
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARN TO CHANGE THE WORLD: MULTI-LEVEL RE-
INFORCEMENT LEARNING WITH MODEL-CHANGING
ACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning usually assumes a given or sometimes even fixed envi-
ronment in which an agent seeks an optimal policy to maximize its long-term
discounted reward. In contrast, we consider agents that are not limited to pas-
sive adaptations: they instead have model-changing actions that actively modify
the RL model of world dynamics itself. Reconfiguring the underlying transition
processes can potentially increase the agents’ rewards. Motivated by this setting,
we introduce the multi-layer configurable time-varying Markov decision process
(MCTVMDP). In an MCTVMDP, the lower-level MDP has a non-stationary tran-
sition function that is configurable through upper-level model-changing actions.
The agent’s objective consists of two parts: Optimize the configuration policies in
the upper-level MDP and optimize the primitive action policies in the lower-level
MDP to jointly improve its expected long-term reward.

1 INTRODUCTION

Reinforcement learning, which is based on the mathematical model Markov decision process
(MDP), has been widely applied in many real-world sequential decision problems, such as in RLHF
Christiano et al. (2023), in financial decisions Liang et al. (2018), and in robotic control algorithms
Tang et al. (2024), etc. There are extensive works in finding optimal policies in a fixed environment,
through both model-based approaches Deisenroth & Rasmussen (2011) such as planning on esti-
mated models, and model-free approaches such as variants of Q-learning Watkins & Dayan (1992)
and variants of policy gradient methods Williams (1992). However, in many applications, an MDP
environment can be changed on purpose in order to increase the obtainable rewards.

In this paper, we consider a new RL framework, where an agent has actions to change the involved
MDP environment itself. These changes include, but are not limited to, changing its transition ker-
nels, rewards, and even the set of allowable future actions. The traditional RL framework behaves
within a pre-specified statistical model, and this statistical model stays unchanged no matter what
actions are taken by the agents. In contrast, the new RL framework proposed in this paper has the
potential and mechanism of breaking out of these limitations, through actions that change or im-
prove the underlying MDP. For example, RL agents may have actions that can change the transition
kernels. After such a model-changing action is taken at a certain times step, the transition kernel is
updated and stays unchanged until the next model-changing action occurs.

As special cases of the proposed RL mechanism with model-changing actions, we consider two
schemes: multi-level (including bi-level) environment-changing RL and configurable RL for
time-varying environments. In configurable RL for a time-varying environment, after a certain
number of time steps, the transition kernel is changed to a different transition kernel by nature. At
this time step, the agent takes action that can change or improve the transition kernel. In the bi-
level environment-changing RL scheme, in the lower-level MDP, the agent aims to find the regular
optimal policy given a certain environment configuration, while in the upper-level MDP, the agent
aims to find the optimal configuration policy for modifying the lower-level MDP. The lower-level
MDP’s quantities, which the upper-level MDP can configure, thus become the states of the upper-
level MDP. For example, if the upper-level MDP explores actions that can improve the lower-level
MDP’s transition kernel, the lower level’s transition kernel becomes the state of the upper-level

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MDP. In a regular MDP model, the states and the transition kernel are completely different subjects
or concepts; however, in the unique multi-level MDP setting considered in this paper, the lower-level
transition kernel can become the state of the upper-level MDP. To the best of our knowledge, the
formulations that treat the transition kernels themselves as upper-level MDP states are rare or have
not previously appeared in the literature.

Let us consider an example of a 3-level MDP framework with model-changing actions. The high-
est level, namely the 3rd level, of this framework is an MDP which represents the evolution of
the politics and legislation of a country: this MDP’s states are the evolving approved guidelines
(fiscal policies) for this country’s central bank, and the actions are the efforts of legislation. Note
that legislative efforts can potentially result in random fiscal policies that depend on unexpected
political compromises and random political events. The 2nd-level MDP represents the dynamics of
the central bank setting up and exploring monetary policies: the states of this 2nd-level MDP are
the monetary policies, and the transition kernel between the monetary policies is affected by the
fiscal policies set by the 3rd-level MDP. The actions on this 2nd level are monetary policy explo-
rations, such as motions to change the Federal Reserve interest rates. These actions may result in
random-sized interest rate changes due to monetary policy voting results and random foreign coun-
tries’ economic environments. The 1st-level MDP represents the society’s economic activities: this
lower-level MDP’s states are the situations of the society’s productions and consumptions of goods
and services, and the transition kernel between the states is dictated or configured by the monetary
policies adopted in the 2nd-level MDP.

