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Abstract

Sign language understanding has made signif-001
icant strides; however, there is still no viable002
solution for generating sign sequences directly003
from spoken content, e.g., text or speech. In004
this paper, we propose a unified framework005
for continuous sign language production, eas-006
ing communication between sign and non-sign007
language users. In particular, a sequence dif-008
fusion model, utilizing embeddings extracted009
from text or speech, is crafted to generate sign010
predictions step by step. Moreover, by creating011
a joint embedding space for text, audio, and012
sign, we bind these modalities and leverage the013
semantic consistency among them to provide in-014
formative feedback for the model training. This015
embedding-consistency learning strategy mini-016
mizes the reliance on sign triplets and ensures017
continuous model refinement, even with a miss-018
ing audio modality. Experiments on How2Sign019
and PHOENIX14T datasets demonstrate that020
our model achieves competitive performance021
in sign language production. We will release022
our implementation code and demos.023

1 Introduction024

Sign language, a visual language, combines both025

manual (hand gestures) and non-manual cues for026

communication. It is specifically designed for the027

deaf and hearing-impaired community (Hickok028

et al., 1996; Armstrong and Wilcox, 2003; Camp-029

bell et al., 2008; Zhou et al., 2020). According030

to the World Federation of the Deaf, there are 70031

million deaf people and more than 200 kinds of032

sign languages in the world (Fenlon and Wilkinson,033

2015; Núñez-Marcos et al., 2023).034

Improvements in sign language translation can035

bridge the communication gap between the deaf036

and hearing (Mehdi and Khan, 2002; Harris et al.,037

2009; Taskiran et al., 2018; Ibrahim et al., 2020;038

Rastgoo et al., 2021; Kahlon and Singh, 2023). The039

challenges primarily arise from phonological differ-040

ence and data scarcity. Phonological difference:041
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Figure 1: Illustration of sign language producer. 1)
We propose a unified, multimodal spoken data-driven
framework for SLP that can directly produce sign se-
quences from spoken text or speech audio. 2) To handle
the challenge of scarce audio, we train a joint embedding
space through the spontaneous alignment of multimodal
data. Within this space, we establish a consistency learn-
ing to provide feedback signals that boost training.

signs are composed of various manual and non- 042

manual features (Mann et al., 2010), such as 043

hand gestures, facial expressions and limb move- 044

ments (Liddell and Johnson, 1989; Johnson and 045

Liddell, 2011; Sandler, 2012). The differences 046

in phonological structure and means of expres- 047

sion create challenges in modeling the two lan- 048

guages. Data scarcity: multimodal high-quality 049

sign language datasets are relatively scarce, and 050

some datasets tend to be specific to a particular 051

language or domain, e.g., American sign (Duarte 052

et al., 2021), German weather (Forster et al., 2014; 053

Camgöz et al., 2018). Furthermore, hearing im- 054

pairments hinder pronunciation (Moeller, 2000; 055

Yoshinaga-Itano, 2003), making it strenuous to col- 056

lect sign video with aligned audio and usually re- 057

sulting in the lack of auditory information. Previous 058

researches (Zhang et al.; Camgöz et al., 2017; Hu 059

et al., 2021b,a; Yin et al., 2022) primarily focused 060

on sign language recognition, which identifies sign 061

fragments as the corresponding sign language lex- 062

icons (e.g., gloss). Several work (Saunders et al., 063

2020, 2021a, 2022; Hwang et al., 2021; Walsh 064

et al., 2022) manage the transition from gloss to sign 065

sequences, yet the grammar of gloss can be perplex- 066

ing for those without sign language training. Saun- 067

ders et al. (2020, 2021b) can transcribe discrete 068

words or phrases into continuous sign language se- 069
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quences. However, directly producing continuous070

