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ABSTRACT

This paper introduces a novel personalized federated learning approach, Adap-
tive Federated Weight Clustering Pruning (AdFedWCP) (Rahaman et al., 2019),
specifically designed to optimize communication efficiency in heterogeneous net-
work environments. AdFedWCP innovatively combines adaptive weight cluster-
ing pruning techniques, effectively addressing data and bandwidth heterogene-
ity. By dynamically adjusting clustering centroids based on layer importance and
client-specific data characteristics, it significantly reduces communication over-
head. Experimental results demonstrate reductions in communication volume by
up to 87.82% and accuracy improvements of 9.13% to 21.79% over baselines on
EMNIST, CIFAR-10, and CIFAR-100. These findings underscore AdFedWCP’s
effectiveness in balancing communication efficiency and model accuracy, making
it suitable for resource-constrained federated learning.

1 INTRODUCTION

The rapid growth of distributed data and rising data privacy concerns have made Federated Learn-
ing a promising paradigm for collaborative machine learning (McMahan et al., 2017). Federated
learning enables multiple parties to train a shared model without exchanging raw data, ensuring
user privacy and regulatory compliance (Li et al., 2023). Traditionally, federated learning relies on
a central server to aggregate updates from clients into the global models (McMahan et al., 2017).
However, due to data heterogeneity, single global models may not perform well across all clients,
resulting in performance degradation and convergence challenges (Fallah et al., 2020). Personalized
Federated Learning has emerged as a solution to this problem. The goal of personalized federated
learning is to generate personalized models tailored to the local data of each client while retaining
the advantages of the global models (Fallah et al., 2020). By introducing personalization, federated
learning can effectively address the variations in data distribution across clients, improving model
performance on individual clients. These personalized models can be implemented through meth-
ods such as knowledge distillation, model agnostic meta learning, or multi-task learning, allowing
models to adapt to local data while retaining the benefits of the global models (Psaltis et al., 2023)
(Fallah et al., 2020) (Marfoq et al., 2021).

Although personalized federated learning has been widely explored to address data heterogeneity,
communication overhead remains a significant challenge. Communication overhead is a key factor
in personalized federated learning as it affects training efficiency and system scalability (Kairouz
et al., 2021). Bandwidth heterogeneity, a common challenge in real-world scenarios, refers to the
variation in network bandwidth across clients due to differing network conditions and infrastructure
capabilities (Kairouz et al., 2021) (Lim et al., 2020). Personalized federated learning methods such
as FedEM (Marfoq et al., 2021), FedMask (Li et al., 2021), and pFedGate (Chen et al., 2023), despite
making progress in handling client-specific needs, have not fully addressed the reduction of com-
munication costs. FedMask and pFedGate reduce the size of parameter transmission through model
pruning and gating layers, achieving an initial reduction in communication costs. However, these
methods often rely on simple sparse parameter transmission without fully utilizing advanced com-
pression techniques and lack flexibility in adapting to environments with significant client bandwidth
differences and complex network conditions. Particularly in the case of bandwidth heterogeneity,
existing methods cannot dynamically adjust compression strategies to optimize bandwidth resource
usage, potentially resulting in communication bottlenecks in certain situations.

In conclusion, while these methods help with personalization, they face common limitations in com-
munication efficiency and lack flexibility in handling bandwidth heterogeneity in different environ-
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ments. Therefore, there is a need for an adaptive method that optimizes communication efficiency
while maintaining model accuracy and dynamically adjusting to the needs of different clients. This
issue raises a critical research question:

How to design personalized federated learning methods that minimize communication cost without
compromising model accuracy?

To address these challenges, we propose AdFedWCP (Adaptive Federated Weight Clustering Prun-
ing), which integrates adaptive weight clustering pruning with client-specific optimization. Our goal
is to improve the efficiency and effectiveness of federated learning in bandwidth-constrained settings
without compromising model performance. AdFedWCP is not a combination of existing techniques
but introduces innovative strategies, such as weight clustering pruning, to uniquely address the dis-
tinct challenges of federated learning environments.

Our method directly addresses the issue of data heterogeneity through a global momentum-based
update strategy, which enhances model convergence and generalization in a heterogeneous environ-
ment. At the same time, we use a saliency-based approach to assess the importance of each model
layer, dynamically adjusting the number of cluster centroids per layer based on this importance, as
well as client data characteristics and communication constraints.

The main contributions of this paper are as follows:
• A comprehensive Dynamic Weight Clustering Pruning Mechanism that reduces commu-

nication overhead and model size. This mechanism dynamically adjusts cluster centroids
per layer based on layer importance, client data, and communication constraints through an
integrated adaptive scheme, effectively addressing bandwidth heterogeneity.

• Comprehensive empirical evaluations demonstrate that AdFedWCP significantly reduces
communication overhead and enhances overall performance across various datasets and
network architectures. Specifically, AdFedWCP achieves a reduction in communication
overhead of 87.54% to 87.82% on LeafCNN and LeNet network architectures, outper-
forming other baseline methods. In terms of accuracy, AdFedWCP achieves improvements
ranging from 0.40% to 21.79% compared to baseline methods across datasets including
EMNIST, CIFAR-10, and CIFAR-100. Overall, AdFedWCP improves communication ef-
ficiency by approximately 88% while maintaining comparable or superior accuracy, ex-
hibiting significant advantages over all baseline methods.

2 RELATED WORK

2.1 PERSONALIZED FEDERATED LEARNING TO REDUCE COMMUNICATION OVERHEAD

Many methods aim to reduce the communication overhead in personalized federated learning, but
have limitations in handling data heterogeneity or bandwidth heterogeneity. pFedGate reduces com-
munication costs by generating personalized models through gating layers, but has difficulties in
handling complex architectures and lacks flexibility to adapt to different bandwidth conditions, re-
sulting in potential communication bottlenecks (Chen et al., 2023). FLuID dynamically adjusts the
model size according to client resources to improve efficiency, but does not address the data hetero-
geneity problem (Wang et al., 2024). FedMask personalizes the model using client-specific pruning
masks, which reduces communication costs, but cannot dynamically adapt to changing bandwidth
conditions, resulting in potential inefficiency in environments with significant bandwidth hetero-
geneity (Li et al., 2021). PerAda integrates adapter modules and knowledge distillation to improve
model generalization and communication efficiency, but similar to FedMask, it does not consider
bandwidth heterogeneity, limiting its flexibility in varying network conditions (Xie et al., 2024).

2.2 PERSONALIZED FEDERATED LEARNING TO SOLVE DATA HETEROGENEITY

Other methods mainly target the data heterogeneity problem, but they are insufficient in optimizing
the communication overhead. FedEM models client data as a mixture of distributions, effectively
addressing the data heterogeneity problem, but its high communication and computational costs
make it less suitable for bandwidth-constrained environments (Marfoq et al., 2021). AlignFed em-
ploys personalized feature extractors with a shared classifier to mitigate feature shifts and statistical
differences, yet it does not fully eliminate distribution discrepancies (Zhu et al., 2024). TailorFL
enhances personalization and resource efficiency through data-driven pruning, but may create infor-
mation islands by limiting information sharing between clients with similar data (Deng et al., 2023).
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gPerXAN addresses the domain generalization problem in federated learning by utilizing a per-
sonalized combination of normalization layers and regularization strategies, but does not optimize
communication overhead (Le et al., 2024).

Overall, although current personalized federated learning methods have made some efforts to re-
duce communication overhead, they often lack a comprehensive strategy to systematically minimize
communication costs. Particularly in environments where personalized demands are complex and
communication is constrained, existing methods lack flexibility and struggle to dynamically adjust
communication strategies, which may lead to communication bottlenecks.

3 PROBLEM FORMULATION

Traditional federated learning aims to fit a global model through the collaborative training of multi-
ple clients, without sharing local data. In this paper, we focus on the issue of personalized federated
learning, aiming to learn client-specific models while facilitating knowledge sharing among differ-
ent clients. Specifically, each client i ∈ C owns a private dataset Si, which is derived from its local
distribution Di defined over X × Y . Given that the local data distributions {Di}i∈C are typically
heterogeneous, it makes sense to learn a personalized model hθi ∈ H : X → Y for each local
distribution Di, where H represents a hypothesis space. To effectively address data heterogeneity
and facilitate knowledge sharing, we have defined the following optimization objectives:

min
{θi}i∈C

∑
i∈C

pi
[
E(x,y)∼Di

[ℓ(hθi(x), y)] + λ(θi − θg)
]
,

where ℓ : X × Y → R+ is the loss function. pi ≥ 0 are aggregation weights, typically proportional
to |Si| and

∑
i∈C pi = 1. θg =

∑
i∈C piθi is the global model, updated periodically. λ ≥ 0 is a

hyperparameter that controls how much the global model affects the local model. (θi − θg) is the
difference between the local model and the global model, which is called by the global momen-
tum. The first term, E(x,y)∼Di

[ℓ(hθi(x), y)], minimizes the expected loss on local data, ensuring
model adaptation to local distributions. The second term, λ(θi− θg), promotes consistency between
local and global models, facilitating knowledge sharing without direct data exchange. The balance
between these two terms is controlled by the hyperparameter λ, whose detailed impact on model per-
formance and the annealing mechanism used for its dynamic adjustment are analyzed in Appendix
E.4.1.

4 ADFEDWCP DESIGN

4.1 OVERVIEW

The overall workflow of the algorithm is shown in Algorithm 1. The process begins with the server
initializing the global model parameters θ0g (line 1). Subsequently, for each client i, the client em-
ploys an imprinting method to calculate the importance indices ω1

i of the weights for each layer and
the initial accuracy acc1i of the model (line 3). The clients then send ω1

i back to the server. These
indices provide the basis for subsequent optimization of the number of clustering centroids K1 (line
5). Based on Ω1, the data volume and bandwidth characteristics of all clients, the server adaptively
determines the number of clustering centroids K1 for each layer of the client (line 6). Following
this, the server communicates the initial clustering centroids to each client, which then performs
weight clustering pruning to generate their pruning masks M1

i (line 6). This process includes clus-
tering with a zero-value centroid to set unimportant weights to zero, thus reducing computational
complexity and generating a pruning mask M1

i (line 7).

During the training process, the server broadcasts the latest global model parameters θtg to all clients
each round t (line 10). Upon receiving the global model, each client conducts local model updates,
which include performing E rounds of training on their local dataset (lines 11-16 in ClientUpdate).
During this training phase, the pruning mask M t

i is used to sparsify the model parameters to reduce
the computational overhead (line 4 in ClientUpdate). The local loss function combines the local
data loss ℓ(θti ⊙M t

i ; b) and the global momentum λ(θti − θtg) (line 4 in ClientUpdate). The latter
of which helps the local model parameters θti to stay close to the global model θtg , thus balancing
personalization with global consistency.

After training, each client performs weight clustering pruning on new unpruned local model again,
clustering similar weights to reduce the representation of model parameters, updating the pruned
model θ̃t+1

i , and the pruning mask M t+1
i (line 13). The clients then use the imprinting method
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to update the importance indices ωt+1
i of the model and send the updated model parameters θ̃t+1

i ,
importance indices ωt+1

i back to the server (lines 14-15).

