a simulation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in Unreal Engine to a real robot visual lane-following task using the Duckietown [33] platform. Our
experiments address three main questions:

1. How do latent-space residuals compare to traditional finetuning methods in correcting
world-model dynamics under limited target-domain data?

2. How do data quantity and collection policies influence transfer performance?
3. Can ReDRAW effectively close the sim-to-real gap in a robotics task with visual inputs?

4.1 DEEPMIND CONTROL EXPERIMENTS

4.1.1 DMC DOMAINS

We first consider four pairs of source and target environments from the DMC suite, each pair having
the same state and reward structure but mismatched dynamics. We use original environments from
DMC as sources, while the target environments introduce physics modifications such as applied
wind, external torque, or reversed actions. For a detailed description, refer to Appendix I. These
differences in dynamics between source and target environments are substantial enough to require
policy adaptation for optimal performance. Although dynamics differ between source and target, the
state spaces, reward functions, and episode termination conditions remain unchanged. To maintain
full observability, we represent the state as an image paired with a vector of joint velocities. In
Appendix H, we also demonstrate comparable performance using framestacking for the same purpose.

To pretrain on each source environment, we collect 9 million environment steps (4.5e6 decision
steps with an action repeat of 2) using Plan2Explore [36], which promotes diverse state visitation
rather than narrowly exploiting the original environment’s reward function. After this phase, we
adapt to each target environment using a small offline dataset of 40K decision steps (equivalent to 80
episodes), gathered by an expert policy in the target domain.

4.1.2 COMPARISON WITH FINETUNING

We compare ReDRAW with several baselines that attempt to adapt a pretrained world model to the
new domain. Critically, except where noted with *, the methods we test do not use reward labels or
train with a reward-reconstruction objective during the adaptation phase. These baselines include:

DRAW/DreamerV3 Zeroshot: We take the source-trained DRAW or DreamerV3 agent and deploy
it in the target environment without any adaptation.

DRAW/DreamerV3 Finetune: The world model and agent are finetuned on the target-domain
offline dataset. To mitigate overfitting on the small dataset, we freeze the world model encoder and
decoder parameters and only retrain the agent and dynamics components. For DRAW this entails
optimizing only fθ with Ldyn. Analogously, for DreamerV3, the RSSM recurrent prior and posterior
components are updated while leaving the observation feature embeddings and decoders unchanged.

DRAW/DreamerV3 Finetune (No Freeze)*: Every component, including the encoder and decoder,
is finetuned using all original world model loss terms. These are the only two baselines requiring
access to reward data during adaptation.

DRAW New Dyn: The entire world model is frozen after pretraining, but instead of learning a
residual addition to fθ, we train a new dynamics function σ̂real

t = gψ(σ̂t, zt−1, at−1) with a similar
capacity to δψ and conditioned on the next-latent-state distribution σ̂t predicted by the frozen source
dynamics (Eq. 3). This method demonstrates an alternate way to leverage frozen dynamics predictions
learned from the source environment. Other variations of this baseline are investigated in Appendix G.

Figure 2 shows the returns in each target domain as a function of offline updates on each target
dataset. Zero-shot deployment without adaptation fares poorly in these altered dynamics. Finetuning
approaches initially improve in some cases but all eventually overfit to the small dataset. The No
Freeze* variations are quicker to overfit than their partially frozen counterparts.

In contrast, ReDRAW’s latent-space residual method attains a sustained level of high-performance
and avoids overfitting during the 3 million updates (1-3 days of training) we test on. This highlights
a critical benefit of the ReDRAW transfer method: once ReDRAW reaches high performance in
the target domain, it demonstrates a remarkable resistance to performance degradation. ReDRAW’s

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1M 2M 3M

0

100

200

300

400

500

0 1M 2M 3M 0 1M 2M 3M 0 1M 2M 3M

ReDRAW (Ours) DRAW Finetune DRAW Finetune (No Freeze)* DRAW Zeroshot
DRAW New Dyn Dreamer Finetune Dreamer Finetune (No Freeze)* Dreamer Zeroshot

Offline Updates Offline Updates Offline Updates Offline Updates

E
va

lu
at

io
n

A
ve

ra
ge

 R
et

ur
n Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)

Figure 2: Average evaluation episode return transferring from each DMC environment to a modified
variant of it given 40K offline target environment transition samples. Shaded regions indicate the
standard error of the mean over 4 seeds for each method. ReDRAW consistently achieves high returns
in the target environments and avoids overfitting.

ability to avoid overfitting for long periods of time makes it highly applicable to sim-to-real scenarios
where validation testing on a real robot often cannot practically be done repeatedly and educated
guesses need to be reliably made regarding stopping conditions of the training process.

ReDRAW excels at maintaining a high degree of validation performance by preserving existing
dynamics predictions learned in simulation where data is abundant and using the limited target data
to learn a low-complexity adjustment to those predictions. Comparing ReDRAW with DRAW New
Dyn, we see that while both approaches utilize both the previous state and the frozen simulation
dynamics predictions, the residual operation appears to play a key role in limiting the complexity of
the changes made to the original world model dynamics, allowing ReDRAW to avoid overfitting.