signs from entire spoken sentences still remains071

more exploration and efforts.072

Aimed at promoting barrier-free communica-073

tion between signers and speakers, we introduce a074

Multimodal Spoken Data-Driven Continuous Sign075

Language Production (MS2SL) framework (Fig. 1).076

MS2SL can animate sign keypoint sequences from077

either speech audio or text. In addition, to alleviate078

data demands, we adopt an embedding-consistency079

learning (ECL) strategy, which is inherently based080

on the reciprocity among modalities, to bolster the081

model training. Specifically, MS2SL initially em-082

ploys pre-training models like CLIP (text) (Rad-083

ford et al., 2021) and HuBERT (audio) (Hsu et al.,084

2021) to extract features from input. Subsequently,085

we utilize these features, serving as control condi-086

tions for the diffusion, to generate sign sequences.087

The attention mechanism (Vaswani et al., 2017)088

is employed to model the relationships among089

conditions, denoising steps, and sign movements.090

Besides that, ECL does not require the three modal-091

ities to coexist in the dataset. By learning a joint092

embedding space, inspired by ImageBind (Gird-093

har et al., 2023), ECL tightly binds the properties094

of different modalities and generates feedback sig-095

nals to boost the training process. First, we uti-096

lize contrastive learning to bind audio and text in097

the embedding space. Then, we leverage the se-098

mantic consistency between co-occurring data to099

infer and reconstruct the embedding of missing100

modalitiy. The reconstruction error between the101

generated signs and groundtruth can be used to it-102

eratively update MS2SL until convergence. ECL103

can foster cross-learning between different gen-104

eration streams, allowing training even in the ab-105

sence of certain modality. We validate the effective-106

ness of our method across two prevalent datasets107

How2Sign (Duarte et al., 2021) and (Camgöz108

et al., 2018). Experimental results demonstrate109

that MS2SL achieves SOTA performance, both in110

terms of semantic consistency and sign accuracy.111

In summary, our main contributions are as follows:112

• We propose MS2SL, a unified diffusion frame-113

work for efficient multimodal spoken to sign lan-114

guage production. MS2SL is able to directly115

convert entire speech or text sentences into corre-116

sponding sign keypoints sequences.117

• We present an ECL strategy that leverages the118

intrinsic relations to enhance data utilization.119

• We show that joint embedding is suitable for gen-120

erative tasks that are prone to modality missing.121

2 Related Work 122

Sign Language Understanding. Similar to spoken 123

language, sign language follows specific linguistic 124

rules (Sandler and Lillo-Martin, 2006; Brentari, 125

2011; Petitto et al., 2016; Sandler, 2017). Ex- 126

isting researches are primarily dedicated to sign 127

language translation (SLT) and recognition. SLT 128

typically involves translating sign language into 129

spoken language (Camgöz et al., 2018; Coster 130

et al., 2022; Camgöz et al., 2020). Sign language 131

recognition (Adaloglou et al., 2022; Selvaraj et al., 132

2022) means interpreting and classifying of body 133

movements in videos, covering isolated (Imashev 134

et al., 2020) and continuous signs (Cui et al., 2017; 135

Camgöz et al., 2018, 2020). SLP (Arkushin et al., 136

2023) is the process of creating sign sequences 137

from spoken text, and can be seen as the reverse 138

process of SLT. These existing studies on SLT and 139

SLP primarily focus on converting between sign 140

videos and gloss, either directly or indirectly. A 141

few of Text2Sign works (Saunders et al., 2020, 142

2021a,b) are grounded in datasets with relatively 143

homogeneous scenario (Camgöz et al., 2018) and 144

discrete spoken transcriptions. 145

Diffusion Model. The diffusion model demon- 146

strates exceptional proficiency in various genera- 147

tive tasks (Ho et al., 2020; Choi et al., 2021; Lug- 148

mayr et al., 2022; Avrahami et al., 2022). Beyond 149

image generation, diffusion models also perform 150

well in generating sequence data (Yuan et al., 2022; 151

Wu et al., 2023). In recent years, some work has 152

begun to apply diffusion models to SLP. By itera- 153

tively updating information, diffusion models can 154

gradually infer the distribution of subsequent data, 155

thereby providing more accurate and coherent re- 156

sults. Ham2Pose (Arkushin et al., 2023) leverages 157

diffusion to animate HamNoSys, a lexicon of sign 158

symbols, into sign keypoint sequences. Though im- 159

pressive, Ham2Pose can only produce videos with 160

a single sign symbol, falling short in conveying 161

sentences with complete semantics. 162

Cross-modal Consistency Learning. Deep learn- 163

ing often requires ample labeled data to work prop- 164

erly. However, the cost of collecting sign data is 165

prohibitive and audio data is often lacking. Recent 166

methods enhance model training by applying con- 167

sistency training to massive unlabeled data (Bach- 168

man et al., 2014; Sajjadi et al., 2016; Clark et al., 169

2018; Miyato et al., 2019). The principle of con- 170

sistency learning, employing the cyclical duality 171

between different tasks or data as feedback sig- 172
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nals to regularize training (He et al., 2016), has173