Consider another example of a robot trying to cross a fast-flowing river. Without changing the
environment, the robot performs RL on non-model-changing maneuvers e.g., moving left, right,
backward, forward, upward, or downward) to adapt to the river flow, but may still be swept away
with a high probability if the current is too strong. In our model-changing RL setting, the robot
can instead modify the environment of this river, for example, by placing stepping stones in the
river. This naturally leads to a bi-level MDP with model-changing actions. The state in the upper-
level MDP is the configuration of the river environment, dictating the transition kernel for the lower
MDP for the robot’s non-model-changing maneuvers. The upper-level MDP’s actions are the robot’s
actions, which change the configuration of the river environment. We note that the robot’s actions
of putting stepping stones into the river can lead to transitions to random configurations of the river
environment, because it is random whether a deployed stone is washed away or stays still in place
under the river current. The lower-level actions are the robot’s non-model-changing maneuvers
under a given river environment. The states affected by the lower-level actions are the locations of
the robot in the river. Please refer to Appendix A for more motivating examples on transportation
on infrastructure, training drones, and finance models.

Motivated by these examples, this paper makes the following contributions: 1) We formulated the
problem of RL with model-changing actions; and we proposed two special models for RL with
model-changing actions: multi-level configurable MDPs and time-varying configurable MDP; 2) We
proposed algorithms including convex optimization formulations and multi-level value iterations for
solving multi-level configurable RL problems; 3) We proved theoretical performance guarantees for
the proposed algorithms; 4) We provided numerical results showing the effectiveness of configuring
or improving favorable RL environment through learning.

Related works: The literature most closely related to our work is configurable MDP (CMDP)
Metelli et al. (2018); Silva et al. (2019); Chen et al. (2022); Thoma et al. (2024); Silva et al. (2018);
Modhe et al. (2021); Maran et al.; Ramponi et al. (2021), where the agent can configure some
environmental parameters to improve the performance of a learning agent. Within the series of works
in configurable MDP, Silva et al. (2018) assumes that a better world configuration corresponds to
a transition probability matrix whose corresponding optimal policy yields a larger total discounted
reward. They formulate the problem of reasoning over good world configurations as a non-convex
constrained optimization problem, where the agent explicitly balances the benefits of changing the
world against the costs incurred by such modifications. Unlike our approach, their formulation
does not employ upper-level MDP abstractions/learning to model/improve configuration actions,
but relies on direct gradient-based optimization. In addition, our paper deals with time-varying
non-stationary lower-level MDPs.

Thoma et al. (2024) addresses how to optimize configurations for a contextual MDP where some
parameters are configurable while others are stochastic. Their bi-level gradient-based formulation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(BO-MDP) can be viewed as a Stackelberg game where the leader and a random context beyond
the leader’s control together configure an MDP, while (potentially many) followers optimize their
strategies given the setting. Chen et al. (2022) focuses on regulating the agent’s interaction with the
environment by redesigning the reward or transition kernel parameters. They formulate this prob-
lem as a bi-level program, in which the upper-level designer regulates the lower-level MDP, aiming
to induce desired policies in the agent and achieve system-level objectives. In contrast with these
works, our work places the configuration process under the control of the RL agent itself, which
adjusts/configures the lower-level kernels with the goal of maximizing its own reward. In our work,
the RL model has built-in actions that can change the model itself, which is not the case in previous
works. Moreover, in our setting, upper-level configurations are explicitly modeled as an MDP, which
is unlike the one-time configuration in previous works. Silva et al. (2019) analyzes the complexity
of solving CMDPs, demonstrates several parameterizations of CMDPs, and derives a gradient-based
solution approach. Their approach, particularly in the continuous configuration setting, is related to
our linear approximation method for solving the special case of TVCMDPs. However, our primary
contribution lies in the study of multi-layer configurable MDPs. which differs fundamentally from
the continuous framework in Silva et al. (2019). Our work also covers time-varying transition ker-
nels, which were not investigated by these previous works. A unique characteristic of our framework
is that the transition kernels of lower-level MDPs actually become the states of an upper-level MDP.
For further comparisons with hierarchical MDP Li et al. (2022), meta RL Duan et al. (2016), and
semi-MDP Sutton et al. (1999), please see Appendix B.