4.1.3 DATA POLICIES AND QUANTITY

0 1M 2M 3M

0

100

200

300

400

500

0 1M 2M 3M 0 1M 2M 3M 0 1M 2M 3M

Plan2Explore -> 40K Expert Demo Plan2Explore -> 20K Expert Demo Plan2Explore -> 10K Expert Demo
Plan2Explore -> 40K Random Demo Online Exploit Exploration -> 40K Expert Demo

Offline Updates Offline Updates Offline Updates Offline Updates

E
va

lu
at

io
n

A
ve

ra
ge

 R
et

ur
n Cup Catch (Wind Applied to Ball) Finger Turn Hard (Torque Applied) Pendulum Swingup (Actions Reversed) Reacher Easy (Actions Reversed)

Figure 3: Impact of offline adaptation dataset size and source/target domain data collection strategies
on ReDRAW. Expert demonstrations consistently provide useful target domain data for adaptation.
Collecting diverse simulation experience with a method like Plan2Explore is essential for good
transfer performance.

Figure 3 examines the effect of data collection on ReDRAW’s transfer performance by ablating: (i)
the diversity of source-domain experience, contrasting Plan2Explore simulation data collection with
the exploit policy, and (ii) the quality and quantity of target-domain transitions, comparing expert
demonstrations versus random actions and varying expert dataset sizes (40K, 20K, 10K). In our
default configuration (Plan2Explore → 40K Expert Demo), ReDRAW attains the strongest transfer
performance.

Source-Domain Data: Collecting source trajectories with Plan2Explore consistently yields high
returns after adaptation. When we replace Plan2Explore with the exploit policy as the pretraining
data collection policy, critical source transitions that may help in the prediction of the target dynamics
are missed and transfer performance is reduced significantly. This demonstrates that exploratory
breadth in simulation rather than narrowly optimizing the source reward is essential for learning
latent features that are useful for downstream residual corrections to match altered physics.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Digital Twin Simulation (b) Real Robot Environment (c) Sim State Image (d) Real State Image

Figure 4: (a) Digital-twin simulation constructed using Gaussian splatting [21]. (b) Real-world robot
lane-following environment. (c) Simulation state image component. (d) Real-world state image
component. The agent is tasked to drive quickly around the track while staying near the lane center
using an egocentric camera and velocity sensor. We train our DRAW world model in simulation
and calibrate its dynamics with ReDRAW on a small dataset of human demonstrations with mixed
optimality, producing a successful agent in the real environment.

Target-Domain Data: Adapting with expert demonstrations consistently yields effective transfer,
while using a dataset of random actions can either help or hurt transfer performance in comparison.
We speculate that expert data is useful for modeling pertinent dynamics for performing well while
high-entropy actions may additionally be useful in modeling failure scenarios for the agent to avoid.
Investigating the quantity of target-domain data, reducing the size of the expert dataset leads to a drop
in average return with 20K samples and a further drop along with overfitting in Cup Catch with 10K
samples. Taken together, these results indicate a practical lower bound on required expert data for
robust transfer with ReDRAW.

4.2 DUCKIEBOT SIM-TO-REAL TRANSFER

Finally, we evaluate ReDRAW in a sim-to-real robotic lane-following task using the Duckietown
platform [33]. Here, the agent controls a wheeled robot to navigate around a track while remaining
centered in its lane. The state space includes a forward-facing camera image plus egocentric forward
and yaw velocity values, and actions are defined as continuous forward and yaw target velocities
in [−1, 1]. To provide a simulation to transfer from, we construct an environment in Unreal Engine
using a Gaussian splat [21] reconstruction of the robot’s environment to mimic the robot’s state space.
Figures 4a and 4b show the digital twin and real environment, respectively. We also implement the
simulation with a rough approximation of real dynamics, although details like precise handling while
driving and control rate (6Hz sim vs 10Hz real) still differ from the real robot.

The Duckiebot receives rewards proportional to its projected velocity along the lane-center path
but instead incurs penalties when it deviates too far from this path. When moving forward, we
also penalize the agent proportionally to its yaw velocity to encourage smooth driving. Simulation
episodes terminate either when the robot leaves the track, with a large penalty applied, or after 200
steps. Exact experiment details are presented in Appendix C.

4.2.1 BRIDGING THE SIM-TO-REAL VISION GAP

Despite efforts to recreate the real environment, visual disparities between the simulation and real
environment still exist (Figure 4c vs 4d). Although our main focus in this paper is adapting dynamics,
we employ visual randomization [40] along with image augmentation [5] for all compared methods
to bridge the sim-to-real vision gap. Each episode, we randomize the simulation camera’s mounted
location on the robot, camera tilt, and its field of view. We also apply image augmentations at
train time to both sim and real image inputs to learn world-model image encoders robust to task-
irrelevant features like lighting, color hue, and background furniture placement. Similar to [22],
we train with augmented inputs, but the world-model decoder still reconstructs the original images
as targets in Lpred, thus focusing the latent-space features on task-relevant elements rather than the
irrelevant augmentations we apply. We apply this asymmetric decoding objective to both DRAW
and DreamerV3. ReDRAW trains its residual with augmented inputs but has no decoding objective
during transfer learning since its latent-state representation is fixed.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Mean and SEM performance on the real Duckiebots lane-following task aggregated over 5
episodes each for 4 training seeds. Agents are given 300 steps (30 seconds) to complete a lap from a
fixed starting position. Center Offset denotes distance from the lane center. Absence of a Lap Time
indicates all runs either failing to complete a lap or terminating early by driving off the track.

