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Abstract
Training and fine-tuning Large Language Models (LLMs) is often highly resource- and time-
intensive due to their large model sizes. To address this issue and improve accessibility, several
memory-efficient techniques have been developed, such as Low-Rank Adaptation (LoRA), which
optimizes the weights in a low-rank subspace, and Gradient Low-Rank Projection (GaLore), which
projects gradients onto a lower-dimensional space. In this paper, we introduce Gradient Subspace
Tracking (SubTrack), a method that restricts the optimization process to a small core subspace of
gradient matrices while dynamically tracking subspace changes. By leveraging estimation errors
and previously detected subspaces, SubTrack adjusts the subspace estimation using a computa-
tionally efficient approach. Despite applying only rank-1 updates, SubTrack achieves performance
comparable to, or better than, GaLore while reducing runtime by up to 20.56%.

1. Introduction

Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks;
however, their training and fine-tuning demand substantial resources, making them impractical for
many applications. [10, 12, 16, 20–22, 33]. As a result, there is an acute need to develop memory-
efficient methods to democratize their use and mitigate environmental impacts. Several techniques,
such as gradient checkpointing [5] and memory offloading [23] have been proposed to lower mem-
ory usage. In this context, Parameter-Efficient Fine-Tuning (PEFT) approaches focus on optimizing
a subset of model parameters or operating in a lower-dimensional space to reduce memory usage
[7, 11, 17, 20, 24, 28, 30]. Notably, LoRA [11] decomposes weight matrices into two low-rank
matrices, optimizing parameters in a lower-dimensional space.

Memory requirements are not limited to the trainable parameters, and a significant portion is
consumed by the optimizers. To address this, more recently reducing the optimizer parameters
have been another area of focus [1, 6, 15, 19, 21, 22, 32, 33]. GaLore [33] reduces memory usage
by projecting gradient matrices into a low-rank subspace by performing periodic Singular Value
Decomposition (SVD) on the gradient matrix, to get a rank-r estimation of the gradient space.
This approach presents several challenges. First, SVD is computationally expensive, and if the
gradient does not evolve within a nearly constant subspace, GaLore must increase the frequency of
SVD operations. This poses a significant issue since not all layers’ gradients converge to a stable
subspace early in the training process [12]. Moreover, applying SVD to a single gradient matrix can
be influenced by data noise [27], and GaLore does not use 1) the information in the orthogonal space
[21] or 2) the previously computed subspaces to alleviate this effect, thus slowing convergence.
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To this end, we propose Gradient Subspace Tracking (SubTrack), a Grassmannian-based sub-
space tracking method that efficiently updates the subspace using rank-1 updates. SubTrack accu-
mulates gradients between two update steps to reduce noise effect and leverages information from
the orthogonal complement to enhance subspace estimation through simple linear algebra opera-
tions which are more computationally efficient compared to GaLore, as SubTrack does not perform
periodic SVD on the main gradient matrices. Additionally, SubTrack dynamically captures changes
in the gradient subspace and reduces the jumps in subspace updates, for faster convergence.

2. Related Works

LoRA [11], is a widely recognized method for reducing the number of trainable parameters. It
projects the model weights into a lower-dimensional space, which in turn reduces memory require-
ments. Dettmers et al. [7] employs quantization techniques and paged optimizers on top of LoRA
to further reduce memory usage. Yaras et al. [30] introduced Deep LoRA, which utilizes deep
matrix factorization to address overfitting and reduce the need for precise tuning of the rank pa-
rameter. Several other works also extend LoRA to improve the efficiency of training large models
[17, 24, 28]. Miles et al. [20] proposes compressing the intermediate activation vectors and then
reconstructing them for a proper backpropagation. Additionally, Hao et al. [10] demonstrates that
full-parameter fine-tuning is feasible by employing random projections to the gradient matrix by
showing that LoRA is essentially a down-projection of gradient.

Several approaches focus on reducing memory consumption in optimizers, as optimizers like
Adam [14] are responsible for a substantial portion of memory usage [1, 6, 15, 19, 32]. MicroAdam
[21] addresses this by compressing the gradient space while using the resulting error via feedback
loops. According to Gur-Ari et al. [9], a substantial portion of gradients tends to lie within a small
subspace that remains largely consistent. This observation has been approved by multiple studies,
including Schneider et al. [25], Yaras et al. [29]. Gradient Low-Rank Projection (GaLore) [33] lever-
ages this property of gradient space to reduce memory requirements by projecting gradients into a
lower-dimensional subspace. This approach has been successfully integrated with other methods to
further reduce memory usage during fine-tuning [16]. However, not all layers’ gradient in an LLM
evolve in a low-rank subspace. Jaiswal et al. [12] identifies layers with constantly changing gradi-
ents where low-rank projection is inefficient. By analyzing the singular values’ distribution, they
select layers that evolve within a small subspace for fine-tuning, while freezing the others. Gra-
dient Structured Sparsification (Grass) [22] further minimizes memory usage by applying sparse
projection matrices, transforming the gradient matrix into a sparse vector space.