its roots in the domain of language translation (Yi174

et al., 2017; Lu et al., 2017; Zhao et al., 2020). It175

primarily encompasses inter-task (dual-learning)176

and intra-task (cycle-consistency learning) vari-177

eties. Dual-learning simultaneously trains bidirec-178

tional mapping functions between tasks, creating179

a primal-dual pair where one function’s output ap-180

proximates the input of the inverse function (Yi181

et al., 2017; Wang et al., 2022; Zhang et al., 2018;182

Shah et al., 2019; Wang et al., 2019; Zhao et al.,183

2020; Xie et al., 2020). Cycle-consistency learn-184

ing is designed to enhance the self-reconstruction185

capabilities of samples produced intrinsically by186

the same model (Zhu et al., 2017; Almahairi et al.,187

2018; Rao et al., 2020; Mathew et al., 2020). How-188

ever, these methods frequently emphasize the du-189

ality between two tasks or modalities, overlooking190

the interplay and mutual influence among multi-191

modal data within the same task.192

Limited studies focus on directly generating sign193

language sequences from entire spoken sentences.194

To our best knowledge, we are the pioneers in ef-195

fecting this conversion. This study harnesses se-196

quential diffusion models to incrementally generate197

noise predictions, enabling cross-modal sign lan-198

guage generation. With the help of ECL, MS2SL199

can generate various feedback signals even in the200

absence of co-occurring ternary data: assessing the201

reconstruction loss with the signs generated from202

the reconstructed audio embeddings.203

3 Method204

Assuming the triplets (A, T ,S) represent the au-205

dio, text, and sign space respectively, our goal is206

to learn the mapping from text or audio to sign207

within a unified framework (Fig. 2). Given a train-208

ing dataset D={(a, t, s) ∈ A×T ×S}, MS2SL209

can realize text-to-sign T 7→S : s = G(t) and210

audio-to-sign A7→S : s = G(a), where G is the211

sign sequence diffusion generator. We initially em-212

ploy pretrained models CLIP (Radford et al., 2021)213

and HuBERT (Hsu et al., 2021) to extract features214

from text t and audio a. Next, we employ three en-215

coders Ea, Et, Es to encode these features, acquir-216

ing their embeddings ea, et, and es. Subsequently,217

drawing on the operating mechanism of diffusion218

models, we employ a diffusion step encoder Eh219

and a sign noise encoder En to encode step h and220

noise n to eh and en, respectively. Finally, we uti-221

lize the generator G to produce the sign sequences:222

ŝt = G(et, eh, en) and ŝa = G(ea, eh, en).223

The paucity of co-occurring triplet data renders 224

the direct training of MS2SL a formidable task. To 225

overcome this challenge, we develop a joint em- 226

bedding space that facilitates the natural alignment 227

of multimodal data. Furthermore, we employ ECL 228

strategy to exploit the reciprocity among modalities 229

within the embedding space, effectively furnishing 230

feedback signals to boost the training. 231

3.1 Sign Predictor 232

Cross-linguistic Modeling. MS2SL aims to solve 233

the problem of generating variable-length sequences 234

across modalities. It necessitates phonological mod- 235

eling between spoken and sign language, associat- 236

ing text and audio to the same target sign sequence. 237

The causal attention mechanism can serve as a po- 238

tent remedy for this challenging issue. Taking text- 239

to-sign as an example, we first concatenate the em- 240

beddings of text et, denoising step eh and noise en. 241

Next, we apply the causal self-attention (Radford 242

et al., 2018) to model the relationship among 243

them. The mask in causal attention ensures that 244

the model only processes past and present infor- 245

mation, maintaining temporal and logical coher- 246

ence in the output. As such, the output is com- 247

puted as: CasualAttion[et; eh; en]. During infer- 248

ence, we initiate from the text embedding and pro- 249

duce indices autoregressively, ceasing generation 250

when the model predicts the sequences. Likewise, 251

the concatenated entity of the audio ea, step eh, 252

and noise en can also undergo the causal atten- 253

tion to capture the relationship between audio and 254

sign. In causal attention, we adopt the common 255

practice of positional encoding, which can model 256

keypoints and inter-frame context while capturing 257

cross-modal relations. Thus, to simplify the model 258

structure, we did not explicitly design a temporal 259

module. Finally, we employ two fully connected 260

layers to output the sign prediction ŝh for step h. 261

Sign Language Production. We apply a diffusion 262

model as the sign generator. Similarly, taking text- 263

to-sign as an example, the diffusion generator G is 264

responsible for the gradually producing a continu- 265

ous sign sequence ŝ. Diffusion generator G sim- 266

ulates data distribution through a gradual forward 267

and reversible process (Ho et al., 2020), training by 268

maximizing the Evidence Lower Bound to approx- 269

imate target distributions. Diffusion model aims to 270

reconstruct the input from a latent variable. The 271

forward process gradually transforms the input into 272

noise by adding Gaussian noise. The reverse pro- 273

cess starts from random noise and progressively 274
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Figure 2: Overview of our framework for MS2SL. It includes three key components: sign predictor (§3.1),
modality binding (§3.2) and ECL strategy (§3.3). MS2SL directly unifies spoken data from different modalities into
a common sign language production framework. The introduction of the joint embedding space and ECL reduces
the reliance on co-occurring (text, audio, sign) triplet.