Transfer Sim to Unmodified Real Transfer Sim to Actions-Reversed Real

Method Avg Dense
Reward (↑)

Avg Lap
Time (sec) (↓)

Avg Center
Offset (↓)

Avg Dense
Reward (↑)

Avg Lap
Time (sec) (↓)

Avg Center
Offset (↓)

Dreamer Zeroshot -1.18 ± 0.23 – 6.86 ± 0.56 -2.35 ± 0.23 – 13.36 ± 1.13

Dreamer Finetune -0.87 ± 0.33 – 5.45 ± 1.55 -1.61 ± 0.57 – 7.75 ± 1.53

DRAW Zeroshot 0.07 ± 0.06 22.41 ± 0.73 5.12 ± 0.41 -2.72 ± 0.42 – 9.39 ± 1.35

ReDRAW (Ours) 0.38 ± 0.02 22.75 ± 0.26 2.47 ± 0.26 0.39 ± 0.03 24.21 ± 1.15 2.10 ± 0.39

4.2.2 TRANSFERRING TO THE REAL ROBOT

We pretrain DRAW and DreamerV3 in simulation using 600K random actions followed by 1.4 million
online steps with Plan2Explore. On the real robot, we collect a small offline adaptation dataset of 1e4
timesteps (∼17 minutes) using human demonstrations employing a mixture of safe random actions
and semi-proficient driving. Table 1 compares performance using this offline dataset to adapt to two
variations of the real environment, unmodified real, where minor physics disparities between sim
and real are the natural result of inaccurate dynamics modeling, and actions-reversed real, where
actions (in adaptation data and deployment) are inverted, requiring large but regular adaptation to
drive successfully. We adapt ReDRAW and DreamerV3 Finetune for 2e5 offline updates. All methods
are evaluated for 5 episodes each over 4 training seeds. We additionally compare to physics domain
randomization, in which the world models and agents are trained with a randomized physics training
regime that other methods do not have access to, in Appendix D.

In unmodified real, DRAW zeroshot is able to successfully drive despite never seeing real data
but incurs low rewards by veering far from the lane center. DreamerV3 zeroshot fails, driving off
the track in all lap attempts. We speculate that DreamerV3 zeroshot fails while DRAW zeroshot
succeeds because DreamerV3’s recurrent model observes out-of-distribution sequences under changed
dynamics, resulting in inaccurate latent-state predictions. DRAW and ReDRAW are non-recurrent in
deployment time and cannot suffer from this same issue. Similar to DMC experiments, DreamerV3
Finetune fails to adapt, possibly due to overfitting, and ReDRAW achieves significantly higher average
dense rewards than DRAW zeroshot by training with corrected dynamics and staying close to the
lane center.

In the more extreme actions-reversed real transfer task, ReDRAW is the only method that successfully
adapts and completes laps on the real robot due to the incompatibility of zero-shot policies to this
environment and the limited real data in the case of DreamerV3 Finetune. These results demonstrate
that ReDRAW can be effectively used to adapt dynamics from simulation to reality using a limited
offline real dataset without rewards, and that ReDRAW can be combined with visual adaptation
methods to do so.

5 LIMITATIONS AND FUTURE WORK

A potential limitation of ReDRAW is that it maintains high target-environment performance over
many updates and avoids overfitting in-part due to the low complexity of the residual component. This
suggests that only conceptually simple changes to dynamics may effectively be modeled with low
amounts of data, warranting future investigation. Our method for collecting a broad set of simulation
training data via Plan2Explore is also heuristic. We would like to investigate the problem of guiding
simulation data collection for better transferability by adopting exploration policies informed by the
offline target-environment data. Finally, we want to explore if residual adaptation methods can be
meaningfully applied to foundation world models, efficiently converting them from generators of
plausible dynamics to generators of specific dynamics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Adam Allevato, Elaine Schaertl Short, Mitch Pryor, and Andrea Thomaz. Tunenet: One-shot
residual tuning for system identification and sim-to-real robot task transfer. In Conference on
Robot Learning, pp. 445–455. PMLR, 2020.

[2] Elena Arcari, Maria Vittoria Minniti, Anna Scampicchio, Andrea Carron, Farbod Farshidian,
Marco Hutter, and Melanie N Zeilinger. Bayesian multi-task learning mpc for robotic mobile
manipulation. IEEE Robotics and Automation Letters, 2023.

[3] Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models
facilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619–629. PMLR, 2021.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[5] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. ISSN 2078-2489. doi: 10.3390/info11020125. URL
https://www.mdpi.com/2078-2489/11/2/125.

[6] Anthony Rocco Cassandra. Exact and approximate algorithms for partially observable Markov
decision processes. Brown University, 1998.

[7] Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned
sim-to-real transfer. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1290–1296. IEEE, 2021.

[8] Epic Games. Unreal engine, 2024. URL https://www.unrealengine.com.

[9] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pp. 2052–2062. PMLR,
2019.

[10] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. Sim-to-real
transfer with neural-augmented robot simulation. In Conference on Robot Learning, pp. 817–
828. PMLR, 2018.

[11] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[12] Danijar Hafner. Dreamerv3: Mastering diverse domains through world modeling. https:
//github.com/danijar/dreamerv3, 2023. GitHub repository.

[13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2019.

[14] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2020.

[15] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[16] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for
continuous control. In The Twelfth International Conference on Learning Representations,
2023.

[17] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model
predictive control. In International Conference on Machine Learning, pp. 8387–8406. PMLR,
2022.

[18] Yiwen Hou, Haoyuan Sun, Jinming Ma, and Feng Wu. Improving offline reinforcement learning
with inaccurate simulators. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5162–5168. IEEE, 2024.

10

https://www.mdpi.com/2078-2489/11/2/125
https://www.unrealengine.com
https://github.com/danijar/dreamerv3
https://github.com/danijar/dreamerv3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[19] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12627–12637, 2019.

[20] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[22] Kyungmin Kim, JB Lanier, Pierre Baldi, Charless Fowlkes, and Roy Fox. Make the perti-
nent salient: Task-relevant reconstruction for visual control with distractions. arXiv preprint
arXiv:2410.09972, 2024.