When working with high-dimensional data, a common strategy is to project the data into a lower-
dimensional space, and there are many studies focusing on cases where the underlying subspace
evolves over time. Balzano et al. [2] introduces an incremental method for updating subspaces on
the Grassmannian manifold when data is partially observed. Zhang and Balzano [31] and Kasai
[13] address the challenge of noisy data in streaming and evolving environments, and Blocker et al.
[4] introduced a method for time-varying data based on Geodesics in Grassmannian space.

3. SubTrack: Tracking the Gradient Subspace

Since gradients tend to evolve within a small subspace, compressing the gradient space can effec-
tively reduce the optimizers’ memory footprint. However, the gradient’s subspace does not always
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remain stable, and tracking this changes is crucial for optimization purposes. GaLore [33] addresses
this by periodically performing SVD on gradient matrices. We propose Gradient Subspace Tracking
or SubTrack, a computationally efficient method for tracking gradient subspaces. SubTrack lever-
ages information in the orthogonal space and the previously computed subspace to update the core
subspace. The subspace initialization is performed using SVD, as follows

G0 = USV ⊤ ≈
r∑

i=1

siuiv
⊤
i , P0 = [u1, u2, ..., ur], Q0 = [v1, v2, ..., vr]. (1)

Here, G0 is an m × n gradient matrix at step 0, and U , S, and V are its SVD components, with r
representing the specified rank. At each optimization step, we project the gradients onto left singular
vectors subspace if m ≤ n, and onto right singular vectors otherwise, to further optimizing the
memory usage[33]. The optimization then takes place in this subspace and afterward, the gradient
is projected back, enabling full parameter tuning. Henceforth, we assume that m ≤ n w.l.o.g.

To utilize the orthogonal space while mitigating the effects of noise, SubTrack computes an
accumulated gradient by averaging the gradients between two subspace update steps, as shown
below, where Tn and Tn−1 are the steps in which we update the underlying subspace.

Gacc =
1

Tn − Tn−1

Tn∑
t=

Tn−1

Gt (2)

We then frame the problem of identifying the subspace as selecting the appropriate element from
the Grassmannian, which is the set of all d-dimensional subspaces within an n-dimensional vector
space [3]. Our goal is to minimize the Euclidean distance between the current subspace and the
observed accumulated gradient Gacc at each update step, with the cost function defined as

F (St) = min
A
∥StA−Gacc∥2F , (3)

where St is an orthonormal matrix whose columns span the current subspace and A is the answer
of the least square problem. The derivative of this function with respect to St is in (4), and R =
Gacc − StA lies in the orthogonal complement of St. We then compute the tangent vector ∇F on
the Grassmannian manifold for updating the subspace in the given direction [8] as in (5), in which
the second equality holds as R is orthogonal to StS

⊤
t .

∂F

∂St
= 2(StA−Gacc)A

⊤ = −2RA⊤ (4)

∇F = (I − StS
⊤
t )

∂F

∂St
=

∂F

∂St
= −2RA⊤ ≈ ÛF Σ̂F V̂

⊤
F (5)

∇F gives the direction for adjusting the subspace considering the error that lies in the orthogonal
complement; however, to keep subspace changes to a minimum; SubTrack first computes a rank-1
estimation of∇F indicated by its largest singular value and associated singular vectors gained form
its SVD, represented as ÛF Σ̂F V̂

⊤
F , for updating the subspace. As demonstrated by Bendokat et al.

[3], Edelman et al. [8], the subspace can be updated with a step of size η on the Grassmannian using
the SVD of associated tangent vector, as shown in Equation 6.

St+1(η) = (StV̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F ) (6)
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Algorithm 1 SubTrack
Require: Sequence of m × n gradients Gt with m ≤ n (w.l.o.g.), step-size η, rank r, subspace

update steps k
Initialize Subspace via SVD Decomposition:
P0 ← U [:, : r] , where U, S, V ← SVD(G0)
S0 ← P⊤

0 G0 {The initial subspace}
Gacc = 0m×n {To keep the accumulated gradient}
for t = 1, . . . , T do

if t mod k = 0 then
Prepare accumulated gradients: Gacc =

Gacc+Gt
k

Update subspace:
Glr = argminA ∥(St−1A−Gacc)∥2 {Solving the least square problem}
R = Gacc − St−1Glr {Computing the residual}
∇F = −2RG⊤

lr ≈ ÛF Σ̂F V̂
⊤
F {Computing the rank-1 estimation of tangent vector}

St = (St−1V̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St−1(I − V̂F V̂

⊤
F ) {Updating the subspace}

Reset accumulated gradients: Gacc = 0m×n

else
Keep using previous subspace: Gacc = Gacc +Gt , St = St−1

Return final projected gradient to the optimizer: S⊤
t Gt

Using the geometry of Grassmannian manifold, SubTrack effectively tracks the underlying subspace
of gradient space, and Algorithm 1 presents the pseudo-code of this method.