removes the noise to recover the original data.275

Common training for diffusion models involves276

independent noise prediction at each forward step h,277

potentially reducing sequence coherence and consis-278

tency. Following (Arkushin et al., 2023), we adopt279

the holistic training method. We apply a schedule280

function δh = 1/log(h+ 1) (δ ∈ [0, 1]) and a step281

size αh = δh − δh+1. The predicted signs ŝh at282

step h, as:283

ŝh = αhph + (1− αh)ŝh−1, (1)284

where the predicted signs ph at step h are given285

as G(t). This method utilizes the output from the286

previous iteration as the input for the subsequent287

step, gradually reducing the step size as the process288

continues. Each step combines previous outcomes289

with current predictions, reducing reliance on the290

initial noise. We also enhance training robustness291

by introducing a random noise to ŝh at each step.292

Finally, the predicted initial sign ŝ0 is outputted. The293

loss of the diffusion is defined as:294

Ld = αhs0 + (1− αh)sh+1. (2)295

3.2 Modality Binding296

MS2SL operates in an aligned embedding space,297

typically dependent on audio, text, and sign data298

for tri-modal alignment. However, the difficulty299

for people with hearing impairments to perceive300

sound variations poses a challenge in recording301

these co-occurring triplets. Fortunately, Image-302

Bind (Girdhar et al., 2023) reveals that a model303

can learn to align modalities in a joint embedding304

space by employing contrastive learning (Hadsell305

et al., 2006). Training with (Image, Modality1) and306

(Image, Modality2) pairs can lead to a spontaneous307

alignment of Modality1 and Modality2 in embed-308

ding space. This alignment allows the model to309

excel in various tasks without requiring direct train- 310

ing on specific pairs of (Modality1, Modality2). 311

We extend the findings of ImageBind and con- 312

struct a joint embedding space for the triplet 313

dataset (A, T ,S), where MS2SL employs (text, 314

sign) pairs as anchors to establish a cohesive space 315

linking audio, text, and sign. Consider a pair of 316

modalities (T ,S) with aligned observations. Given 317

a sign sequence s and its corresponding caption t. 318

We first employ pretrained models CLIP (Radford 319

et al., 2021) to extract textual features and en- 320

code them into normalized embeddings: et and es. 321

Then, we leverages the paired modalities (T ,S) 322

to align the text with sign. The corresponding 323

encoders are optimized by InfoNCE (Oord et al., 324

2018) loss LT , S : 325

LT , S = −log
exp(sim(et, es)/τ)∑M

m=1 exp(sim(et, esm)/τ)
. (3) 326

Within the mini-batch, we consider each instance, 327

whose index is not equal tom, as a negative example. 328

This approach aims to draw different embedding 329

pairs closer within their joint embedding space. 330

Similarly, we can also obtain LA, S and LT , A for 331

the pairs (A,S) and (T ,A), Interestingly, we also 332

observe the emergent alignment between modal 333

pairs (T ,A) in our embedding space. This phe- 334

nomenon can occur when the training is solely 335

based on pairs (T ,S) and (A,S), a trend that mir- 336

rors the findings reported in (Girdhar et al., 2023). 337

Accordingly, MS2SL is designed to mainly lever- 338

age modal pairs (T ,S) and (T ,A), circumventing 339

the need for triplet data. In practice, this is achieved 340

by employing a triadic loss: 341

Lnce = LT , S + LT , A + LA, S . (4) 342

As such, the embedding space can not only spon- 343

taneously align unseen triples but also be used in 344
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reconstructing unobserved modalities in ECL.345

3.3 Embedding-consistency Learning346

Given a tuple (A, T ,S), we employ a cyclic ap-347

proach with the bound joint embedding to generate348

feedback signals for bidirectional cross-learning,349

fostering model training. When triplet data is avail-350

able, the encoders first extract features from their351

respective modalities. Then, audio and text in-352

dependently generate predicted sign language se-353

quences ŝa and ŝt. To fully utilize real data, we cal-354

culate ECL loss after 500 epochs of model training.355

The vanilla model, built on authentic data, guaran-356

tees minimal distribution differences between gen-357

erated pseudo-embeddings and the original dataset.358

Semantic consistency is calculated using the em-359

beddings êt and êa from encoder Es, which en-360

codes the two predicted sequences. We can obtain361

the text-to-sign error ∆(êt, es) and the audio-to-362

sign loss ∆(êa, es):363

∆(êt, es)=∥êt, es∥2,
∆(êa, es)=∥êa, es∥2.

(5)364

Evaluation scores are derived from comparing the365

two embeddings êt and êa. Both audio and text366

can receive feedback signals from the generative367

streams of each other. To compensate for the miss-368

ing audio modality and ensure smooth processing,369

we use a mapping network M and text embeddings370

to generate pseudo audio features. The operation is371

conducted in the embedding space, thus minimally372

affecting inference speed. For unpaired natural373

audios U , we can get the formula:374

L(T , A, S)=∥Es(G(ea))−Es(G(et))∥2,
L(T ′, S′) =∥Es(M(G(e′

a)))−Es(G(e′
t))∥2.