Upon receiving updates from all clients, the server aggregates the clustered model parameters and
updates the global model θt+1

g (line 17). This aggregation is weighted by each client’s sample count
ni to ensure the fairness and effectiveness of the global model. Moreover, the server dynamically
adjusts the number of clustering centroids Kt+1 based on the latest layer importance, accuracy,
and the current training round (line 18), enabling the model to flexibly adapt to different training
stages and client needs, thereby optimizing overall training efficiency and model performance. For
a comprehensive visualization of the AdFedWCP workflow, refer to the detailed process diagram
provided in Figure 4.

Algorithm 1 AdFedWCP Personalized Federated Learning. The C clients are indexed by i; Strain
i

is the training dataset of client i; ni is the size of the training dataset for client i, and n is the total
size of the training dataset across all clients. B is the local minibatch size; E is the number of local
epochs; T : Number of training rounds; η is the learning rate; λ is global momentum coefficient.

1: initialize θ0g ▷ Initialize global model
2: for each client i in parallel do
3: ω1

i ← LayerImportanceEstimation(θ0g) ▷ Compute initial layer importance
4: end for
5: K1 ← OptimizeK(Ω1) ▷ Determine initial clustering centroids
6: for each client i in parallel do
7: M1

i ←WeightClusteringPruning(θ0g , k
1
i ) ▷ Generate initial mask for each client

8: end for
9: for t = 1 to T do

10: Broadcast θtg to all clients
11: for each client i in parallel do
12: θt+1

i ← ClientUpdate(θtg, θ
t
i ,M

t
i ) ▷ Update local model

13: θ̃t+1
i ,M t+1

i ←WeightClusteringPruning(θt+1
i , kti)

14: ωt+1
i ← LayerImportanceEstimation(θti) ▷ Recompute layer importance

15: Send θ̃t+1
i , ωt+1

i to server
16: end for
17: θt+1

g ←
∑C

i=1
ni

n θ̃t+1
i ▷ Aggregate client models

18: Kt+1 ← OptimizeK(Ωt+1) ▷ Update clustering centroids
19: end for

ClientUpdate(θtg, θti ,M t
i )

1: B ← (split Straini into batches of size B)
2: for e = 1 to E do
3: for batch b ∈ B do
4: θt+1

i ← θt+1
i − η · (∇ℓ(θti ⊙M t

i ; b) + λ(θti − θtg))
5: end for
6: end for

4.2 WEIGHT CLUSTERING PRUNING

In bandwidth-constrained federated learning, communication remains a significant challenge. In-
spired by (Cho et al., 2021), we devise a model compression method named weight clustering
pruning. While Cho’s method employs differentiable k-means (DKM) for soft weight clustering
in centralized learning, we extend it to federated learning. Instead of relying solely on soft clus-
tering as in DKM, we combine weight clustering with pruning. Specifically, we cluster weights at
each client and prune some by assigning a zero centroid to certain clusters, making the model more
sparse. Furthermore, unlike DKM’s fixed centroids per layer, our method can dynamically adjust
the centroids based on layer importance, data distribution, and client bandwidth.

During the model update and parameter transmission process, clients need only transmit a table of
centroids and an index sequence instead of the full model parameters θ. Specifically, if the original
model has N weights, each represented with B bits, the total communication cost per client is N×B
bits. With weight clustering pruning, the model parameters are represented by combining an index
sequence and centroid values, as depicted in Figure 1. The index sequence records the centroid index
for each weight and requires N × ⌈log2 k⌉ bits, where k is the number of centroids. The centroid
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value table stores the actual centroid values {µ}k−1
j=0 , needing k × B bits. Since k ≪ N and the

index data require fewer bits, this significantly reduces the communication data volume and lowers
transmission costs. More detailed communication analysis can be found in Appendix A.

In the weight clustering pruning strategy, fixing one centroid at zero introduces an automated pruning
mechanism. Weights close to zero are automatically assigned to this zero centroid, thus setting
unimportant weights to zero and creating a sparse model structure. This strategy allows for dynamic
adjustments during the clustering process, driven by iterative updates of the non-zero centroids. As
the non-zero centroids are iteratively updated, some centroids may attract more weights that are
close to zero but with slight differences.

Figure 1: Efficient Model Compression through Weight Clustering Pruning. This diagram illustrates
the transformation of original model weights into a more compact format using centroid values and
index sequences, significantly reducing data volume and enhancing transmission efficiency.

The main steps of the weight clustering pruning algorithm are outlined in Algorithm 2. We start by
initializing k centroids {µ}k−1

j=0 for the model parameters θ, setting the first centroid µ0 to zero for
pruning trivial weights and randomly initializing the rest (line 1). A pruning mask M , initialized
as a vector of ones, indicates that no weights are initially pruned (line 2). We then proceed with
clustering iterations where we randomly select a mini-batch of weights B from θ to reduce com-
plexity (line 4), assign each weight w to the nearest centroid (lines 6-8), and update the centroids for
each cluster Bj except for µ0 which remains zero (lines 11-12). This clustering process is repeated
until convergence. Finally, weights are replaced with their corresponding centroid values, setting
the pruning mask to zero for weights assigned to µ0, resulting in compressed model parameters θ̃
and the updated pruning mask M (lines 16-19). A detailed analysis of the computational overhead
of the weight clustering pruning algorithm is provided in Appendix B.

4.3 LAYER IMPORTANCE ESTIMATION

In federated learning, determining the importance of each neural network layer is crucial for opti-
mizing model compression strategies. For this purpose, we employ an imprinting-based method to
assess the importance of each model layer (Liu et al., 2021). The imprinting method operates on the
principle that the representative features of each class can approximate the weights needed for clas-
sification. By averaging the embedding vectors of samples within the same class, we obtain weight
vectors that capture the central tendencies of the data in the feature space of each layer. This ap-
proach enables us to construct a proxy classifier for each layer without additional training, allowing
us to directly evaluate the classification performance of the features extracted by that layer. Com-
pared to traditional methods that require iterative training to calculate importance, the imprinting
method can assess layer importance in a shorter time (Elkerdawy et al., 2020).

Initially, a proxy classifier is attached following the output of each network layer according to the
requirements of imprinting. This classifier includes an Adaptive Average Pooling layer, a Fully
Connected Layer, and a softmax activation function. Through this configuration, we can transform
the layer’s output into fixed-length embedding vectors for easier subsequent processing. For the
output feature map Fj of the jth layer, it is transformed into an embedding vector Ej through
adaptive average pooling, with the target pooling size d calculated as:

d =

⌈√
N

fj

⌉

5
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Algorithm 2 WeightedClusterPruning(θ, k)

1: Initialize {µj}k−1
j=0 with µ0 = 0, others randomly from θ

2: M ← 1 ▷ Initialize pruning mask
3: for i = 1 to MAX ITER ∨ CONVERGED do
4: B ← mini-batch of weights from θ
5: Initialize empty sets B0, B1, ..., Bk−1

6: for w ∈ B do
7: j ← argmin0≤j<k ∥w − µj∥ ▷ Find nearest centroid index
8: Bj ← Bj ∪ {w} ▷ Assign weight to cluster
9: end for

10: for j = 1 to k − 1 do
11: if Bj ̸= ∅ then

12: µj ←
∑

w∈Bj
w

|Bj | ▷ Update non-zero centroids
13: end if
14: end for
15: end for
16: for j = 0 to k − 1 do
17: θ̃[w]← µj for all w ∈ Bj ▷ Replace weights with their centroids
18: end for
19: M [w]← 0 for all w ∈ B0 ▷ Update pruning mask
20: return θ̃,M

where N is the preset embedding length, and fj is the number of channels in the jth layer. The
formula for the embedding vector is:

Ej = AdaptiveAvgPool(Fj , d)
Next, we use the imprinting method to approximate the weights of the proxy classifier’s fully con-
nected layer. Specifically, for each category c, a weight matrix Wj is formed by averaging all the
embedding vectors of samples belonging to that category:

Wj [; , c] =
1

|Sc|

|S|∑
n=1

I[cn = c]En

where Ej is the embedding vector of the jth sample, and |Sc| is the total number of samples in
category c. This approach allows us to imprint the weights of the fully connected layer of the proxy
classifier without additional training. N is the total number of samples.

Subsequently, using these precomputed weights, we classify the output of each layer and calculate
the accuracy Accuracyj for each layer. After iterating through all the data, we average the accuracies
of each layer to obtain a stable estimate. Specifically, in our implementation, we accumulate the
correct predictions and total sample counts for each layer across batches to compute the average
accuracy for each layer. Finally, we define the importance of each layer as the difference between
the accuracy of that layer and the previous layer:

Importancej = Accuracyj − Accuracyj−1
Further quantifying the importance of each layer, we apply the softmax function to the computed
importance values to obtain importance weights ωi:

ωj =
exp(Importancei)∑
l exp(Importancel)

These importance weights reflect the relative importance of each layer compared to others, guiding
resource allocation to prioritize more critical layers in subsequent resource optimization processes.

4.4 DYNAMIC CENTROID OPTIMIZATION STRATEGY

In addressing bandwidth heterogeneity in federated learning while reducing communication over-
head, this study proposes a dynamic optimization strategy for adjusting the number of centroids.
This strategy adaptively determines the number of centroids ki,j for each layer of the model based
on client characteristics and dynamic changes during the training process, aiming to achieve an
optimal balance between model performance and resource consumption.
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The strategy models centroid number determination as an optimization problem, aiming to minimize
the total communication cost for all clients during one round of uplink communication. This cost
comprises three parts: centroid transmission, index encoding, and bias parameter transmission. The
objective function is expressed as:

min
{ki,j∈Z+}

N∑
i=1

L∑
j=1

C · ki,j +Wj · log2(ki,j) + C ·Bj

bi

where C is communication cost constants for centroids and bias parameters, respectively, based on
half-precision floating-point sizes. Wj and Bj denote the number of weight and bias parameters
for the j-th layer, while bi is the bandwidth of client i. Clustering is excluded for bias parameters
due to their small proportion in the overall model. The objective function is non-convex due to a
logarithmic term, complicating optimization. This study uses the Adam optimizer on the server side
and introduces multiple constraints to adaptively select centroid numbers ki,j , considering client
data volume, bandwidth, layer importance, training progress, and model accuracy changes.

In order to make the selection of centroid numbers more adaptive, we introduced several constraints
that consider the data volume, bandwidth, layer importance, training progress, and changes in model
accuracy of the clients. First, clients with more data can better capture subtle features by increasing
the number of centroids, enhancing model performance (Sun et al., 2017) (Shorten & Khoshgoftaar,
2019). Second, clients with lower bandwidth need to appropriately reduce the number of centroids
to decrease communication overhead. As demonstrated in Appendix E.1.1, reducing the number of
centroids can significantly increase the compression ratio . Furthermore, the importance of model
layers also affects the allocation of centroid numbers; important layers require more centroids to
retain key features (Liu et al., 2021). Finally, the training progress and changes in model accuracy
are used to dynamically adjust the number of centroids, allowing the model to gradually improve
its performance during the training process. The benefits of increasing centroid numbers to improve
model performance are also substantiated by the experimental results detailed in Appendix E.1.1.