2 PROBLEM FORMULATION

General idea of a framework with model-changing actions: We consider MDP with model-
changing actionsMC = {S,A, P, T, r, γ} with model-changing actions that can modify its transi-
tion kernel. InMC , S is the state space with |S| = n, A is the action space, the transition kernel
P : S × A × S → [0, 1] is subject to change or configuration and may be time-varying. r is the
reward function, T is the time steps, and γ is the discounting factor. Different from a regular MDP,
at certain time steps, the agent may adopt model-changing actions which can change the MDP to
have a new (maybe random) transition kernel, and this new transition kernel will remain fixed until
another new model-changing action adopted in the future changes the transition kernel again.

Because the transition kernels can change over time due to model-changing actions, most traditional
theories for MDP do not apply. We consider the following special cases called multi-level config-
urable MDP where the time steps are divided into episodes, and the model-changing actions are
only taken at the beginning of each episode. The model-changing actions are actions of upper-level
MDPs which dictate or change the transition kernels of lower-level MDPs. We focus on bi-level
configurable MDPs, which can be extended to multi-level MDP in a similar way.

Bi-level configurable MDP: We build a bi-level configurable MDP that separates model-changing
actions (configuration operations) from primitive actions, using an episodic-style hierarchical struc-
ture. For the upper-level model, the agent chooses a model-changing action at the start of each
episode that configures the lower-level environment by selecting a lower-level transition kernel.
This configuration determines the dynamics for the entire episode. Sequential decisions on model-
changing actions throughout episodes form an upper-level MDP, aiming to optimize the model-
changing policy and to improve the lower-level model over time. There is a cost imposed on taking
a model-changing action, which is represented as a penalty included in the upper-level reward func-
tion. For the lower-level model, within each episode, the agent interacts with a standard MDP with
the current transition kernel set by the upper level. The agent normally selects primitive actions,
receives rewards, and aims to optimize its policy. We use k to denote the episode index and use t to
denote the time step index within an episode.

Mathematically, the bi-level MDP can be formulated as: a lower-levelML = {S,A, P, T, µ0, r, γ}
and an upper-level MU = {P,B, Q,K,R, λ}. In ML, which can be considered similar to a
standard MDP, S is the state space with |S| = n, A is the action space, the lower-level transition
kernel P : S × A × S → [0, 1] is determined by MU and is subject to change. We denote the
transition kernel in episode k as Pk. T is the number of time steps within one episode and can be
infinity, when we consider an infinite-horizonML. µ0 ∈ Rn is the initial state distribution of each
episode and is set to be uniform. At the beginning of each episode k , the state distribution is reset

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to be µ0. r : S × A → R is the reward function and we denote rmax = max(s,a)∈S×A r(s, a).
γ ∈ [0, 1) is the lower-level discount factor.

We use πk : S → A to denote the primitive policy of episode k that determines the lower-level
actions of the agents. For episode k, the lower-level state-value (namely V-value) function of the
agent following the policy πk is:

V πk(s) = EPk
[

∞∑
t=0

γtr(st, at)|s0 = s, at ∼ πk], s ∈ S

and the closed-form solution of the Bellman equation for the state-value function is:

V πk = (I − γPπk

k)−1rπk , (1)

where V πk,Pk ∈ Rn is the vectorized state-values, and Pπk

k , rπk are in the form:

Pπk

k =


−Pk(·|s1, πk(s1))−
−Pk(·|s2, πk(s2))−

...
−Pk(·|sn, πk(sn))−

 , rπk =


r(s1, πk(s1))
r(s2, πk(s2))

...
r(sn, πk(sn))

 .