(6)375

Then our ECL loss is defined as:376

Lecl=L(T , A, S)∈D+ L(T ′, S′)∈U . (7)377

MS2SL translates entire spoken sentences into con-378

tinuous sign language sequences. Overall, our total379

loss comprises three components, i.e., the diffusion380

model loss, ECL loss, and joint embedding loss:381

L = λ1Ld + λ2Lecl + λ3Lnce, (8)382

where the cofficients are empirically set as λ1 =383

λ2 = λ3 = 1.384

3.4 Implementation Details385

Training. MS2SL takes speech audio or text as in-386

puts. We utilize pre-trained models for encoding387

both speech and text, HuBert (Hsu et al., 2021)388

for speech and CLIP (Radford et al., 2021) for389

text. We first extract embeddings et, ea, es, eh, en390

through five encoders. We employ keypoints to 391

represent signs, like the 137 human keypoints in 392

How2Sign (Duarte et al., 2021), which are normal- 393

ized and standardized before being input into the 394

model. et, ea and es participate in learning the 395

joint embedding space. Concurrently, et, ea, eh 396

and en serve as conditions to control the genera- 397

tion of text-to-sign and audio-to-sign, respectively. 398

Here, we adopt the common practice (Saunders 399

et al., 2021a,b; Arkushin et al., 2023) of using the 400

first sign pose as initial noise. The first 500 epochs 401

skip the audio-to-sign generation flow in the ab- 402

sence of audio. After obtaining a vanilla model, 403

we apply the mapping network M to transform 404

et into ea to continue the training until the model 405

converges. Since PHOENIX (Forster et al., 2014) 406

dataset is in German sign language, and our pre- 407

trained model is based on English, we utilize the 408

penultimate layer features of CLIP along with MLP 409

to align and transform between German and En- 410

glish. As for ECL, we incorporate cycles among 411

the three modalities, namely audio-to-sign, text-to- 412

sign, and audio-to-text, greatly enhancing the effi- 413

ciency of data utilization. We adopt the commonly 414

used Exponential Moving Average (Cai et al., 2021) 415

strategy with diffusion parameters (Cai et al., 2021) 416

to ensure smoother, more robust training. For de- 417

tails, please refer to the supplementary. 418

Inference. The model can perform SLP from audio 419

or text independently. Inference for each modality 420

involves executing the sequence sampling of the 421

diffusion model. Using text-to-sign as an example, 422

the process begins with CLIP encoding the text 423

into features. These text features are then fed into 424

the sign predictor, which sequentially generates a 425

sequence noise prediction. The completion of this 426

sampling process results in the generation of the 427

desired sign sequence. The process for generating 428

signs from speech is similar. We take the average 429

of twenty generations to mitigate deviation. 430

Reproducibility. Our method is implemented us- 431

ing PyTorch on 2 GeForce RTX 4090 GPUs, with 432

a training time of about 12 hours and an average in- 433

ference time of 0.3 seconds. Our frame rate is25fps, 434

keypoints for 200 frames can represent content for 435

8 seconds; hence we remove data with word count 436

exceeding 20 (Zhang et al., 2023) or sign language 437

frames exceeding 200. Our code will be released. 438

4 Experiments 439

We evaluate the effectiveness of MS2SL under text- 440

to-sign and audio-to-sign settings. 441
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Methods
How2Sign PHOENIX14T

BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
GT 10.89±.003 13.32±.01 16.71±.06 22.38±.05 23.23±.03 20.53±.01 25.13±.03 32.81±.04 44.01±.02 45.61±.03

PT (Saunders et al., 2020) 2.01±.02 3.86±.04 7.04±.00 13.69±.04 13.81±.03 11.32±.02 12.91±.01 19.04±.05 31.36±.01 32.46±.01

MOMP (Saunders et al., 2021b) 2.34±.04 3.92±.01 7.63±.02 13.68±.06 13.83±.05 11.19±.03 13.14±.02 19.64±.01 32.22±.04 32.96±.02

Ham2Pose (Arkushin et al., 2023) 2.93±.06 4.07±.04 7.31±.02 12.38±.03 13.29±.01 11.71±.03 13.22±.03 20.16±.05 33.39±.00 34.02±.04

T2M-GPT (Zhang et al., 2023) 3.53±.03 5.14±.01 7.92±.05 12.87±.05 13.99±.03 11.66±.02 13.35±.07 21.19±.00 35.24±.02 35.44±.03

MS2SL w/o ECL 3.76±.02 6.03±.02 8.05±.04 14.51±.05 15.10±.06 12.03±.02 14.32±.04 21.72±.03 35.36±.06 35.68±.08

MS2SL-T2S 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

Table 1: Comparisons of text-to-sign with the state-of-the-art methods (§4.2) on How2Sign (Duarte et al.,
2021) and PHOENIX14T (Camgöz et al., 2018). For each metric, we repeat the evaluation 20 times and report the
average. Red and Blue indicate the best and the second best result, respectively.