[23] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

[24] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[25] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in neural information processing systems, 33:
1179–1191, 2020.

[26] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[27] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High
performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470,
2021.

[28] Anton Mallasto, Karol Arndt, Markus Heinonen, Samuel Kaski, and Ville Kyrki. Affine
transport for sim-to-real domain adaptation. arXiv preprint arXiv:2105.11739, 2021.

[29] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[31] Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan, et al. When
to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning.
Advances in Neural Information Processing Systems, 35:36599–36612, 2022.

[32] Haoyi Niu, Tianying Ji, Bingqi Liu, Haocheng Zhao, Xiangyu Zhu, Jianying Zheng, Pengfei
Huang, Guyue Zhou, Jianming Hu, and Xianyuan Zhan. H2o+: an improved framework for
hybrid offline-and-online rl with dynamics gaps. arXiv preprint arXiv:2309.12716, 2023.

[33] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal Cap, Yu Fan
Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, et al. Duckietown: an open, inexpensive and
flexible platform for autonomy education and research. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1497–1504. IEEE, 2017.

[34] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pp. 3803–3810. IEEE, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[35] Alexander Schperberg, Yusuke Tanaka, Feng Xu, Marcel Menner, and Dennis Hong. Real-
to-sim: Predicting residual errors of robotic systems with sparse data using a learning-based
unscented kalman filter. In 2023 20th International Conference on Ubiquitous Robots (UR), pp.
27–34. IEEE, 2023.

[36] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, pp. 8583–8592. PMLR, 2020.

[37] Zilin Si, Zirui Zhu, Arpit Agarwal, Stuart Anderson, and Wenzhen Yuan. Grasp stability
prediction with sim-to-real transfer from tactile sensing. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7809–7816. IEEE, 2022.

[38] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[39] Gabriele Tiboni, Karol Arndt, and Ville Kyrki. Dropo: Sim-to-real transfer with offline domain
randomization. Robotics and Autonomous Systems, 166:104432, 2023.

[40] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

[41] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[42] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Day-
dreamer: World models for physical robot learning. Conference on Robot Learning, 2022.

[43] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environ-
ment. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11097–11107, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ACTOR-CRITIC TRAINING AND DEPLOYMENT

(for initial state)

Train RL Agent in Imagination

DecodersDecoders

Encoder

Forward
Dynamics

Decoders

Forward
Dynamics

Deployment Time

EncoderEncoder Encoder

Actor/Critic State Inputs:

Dynamics
Residual

+
Add Residual

to Logits Forward
Dynamics

Dynamics
Residual

+ . . .

. . .

Actor State Inputs:

Figure 5: (Left) The actor and critic are trained by interacting with the world model. Starting from
an environment state sampled from the replay buffer, the world model generates imagined rollouts
using actions provided by the actor. The residual component is omitted during DRAW pretraining.
(Right) At deployment, only the encoder and actor modules are utilized. The immediate environment
state is processed by the encoder, and the actor generates an action based on zt sampled from σt.

B EXTENDED RELATED WORK

Table 2: Comparison of alternative methods against key desiderata. ReDRAW uses a small reward-
free real-world dataset to calibrate a learned dynamics model of a simulation and match the real
environment. ReDRAW uses a latent-state representation to maintain compatibility with high-
dimensional state components like images, and it is agnostic to the types of discrepancies between
simulation and real dynamics.

Method No Real
Rewards

High-Dimensional
Image Inputs

No Configurable Simulator
or Disparity Insight

Low Real
Data

ReDRAW (Ours) ✓ ✓ ✓ ✓
World Model Finetuning ✓ ✓ ✓ ✗
Adapting Explicit State Transitions ✓ ✗ ✓ ✓
Offline RL ✗ ✓ ✓ ✓
Physics Domain Randomization ✓ ✓ ✗ ✓

This research lies at the intersection of sim-to-real dynamics transfer and RL with latent-state world
models.

B.1 TRANSFERRING DYNAMICS WITH EXPLICIT REPRESENTATIONS

Sim-to-real transfer of dynamics aims to adapt existing simulators or dynamics models used for
planning and policy optimization to better match real-world environments. One way to transfer
dynamics from simulation to reality is to calibrate predefined simulator physics parameters to match
the target environment, either directly from real data [37] or as a correction to existing parameters
[1]. However, doing so can be insufficient if no good approximation of the real environment exists
in the space spanned by the allowed range of these parameters. In such cases, a more expressive
modification of the simulator state transition function may be needed.

Along these lines, Ball et al. [3] and Arcari et al. [2] calibrate linear error models on simulator
transition dynamics using real data for policy adaptation and, respectively, model predictive control.
Similarly, Mallasto et al. [28] use affine transport to adapt simulator state dynamics models to real
domains. Golemo et al. [10] train an LSTM conditioned on state–action history to predict a state
transition residual, and Schperberg et al. [35] efficiently adapt a neural-network state-dynamics

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

residual by using Unscented Kalman Filtering. Kaufmann et al. [20] employ k-nearest neighbor
regression and Gaussian process residuals on transition dynamics and state encodings to calibrate
their simulator for drone racing at an expert human level.

Each of these methods relies on the assumption that the environment state can be represented with a
compact vector representation with which a generalizable dynamics correction can be learned with
a relatively low-complexity model and small real-data requirements. We consider the case where
the components of the state are instead in a high-dimensional format like images and we do not
have a predefined mapping from these states to such a necessary compact vector representation. To
adapt simulation transition dynamics under these more difficult conditions, we propose to learn a
latent-state world model of the simulation and then train a residual correction on the world model’s
dynamics to match transitions in the real environment.