These considerations lead to the formulation of the lower bound constraint klower, which takes into
account factors such as data volume, layer importance, training progress, and accuracy changes. The
specific calculation is as follows:

kdata = kmin + ⌈α · ωi,j · (Di −Dmin)⌉
where α = kmax−kmin

Dmax−Dmin
is the scaling factor based on data volume, ωi,j is the importance weight of

the j-th layer for client i, and Di is the data volume of client i.

The training progress factor is reflected through the progress factor γ, allowing the k value to grad-
ually increase as the number of training rounds increases, enhancing the model’s expressive ability:

γ = 1 +
E

Emax

where E is the current training round, and Emax is the total number of training rounds.

The accuracy change factor is regulated through the accuracy adjustment factor η. When model
accuracy decreases (∆A < 0), the k value is increased to improve model performance; when model
accuracy increases (∆A > 0), the k value is decreased to reduce communication costs:

η =

{
1− ξ · |∆A|, if ∆A > 0

1 + ζ · |∆A|, if ∆A < 0

where ∆A = At − At−1 is the change in model accuracy, and ξ and ζ are hyperparameters for
adjustment magnitude. In this experiments, ξ is set to 0.1 and ζ to 1.5. This setting aims to pre-
vent prematurely lowering the lower bound constraint during positive model updates, while raising
it immediately when performance deteriorates, using more k for a detailed model representation.
The effects of different configurations of ξ and ζ on model performance and compression rates are
comprehensively studied in Appendix E.4.2.

Combining the above factors, the lower bound constraint can be expressed as:

klower = max (kmin,min (kmax, ⌈kdata · γ · η⌉))
In addition, the upper bound constraint kupper takes into account both bandwidth and layer impor-
tance. For clients with lower bandwidth, their upper limit of k should be appropriately reduced to

7
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decrease communication burden; for layers with lower importance, their upper limit of k should
also be reduced to minimize communication overhead without significantly affecting model perfor-
mance. The upper bound constraint is calculated as:

kupper = max (kmin, kmax − ⌈β · (1− ωi,j) · (Bmax − bi)⌉)
where β = kmax−kmin

Bmax−Bmin
is the scaling factor based on bandwidth, and Bmax and Bmin are the maxi-

mum and minimum bandwidths, respectively.

The layer importance weight ωi,j is vital. High-importance layers get a larger klower in the lower
bound constraint, allowing for more centroids to retain key features. Conversely, low-importance
layers have a reduced kupper in the upper bound constraint, resulting in higher compression rates.

This dynamic adjustment strategy seeks to optimize the balance between model performance and
resource efficiency in federated learning, offering an effective solution for heterogeneous environ-
ments. The optimization problem can be expressed as:

min
{ki,j∈Z+}

 N∑
i=1

L∑
j=1

(
C1 · ki,j +Wj · log2(ki,j) + C2 ·Bj

bi

)
s.t. klower ≤ ki,j ≤ kupper,

klower = max (kmin,min (kmax, ⌈kdata · γ · λ⌉)) ,
kupper = kmax − ⌈β · (1− ωi,j) · (Bmax − bi)⌉ .

4.5 CONVERGENCE ANALYSIS OF THE ADFEDWCP
To prove the convergence of the AdFedWCP algorithm we proposed, this section first presents the
necessary assumptions and then establishes the corresponding convergence results.

We make the following assumptions about the local objective function Fi(w) for each client i:
Assumption 1. Fi(w) is L-smooth, meaning that for all w, v ∈ Rd, there exists a constant L > 0
such that ∥∇Fi(w)−∇Fi(v)∥ ≤ L∥w − v∥.
Assumption 2. Fi(w) is µ-strongly convex, meaning that for all w, v ∈ Rd, there exists a constant
µ > 0 such that Fi(v) ≥ Fi(w) +∇Fi(w)

⊤(v − w) + µ
2 ∥v − w∥2.

Assumption 3. For all w and clients i, there exists a constant G > 0 such that ∥∇Fi(w)∥ ≤ G.
Assumption 4. For the stochastic gradient, there exists a constant σ2 > 0 such that
Eξ

[
∥∇Fi(w, ξ)−∇Fi(w)∥2

]
≤ σ2, where ∇Fi(w, ξ) represents the gradient under the random

variable ξ.
Assumption 5. There exists a constant B > 0, such that for all clients i and iteration steps t, the
neural network’s parameter vector wt

i satisfies ∥wt
i∥ ≤ B (Zhang et al., 2022).

Theorem 1. Let Assumptions 1 to 5 hold, and let L, µ, σ,G be defined therein. Set κ = L
µ and

γ = max{8κ,E}− 1, where E is a specified constant. By choosing a learning rate η = 2
µ(γ+t) , the

AdFedWCP algorithm satisfies:

E[Fi(w
T
i )]− F ∗

i ≤
κ

γ + T

(
4(D + C) +

µ(γ + 1)∆1

2

)
where T is the total number of iterations, which implies a convergence rate of O(1/T ). F ∗

i is the
optimal value of Fi(w), D = 2B + εmax, where εmax = max

m

B

k
1/dimm
min

represents the maximum error

term due to clustering. kmin denotes the minimum number of centroids, and dimm indicates the
parameter quantity at layer m. C = G2 + σ2 +D(1 + 2G). ∆1 = E[∥w1

i − w∗∥2] is the expected
squared distance between the initial model w1

i and the optimal solution w∗. The detailed version
and proof can be found in Appendix D.

5 EXPERIMENT

We designed a series of experiments to comprehensively evaluate the effectiveness and advantages
of our proposed methods. Specifically, our experiments aim to validate the following aspects:

• Model Performance Improvement: We compare the Top-1 accuracy of our methods with
baselines across multiple datasets in heterogeneous environments, validating the effects of
dynamic weight clustering pruning and global momentum-based updates on performance.
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• Communication Efficiency: We measure communication volume during training, compar-
ing our methods to baselines to evaluate how dynamic weight clustering pruning reduces
communication costs, thereby improving efficiency while maintaining performance.

• Effectiveness of the Adaptive Strategy: We simulate varying client bandwidth limitations
to test the adaptive dynamic scheme’s ability to manage heterogeneity and adjust model
complexity according to different client needs.

5.1 EXPERIMENTAL ENVIRONMENT

Our experimental evaluations were conducted on a Slurm cluster comprising two nodes, each
equipped with an Intel Core i9-13900K CPU, 64 GB RAM, and an NVIDIA GeForce RTX 4090
GPU, and one node equipped with an Intel Xeon Silver 4309Y CPU, 128 GB RAM, and two
NVIDIA A40 GPUs. All compared models were implemented using Python. Federated learning,
along with the dynamic centroid optimization strategy and weight clustering pruning, was imple-
mented using the PyTorch library 1. Our source code is available at 2.

5.2 BASELINE METHODS

We selected several representative baseline methods to validate the effectiveness of our proposed
approach. FedAvg is the foundational algorithm in federated learning, which constructs a global
model by simply averaging the model parameters from all clients (McMahan et al., 2017). Using
FedAvg as a baseline helps in understanding model performance under standard federated learning.
qFedCG reduces communication overhead through quantization and gradient compression strate-
gies (Xu et al., 2024), and it is one of the most advanced methods for optimizing communication
costs in federated learning. Selecting qFedCG as a baseline allows for effective evaluation of the
improvements in communication efficiency provided by our method. Additionally, FedEM (Marfoq
et al., 2021), FedMask (Li et al., 2021), and pFedGate (Chen et al., 2023) are used as baselines,
as they assist in assessing the overall performance of personalized federated learning in addressing
data heterogeneity and communication efficiency.

5.3 DATASETS AND PARTITIONING

In line with the experimental setting employed in (Chen et al., 2023), we simulated the data het-
erogeneity in federated learning by partitioning the CIFAR-10, EMNIST, and CIFAR-100 datasets
using a Dirichlet distribution with parameter α = 0.4. Samples were grouped by class and allocated
to clients to create non-IID data distributions. Each client’s data was then split into training and
testing sets in an 8:2 ratio, ensuring consistent distributions for accurate performance evaluation.
The α parameter controls the level of heterogeneity, with smaller values indicating greater diversity.

5.4 EXPERIMENTAL CONFIGURATION

We followed (Chen et al., 2023) to set up our experiments. For CIFAR-10 and CIFAR-100 datasets,
the LeNet model (LeCun et al., 1998) was used, suitable for small to medium image classification
tasks. For the EMNIST dataset, the LeafCNN model designed for federated learning is used (Caldas
et al., 2018). Client bandwidths heterogeneity was simulated by assigning static communication
bandwidths to clients ranging from 5 Mbps to 100 Mbps, following a normal distribution. The
experiments involved 100 clients for CIFAR-10 and EMNIST, and 50 clients for CIFAR-100. Each
client participated in every round of training to ensure comprehensive evaluation of the proposed
method under varying bandwidth conditions.

5.5 EXPERIMENTAL RESULTS

We evaluated AdFedWCP against baseline methods on CIFAR-10, EMNIST, and CIFAR-100
datasets, focusing on classification accuracy and communication efficiency.

5.5.1 CLASSIFICATION ACCURACY
As shown in Table 1, our proposed method AdFedWCP demonstrates superior classification ac-
curacy compared to most baseline methods across various datasets. On CIFAR-10, AdFedWCP
achieves an accuracy of 61.04%, surpassing FedAvg (60.64%) and pFedGate (60.36%). On the EM-
NIST dataset, AdFedWCP attains 85.12% accuracy, outperforming FedAvg (81.83%) and FedEM
(84.35%), which is designed to handle data heterogeneity. For the challenging CIFAR-100 dataset,
AdFedWCP reaches 20.44% accuracy, exceeding FedAvg (18.75%) and significantly outperforming
other communication-efficient methods like qFedCG (13.50%) and FedMask (11.31%). The slightly

1https://pytorch.org
2https://github.com/SHVleV9CYWkK/LightFedLab
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Method CIFAR-10 EMNIST CIFAR-100
FedAvg 60.64 81.83 18.75
FedEM 62.19 84.35 22.39
qFedCG 52.45 80.24 13.50
FedMask 48.05 63.33 11.31
pFedGate 60.36 82.11 12.40
AdFedWCP (our method) 61.04 85.12 20.44

Table 1: Top-1 clients test datasets average accuracy (%) of different methods on various datasets

lower performance of AdFedWCP compared to FedEM on certain datasets can be attributed to the
optimization focus of FedEM, which prioritizes maximizing personalized model accuracy without
considering communication costs or bandwidth heterogeneity.