We denote the lower-level initial expected return J(πk, Pk) of episode k as:

J(πk, Pk) = µT
0 V

πk,Pk . (2)

InMU , P is the space of lower-level transition kernels and is the state space ofMU . For simplicity,
we assume that the upper-level state P with |P| = m is discrete and finite. The upper-level state
P ∈ P is also the transition kernel P of the lower-level MDPML. B is the set of model-changing
actions. Q : P × B × P → [0, 1] is the upper-level kernel that determines the transitions of
upper-level states. The notation of the upper-level kernel is Q(P ′|P, b) where P ′ is the configured
lower-level kernel, and the distribution of P ′ depends on the current lower-level kernel P and the
model-changing action b. K is the total number of episodes and can go to infinity when we consider
an infinite-horizon MU . λ ∈ [0, 1) is the upper-level discount factor. R : P × B → R is the
upper-level reward function. The reward of episode k is defined as:

R(Pk, bk) =
∑

Pk+1∈P
Q(Pk+1|Pk, bk)J(π

∗
k+1, Pk+1)− C(Pk, bk), (3)

where π∗
k+1 is the optimal primitive policy of episode k+1, and C(Pk, bk) is the cost function. We

denote Rmax = max(P,b)∈P×B R(P, b).

We let WΘ(P) denote the higher-order state-value function if the agent follows the higher-order
policy of configuration operations Θ : P → B:

WΘ(P) = EQ[

∞∑
k=0

λkR(Pk, bk)|P0 = P, bk ∼ Θ], P ∈ P

The agent aims to find an optimal higher-order policy Θ∗ such that Θ∗ = argmaxΘ WΘ.

Special case of bi-level configurable MDPs: Time-variant MDP and continuous configuration:
We consider a special case when the upper-level state space P is continuous and agents can con-
tinuously change the lower-level environment deterministically. In this case, we only consider a
one-layer MDP, in which the transition kernel is time-variant throughout episodes and configurable.
Additionally, the configuration operations incur costs when the agent modifies a less favorable tran-
sition kernel to a more favorable one. We study a constrained optimization problem that seeks to
maximize the agent’s discounted long-term reward asymptotically as time goes to infinity, taking
into account both the time-varying world dynamics and a budget constraint on the total cost of
configurations.

Mathematically, the time-variant configurable MDP (TVCMDP) can be described as the following:
MTV C = {S,A, C,K, {Pk}Kk=1, µ0, T, r, γ}, where C is the space of configuration operations, K
is the total number of episodes, and T is the total number of time steps within each episode. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

time-varying transition kernel Pk, k ∈ [K] is determined by nature at the beginning of each episode
(for example, without maintenance, road can randomly deteriorate after a period of time). All other
parameters are the same as those introduced inML.

Within episode k, the configuration operation x ∈ C is represented by xk ∈ [−1, 1]n×n where xk
is the amount of change the agent does to the default transition kernel Pπk

k . To evaluate the effect
of configurations x = {xk}Kk=0, we define the sum of configured function F (x;π) with the set of
configuration operations x = {xk}Kk=0 and the set of primitive policies π = {πk}Kk=0 as:

F (x;π) =

K∑
k=0

J(πk, P
πk

k + xk), (4)

where J(π, P) is determined by (2). The agent in TVCMDP aims to maximize the objective function
(4) by optimizing the configuration variables x.