4.1 Experimental Setup442

Datasets. We conduct experiments on two continu-443

ous sign language datasets:444

• How2Sign (Duarte et al., 2021) is a challenging445

multimodal American sign language dataset with446

16k English word vocabulary and comprehen-447

sive annotations (Liddell, 2003). It contains only448

1, 176 entries with corresponding audio features.449

450 • PHOENIX14T (Camgöz et al., 2018) is a widely451

applied German weather sign language dataset.452

It includes 2, 887 German words and 1, 066 sign453

annotations over 835, 356 frames.454

Evaluation Metrics. Following (Saunders et al.,455

2020), we adopt back-translation approach for456

evaluating, i.e., we leverage the cutting-edge SLT457

model (Camgöz et al., 2020) to ingeniously trans-458

late back from generated signs to text. Subse-459

quently, we calculate BLEU (Papineni et al., 2002)460

and ROUGE (Lin, 2004) scores, which are com-461

monly used metrics for SLP and machine trans-462

lation. We apply ROUGE-L F1-Score and report463

BLEU-1 to BLEU-4 for translation performance at464

different phrase lengths.465

Competitors. For text-to-sign generation stream,466

we consider four SOTA competitors:467

• Ham2Pose (Arkushin et al., 2023), which em-468

ploys transformer and diffusion model, animates469

HamNoSys (a sign notation) into sign poses.470

• T2M-GPT (Zhang et al., 2023) combines VQ-471

VAE (van den Oord et al., 2017) and CLIP (Rad-472

ford et al., 2021) for motion generation.473

• PT (Saunders et al., 2020) translates discrete spo-474

ken sentences into sign sequences.475

• MOMP (Saunders et al., 2021b) divides SLP into476

two sub-tasks: latent sign representation and ani-477

mation imitation.478

As for the audio-to-sign stream, since there are479

not specific methods, we extend MS2SL to mul-480

tiple implementations for a thorough evaluation,481

including audio-to-sign, audio-to-text-to-sign, and482

text-to-audio-to-sign. For audio-to-text-sign, we 483

apply WeNet (Yao et al., 2021) to translate audio 484

into text, followed by the generation of signs. Con- 485

versely, for text-to-audio-to-sign, we employ Deep- 486

Voice (Gibiansky et al., 2017) to convert text into 487

audio for subsequent sign generation. 488

4.2 Comparison to State-of-the-art 489

Quantitative Results. We present the comparative 490

analysis results in Table 1 on How2Sign and 491

PHOENIX14T test set. MS2SL demonstrates im- 492

pressive gains against the four robust methods, 493

establishing a new benchmark for SOTA perfor- 494

mance. In the generation of text-to-sign, our ap- 495

proach yields a ROUGE of 14.67, marking a no- 496

table increase of 2.39 over its counterpart (T2M- 497

GPT, which has a 13.99 ROUGE). Furthermore, 498

MS2SL combined with ECL surpasses the stan- 499

dalone by 1.28. How2Sign (Duarte et al., 2021) and 500

PHOENIX14T (Camgöz et al., 2018) are datasets 501

of different scales, demonstrating the robustness of 502

our method and the burgeoning potential of diffu- 503

sion models in generating long sign sequences. 504

Table 2 reports the audio-to-sign results on 505

How2Sign, noting that PHOENIX14T is not in- 506

cluded here due to the absence of audio data. Our 507

method significantly enhance performance, achiev- 508

ing notable improvements (i.e., BLEU-1 increase 509

from 9.49 to 11.77, ROUGE from 9.60 to 12.16). 510

The ECL strategy also enhances ROUGE by 1.12. 511

Considering the scarcity of audio modality data, 512

this achievement is particularly noteworthy and 513

shows its real-world applicability. We can also con- 514

clude that it is difficult to obtain a well-performing 515

model by training solely with the limited audio data 516

in How2Sign. This also highlights the urgency of 517

utilizing non-co-occurring triplets and collecting 518

large-scale multimodal sign language data. 519

Qualitative Comparison. Fig. 3 presents visual re- 520

sults on How2Sign (Duarte et al., 2021). It demon- 521

strates that our method can produce signs that are 522
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Figure 3: Results examples (§4.2): Left column: text-to-sign generation stream, right column: audio-to-sign
generation stream. Under given conditions, our MS2SL can generate signs that are more semantically consistent
with the spoken description and have more precise keypoints.

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2A2S (§4.1) 0.98±.04 1.32±.02 3.71±.02 8.38±.01 8.52±.00

A2T2S (§4.1) 1.02±.02 1.47±.01 4.66±.05 9.49±.08 9.60±.04

MS2SL w/o ECL 1.24±.07 1.63±.03 4.71±.01 10.59±.01 11.04±.03

MS2SL-A2S 1.67±.01 1.94±.03 5.90±.02 11.77±.05 12.16±.01

Table 2: Audio-to-Sign results on How2Sign (§4.2).

more closely aligned with their semantic mean-523

ing. After meticulous examination, it is evident524

that MS2SL surpasses other models in generating525

actions with smoother transitions, heightens ex-526

pressiveness, greater diversity, and superior adher-527

ence to physical constraints. Some noise and jitter528

are noted in the audio-to-sign generation stream.529

This is mainly because our approach diverges from530

previous studies (Saunders et al., 2020, 2021a;531

Arkushin et al., 2023), which focus on single lex-532

ical symbol or phrase. The challenge of training533

models to convey extended semantic content and534

long sequences often leads to incoherent move-535

ments during sign generation.536

User Study. Given the challenge of finding sign537

language experts, who require extensive training,538

Methods How2Sign PHOENIX14T
PT (Saunders et al., 2020) 1.29 1.54
Ham2Pose (Arkushin et al., 2023) 1.97 1.73
A2T2S (§4.1) 1.87 2.09
T2M-GPT (Zhang et al., 2023) 2.19 2.20
MS2SL 2.65 3.21

Table 3: User study (§4.2).

we conduct a user study with 10 hearing volunteers. 539

We ask the volunteers to compare sign sequences 540

generated by different methods. We slow down 541

sign sequence playback for easier comparison by 542

volunteers. Volunteers select the sequence closer 543

to the ground truth and assign a score. Our scoring 544

range is from 1 to 5, with higher scores indicating 545

closer proximity to the ground truth. Most partici- 546

pants report that the sign sequences generated by 547

MS2SL are smoother and more accurate (Table 3). 548

User feedback highlight the advantages of MS2SL 549

in terms of expression clarity and pose accuracy. 550

4.3 Ablation Study 551

We conduct careful profiling of the impact of each 552

module within MS2SL on How2Sign. 553
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Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Audio 0.98±.04 1.32±.02 3.71±.02 8.38±.01 8.52±.00

Text 1.74±.00 2.41±.02 3.43±.07 8.62±.03 9.57±.01

T2A2S 1.85±.0 2.35±.03 4.26±.02 8.52±.08 9.28±.03

MS2SL 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

(a) data from different modalities

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

0k 3.76±.06 6.03±.02 8.05±.05 14.51±.04 15.10±.02

5k 3.79±.06 6.23±.02 8.17±.05 14.62±.04 15.56±.02

10k 3.82±.03 6.37±.03 8.31±.02 14.57±.06 15.87±.00

15k 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

(b) embedding consistency learning

Steps BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
0 0.62±.02 2.08±.03 4.16±.07 9.57±.03 9.72±.05