The superior performance of AdFedWCP can be attributed to its effective personalization through
the incorporation of global momentum, which facilitates global knowledge sharing among clients.
Each client updates its model parameters by considering both the local gradient descent and a global
momentum term. This global momentum encourages the local models to align with the global
model, capturing overarching patterns across all clients while still adapting to local data nuances.
This balanced approach mitigates the impact of data heterogeneity by combining the benefits of
global knowledge with local personalization.
5.5.2 COMMUNICATION OVERHEAD
We evaluated the communication efficiency of our AdFedWCP method by comparing it with other
baseline methods (excluding FedEM, as it fits separate models for different distributions, resulting
in higher communication overhead than FedAvg and does not focus on reducing communication).
The communication overhead reduction rates relative to FedAvg are summarized in Table 2.

Method LeafCNN (EMNIST) LeNet (CIFAR-10)
FedAvg 0% 0%
qFedCG 87.50% 87.50%
FedMask 50.00% 50.00%
pFedGate 23.42% 23.18%
AdFedWCP (our method) 87.54% 87.82%

Table 2: Communication overhead reduction rates of different models
As shown in Table 2, AdFedWCP significantly reduces communication overhead by 87.54% for the
LeafCNN model and 87.82% for the LeNet model. This is significantly higher than pFedGate and
FedMask, which achieve reduction rates of 23.42% and 50.00%, respectively. Although qFedCG has
a similar reduction rate, its classification accuracy is considerably lower, indicating that AdFedWCP
provides a better trade-off between communication efficiency and model performance.

5.6 SUPPLEMENTARY EXPERIMENTAL

Appendix E presents additional experiments to confirm the effectiveness of our method. We con-
ducted ablation studies on Weight Clustering Pruning (WCP), the adaptive mechanism, and layer
importance estimation. The analysis also includes evaluations of the hyperparameters λ, ξ, and ζ,
as well as performance assessments under varying degrees of data heterogeneity and extreme con-
ditions. Additionally, we evaluated model sparsity and performed further comparisons with FedKD.
Learning curves are also provided. These results demonstrate that our method significantly reduces
communication overhead while maintaining high accuracy. It effectively adapts without requiring
manual adjustments to the number of centroids, achieving a balance between performance and com-
munication efficiency.

6 CONCLUSION AND FUTURE WORK

The AdFedWCP framework improves personalized federated learning in the face of local data and
communication bandwidth heterogeneity while maintaining model performance and communication
efficiency. Our approach, named AdFedWCP, features a novel adaptive weight clustering pruning
strategy to reduce the per-client model size based on each client’s characteristics. Experimental
results demonstrate that it achieves better classification accuracy at reduced communication cost in
comparison to existing methods. In the future, we plan to further improve the weight clustering
method in AdFedWCP by investigating advanced adaptation strategies Qin & Suganthan (2005) and
optimization methods Tran et al. (2020). Additionally, we will explore the scalability and efficiency
of the proposed method in increasingly heterogeneous environments.
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A MATHEMATICAL ANALYSIS OF COMMUNICATION REDUCTION

In this appendix, we provide a detailed mathematical analysis of how the Weight Clustering Pruning
(WCP) method reduces communication overhead in federated learning.

A.1 COMMUNICATION OVERHEAD IN STANDARD FEDERATED LEARNING

In traditional federated learning, each client transmits the full set of model parameters θ to the server
during each communication round. Suppose the model has N parameters, and each parameter is
represented using B bits (e.g., 32 bits for single-precision floating-point representation). The total
communication cost per client per round is therefore:

Cstandard = N ×B bits. (1)
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A.2 COMMUNICATION OVERHEAD WITH WEIGHT CLUSTERING PRUNING

With WCP, the model parameters are compressed by clustering weights and pruning insignificant
ones. Specifically, the weights are replaced with the centroids of their respective clusters, and an
index sequence is used to map each weight to its centroid. Additionally, one centroid is fixed at zero
to enable pruning of negligible weights.

The communication cost in WCP includes:

• Centroid Values: There are k centroids {µj}k−1
j=0 , where µ0 = 0 (the fixed zero centroid).

The remaining k − 1 centroids need to be transmitted, each represented using B bits. The
total cost for centroids is:

Ccentroids = (k − 1)×B bits. (2)

• Index Sequence: Each weight is represented by an index pointing to its centroid. Since
there are k centroids, each index requires ⌈log2 k⌉ bits. Assuming N total weights, the
total cost for the index sequence is:

Cindices = N × ⌈log2 k⌉ bits. (3)

Therefore, the total communication cost per client per round with WCP is:

CWCP = (k − 1)×B +N × ⌈log2 k⌉ bits. (4)

A.3 COMPRESSION RATIO ANALYSIS

The compression ratio ρ is defined as the ratio of the communication cost with WCP to that of the
standard method:

ρ =
CWCP

Cstandard
=

(k − 1)×B +N × ⌈log2 k⌉
N ×B

. (5)

Since typically N ≫ k, we can approximate the compression ratio by neglecting the term involving
k in the numerator:

ρ ≈ N × ⌈log2 k⌉
N ×B

=
⌈log2 k⌉

B
. (6)

This approximation shows that the compression ratio mainly depends on the number of centroids k
and the bit-width B used to represent each weight.

A.4 CONCLUSION

These calculations demonstrate that WCP can significantly reduce communication overhead in fed-
erated learning:

• Effect of Centroid Number (k): A smaller k reduces the number of bits required for
indices (⌈log2 k⌉), thereby lowering communication cost. However, a small k may degrade
model performance due to excessive compression.

• Trade-off Between Compression and Accuracy: While aggressive compression (small
k) minimizes communication overhead, it may adversely affect model accuracy. Thus,
selecting appropriate values for k is crucial to balance efficiency and performance.

• Negligible Centroid Transmission Cost: As N ≫ k, the cost of transmitting centroids
(k − 1)×B becomes negligible compared to the total communication cost.

B MATHEMATICAL ANALYSIS OF WEIGHT CLUSTERING PRUNING
EFFICIENCY

We provide a rigorous mathematical analysis of the computational cost of Weight Clustering Pruning
(WCP), focusing on its efficiency relative to the training cost in federated learning.
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B.1 COMPUTATIONAL COST OF TRAINING IN FEDERATED LEARNING

Training a neural network in federated learning consists of forward propagation, backward propa-
gation, and parameter updates. Let the network have L layers, where the weight matrix in layer l
contains P l = nl−1×nl parameters, and nl−1 and nl denote the number of neurons in the previous
and current layers, respectively. The total number of parameters in the network is:

Ptotal =

L∑
l=1

P l. (7)

B.1.1 FORWARD PROPAGATION COST

For each sample, forward propagation involves matrix multiplications and activation computations.
For layer l, the cost is:

Cl
forward = O(P l). (8)

Summing over all layers, the total forward propagation cost is:

Cforward = O

(
L∑

l=1

P l

)
. (9)

B.1.2 BACKWARD PROPAGATION COST

Backward propagation includes computing gradients for each layer. For layer l, the cost of comput-
ing gradients with respect to weights is:

Cl
backward = O(P l). (10)

Summing over all layers, the total backward propagation cost is:

Cbackward = O

(
L∑

l=1

P l

)
. (11)

B.1.3 PARAMETER UPDATE COST

Updating the parameters involves a cost proportional to the number of parameters. For layer l, the
cost is:

Cl
update = O(P l). (12)

Summing over all layers, the total parameter update cost is:

Cupdate = O

(
L∑

l=1

P l

)
. (13)

B.1.4 TOTAL TRAINING COST

The total training cost for a single sample is:

Ctrain = Cforward + Cbackward + Cupdate = O

(
3

L∑
l=1

P l

)
. (14)

For a dataset with N samples and E epochs, the total training cost is:

Ctotal train = N × E × Ctrain = O (3×N × E × Ptotal) . (15)

B.2 COMPUTATIONAL COST OF WEIGHT CLUSTERING PRUNING

Weight Clustering Pruning (WCP) compresses the model by clustering weights into k clusters. Each
weight is replaced with the nearest centroid, which minimizes communication and computational
overhead.
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B.2.1 CLUSTERING COST FOR A SINGLE LAYER

For layer l with P l parameters, the K-means clustering algorithm requires:

• Assignment Step: Assigning each parameter to the nearest centroid, with complexity:

O(P l × k). (16)

• Update Step: Updating the centroids based on the assignments, with complexity:

O(P l). (17)

For T iterations of clustering, the total cost for clustering weights in layer l is:

Cl
cluster = T ×O(P l × k + P l) = O(T × P l × k). (18)

B.2.2 CLUSTERING COST FOR THE ENTIRE NETWORK

Summing over all layers, the total clustering cost is:

Ctotal cluster =

L∑
l=1

Cl
cluster = O(T × k ×

L∑
l=1

P l) = O(T × k × Ptotal). (19)

B.3 TRAINING VS. CLUSTERING COST RATIO

To compare the computational costs of training and clustering, we define their ratio as:

Cost Ratio =
Ctotal train

Ctotal cluster
. (20)

Substituting the expressions for Ctotal train and Ctotal cluster:

Cost Ratio =
3×N × E × Ptotal

T × k × Ptotal
. (21)

Canceling Ptotal:

Cost Ratio =
3×N × E

T × k
. (22)

Assuming E = 1, N = 2174, T = 10, and k = 32 (parameters based on experimental settings):

Cost Ratio =
3× 2174× 1

10× 32
=

6522

320
≈ 20.38. (23)

B.4 CONCLUSION

The analysis shows that the clustering cost is significantly smaller than the training cost:

• Minimal Overhead: Clustering introduces minimal computational overhead, with training
costs being at least 20 times higher than clustering costs. This is a conservative estimate, as
the parameters used in the ratio calculation are chosen to represent the worst-case scenario
(e.g., maximum number of centroids k, smallest dataset size N ).

• Scalability: The clustering cost scales with the number of parameters and clusters, making
it efficient even for large models.

• Efficiency: WCP effectively reduces communication and computational costs while main-
taining model performance, making it well-suited for federated learning in heterogeneous
environments.

This demonstrates that WCP is computationally efficient and introduces negligible additional cost in
federated learning systems, with actual training-to-clustering cost ratios likely exceeding 20 in less
extreme scenarios.
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C DETAILED MATHEMATICAL ANALYSIS OF WEIGHT CLUSTERING
PRUNING

C.1 INSIGHTS ON COMPUTATIONAL EFFICIENCY

The analysis demonstrates that the training cost is approximately 6.79 times higher than the clus-
tering cost, emphasizing that weight clustering pruning introduces minimal computational overhead
relative to training. This efficiency is crucial in federated learning scenarios, where communication
constraints and client-side computational resources necessitate lightweight optimization techniques.

By leveraging the efficient clustering mechanism, AdFedWCP achieves substantial communication
savings while maintaining high model performance, validating the practicality of weight clustering
pruning in heterogeneous federated learning environments.

D DETAILED CONVERGENCE ANALYSIS OF THE ADFEDWCP

This appendix provides a thorough convergence analysis of the AdFedWCP.

D.1 ADDITIONAL NOTATION

Let wt
i be the model parameter maintained by the i-th device at step t. The local update of AdFed-

WCP can be described as:

wt+1
i = wt

i − η(∇Fi(w
t
i , ξ

t
i) + gti) (24)

where the global momentum gti is defined as:

gti = wt
i − wt

g (25)

and wt
g is the global model at step t.