B.2 WORLD MODELS WITH LATENT STATE SPACES

World models [11] with latent state spaces are environment models in which planning and policy
learning can be more efficient than with environment states due to a succinct representation of
environment states and dynamics. Dreamer [13; 14; 42; 15] models environments in the stochastic
POMDP [6] by encoding observations as latent states and reconstructing future latent states, rewards,
and observations. The Dreamer architecture allows agents to then train on synthetic experience by
rolling out “imagined” trajectories inside of the world model. TD-MPC [17; 16] models deterministic
fully observable MDPs by similarly reconstructing future latent states and rewards, as well as task
value functions. TD-MPC2 [16] has shown good results learning shared features from a suite
of environments to quickly transfer to new ones, while we focus on transferring from a single
environment to a similar target environment by avoiding overfitting to limited data.

Concerning exploration with world models, collecting diverse source trajectories was crucial in our ex-
periments for learning transferable features and dynamics. To achieve this, we use Plan2Explore [36],
a method compatible with both Dreamer and our proposed DRAW architecture, which trains an
auxiliary RL agent alongside the exploit policy to maximize model uncertainty in latent dynamics
predictions, promoting wide-reaching exploration.

B.3 DOMAIN RANDOMIZATION

Domain randomization is widely used for sim-to-real transfer by exposing policies to diverse varia-
tions in images [40; 19] or dynamics [34; 29]. In the case of variations with different optimal policies,
training on a broad distribution of environment conditions can yield an overly conservative policy.
Methods like [39; 7] partially mitigate this issue by leveraging real data to calibrate the parameters
of a training-time dynamics domain randomization distribution to more closely represent the target
environment.

Similar to the system-parameter-identification methods [37; 1] mentioned in Section B.1, domain
randomization relies on having a configurable simulator with parameters that, if set correctly, can
sufficiently represent real-world dynamics at training time. Domain randomization thus requires the
practitioner to have A) an understanding of which dynamics parameters are likely to be mismatched
between simulation and reality, and B) a simulator that allows those specific parameters to be
configured. In practice, the nature of disparities between the training-time simulator and adaptation-
time real environment may not be known, and the simulator may not be customizable along the
necessary parameter dimensions (or at all).

With ReDRAW, we provide a dynamics adaptation method that is agnostic to the types of MDP
physics disparities between the source and target environment, however, to do so, ReDRAW relies on
being able to zero-shot perception from simulation to real. Given the availability of simulators with
high-fidelity visuals like [27; 43; 8] and advances in 3D-reconstruction techniques like neural radiance
fields [30] and Gaussian splatting [21] (as we employ in this paper), we believe this can often be a
worthwhile tradeoff. In our duckiebots robot sim-to-real experiment, as described in Section 4.2.1,
we apply image augmentations and limited camera-parameter randomization to ReDRAW and every
baseline. With the exception of the physics domain randomization baseline in Appendix D, we do
not vary simulator physics.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.4 OFFLINE RL

Offline RL approaches aim to learn well-performing policies from fixed datasets, usually while
avoiding taking out of distribution actions that are not well represented in the data [9; 25; 24]. In
cases like ours where offline real data is limited but online data from an error-prone simulator is
abundant, methods like [31; 32; 18] train on both real and simulated data by down-weighting the
effects of updates from simulated transitions with dynamics that differ from the offline real data.
However, to train a policy given offline real data, these methods require access to reward real reward
labels. Real-reward data can often be difficult to collect on physical robots, and we do not assume
access to reward labels in the offline real dataset. Instead, our proposed ReDRAW method learns a
reward function conditioned on the current latent state and leverages a fixed latent-state encoding
between simulation and the real environment to reuse this reward function in the real-calibrated world
model.

C DUCKIEBOTS EXPERIMENT DETAILS

Simulation Reward Details In simulation, the agent is densely rewarded at each timestep with a
value in [0, 1] proportional to its projected velocity along the lane center unless its location is more
than 5cm from the lane center, in which case it incurs a penalty of -1. When moving forward, we
additionally provide a dense penalty proportional to egocentric yaw velocity to encourage turning
while at speed. The simulation episode horizon is 200 steps, slightly more than enough time to
complete a lap. We do not provide a termination signal when the horizon is reached. We terminate
early with a done signal and a penalty of -100 if the agent drives off the track.

We provide the agent with reward data during simulation pretraining, and we do not provide reward
labels in training data collected from the real environment. In order to measure test-time deployment
performance, during real evaluation only, we record the robot’s location with an HTC Vive motion
tracker to measure equivalent simulation rewards, lap times, and the robot’s distance from the lane
center. Information recorded from the motion tracker is not provided to the agent or world model.

Image Augmentations During simulation pretraining and offline adaptation to real data, we apply
image augmentations to world model encoder inputs, but we still train decoder objectives on the
original non-augmented images. Figure 6b shows original images (bottom) and their augmented
counterparts (top) for both simulation and the real environment offline human demonstration dataset.
In world model training for DRAW/ReDRAW and Dreamer, we apply new image augmentations to
each mini-batch after it is sampled from the experience buffer.

(a) Simulation Images with Augmentations (b) Real-world Images with Augmentations

Figure 6: Comparison of image observations in simulation and the real world. (Top): Augmented
images. (Bottom): Original images.