3 COST-CONSTRAINED OPTIMIZATION PROBLEM ON TVCMDP

Cost constrained optimization problem: Recall that in TVCMDP, the agent wants to maxi-
mize the objective function (4) by optimizing the configuration variables xk throughout the K
episodes. The original cost-constrained objective function under the configuration budget is (5),

max
xk

max
πk

K∑
k=0

J(πk, P
πk

k + xk), (5)

s.t.
K∑

k=0

C(xk) ≤ B,

n∑
j=1

(
Pπk

k + xk
)
ij
= 1, ∀i, k,

0 ≤
(
Pπk

k + xk
)
ij
≤ 1, ∀i, j, k,

max
xk

K∑
k=0

⟨Ak, xk⟩, (6)

s.t.
∑
k,i,j

(
eα|(xk)ij | − 1

)
≤ B,

n∑
j=1

(xk)ij = 0, ∀i, k,

0 ≤
(
Pπk

k + xk
)
ij
≤ 1. ∀i, j, k,

where B is the configuration budget, πk is the policy in episode k, Pk is the original transition kernel
in episode k, and C(xk) is the cost function of changing the default transition kernel by xk. Because
configuration to the environment may be a highly-costly operation, we assume that the cost grows
exponentially as the amount of configuration increases, i.e., C(x) =

∑
ij β(e

α|(x)i,j | − 1), where
α, β ∈ R are non-negative constants, and α can be large. To solve this cost-constrained optimiza-
tion problem, we first linearize the objective function (4). As a by-product, we also solve out the
Jacobian ∇PπV π ∈ Rn×n×n of V π with respect to Pπ . Please see Appendix C.

Linear approximation of configured state-values: Consider the closed form solution in (1), we
have that in any episode k, for a fixed policy π, the state-value is V π = (I − γPπ)−1rπ, V π ∈
Rn, Pπ ∈ [0, 1]n×n, rπ ∈ Rn. Suppose the optimal policy corresponding to the original transition
kernel P is π. We assume that with a sufficiently small change x ∈ [−1, 1]n×n in the transition
kernel, the optimal policy π remains unchanged. Even if the optimal policy changes when we
change P to a different transition kernel Pnew, we notice that V π(Pnew) = (I − γPπ

new)
−1rπ is

still a lower bound on the state-value of the optimal policy under the new transition kernel Pnew.
This is because π is the optimal policy under P , but not necessarily optimal under Pnew. So in our
optimization, keeping the policy π unchanged while P changes provides a meaningful lower bound
for the state-value.

The configured state-value function V π(Pπ + x) by linear approximation is computed by:

V π(Pπ + x) =
(
I − γ(Pπ + x)

)−1

rπ

≈ (I − γPπ)−1rπ − (I − γPπ)−1(−γx)(I − γPπ)−1rπ

= (I − γPπ)−1rπ + γ(I − γPπ)−1x(I − γPπ)−1rπ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We let matrix Mπ = γ(I−γPπ)−1,Mπ ∈ Rn×n, and let vector Nπ = (I−γPπ)−1rπ, Nπ ∈ Rn.
The above formula can be rewritten as:

V π(Pπ + x) ≈ Nπ +MπxNπ (7)

Convex optimization problem: We can now rewrite the original optimization problem (5) by ap-
plying the linear approximation (7). Now let πk be the optimal policy under the original transition
kernel Pk in episode k. Now Nπk

k ∈ Rn and Mπk

k ∈ Rn×n are associated with episode k. The objec-
tive function can be rewritten as maxxk

∑K
k=0 µ

T
0 N

πk

k +µT
0 M

πk

k xkN
πk

k . We can ignore the constant
term µT

0 N
πk

k with respect to x, because we expand the objective function at πk, which is just a func-
tion of the original transition kernel Pk and does not change with respect to the configuration variable
x. Since µT

0 M
πk

k xkN
πk

k is a scalar, we have µT
0 M

πk

k xkN
πk

k = tr(µTMπk

k xkN
πk

k), and tr(·) is the
matrix trace function. According to the cyclic property of trace, we have tr(µT

0 M
πk

k xkN
πk

k) =
tr(Nπk

k µT
0 M

πk

k xk). Consider the property that tr(AT , x) = ⟨A, x⟩, where ⟨·, ·⟩ is the Frobenius
norm. If we let AT

k = Nπk

k µT
0 M

πk

k , this objective function is equal to ⟨Ak, xk⟩ =
∑

ij(Ak)ij(xk)ij ,
and Ak = (Mπk

k)Tµ0(N
πk

k)T , Ak ∈ Rn×n.