D.2 KEY LEMMAS

Lemma 1. Assuming Assumptions 1 to 4 hold, if η ≤ 1
4 and L ≤ 2

3 we have:

E[∥wt+1
i − w∗

i ∥2] ≤ (1− ηµ+ 2η)E[∥wt
i − w∗

i ∥2] + η2(G2 + σ2)

+ η2E[∥gti∥2] + 2ηE[∥gti∥∥wt
i − w∗

i ∥] + 2η2GE[∥gti∥]

Lemma 2. Assuming Assumption 5 holds, we have:

E[∥gt∥] ≤ 2B + εmax

D.3 PROOF OF THEOREM 1

Proof. Let ∆t = E[∥wt
i − w∗

i ∥2]. From Lemma1 and Lemma2, we can derive:

∆t+1 ≤ (1− ηµ+ 2η)∆t + 2η(2B + εmax)
√
∆t + η2C (26)

where
C = G2 + σ2 + (2B + εmax)

2 + 2G(2B + εmax)

We will prove that ∆t ≤ v/(γ + t), where:

v = max{4η(2B + εmax)
2(γ + 1), η(γ + 1)C, (γ + 1)∆1}

We prove this by induction. Let η ≤ min{1/(4µ), 1/(4L)} and γ = max{8L/µ,E} − 1.
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Base case: For t = 1, by the choice of v, clearly ∆1 ≤ v/(γ + 1) holds.

Inductive step: Assume ∆t ≤ v/(γ + t) holds for some t ≥ 1. We prove ∆t+1 ≤ v/(γ + t + 1)
also holds:

∆t+1 ≤ (1− ηµ+ 2η)∆t + 2η(2B + εmax)
√

∆t + η2C

≤ (1− ηµ+ 2η)
v

γ + t
+ 2η(2B + εmax)

√
v

γ + t
+ η2C

≤ γ + t

γ + t+ 1

v

γ + t
+

v

4(γ + t)
+

v

γ + t+ 1

≤ v

γ + t+ 1

By the L-smoothness of Fi, we have:

E[Fi(w
t
i)]− F ∗

i ≤
L

2
∆t ≤

L

2

v

γ + t

Specifically, we choose β = 2/µ, γ = max{8L/µ,E} − 1, κ = L/µ.

Then, we define the learning rate as:

η =
β

γ + t
=

2

µ(γ + t)

One can verify that this choice of η satisfies η ≤ 2ηt+E for t ≥ 1.

Then, we have:

v ≤ 4η(2B + εmax)
2(γ + 1) + η(γ + 1)C + (γ + 1)∆1

= η(γ + 1)[4(2B + εmax)
2 + C] + (γ + 1)∆1

Therefore,

E[Fi(w
t
i)]− F ∗

i ≤
L

γ + t
[η(γ + 1)[4(2B + εmax)

2 + C] + (γ + 1)∆1]

=
κ

γ + t

[
γ + 1

γ + t
(4(2B + εmax)

2 + C) +
µ

2
(γ + 1)∆1

]
≤ κ

γ + t
[4D + C +

µ

2
(γ + 1)∆1]

where
D = (2B + εmax)

2

D.4 PROOF OF THE KEY LEMMAS

D.4.1 PROOF OF LEMMA 1

Proof. Given the local update rule:

wt+1
i = wt

i − η
(
∇Fi(w

t
i , ξ

t
i) + gti

)
,

our goal is to bound E
[
∥wt+1

i − w∗
i ∥2
]
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We start by expanding the squared norm:

∥wt+1
i − w∗

i ∥2 =
∥∥wt

i − η
(
∇Fi(w

t
i , ξ

t
i) + gti

)
− w∗

i

∥∥2
=
∥∥wt

i − w∗
i − η

(
∇Fi(w

t
i , ξ

t
i) + gti

)∥∥2
= ∥wt

i − w∗
i ∥2 − 2η

〈
∇Fi(w

t
i , ξ

t
i) + gti , w

t
i − w∗

i

〉
+ η2

∥∥∇Fi(w
t
i , ξ

t
i) + gti

∥∥2
Taking expectations on both sides:

E
[
∥wt+1

i − w∗
i ∥2
]
= E

[
∥wt

i − w∗
i ∥2
]

−2ηE
[〈
∇Fi(w

t
i) + gti , w

t
i − w∗

i

〉]︸ ︷︷ ︸
A

+ η2E
[∥∥∇Fi(w

t
i , ξ

t
i) + gti

∥∥2]︸ ︷︷ ︸
B

We will bound A and B separately.

Bounding A:

We decompose A into two parts:

A = −2ηE
[〈
∇Fi(w

t
i), w

t
i − w∗

i

〉]︸ ︷︷ ︸
A1

−2ηE
[〈
gti , w

t
i − w∗

i

〉]︸ ︷︷ ︸
A2

Bounding A1 using µ-strong convexity:

Since Fi is µ-strongly convex (Assumption 1), we have:

Fi(v) ≥ Fi(w) +∇Fi(w)
⊤(v − w) +

µ

2
∥v − w∥2, ∀v, w

Let v = w∗
i (the minimizer of Fi) and w = wt

i . Then:

Fi(w
∗
i ) ≥ Fi(w

t
i) +∇Fi(w

t
i)

⊤(w∗
i − wt

i) +
µ

2
∥w∗

i − wt
i∥2

⇒ ∇Fi(w
t
i)

⊤(wt
i − w∗

i ) ≥ Fi(w
t
i)− Fi(w

∗
i ) +

µ

2
∥wt

i − w∗
i ∥2

Therefore,

A1 = −2ηE
[
∇Fi(w

t
i)

⊤(wt
i − w∗

i )
]
≤ −2η

(
E[Fi(w

t
i)]− Fi(w

∗
i ) +

µ

2
E
[
∥wt

i − w∗
i ∥2
])

Bounding A2:

Applying the Cauchy-Schwarz inequality:

A2 = −2ηE
[〈
gti , w

t
i − w∗

i

〉]
≤ 2ηE

[
∥gti∥ · ∥wt

i − w∗
i ∥
]

Combining the bounds for A1 and A2:

Thus,

A ≤ −2η
(
E[Fi(w

t
i)]− Fi(w

∗
i )
)
− ηµE

[
∥wt

i − w∗
i ∥2
]
+ 2ηE

[
∥gti∥ · ∥wt

i − w∗
i ∥
]

Bounding B:

We expand B:

B = η2E
[∥∥∇Fi(w

t
i , ξ

t
i) + gti

∥∥2]
= η2E

[∥∥∇Fi(w
t
i , ξ

t
i)
∥∥2]︸ ︷︷ ︸

B1

+ η2E
[∥∥gti∥∥2]︸ ︷︷ ︸
B2

+2η2E
[〈
∇Fi(w

t
i , ξ

t
i), g

t
i

〉]︸ ︷︷ ︸
B3
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Bounding B1:

Using Assumption 3 and Assumption 4 (bounded variance and bounded gradient norm), we have:

B1 = η2E
[∥∥∇Fi(w

t
i , ξ

t
i)−∇Fi(w

t
i) +∇Fi(w

t
i)
∥∥2]

≤ η2
(
E
[∥∥∇Fi(w

t
i , ξ

t
i)−∇Fi(w

t
i)
∥∥2]+ ∥∥∇Fi(w

t
i)
∥∥2)

≤ η2(σ2 +G2)

Bounding B3:

Again, using the Cauchy-Schwarz inequality and Assumption 4:

B3 = 2η2E
[〈
∇Fi(w

t
i , ξ

t
i), g

t
i

〉]
≤ 2η2E

[∥∥∇Fi(w
t
i , ξ

t
i)
∥∥ · ∥∥gti∥∥]

≤ 2η2GE
[∥∥gti∥∥]

since ∥∇Fi(w
t
i , ξ

t
i)∥ ≤ G (Assumption 4).

Combining the bounds for B1, B2, and B3:

Therefore,

B ≤ η2(σ2 +G2) + η2E
[∥∥gti∥∥2]+ 2η2GE

[∥∥gti∥∥]
Combining the bounds for A and B:

Substituting the bounds for A and B back into the main expression:

E
[
∥wt+1

i − w∗
i ∥2
]
≤ E

[
∥wt

i − w∗
i ∥2
]
− 2η

(
E[Fi(w

t
i)]− Fi(w

∗
i )
)
− ηµE

[
∥wt

i − w∗
i ∥2
]

+ 2ηE
[
∥gti∥ · ∥wt

i − w∗
i ∥
]
+ η2(σ2 +G2)

+ η2E
[∥∥gti∥∥2]+ 2η2GE

[∥∥gti∥∥]
Bounding −2η (E[Fi(w

t
i)]− Fi(w

∗
i )):

Using the L-smoothness of Fi (Assumption 2), we have:

Fi(v) ≤ Fi(w) +∇Fi(w)
⊤(v − w) +

L

2
∥v − w∥2, ∀v, w

Let v = w∗
i and w = wt

i , then:

Fi(w
∗
i ) ≤ Fi(w

t
i) +∇Fi(w

t
i)

⊤(w∗
i − wt

i) +
L

2
∥w∗

i − wt
i∥2

Rewriting:

Fi(w
t
i)− Fi(w

∗
i ) ≥ ∇Fi(w

t
i)

⊤(wt
i − w∗

i )−
L

2
∥wt

i − w∗
i ∥2

Since∇Fi(w
∗
i ) = 0 (as w∗

i minimizes Fi), and using the Cauchy-Schwarz inequality:∣∣∇Fi(w
t
i)

⊤(wt
i − w∗

i )
∣∣ = ∣∣∣(∇Fi(w

t
i)−∇Fi(w

∗
i )
)⊤

(wt
i − w∗

i )
∣∣∣

≤
∥∥∇Fi(w

t
i)−∇Fi(w

∗
i )
∥∥ · ∥∥wt

i − w∗
i

∥∥
≤ L∥wt

i − w∗
i ∥2

Therefore,

Fi(w
t
i)− Fi(w

∗
i ) ≥ −L∥wt

i − w∗
i ∥2 −

L

2
∥wt

i − w∗
i ∥2 = −3L

2
∥wt

i − w∗
i ∥2

Thus,
−2η

(
E[Fi(w

t
i)]− Fi(w

∗
i )
)
≤ 3ηLE

[
∥wt

i − w∗
i ∥2
]
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Final Combination:

Substituting back into the main inequality:

E
[
∥wt+1

i − w∗
i ∥2
]
≤ E

[
∥wt

i − w∗
i ∥2
]
− ηµE

[
∥wt

i − w∗
i ∥2
]
+ 3ηLE

[
∥wt

i − w∗
i ∥2
]

+ 2ηE
[
∥gti∥ · ∥wt

i − w∗
i ∥
]
+ η2(σ2 +G2) + η2E

[∥∥gti∥∥2]
+ 2η2GE

[∥∥gti∥∥]
Simplifying the coefficients:

−ηµ+ 3ηL = η(−µ+ 3L)

Under the assumptions η ≤ 1
L and L ≤ 2

3 , we have

E
[
∥wt+1

i − w∗
i ∥2
]
≤ (1− ηµ+ 2η)E

[
∥wt

i − w∗
i ∥2
]
+ η2(σ2 +G2)

+ η2E
[∥∥gti∥∥2]+ 2ηE

[
∥gti∥ · ∥wt

i − w∗
i ∥
]
+ 2η2GE

[∥∥gti∥∥]
This completes the proof of Lemma 1.