D COMPARISON WITH PHYSICS DOMAIN RANDOMIZATION

We conduct an additional comparison in the Duckiebots domain in which we train DRAW and
DreamerV3 with dynamics domain randomization. After pretraining with Plan2Explore in simulation
with dynamics domain randomization for 1.4M timesteps, we zero-shot transfer to the target real
environments. To represent both the possible range of real robot speeds and the per-step variations
in speed present during real-world execution, we vary the simulator’s forward and yaw velocity
coefficients by a random value each timestep. A coefficient of 1.0 represents the default simulator
scaling for forward and yaw velocity. At the start of each episode, for each parameter, we sample a
mean scale µiepisode, i ∈ {forward vel, yaw vel} from N (1, 0.1). Then, in each timestep, we sample
independent per-step parameter scales from N (µiepisode, 0.01). Additionally, in every timestep, we

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Mean and SEM performance on the real Duckiebots lane-following task aggregated over 5
episodes each for 4 training seeds. Agents are given 300 steps (30 seconds) to complete a lap from a
fixed starting position. Center Offset denotes distance from the lane center. Absence of a Lap Time
indicates all runs either failing to complete a lap or terminating early by driving off the track. In the
Duckiebots domain, physics Domain Randomization (DR) underperforms against other zeroshot and
transfer-learning approaches.

Transfer Sim to Unmodified Real Transfer Sim to Actions-Reversed Real

Method Avg Dense
Reward (↑)

Avg Lap
Time (sec) (↓)

Avg Center
Offset (↓)

Avg Dense
Reward (↑)

Avg Lap
Time (sec) (↓)

Avg Center
Offset (↓)

Dreamer Zeroshot -1.18 ± 0.23 – 6.86 ± 0.56 -2.35 ± 0.23 – 13.36 ± 1.13

Dreamer DR -0.19 ± 0.14 – 5.04 ± 1.56 -1.53 ± 0.47 – 5.46 ± 1.64

Dreamer Finetune -0.87 ± 0.33 – 5.45 ± 1.55 -1.61 ± 0.57 – 7.75 ± 1.53

DRAW Zeroshot 0.07 ± 0.06 22.41 ± 0.73 5.12 ± 0.41 -2.72 ± 0.42 – 9.39 ± 1.35

DRAW DR -0.32 ± 0.12 23.75 ± 1.56 8.26 ± 1.38 -2.81 ± 0.33 – 7.15 ± 1.81

ReDRAW (Ours) 0.38 ± 0.02 22.75 ± 0.26 2.47 ± 0.26 0.39 ± 0.03 24.21 ± 1.15 2.10 ± 0.39

uniformly sample the on-body position and tilt of the robot’s camera within a small range of values
to simulate oscillations and shocks encountered while driving.

In Table 3, we compare the performance of DRAW and DreamerV3 Domain Randomization (DR)
against other methods in the unmodified real and actions-reversed real environments. The unmodified
real environment represents a scenario in which the dynamics randomization scheme is well-informed
by potential simulator errors. In contrast, the actions-reversed real environment represents a scenario
in which a critical disparity between simulation and reality was not anticipated or captured during
randomized simulator training.

In the unmodified real environment, DRAW DR achieves low rewards by taking wide turns that cut
corners and veer far from the lane center. Because driving off the track results in a large penalty,
this behavior can be explained as taking conservative actions. The DRAW DR agent avoids taking
otherwise optimal sharp and late turns, likely because this normally optimal behavior can have a
dangerous outcome in the randomized simulation given unknown forward and yaw speed coefficients.

Dreamer DR fails in the unmodified real environment with agent behavior in most seeds staying still
and occasionally rotating. Shown in Figure 9, Dreamer consistently exhibits instability w.r.t. Msim
returns when pretraining with randomized physics in the Duckiebots simulation environment. This
behavior was repeatedly seen in preliminary experiments under various randomization conditions both
with and without Plan2Explore. These observations suggest a possible limitation in DreamerV3’s
capacity to learn highly stochastic dynamics, although more experimentation would be needed to
fully confirm this.

In the actions-reversed real environment, both DR methods fail to drive because the reversed actions
represent an unexpected disparity between simulation and real that was not represented during
training.

In both of these real environments, despite not having access to configurable simulator physics,
ReDRAW is able to use a small amount of real transition data to calibrate its world model and drive
with a near-optimal policy.

E LEARNING CURVES DURING PRETRAINING

Figure 7 and Figure 8 show training curves in the source environments in the DMC and Duckiebot
domains, respectively. Both DRAW and DreamerV3 converge to similar performance in the source
environments. In Appendix H, we also compare ReDRAW with framestacked image components to
convey motion in lieu of joint-velocity vectors. The pretraining curves for DRAW with framestacking
are similar to the default configuration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In Appendix D, we evaluate DRAW and Dreamer’s zero-shot performance on the real Duckiebots
environment after training with physics domain randomization. Figure 9 shows pretraining perfor-
mance on the simulated environment with episodic physics randomization applied. With physics
domain randomization, DreamerV3’s source-environment returns decrease to a suboptimal level as
training progresses.

0 2M 4M 6M 8M

0

100

200

300

400

500

0 2M 4M 6M 8M 0 2M 4M 6M 8M 0 2M 4M 6M 8M

DRAW Plan2Explore DreamerV3 Plan2Explore DRAW Plan2Explore (framestacked images)

Source Environment Steps Source Environment Steps Source Environment Steps Source Environment Steps

E
va

lu
at

io
n

A
ve

ra
ge

 R
et

ur
n

Cup Catch Finger Turn Hard Pendulum Swingup Reacher Easy

Figure 7: Training curves during pretraining for DRAW and DreamerV3 across four environments
from DMC. Plan2Explore is used for data collection during pretraining. The mean and standard error
are shown over 4 seeds.