5 1.09±.04 2.42±.06 5.24±.04 10.44±.00 10.90±.01

10 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

15 4.04±.01 6.23±.04 9.58±.0 15.26±.02 17.33±.01

20 4.87±.01 6.66±.04 9.67±.0 15.45±.02 17.24±.01

(c) diffusion model

Pre-trained BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

WavLM (Chen et al., 2022) 1.63±.06 1.79±.02 6.12±.01 10.94±.00 11.43±.02

HuBert (Hsu et al., 2021) 1.67±.07 1.94±.04 5.90±.02 11.77±.06 12.16±.01

CLIP (Radford et al., 2021) 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

BERT (Devlin et al., 2019) 4.11±.04 6.91±.02 10.27±.01 13.37±.05 16.52±.06

(d) different pretrained models

Table 4: A set of ablation studies (§4.3). All experiments employ the same network and structure, with slight
variations arising due to different inputs. We report the results of text-to-sign generation by default.

Data in Different Modalities. We primarily con-554

duct four experiments: audio-to-sign, text-to-sign,555

text-to-audio-to-sign, and MS2SL, to compare and556

analyze the role of different modalities. As shown557

in Table 4a, although direct generation from audio-558

to-sign and text-to-sign can yield appropriate re-559

sults, MS2SL significantly outperforms them. Re-560

moval of text data leads to a 6.29 decrease in561

BLEU-1, highlighting its crucial role. The mediat-562

ing role of text leads to an increase 0.76 in ROUGE.563

Multimodal data yields superior results compared564

to its unimodal counterpart, enriching the learning565

process with more diverse information.566

Embedding Consistency Learning. We investi-567

gate the impact of the cyclical consistency training568

presented in § 3.3, and the results are illustrated in569

Table 4b. We note that common training method570

performs comparably to baseline models, while571

cyclical consistency boosts model performance572

akin to adding substantial training data. Compared573

to the alternative only with single modality, MS2SL574

approach shows a 1.12 increase in BLEU-2 and a575

1.28 increase in ROUGE, demonstrating the syn-576

ergistic effect of integrating data from multiple577

modalities. We further pay particular attention to578

the impact of dataset size. We also observe a direct579

correlation between dataset size and model accu-580

racy. For smaller datasets (under 10k samples), the581

accuracy plateau around 15.5. Several insights can582

be drawn: i) Performances improve as more train-583

ing data is used. ii) Over 10k unpaired data entries,584

the signs might be of good quality, but the model585

cannot further improve on a large scale, possibly586

due to the scarcity of audio. This trend shows that587

more data notably improves sequence generation,588

even without clear semantic boundaries.589

Diffusion Model. As shown in Table 4c, imple-590

menting the diffusion model lead to a significant591

enhancement. The quality metrics, such as BLEU- 592

1 and ROUGE, improved by 5.1 and 6.66, respec- 593

tively, compared to non-diffusion model approach. 594

Our study explores denoising steps ranging from 595

5 to 20, revealing a discernible trade-off between 596

generation quality and computational efficiency. 597

Compared to a fixed 10-step denoising process, the 598

20-step process unsteadily improve 0.78 in BLEU- 599

1 by approximately 5.3% with a disproportionate 600

increase in computational load. Thus, in this paper, 601

10 is set as the default number of denoising steps. 602

Pre-trained Models. We select four widely used 603

models, including, CLIP (text), BERT (text) (De- 604

vlin et al., 2019), HuBert (audio) and WavLM (au- 605

dio) (Chen et al., 2022), to assess their impact on 606

performance. As shown in Table 4d, for audio-to- 607

sign generation, the impact of HuBert and WavLM 608

on performance is minor, with negligible differ- 609

ences observed between the two pre-trained mod- 610

els. GPT outperforms CLIP models in text-related 611

tasks, with a slight improvement of up to 0.14 in 612

ROUGE. This may be because BERT focuses on 613

natural language processing, leading to enhanced 614

text understanding capabilities. 615

5 Conclusion 616

We explore a unified framework that combines dif- 617

fusion and pretrained models to generate sign lan- 618

guage from spoken depictions. We surpass other 619

competitors and solidify this classic framework as 620

a highly competitive method for SLP. MS2SL effec- 621

tively handles diverse modalities of data for analy- 622

sis and decoupling. Despite its advancements, our 623

model struggles with maintaining contextual flow 624

in generation, and MS2SL cannot handle lengthy 625

data, which is a future focus. Our research pioneers 626

direct sign language generation from speech, offer- 627

ing some insights to advance the community. 628
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Limitations629

Despite significant advancements, our method still630

faces key technical limitations. First, the com-631

plexity and fluidity of authentic sign language are632

challenging to fully capture and reproduce, as it633

involves not just hand movements but also facial634

expressions, body language, and the speed of ges-635

tures. Moreover, converting text or speech into636

sign language involves complex natural language637

processing challenges, especially in handling gram-638

mar and semantics. Lastly, MS2SL struggles to639

effectively generate long sequences of key move-640

ments, limiting the coherence and completeness641

of sign language expression. These limitations in-642

dicate that, while the potential of sign language643

generation technology is immense, significant tech-644

nical barriers still need to be overcome to achieve645

comprehensive and precise sign language commu-646

nication. These are also the directions we are com-647

mitted to addressing in the future.648
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Supplementary Material959

In the appendix, we provide the following com-960

ponents that offer a more comprehensive under-961

standing of our method:962

• §B: More Experimental Results.963

• §A: Architecture Details.964

• §C: Impacts.965

We employ GPT-3.5 to refine and enhance our writ-966

ing. We are immensely grateful for the substantial967

assistance provided by GPT.968

A More Experimental Results969

We conducte multiple experiments and report the970

results on PhoenixT (Camgöz et al., 2018), and we971

does not conduct comparative experiments for the972

audio-to-sign generation stream due to the absence973

of any audio data in PhoenixT. As shown in Ta-974

ble 7 and 8, we report the diagnostic results on975

PhoenixT. After integrating the diffusion process976

into MS2SL, we note modest enhancements. In977

particular, BLEU-1 score shows a notable improve-978

ment, rising by 1.88, and ROUGE score experience979

a increment of 2.11 (Table 7).