D.4.2 PROOF OF LEMMA 2

Proof. Given that the global momentum is defined as:

gti = wt
i − wt

g,

where the global model wt
g is the weighted average of the locally compressed models:

wt
g =

N∑
j=1

pjC(wt
j),

with pj being the proportion of data held by client j, and C(wt
j) representing the compressed model

of client j.

Define the compression error for client j as:

εj = C(wt
j)− wt

j .

Thus, the compressed model can be expressed as:

C(wt
j) = wt

j + εj .

Substituting back into the expression for gti , we have:

gti = wt
i −

N∑
j=1

pj
(
wt

j + εj
)

= wt
i −

N∑
j=1

pjw
t
j −

N∑
j=1

pjεj .

Applying the triangle inequality to bound ∥gti∥:

∥gti∥ ≤

∥∥∥∥∥∥wt
i −

N∑
j=1

pjw
t
j

∥∥∥∥∥∥︸ ︷︷ ︸
D

+

∥∥∥∥∥∥
N∑
j=1

pjεj

∥∥∥∥∥∥︸ ︷︷ ︸
E

.

We will bound each term separately.

Bounding D:
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By definition,

Di
t =

∥∥∥∥∥∥wt
i −

N∑
j=1

pjw
t
j

∥∥∥∥∥∥ .
Using the triangle inequality and Assumption 5 (which states that ∥wt

j∥ ≤ B for all j):

Di
t ≤

∥∥wt
i

∥∥+
∥∥∥∥∥∥

N∑
j=1

pjw
t
j

∥∥∥∥∥∥ ≤ B +

N∑
j=1

pj
∥∥wt

j

∥∥ ≤ B +

N∑
j=1

pjB

= B +B

 N∑
j=1

pj

 = B +B = 2B.

Bounding E:

Using the convexity of the norm and the fact that
∑N

j=1 pj = 1:∥∥∥∥∥∥
N∑
j=1

pjεj

∥∥∥∥∥∥ ≤
N∑
j=1

pj∥εj∥ ≤ max
j
∥εj∥

Bounding maxj ∥εj∥:
The compression error εj arises from the weight clustering process applied to each layer of the
neural network. The clustering aims to minimize the within-cluster sum of squares. Suppose a layer
has nm weights (for layer m), and we partition them into Kmin clusters.

In the worst-case scenario, all weights lie within a hypersphere of diameter d. The clustering algo-
rithm divides this hypersphere into Kmin approximately equal clusters. The diameter of each cluster
is at most:

δm =
d

K
1/dimm

min

,

where dimm is the dimension of the weight space for layer m.

For any weight w in layer m, the maximum distance between w and its compressed value C(w) is
half the diameter of the cluster:

∥C(w)− w∥ ≤ δm
2

=
d

2K
1/dimm

min

.

Assuming d ≤ 2B since Assumption 5, we have:

∥εj∥ = max
m
∥C(wt,m

j )− wt,m
j ∥ ≤ max

m

{
B

K
1/dimm

min

}
.

In onder to simplify our notation, let’s define the maximum possible compression error:

εmax = max
m

{
B

K
1/dimm

min

}
.

Therefore, the maximum compression error across all clients is bounded by:

max
j
∥εj∥ ≤ εmax

Final Bound on ∥gti∥:
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Combining the bounds for Di
t and εmax, we have:

∥gti∥ ≤ Di
t + εmax

≤ 2B + εmax.

Conclusion:

Since the bound holds for all gti , taking expectations yields:

E
[
∥gti∥

]
≤ 2B + εmax.

This completes the proof of Lemma 2.

E SUPPLEMENTARY EXPERIMENTS

E.1 ABLATION STUDY

E.1.1 EFFECTIVENESS OF WEIGHT CLUSTERING PRUNING AND ADAPTIVE MECHANISM

We conducted an ablation study to evaluate the effectiveness of our proposed Weight Clustering
Pruning (WCP) and the adaptive mechanism in AdFedWCP. We compared FedWCP (Federated
Weighted Clustering Pruning with Fixed Number of Centroids) with different numbers of clusters
K, AdFedWCP, and FedWCP (w/o WCP), which is our method without Weight Clustering Prun-
ing. Both classification accuracy and communication overhead were analyzed, and the results are
presented in Tables 3 and 4.

Method CIFAR-10 EMNIST CIFAR-100
FedWCP (K = 8) 60.56 83.89 19.84
FedWCP (K = 16) 61.96 85.46 20.36
FedWCP (K = 32) 63.38 85.93 20.96
FedWCP (w/o WCP) 63.66 85.99 22.72
AdFedWCP 61.04 85.12 20.44

Table 3: Top-1 clients test datasets average accuracy (%) of our methods on various datasets

Method LeafCNN (EMNIST) LeNet (CIFAR-10)
FedWCP (K = 8) 90.53% 90.50%
FedWCP (K = 16) 87.41% 87.36%
FedWCP (K = 32) 84.29% 84.21%
FedWCP (w/o WCP) 0% 0%
AdFedWCP 87.54% 87.82%

Table 4: Communication overhead reduction rates of our methods

From Table 3, it is evident that the classification accuracy of FedWCP (K = 32) remains similar
to that of FedWCP (w/o WCP) across all datasets. This observation indicates that WCP can ef-
fectively reduce communication overhead without significantly impacting model performance. As
the number of clusters K increases, the accuracy of FedWCP improves; however, Table 4 shows
that the communication overhead also increases. This trend demonstrates a trade-off between model
performance and communication efficiency.

Moreover, AdFedWCP achieves competitive accuracy without the need for manual selection of K,
while maintaining high compression rates. For instance, on the EMNIST dataset, AdFedWCP at-
tains an accuracy of 85.12% with a compression rate of 87.54%, effectively balancing accuracy and
communication efficiency.

Table 4 highlights the communication compression rates of our methods relative to FedWCP (w/o
WCP), which serves as the baseline with no compression. Our methods achieve substantial commu-
nication savings compared to the baseline. For example, FedWCP (K = 8) reduces communication
overhead by 90.53% on the LeafCNN model. However, a smaller K leads to higher compression
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rates but may slightly reduce accuracy, as observed with FedWCP (K = 8). In contrast, AdFedWCP
balances communication efficiency and accuracy, achieving high compression rates and competitive
accuracy without the need for manual tuning.

These results validate the effectiveness of our WCP strategy and the adaptive mechanism in AdFed-
WCP for reducing communication overhead while maintaining high model performance, demon-
strating a favorable trade-off between communication efficiency and model performance.

E.1.2 IMPACT OF LAYER IMPORTANCE ESTIMATION

To further understand the effectiveness of layer importance estimation in our adaptive model, we
conducted a supplemental ablation study specifically focused on the integration of the Imprinting
method into AdFedWCP. This experiment compared the standard AdFedWCP configuration with
and without the utilization of layer importance estimation.

Method Accuracy Communication overhead reduction rates
AdFedWCP (w/o imprinting) 85.02% 97.29%
AdFedWCP 85.12% 87.54%

Table 5: Comparison of AdFedWCP with and without Layer Importance Estimation on EMNIST
Dataset

From Table 5, it is evident that integrating layer importance estimation through the Imprinting
method slightly enhances both accuracy and communication efficiency. AdFedWCP with Imprinting
achieved a higher accuracy and compression rate compared to the version without it.

The increment in accuracy and compression rate with Imprinting integration suggests that this
method is efficient at identifying and emphasizing layers that contribute most significantly to model
performance. This approach not only ensures a more effective allocation of model resources but also
assists in achieving a refined balance between model accuracy and communication overhead.

Moreover, the observed improvements underscore the value of precision in layer importance assess-
ment within dynamic environments where computational resources and bandwidth are limited. By
efficiently pinpointing crucial layers, the Imprinting method enhances the overall utility and effec-
tiveness of the adaptive pruning mechanism in AdFedWCP.

These findings validate our hypothesis that layer importance estimation can significantly contribute
to optimizing federated learning strategies by facilitating more informed and strategic model adjust-
ments. This, in turn, affirms the necessity of incorporating sophisticated layer evaluation techniques
in complex models, especially in scenarios characterized by data and environmental heterogeneity.

E.2 EXPERIMENTS ON VARIOUS DATA HETEROGENEITY LEVELS

To evaluate the effectiveness of our proposed AdFedWCP method in handling different data hetero-
geneity environments, we conducted detailed comparative experiments. In this study, we considered
various Dirichlet distribution parameters α, adjusting the α value to simulate data heterogeneity
conditions ranging from mild to extreme. We compare the AdFedWCP and FedWCP methods with
other baseline methods, specifically including FedWCP with different numbers of centroids ( K )
and (w/o WCP). We selected three datasets: CIFAR-10, EMNIST, and CIFAR-100, and conducted
experiments on each dataset using different α values (0.1, 0.4, 1). These α values represent different
degrees of data heterogeneity, where α = 0.1 indicates high heterogeneity, while α = 1 indicates
low data heterogeneity.

The results in Figure 6 show the performance of various methods in dealing with data with dif-
ferent degrees of heterogeneity. By comparing the experimental results under different Dirichlet
distribution parameters α (0.1, 0.4, 1), we can draw the following main conclusions and analyses:

The impact of data heterogeneity on federated learning algorithms is evident as performance gener-
ally improves across all methods and datasets when α increases from 0.1 to 1, suggesting that higher
data heterogeneity (lower α) presents significant challenges. The performance gap between differ-
ent methods becomes more pronounced under high heterogeneity (α = 0.1), indicating that some
methods are more robust to non-IID data distributions. Regarding the comparative performance
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Method CIFAR-10 EMNIST CIFAR-100
α = 0.1 α = 0.4 α = 1 α = 0.1 α = 0.4 α = 1 α = 0.1 α = 0.4 α = 1

FedAvg 52.91% 60.64% 63.57% 68.68% 81.83% 83.79% 12.36% 18.75% 26.48%
FedEM 60.44% 62.19% 65.01% 77.55% 84.35% 85.30% 20.92% 22.39% 28.58%
q-FedCG 47.79% 52.45% 62.32% 51.71% 80.24% 75.94% 9.64% 13.50% 15.92%
FedMask 40.07% 48.05% 70.13% 55.51% 63.33% 78.92% 7.54% 11.31% 21.97%
pFedGate 53.39% 60.36% 70.42% 81.12% 82.11% 84.08% 12.87% 13.50% 21.01%
FedWCP (K=8) 52.97% 60.56% 67.71% 79.37% 83.89% 89.79% 12.01% 19.84% 36.29%
FedWCP (K=16) 55.16% 61.96% 69.88% 82.37% 85.46% 91.61% 12.53% 20.36% 37.73%
FedWCP (K=32) 58.09% 63.58% 71.57% 83.01% 85.93% 92.08% 13.91% 20.96% 38.89%
FedWCP (w/o WCP) 59.16% 63.66% 71.54% 84.73% 85.99% 93.29% 16.45% 22.72% 39.25%
AdFedWCP 54.48% 61.04% 68.86% 82.00% 85.12% 90.28% 13.10% 20.44% 39.19%