1M 1.5M 2M

−100

0

100

200

DRAW (Random Action and Plan2Explore) DreamerV3 (Random Action and Plan2Explore)

Source Environment Steps

E
va

lu
at

io
n

A
ve

ra
ge

 R
et

ur
n

Duckiebot Lane Following Simulation

Figure 8: Training curves during pretraining for DRAW and DreamerV3 in the Duckiebot lane
following simulation environment. Data collection is performed using random actions for the first
0.6M steps, followed by Plan2Explore for 1.4M steps. Each episode starts from a valid random
position. The mean and standard error are shown over 4 seeds.

0 0.5M 1M

−100

0

100

200

DRAW (Plan2Explore) DreamerV3 (Plan2Explore)

Source Environment Steps

E
va

lu
at

io
n

A
ve

ra
ge

 R
et

ur
n

Duckiebot Lane Following Simulation
(Physics Domain Randomization Applied)

Figure 9: Training curves during pretraining for DRAW and DreamerV3 in the Duckiebot lane
following simulation environment with physics domain randomization applied.

F ARCHITECTURAL ABLATIONS

In this section, we examine how different choices for the inputs of the DRAW forward dynamics
function fθ and the ReDRAW residual function δψ affect transfer performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.1 FORWARD DYNAMICS INPUTS

In the default DRAW architecture, fθ is conditioned on the previous latent state zt−1, the previous
action at−1, and the additional input of the previous latent-state dynamic distribution σ̂t−1 (or σ̂real

t−1
for ReDRAW). In DMC environments, we compare this choice of inputs against two alternatives: (1)
the minimal sufficient set (zt−1, at−1), and (2) conditioning on the encoder latent-state distribution
σt = qθ(zt|xt). Figure 10a presents the performance of these different dynamics functions on
source environments during DRAW Plan2Explore pretraining, while Figure 10b shows their transfer
performance on target environments during offline ReDRAW adaptation.

During pretraining, most input choices yield similar source-task performance. However, during
adaptation, the default configuration, fθ(zt−1, σ̂t−1, at−1), consistently outperforms the alternatives,
achieving and maintaining higher performance in the target environments. We hypothesize that
because including σ̂t−1 during world model pretraining facilitates gradient propagation over multiple
timesteps, this inclusion enables the learning of features that improve long-term predictions.

This advantage is achieved without increasing the residual’s complexity, which could have otherwise
negatively impacted transfer performance. During ReDRAW adaptation, σ̂real

t−1 serves as an input to
fθ(zt−1, σ̂

real
t−1, at−1). While conditioning on σ̂real

t−1 increases the dimensionality of fθ’s input space, it
has minimal impact on the complexity of the residual prediction δψ . Since σ̂real

t is already an output
of the calibrated dynamics,

σ̂real
t = softmax(fθ(zt−1, σ̂

real
t−1, at−1) + δψ(zt−1, at−1)),

it can be included as an input to fθ without increasing the dimensionality of the input or output spaces
of δψ . This helps maintain the residual function’s simplicity, reducing the risk of overfitting.

(a) DMC source environment average return during DRAW pretraining with alternate dynamics function inputs.

(b) DMC target environment average return during ReDRAW residual adaptation with alternate dynamics
function inputs.

Figure 10: Comparison of different dynamics function architectures of DRAW during pretraining (a)
and adaptation (b).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.2 RESIDUAL INPUTS

Next, in Figure 11, we compare the target environment transfer performance of our default residual
function, δψ(zt−1, at−1), against two alternative input configurations. The first, δψ(zt−1, σ̂

real
t−1, at−1),

conditions on the same inputs as fθ, while the second, δψ(σ̂t, zt−1, at−1), additionally incorpo-
rates the original source environment dynamics predictions made by the frozen forward belief,
pθ(ẑt|zt−1, σ̂

real
t−1, at−1).

Although the additional inputs, σ̂real
t−1 and σ̂t, could theoretically provide useful information for the

residual prediction task, we observe that their inclusion leads to a decrease in target-environment
performance. We hypothesize that conditioning the residual function on an added real-valued vector,
alongside the discrete latent-state zt−1, significantly expands the space of representable residual
functions. Given the limited dataset, this increased complexity likely impairs generalization to the
target domain.

This result underscores the importance of bottlenecking state information through the compressed
discrete representation zt for effective low-data adaptation.

Figure 11: Comparison of different residual inputs for ReDRAW.

G LATENT RESIDUAL VS NEW DYNAMICS FUNCTION

In this section, we compare the ReDRAW latent-state dynamics residual with an alternative adapta-
tion method that also leverages frozen dynamics predictions learned from the source environment.
Specifically, we contrast using a residual with learning a new replacement dynamics function, gψ,
which optionally conditions on the outputs of the original source environment dynamics fθ. We
evaluate three possible definitions for gψ:

1. σ̂real
t = gψ(zt−1, at−1), where gψ conditions on the same inputs as the ReDRAW residual.

2. σ̂real
t = gψ(σ̂t, zt−1, at−1), where gψ additionally conditions on the frozen DRAW predicted

source dynamics distribution, σ̂t = pθ(ẑt|zt−1, σ̂
real
t−1, at−1).

3. σ̂real
t = gψ(ẑt, zt−1, at−1), where gψ additionally conditions on a discrete latent-state

sample from the frozen DRAW source dynamics predictions, ẑt ∼ MultiCategorical(σ̂t)
as in (5).

To train the replacement dynamics function on the offline Mreal dataset, we employ a dynamics loss
term equivalent to (20) used by ReDRAW:

Lg(ψ) = Eqθ̄(z1:T |ζreal)

[
T∑
t=1

D[qθ̄(zt|xt)||gψ(ẑreal
t |•)]

]
(21)

Figure 12 presents the average target environment return during adaptation for ReDRAW and
all considered replacement dynamics functions. The results show that ReDRAW outperforms all
variations of the replacement function baseline, including those that incorporate predictions from the
frozen DRAW source dynamics function.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 12: Comparison with a replacement dynamics function gψ with the same small capacity as the
residual network.