4. Experiments

For a fair comparison of computational efficiency between SubTrack and GaLore, we fine-tuned
RoBERTa-Base [18] and trained Llama-based architectures [26] using these two methods and mea-
sured the associated wall-time while keeping all the shared hyperparameters equal. Wall-time is
the real-world elapsed time it takes for a process or operation to complete, measured from start to
finish, including both the actual runtime and any waiting time for resources or data retrieval.
Experiment on GLUE. RoBERTa-Base is fine-tuned on GLUE tasks for 2500 iterations, the esti-
mated subspace is of rank-8 and the subspace update interval is set to 500 iterations. As a result,
both methods update the underlying subspace exactly five times. The wall-time for these methods
are reported in Table 1. As demonstrated, SubTrack can reduce the runtime up to 20.56%. The per-
formance and experimental details can be found in Appendix A, indicating that SubTrack achieved
performance comparable to, or better than, GaLore, even through rank-1 updates.
Experiment on C4. We also trained different Llama-based architectures on the C4 dataset, each
for 1000 iterations, with subspace update interval set to 200, ensuring that both methods perform
exactly five subspace updates. Their wall-times are presented in Table 2 and as the dimension of the
subspace to the actual gradient space decreases, SubTrack efficiency increases compared to GaLore.
Experiment on COLA. Figure 1 compares wall-times of GaLore and SubTrack for subspace up-
date intervals range from 50 to 500. These represent the number of iterations between two subspace
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Figure 1: Comparing runtimes of GaLore and SubTrack. RoBERTa-Base is fine-tuned for 10 epochs on
COLA task for different subspace update intervals. Notice that by increasing this number, the update fre-
quency actually decreases, as it indicates the number of iterations between two subspace update steps.

updates; hence, increasing its value reduces the update frequency. We fine-tuned RoBERTa-Base on
COLA task for ten epochs on an NVIDIA T4 GPU. As illustrated, GaLore’s runtime increases sig-
nificantly with more frequent subspace updates, while SubTrack shows minimal runtime overhead.

Table 1: Comparing SubTrack and GaLore’s wall-times (sec); RoBERTa-Base is fine-tuned on GLUE tasks.

COLA STS-B MRPC RTE STS-2 MNLI QNLI QQP Avg

SubTrack 149.38 159.06 171.22 304.92 148.95 177.07 192.15 156.85 182.45
GaLore 188.03 195.59 196.52 328.26 187.06 208.05 217.06 189.45 213.75

Reduction 20.56% 18.68% 12.87% 7.11% 20.37% 14.89% 11.48% 17.21% 15.40%

Table 2: Comparing SubTrack and GaLore wall-times on training LLama-based architectures on C4 dataset.

60M 130M 350M Avg

GaLore 514.76 550.05 1489.67 851.49
SubTrack 508.74 534.01 1429.63 857.78

Reduction 1.17% 2.92% 4.03% 2.71%

5. Conclusion and Future Work

We proposed a computationally efficient method that projects gradients into a lower-dimensional
subspace while updating it by tracking its changes. SubTrack maintains the previously computed
subspace, and incorporated the gradient component in the orthogonal complement to perform rank-
1 subspace updates. This approach reduces the frequency of abrupt transitions between iterations
and leverages as much as information available. In future works, we aim to further investigate the
effect of updates’ rank and exploit its advantage to achieve improved performance while maintaining
computational efficiency and reducing number of hyperparameters.
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Appendix A. Fine-Tuning RoBERTa-Base

To compare the computational efficiency and performance of SubTrack with GaLore, we fine-tuned
RoBERTa-Base using the hyperparameters reported in Table 3, which are identical to those reported
in the GaLore paper for rank-4 and rank-8 subspaces, with a subspace update interval of 500 itera-
tions. As shown in Table 4, using rank-1 updates with the same subspace update interval, SubTrack
achieved better or comparable results compared to GaLore. This performance highlights the effec-
tiveness of the subspace tracking method used to monitor changes in the underlying subspace while
reducing computational overhead.

Table 3: Hyperparameters of fine-tuning RoBERTa-Base.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
SubTrack Step Size 0.001 0.001 1.5 0.1 0.0001 0.001 1.0 1.0

Rank Config. r = 4
α 4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
SubTrack Step Size 0.001 0.01 15.0 3.0 0.001 0.001 1.0 1.0

Rank Config. r = 8
α 2

Max Seq. Len. 512

Table 4: Evaluating SubTrack and GaLore on fine-tuning RoBERTa-Base on GLUE tasks for different ranks
r.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP

GaLore (r=4) 60.34 90.58 92.58 76.53 94.27 87.12 92.20 87.86
SubTrack (r=4) 61.32 90.64 92.66 77.98 94.15 86.85 91.85 87.50

GaLore (r=8) 58.54 90.61 91.30 74.37 94.50 87.34 92.71 87.99
SubTrack (r=8) 58.54 90.87 91.43 76.53 94.27 87.09 92.49 87.57
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Appendix B. Pre-Training LLama-Based Architectures

We evaluated the wall time for pre-training three different Llama-based architectures of varying
model sizes, with hyperparameters and architectural properties reported in Table 5.

Table 5: Hyperparameters of pre-training Llama-based architectures.

60M 130M 350M

Hidden 512 768 1024
Intermediate 1376 2048 2736

Heads 8 12 16
Layers 8 12 24

Batch Size 256 128 64
Rank 128 256 256
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