Table 6: Top-1 test datasets accuracy of different methods on various datasets under different α
values of the Dirichlet distribution

of methods, FedWCP (w/o WCP) consistently excels across all datasets and heterogeneity levels,
often achieving the highest accuracy, particularly in scenarios of low heterogeneity (α = 1). The
FedWCP also shows strong performance, with accuracy generally improving as K increases; the
K = 32 variant frequently outperforms other methods, especially in moderate to low heterogene-
ity settings. AdFedWCP demonstrates competitive performance, often comparable to or surpassing
FedWCP (K = 32), notably in CIFAR-100 with α = 1. Meanwhile, FedEM maintains robust
performance across different levels of heterogeneity, consistently outperforming FedAvg, whereas
q-FedAvg and FedMask tend to underperform, particularly in scenarios of high heterogeneity. The
effectiveness of AdFedWCP is highlighted by its comparable or sometimes superior performance to
FedWCP, particularly in low heterogeneity scenarios and on more complex datasets like CIFAR-100.
Its adaptive nature allows it to excel across various levels of heterogeneity without the need for man-
ual tuning of K, offering a good balance between performance and practical applicability. However,
while FedWCP (w/o WCP) often achieves the highest accuracy, it incurs higher computational or
communication costs compared to methods like AdFedWCP or FedWCP. The choice between Fed-
WCP variants and AdFedWCP may thus depend on the specific use case, with AdFedWCP offering
adaptability and FedWCP with higher K values potentially providing slightly better performance in
some scenarios.

In conclusion, the experimental results highlight the effectiveness of clustering-based methods (Fed-
WCP, AdFedWCP) and ensemble methods (FedWCP (w/o WCP), FedEM) in handling data het-
erogeneity in federated learning. AdFedWCP, in particular, demonstrates a good balance between
performance and adaptability across different heterogeneity levels and datasets.

While communication efficiency is a crucial aspect of federated learning, our observations indicate
that the communication overhead reduction achieved by AdFedWCP remains relatively consistent.
As shown in Table 2, the communication overhead reduction rates for our method are significant
and stable across various datasets and network architectures. Therefore, including additional ex-
periments on communication efficiency under varying data heterogeneity levels would not provide
further insights. Our focus in this section is to analyze how different methods handle data hetero-
geneity in terms of model performance, where variations are more pronounced and informative.

E.3 SPARSITY OF MODEL PARAMETERS

This section aims to evaluate the sparsity of weight matrices after training for different federated
learning methods to determine their effectiveness in reducing computational overhead. Pruning re-
moves connections deemed unimportant by setting their corresponding weights to zero. This process
results in sparse weight matrices, and leveraging the properties of sparse matrices can enhance com-
putational efficiency and reduce memory usage (Xu & McAuley, 2023). By comparing the average
sparsity rates achieved by each method, we can visually assess their performance in reducing model
parameter complexity.

We conducted tests on two different network architectures (LeafCNN and LeNet). The following
methods were compared: AdFedWCP (our proposed method that does not require manual setting of
sparsity), FedWCP with K = 8,K = 16,K = 32 (different configurations of the FedWCP method
with K values of 8, 16, and 32), pFedGate, FedMask, qFedCG (all these methods manually set a
50% sparsity rate, with pFedGate capable of adaptive sparsity adjustment).
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Method LeafCNN (EMNIST) LeNet (CIFAR-10)
FedMask 50.00% 50.00%
pFedGate 23.42% 23.18%
FedWCP with K = 8 22.79% 58.99%
FedWCP with K = 16 12.27% 44.70%
FedWCP with K = 32 5.82% 29.38%
AdFedWCP 39.56% 54.19%

Table 7: Sparsity rates of different federated learning methods on two datasets

First, it was observed that AdFedWCP displayed considerable sparsity across different datasets and
model architectures, indicating the effectiveness of its model pruning. Especially on the LeNet
model, where AdFedWCP achieved a sparsity rate of 54.19%, it not only demonstrates robustness
in handling complex datasets but also shows that it can effectively reduce the computational burden
of the model without sacrificing performance. Moreover, the effectiveness of AdFedWCP’s adap-
tive sparsity adjustment capability can be further attributed to its unique approach of dynamically
determining the number of centroids per layer based on the importance of each layer. This tailored
granularity ensures that less important layers utilize fewer centroids, which contributes to increased
overall sparsity without compromising the performance of critical parts of the model.

Second, comparing different K values of the FedWCP configuration, we found that as K increased,
the sparsity rate significantly decreased. For instance, in the LeafCNN model, the sparsity rate was
22.79% for K = 8 and only 5.82% for K = 32. This phenomenon reveals that larger K values lead
to denser weight matrices, which may increase the model’s computational complexity—an important
consideration for applications deployed on resource-constrained devices, as higher computational
complexity could result in greater energy consumption and slower response times.

Furthermore, pFedGate and FedMask both had manually set sparsity rates of 50%. Although Fed-
Mask simplifies the setting process for sparsity, it cannot dynamically adjust based on actual training
situations. Such static setting methods may not be flexible enough.

Finally, the adaptive adjustment strategies of AdFedWCP and FedWCP offered higher flexibility and
potential performance advantages. This adaptive capability is particularly suitable for the variable
federated learning environment, where client data distributions and computational capabilities can
vary widely. pFedGate also has an adaptive sparsity rate strategy but did not further optimize for
communication overhead.

In conclusion, the AdFedWCP method, with its highly adaptive sparsity adjustment capability, not
only confirms the effectiveness of its pruning strategy but also optimizes according to specific data
characteristics and bandwidth resources, demonstrating broad applicability and effectiveness in real-
world scenarios.

E.4 HYPERPARAMETER STUDIES

E.4.1 IMPACT OF THE HYPERPARAMETER λ

The hyperparameter λ plays a pivotal role in balancing the weight updates between the global and
local models. Its importance lies in two aspects: enabling global knowledge sharing by integrating
momentum information from the global model and enhancing personalized learning by maintaining
consistency with the global model while preserving local data characteristics. To address the varia-
tions in data and model states across different training phases, we employed a loss-based annealing
mechanism in our experiments to dynamically adjust λ. This mechanism improves training stability
and efficiency, especially in heterogeneous data environments.

The annealing mechanism adjusts λ dynamically based on the relationship between the current loss
and the exponentially smoothed loss. Specifically, the exponential smoothing loss is computed as:

L(t)
exp = αL(t) + (1− α)L(t−1)

exp

where L(t) represents the current loss, and α is set to 0.5 in our experiments. The momentum decay
factor d(i) is then adjusted as:
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d(i) =

{
min(base decay ratei+1 × 1.1, 0.8), if L(t) < L

(t)
exp

max(base decay ratei+1 ÷ 1.1, 0.1), otherwise

This dynamic adjustment improves both global knowledge sharing in early training and local adap-
tation in later stages. Using the decay factor, the model update rule is defined as:

∇θ(t)i = ∇θ(t)i + d(i) ·∆θref

where ∆θref represents the difference between the global and local model parameters.

Configuration Average Accuracy
λ = 0.1 82.36
λ = 0.45 70.26
λ = 0.8 64.70
Dynamic Adjustment (Annealing) 85.12

Table 8: Impact of λ on EMNIST accuracy(%)

To validate the effectiveness of λ and the annealing mechanism, we conducted experiments with
different fixed λ values and dynamic adjustments. The results, shown in Table 8, highlight that a
fixed λ can either overly rely on global information (e.g., λ = 0.8) or overfit to local data (e.g., λ =
0.1), both leading to suboptimal performance. In contrast, the annealing mechanism achieves the
highest accuracy of 85.12% on EMNIST by balancing global and local adaptation across different
training stages.

E.4.2 IMPACT OF THE HYPERPARAMETERS ξ AND ζ

The hyperparameters ξ and ζ control the adjustment magnitude of the optimization lower bound
when dynamically modifying the number of cluster centers. These parameters significantly affect
the trade-off between model compression and accuracy. Specifically, ξ prevents premature reduction
of the optimization lower bound when the model improves, maintaining stability, while ζ accelerates
recovery of the optimization lower bound during performance degradation.

The optimization lower bound η is defined as:

η =

{
1− ξ · |∆A|, if ∆A > 0

1 + ζ · |∆A|, if ∆A < 0

where ∆A = A(t) − A(t−1) represents the change in model accuracy between the current and
previous rounds. A(t) is the model accuracy at the t-th round.

Table 9 presents the experimental results on EMNIST for various combinations of ξ and ζ. Smaller
ξ values (e.g., ξ = 0.1

ξ ζ Accuracy Communication overhead reduction rates
0.1 1.5 85.12% 87.54%
0.5 1.5 84.96% 87.47%
1.0 1.5 85.00% 87.30%
0.1 1.0 84.96% 87.55%
0.5 1.0 84.95% 87.60%
1.0 1.0 84.92% 87.59%
0.1 0.5 84.98% 87.61%
0.5 0.5 85.02% 87.65%
1.0 0.5 84.79% 87.66%

Table 9: Impact of ξ and ζ on EMNIST accuracy and compression rate
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E.5 LEARNING CURVES

In response to the reviewers’ suggestions, we have added supplementary learning curves for AdFed-
WCP and baseline methods on two datasets: EMNIST and CIFAR-10. These curves illustrate the
accuracy progression over multiple training rounds and emphasize the stability and performance
advantages of AdFedWCP in heterogeneous environments. The learning curves are presented in
Figure 2.

EMNIST Dataset CIFAR-10 Dataset

CIFAR-100 Dataset

Figure 2: Learning curves comparing the accuracy of different methods on the EMNIST (a), CIFAR-
10 (b), and CIFAR-100 (c) datasets.

E.5.1 ANALYSIS OF THE EMNIST LEARNING CURVES

On the EMNIST dataset, AdFedWCP demonstrates superior adaptability and stability compared to
baseline methods. In the early training stages, AdFedWCP effectively balances global knowledge
sharing with local personalized model adaptation. While initial fluctuations are observed due to
significant data heterogeneity, the global model increasingly integrates client-specific characteristics
as training progresses, leading to reduced fluctuations and improved stability.

In the later stages of training, AdFedWCP stabilizes at an accuracy of approximately 84%, out-
performing baseline methods such as FedAvg and FedEM. Although FedAvg and FedEM achieve
similar performance levels, AdFedWCP shows a clear advantage in handling heterogeneous envi-
ronments. Additionally, pFedGate exhibits faster convergence in the early stages but falls signifi-
cantly behind AdFedWCP in the final accuracy, highlighting its limitations under high heterogeneity.
FedMask performs the worst, with limited learning capacity due to its communication-constrained
design.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.5.2 ANALYSIS OF THE CIFAR-10 LEARNING CURVES

On the CIFAR-10 dataset, AdFedWCP similarly outperforms other baseline methods. In the early
training rounds, AdFedWCP quickly converges to an accuracy of approximately 55%, showcasing
its efficiency in adapting to image classification tasks. In the later stages, AdFedWCP achieves a
final accuracy of approximately 61%, surpassing FedAvg, FedEM, and other methods.