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
0 10.19.±.01 12.58±.04 18.48±.05 31.92±.04 33.80±.01

5 10.91±.03 13.11±.02 21.47±.05 33.8±.06 35.91±.00

10 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

15 12.97±.02 15.06±.01 22.25±.05 36.73±.02 37.10±.02

Table 7: Denoising steps.
980

In the comparison of pre-trained models (Table 8),981

the conclusion is similar to that with How2Sign,982

indicating no significant differences among various983

text pre-training models. This is due to the relatively984

small dataset and vocabulary size of PhoenixT, for985

which the current models are sufficiently.

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

GT 20.53±.01 25.13±.03 32.81±.04 44.01±.02 45.61±.03

CLIP (Radford et al., 2021) 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

Bert (Devlin et al., 2019) 12.52±.02 15.76±.04 22.39±.03 37.13±.02 36.45±.05

Table 8: Different text pre-trained models.
986

B Architecture Details987

The sign predictor, designed for predicting noise988

at each step h in the diffusion process (Nichol and989

Dhariwal, 2021; Arkushin et al., 2023), boasts a990

streamlined network architecture with several spe-991

cialized modules. Table 9 details the parameter992

configurations of each module in MS2SL.993

Encoders. We employ a total of five encoders994

to process different types of input content. Each995

encoder consists of two attention layers and a 996

Multi-Layer Perceptron (MLP). Attention mech- 997

anisms (Radford et al., 2018) in each encoder en- 998

able the model to focus on the most relevant fea- 999

tures of input data, enhancing its ability to ex- 1000

tract and learn complex patterns. MLP further 1001

processes those focused information to generate 1002

embeddings et, ea, es, eh and en, introducing non- 1003

linear transformations to add depth to the analysis 1004

and enabling the extraction of higher-level features. 1005

Producer. The producer is a central component 1006

of the model, responsible for synthesizing and out- 1007

putting the final sign predictions. MS2SL utilizes 1008

the attention mechanism to learn the relationships 1009

between different input content, gathered and pro- 1010

cessed by the encoders. We utilize six multi-head 1011

attention blocks. Finally, we also use an MLP to 1012

transform the predicted features into coordinates 1013

for 137 sign keypoints in How2Sign (Duarte et al., 1014

2021) and PHOENIX14T (Camgöz et al., 2018). 1015

We also designed a length predictor to fore- 1016

cast the length of the generated sign language se- 1017

quences. By accurately predicting the sequence 1018

length, the length predictor helps maintain the co- 1019

herence and consistency of the model’s outputs, 1020

ensuring they are accurate not only in content but 1021

also in their temporal unfolding. To reduce the 1022

overall parameters of the model, we employed sep- 1023

arate predictors for estimating the length of the 1024

input text and audio, respectively. 1025

C Impacts 1026

Sign language production technology has signifi- 1027

cant impacts in both social and technological areas. 1028

Socially, it greatly enhances accessible communica- 1029

tion, improving information access and interaction 1030

for deaf and hard of hearing individuals, especially 1031

in daily life, education, and work environments. It 1032

can foster social inclusiveness, aiding in the dis- 1033

mantling of communication barriers and facilitating 1034

the integration of the deaf community into broader 1035

society. SLP also serves as an educational tool, 1036

aiding deaf students in better understanding and 1037

absorbing information and facilitating the learning 1038

of sign language for hearing individuals. Techno- 1039

logically, the advancement of SLP drives progress 1040

in image recognition, natural language processing, 1041

and machine learning. This involves tackling chal- 1042

lenges such as multimodal learning, text and au- 1043

dio comprehension, content generation, and data 1044

scarcity simultaneously. We conduct cyclic con- 1045

sistency learning on a joint embedding space, pro- 1046

1



Module Text Encoder Audio Encoder Sign Encoder Step Encoder Noise Encoder

Input text audio sign keypoints step number sign noise

Feature extraction CLIP (Radford et al., 2021) Hubert (Hsu et al., 2021) Positional Encoding nn.Embedding Positional Encoding

Embedding Generation
Attention Blk ×2 Attention Blk ×2 Attention Blk ×2 Attention Blk ×2 Attention Blk ×2

MLP MLP MLP MLP MLP

Embedding Fusion
Length prediction (MLP) -

Concatenation

Sign Prediction
Attention Blk ×6

MLP

Table 9: Network architecture of the sign predictor (§B).

viding effective insights for niche domains. It aslo1047

poses some potential risks, including insufficient1048

accuracy, cultural nuances, and misinterpretations.1049
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