From this experiment, we conclude that the residual operation, which modifies DRAW dynamics
predictions without conditioning on them, is a key factor in achieving effective generalization to the
target environment.

H DMC COMPARISON WITH FRAMESTACKING

Figure 13: Framestacking images achieves similar transfer performance to a single image + a joint
velocity vector in most but not all environments.

In DMC and Duckiebots environments, we ensure full observability by pairing the image state
representation with a vector of joint velocities. So long as the time-delta between images remains
consistent across source and target environments, framestacking should usually be a viable alternative
to convey velocity information. In Figure 13, we compare ReDRAW transfer performance with the
default state+velocity vector configuration against framestacking the previous and current image. In
all DMC environments except Pendulum Swingup (Actions Reversed), ReDRAW achieves virtually
the same performance with either input modality. Curiously, ReDRAW fails to transfer in the
framestacked Pendulum Swingup (Actions Reversed) environment despite matching the default
method’s performance when pretraining in the source environment (Figure 7). Possible causes for this
could include Plan2Explore adopting different (and insufficient) source environment data collection
strategies with a different state representation, inadequate image fidelity to capture precise velocity
behavior with the small target environment dataset, or a more entangled latent-state representation
due to decoding a higher-dimensional state. This experiment highlights potential directions for future
improvements to ReDRAW.

I DMC EXPERIMENT DETAILS

The state spaces for the DMC environments in this work consist of an image of the robot paired with
a vector of egocentric joint velocities. We use an action repeat of two, meaning that each episode
consists of 500 decision steps, equivalent to 1000 environment steps. Additionally, to preserve
state-based rewards, we do not sum rewards over the environment steps skipped due to action repeat.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Below, we describe each pair of source and target environments used in our DMC experiments. The
source environment corresponds to the original DMC environment, while each target environment
has modified dynamics:

• Cup Catch: The agent controls a cup to catch a ball tethered by a string. In the target
environment, a constant horizontal wind alters the ball’s trajectory, requiring the agent to
adapt by compensating for this external force.

• Finger Turn Hard: The agent rotates a hinged spinner to a specified goal orientation. In
the target environment, an external torque continuously drives the spinner, forcing the agent
to counteract this disturbance to maintain control.

• Pendulum Swingup: The agent swings a pendulum to an upright position. In the target
domain, action effects are reversed, requiring the agent to invert its control policy.

• Reacher Easy: The agent maneuvers a two-link arm to reach a target position. As in
Pendulum Swingup, actions are inverted in the target environment, posing a challenge for
direct policy transfer.

J HYPERPARAMETERS

We implement DRAW and ReDRAW code as a modification to the official DreamerV3 implementa-
tion [12]. Except where otherwise stated, we use DreamerV3 default hyperparameters for all methods,
including a batch size of 16, batch length of 64, and learning rates of 1× 10−4 for the world model
and 3× 10−5 for the actor and critic. Additional parameters specific to our method or experiments
are listed below.

Table 4: Modified or newly introduced hyperparameters used in experiments.

Hyperparameter Value

all methods

pretraining replay buffer size 1e7
online train ratio 512
Encoder/Decoder CNN Depth 32
Encoder/Decoder MLP hidden layers 2
MLP hidden units 512
image size 64×64×3

DRAW/ReDRAW

K (number of categorical distributions) 256
N (number of categorical classes) 4
imagination horizon for actor-critic training 40
βpred 1.0
βdyn 1.5
βrep 0.5
residual learning rate 1e-2
forward dynamics MLP hidden layers 1
residual MLP hidden layers 1
residual MLP hidden units 256

K COMPUTE RESOURCES

All experiments were performed on a server with 2x AMD EPYC 7763 64-core processors, 1TB
RAM, and 8x NVIDIA RTX A4500 GPUs each with 20GB of VRAM.

Each individual experiment ran on a single GPU. With the exception of Duckiebots per-minibatch
image augmentation, which took 30-40 CPU cores, most experiments required less than 8 CPU cores.
Plan2Explore pretraining experiments typically ran for 3-6 days, using less than 100GB of RAM,
and transfer-learning experiments typically ran for 1-3 days, using less than 30GB of RAM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L LARGE LANGUAGE MODEL USAGE

Large Language Models (LLMs) were used to provide sentence-level editing suggestions while
writing this paper.

22

	Introduction
	Preliminaries
	Related Work
	Problem Definition

	Method
	DRAW Architecture and Pretraining
	Adaptation via Latent Dynamics Residuals

	Experiments
	DeepMind Control Experiments
	DMC Domains
	Comparison with Finetuning
	Data Policies and Quantity

	Duckiebot Sim-to-Real Transfer
	Bridging the Sim-to-Real Vision Gap
	Transferring to the Real Robot

	Limitations and Future Work
	Actor-Critic Training and Deployment
	Extended Related Work
	Transferring Dynamics with Explicit Representations
	World Models with Latent State Spaces
	Domain Randomization
	Offline RL

	Duckiebots Experiment Details
	Comparison With Physics Domain Randomization
	Learning Curves During Pretraining
	Architectural Ablations
	Forward Dynamics Inputs
	Residual Inputs

	Latent Residual vs New Dynamics Function
	DMC Comparison with Framestacking
	DMC Experiment Details
	Hyperparameters
	Compute Resources
	Large Language Model Usage