FedMask again exhibits the poorest performance, stabilizing at an accuracy of only around 40%,
reflecting its limited adaptability under communication-constrained conditions. While FedAvg and
FedEM converge to acceptable accuracy levels, AdFedWCP consistently demonstrates better con-
vergence behavior and adaptability to the heterogeneous and challenging CIFAR-10 dataset.

These results validate the robustness and efficiency of AdFedWCP in handling diverse datasets and
highlight its ability to balance global and local knowledge, ensuring strong performance across
varying degrees of heterogeneity.

E.5.3 ANALYSIS OF THE CIFAR-100 LEARNING CURVES

On the CIFAR-100 dataset, AdFedWCP shows significant prowess, surpassing other baseline feder-
ated learning methods in both adaptability and stability. In the initial stages of training, AdFedWCP
experiences minor fluctuations, likely due to the inherent data heterogeneity within the dataset.
However, it swiftly demonstrates its capability to integrate diverse client-specific characteristics,
enhancing the global model’s accuracy while maintaining consistent performance.

As training progresses, AdFedWCP continues to excel, ultimately stabilizing at a notably high accu-
racy level compared to other methods. This superior performance illustrates AdFedWCP’s effective
balancing of global knowledge sharing with local model optimization, even in a complex and diverse
data environment like CIFAR-100. The method’s final accuracy not only exceeds that of FedAvg
and FedEM, which demonstrate moderate performance improvements, but also significantly outper-
forms qFedCG, FedMask, and pFedGate. These latter methods show either excessive fluctuations
or slower convergence rates, indicating possible challenges in handling high heterogeneity or limi-
tations in learning capacity under CIFAR-100’s extensive class variety.

E.6 COMPARISON WITH FEDKD

We have conducted supplementary experiments to strengthen the evaluation of AdFedWCP. While
we appreciate the importance of comparative analysis, we would like to clarify that AdFedWCP and
FedKD Wu et al. (2022) target different research objectives and operate under distinct application
scenarios. Below, we detail these differences and present the results of supplementary experiments.

E.6.1 DIFFERENCES IN RESEARCH OBJECTIVES BETWEEN ADFEDWCP AND FEDKD

FedKD primarily focuses on reducing communication costs through knowledge distillation, address-
ing scenarios where heterogeneous model architectures are employed across clients. This method
aims to handle the challenges of collaboration and communication when clients have diverse neural
network architectures.

AdFedWCP, by contrast, is designed to tackle data and bandwidth heterogeneity by dynamically
clustering and pruning model weights. This approach assumes consistent model architectures across
clients and prioritizes communication efficiency while maintaining high model performance under
diverse data and bandwidth distributions.

Given these differing assumptions, direct comparisons between FedKD and AdFedWCP may not
fully capture the respective strengths of the two methods. However, to provide a quantitative evalu-
ation, we designed experiments that align with AdFedWCP’s assumptions.

E.6.2 EXPERIMENTAL SETUP

To ensure fairness, we adjusted the experimental setup. Since AdFedWCP assumes identical ar-
chitectures across clients, we configured all clients in FedKD to also use a homogeneous model
architecture. In FedKD, global knowledge distillation was based on models trained with identical
architectures to maintain consistency with the AdFedWCP framework. These adjustments allowed
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us to fairly evaluate both methods under the same conditions, highlighting their respective perfor-
mance in scenarios with homogeneous models and heterogeneous data distributions.

E.6.3 EXPERIMENTAL RESULTS AND ANALYSIS

Method Accuracy Communication overhead reduction rates
FedKD 84.06% 73.18%
AdFedWCP 85.12% 87.54%

Table 10: Comparison of AdFedWCP and FedKD on EMNIST.

The experimental results on the EMNIST dataset are summarized in Table 10. AdFedWCP demon-
strated clear advantages in both accuracy and communication compression rate compared to FedKD.
AdFedWCP achieved an accuracy of 85.12%, surpassing FedKD’s 84.06%. This demonstrates that
dynamic weight clustering and pruning is more effective in handling data heterogeneity, thereby im-
proving model performance in federated learning. AdFedWCP significantly outperformed FedKD
in communication compression, achieving a compression rate of **87.54%** compared to FedKD’s
**73.18%**. This highlights the efficiency of AdFedWCP’s dynamic pruning mechanism in reduc-
ing communication overhead, particularly in bandwidth-constrained environments.

The results illustrate that while FedKD effectively compresses communication through knowledge
distillation, it is not explicitly optimized for bandwidth heterogeneity, which may limit its applica-
bility in such scenarios. In contrast, AdFedWCP’s dynamic adjustment mechanism is specifically
designed to address bandwidth and data heterogeneity, making it more suitable for environments
where these challenges are prevalent.

E.7 PERFORMANCE EVALUATION UNDER EXTREME HETEROGENEITY

To further assess the adaptability of AdFedWCP in highly heterogeneous scenarios, we conducted
experiments to evaluate its performance under varying client bandwidth conditions. Clients were
divided into five distinct groups based on their bandwidth ranges, simulating environments with
diverse communication capabilities. The bandwidth groups were categorized as follows: 5 Mbps -
24 Mbps, 24 Mbps - 43 Mbps, 43 Mbps - 62 Mbps, 62 Mbps - 81 Mbps, and 81 Mbps - 100 Mbps.
The results are shown in Figure 3.

Figure 3: Average accuracy of AdFedWCP across different bandwidth ranges.

The experimental results demonstrate that the accuracy of AdFedWCP varies minimally across dif-
ferent bandwidth groups, with a difference of less than 1.5%. Specifically, even in the lowest band-
width group (5 Mbps - 24 Mbps), AdFedWCP achieves an average accuracy of 86.55%. This sta-
bility highlights the robustness of the dynamic weight clustering and pruning mechanism, which

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

effectively balances communication efficiency and model performance. By dynamically adjusting
pruning rates and model complexity to adapt to each client’s environment, AdFedWCP ensures
high accuracy even in extreme bandwidth conditions. These findings validate the effectiveness of
AdFedWCP in addressing bandwidth heterogeneity, maintaining consistent and efficient model per-
formance across diverse communication environments.

E.8 THE ROLE OF UPPER AND LOWER BOUNDS

To further explore the trade-off between communication efficiency and model performance, we con-
ducted ablation studies analyzing the effects of the upper and lower bounds in AdFedWCP. These
bounds regulate the pruning rates to balance accuracy and compression. We evaluated three con-
figurations: removing the lower bound, removing the upper bound, and retaining both bounds. The
results are presented in Table 11.

Configuration Accuracy (%) Compression Rate (%)
Without Lower Bound 78.27% 90.53%
Without Upper Bound 85.12% 87.37%
With Both Bounds (Default) 85.12% 87.54%

Table 11: Impact of removing upper and lower bounds on accuracy and compression rate.

The experimental results demonstrate the critical role of both the upper and lower bounds in AdFed-
WCP:

When the lower bound is removed, the accuracy drops significantly to 78.27%, while the compres-
sion rate increases to 90.53%. This indicates that excessive pruning without the lower bound leads
to higher communication savings but severely degrades model performance. The lower bound thus
plays a vital role in preserving accuracy by preventing over-pruning.

Conversely, removing the upper bound has no impact on accuracy (remaining at 85.12%), but the
compression rate decreases to 87.37%. This reflects insufficient pruning, which increases communi-
cation overhead. The upper bound is therefore essential for maintaining communication efficiency
by controlling excessive communication costs.

With both bounds enabled, AdFedWCP achieves the optimal balance between accuracy and com-
pression, with an accuracy of 85.12% and a compression rate of 87.54%. These results validate
that the upper and lower bounds are crucial components in the design of AdFedWCP, effectively
balancing communication efficiency and model performance in heterogeneous federated learning
scenarios.

F POTENTIAL LIMITATIONS OF ADFEDWCP

While AdFedWCP demonstrates strong performance in addressing bandwidth heterogeneity and im-
proving communication efficiency, there are several limitations that warrant consideration for future
research and practical applications. First, AdFedWCP assumes static communication bandwidths
for clients throughout the training process. While this simplifies the experimental setup and enables
controlled evaluation, real-world federated learning systems often encounter dynamic bandwidth
fluctuations. Incorporating mechanisms to address dynamic bandwidth changes could further en-
hance the robustness and adaptability of AdFedWCP in practical deployments.

Second, AdFedWCP uses the Imprinting method for layer importance evaluation, which is compu-
tationally efficient and well-suited for resource-constrained federated learning environments. How-
ever, this approach limits the evaluation to a single method, leaving the potential benefits of other
importance evaluation techniques unexplored. Future work could investigate alternative methods,
such as saliency-based or gradient-based techniques, to optimize the pruning strategy further and
improve model performance.

Lastly, AdFedWCP primarily focuses on addressing bandwidth heterogeneity among clients, with
limited consideration for computational heterogeneity, such as differences in processing power or
memory capacity across devices. While the weight clustering pruning mechanism has the potential
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to reduce computational overhead by creating sparse matrices, the sparsity generated by cluster-
ing may not be structured. As a result, the improvement with computational efficiency is not as
significant as that of structured sparsity methods. Extending AdFedWCP to explicitly address com-
putational heterogeneity or structured sparsity could significantly enhance its applicability in highly
resource-constrained environments.

These limitations suggest clear directions for future work, including the development of strategies
to handle dynamic bandwidth, exploration of alternative layer importance evaluation methods, and
explicit optimization for computational heterogeneity. Addressing these challenges could further
enhance the adaptability, scalability, and efficiency of AdFedWCP in diverse and practical federated
learning scenarios.

G VISUAL REPRESENTATION OF THE ADFEDWCP WORKFLOW
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Figure 4: Workflow of AdFedWCP: Dynamic Weight Clustering Pruning with Adaptive Centroid
Optimization.

This figure illustrates the complete workflow of the AdFedWCP (Adaptive Federated Weight Clus-
tering Pruning) framework, showcasing the dynamic interaction between the server and the clients.
Initially, the server broadcasts the global model parameters θtg and the centroid number vector kt to
all clients. Each client then updates its local model by applying Weight Clustering Pruning (WCP)
to produce a pruned model θ̃t+1

i and updates the model based on the local data characteristics and
the received global model parameters. This step includes generating a pruning mask and assessing
the layer importance, which guides the dynamic adjustment of the centroid numbers.

Subsequently, clients upload their pruned models and the corresponding layer importance indices
back to the server. The server aggregates these models to update the global model θt+1

g and dy-
namically optimizes the number of centroids for the next iteration based on the aggregated layer
importance indices and client-specific constraints. This dynamic centroid optimization is aimed at
balancing the computational load and communication overhead across heterogeneous network con-
ditions, thus enhancing the overall efficiency and effectiveness of the federated learning process.
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