We assume that the cost function is point-wise exponential and B is the total cost budget, i.e.,∑
k≤K,i,j≤n(e

α|(xk)ij | − 1) ≤ B, and the constant α is large. In order to make Pπk

k + xk a valid
probability transition matrix, xk also need to satisfy that

∑
j(xk)ij = 0,∀i, k, and Pπk

k + xk has
elements between 0 and 1. By reorganizing these constraints, we get a convex optimization problem
with a linear objective function (6). Here, the optimization variables are the configurable variables
{xk}Kk=0. {πk} are the set of optimal policies the agent can adopt in episode k. This problem is
solvable using classic convex optimization methods. Note that once we get the updated P , we can
update the optimal policy under the new transition kernel. One can even redo this with another linear
approximation at the original kernel under the new updated policy. Compared with previous works
on configurable RL for fixed kernel Silva et al. (2018), our novelty for this special case is that we
are dealing with time-varying non-stationary RL.

4 BI-LEVEL MODEL-BASED VALUE ITERATION

Algorithm: We propose the model-based Bi-level value iteration algorithm to solve the Bi-level
configurable MDP model proposed in section 2. Please see Appendix D, which contains the esti-
mation approach to get empirical transition kernels {P̂} and Q̂ and the algorithm pseudo-code. To
apply Algorithm 1, we need to first estimate the ground-truth lower-level kernels P ∈ P and the
ground-truth upper-level kernel Q. We assume that the reward function r(s, a),∀(s, a) ∈ S × A is
known and remains the same across all possible lower-level models.

Algorithm 1 produces the higher-order state-values WHU and the higher-order policy ΘHU . The
higher-order state-value represents the maximum achievable expected returns when the agent jointly
optimizes both the environment configuration and its adaptation to the configured environment. The
policy ΘHU specifies the optimal model-changing action, i.e., configuration, to apply to the current
lower-level kernel. Each lower-level expected return J , which is the “average” of lower-level state-
values, contributes to the upper-level reward function R (based on equation (3)). The upper-level
MDP makes decisions on model changing according to the information reported by the lower-level
MDP. 1

In the following section, we discuss how the physical limitation of the bi-level MDP model and the
estimation error of the model-based algorithm would affect the performance of Algorithm 1. Here
the physical limitation error comes from the precision limit of configuration, and the estimation error
refers to error of lower-level MDP estimating its configured kernel.

Physical limitation and estimation error: Suppose that the upper-level MDP configures the lower-
level MDP to the ideal lower-level kernel Pc ∈ Pc. However, due to physical limitations on configu-

1We remark that for Algorithm 1, we assume that there are m possible states for the upper-level MDP,
namely there are m possible transition kernels for the lower-level MDP. Due to configuration error or estimation
error, the estimation P̂ may not be exactly the same as one of the m possible kernels; however, we assume that
those errors are small such that we still regard P̂ as “in” the set of m candidate ideal transition kernels and
know which set member P̂ is closest to or associated with.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ration precision, the actual lower-level kernel is P , and the agent estimates it as P̂ . The discrepancy
between the ideal Pc ∈ Pc and the empirical estimate P̂ ∈ P̂ can be decomposed into physical
discrepancy (bounded by δc) and estimation error (bounded by δg). Both propagate upward, induc-
ing state/reward perturbations in the upper-level MDP. Additionally, the upper-level estimation error
between the upper-level true kernel Q and its estimate Q̂, bounded by ∆, introduces another source
of upper-level error.

Physical limitation error (physical discrepancy): For any ideally configured transition kernel Pc ∈
Pc, we assume that the true kernel P ∈ P lies within an uncertainty set centered around Pc. In
particular, the uncertainty is imposed in a decoupled manner for each state-action pair (s, a) ∈
S × A, satisfying the (s, a)-rectangularity condition Wiesemann et al. (2013): ∀(s, a), the total
variance distance between Pc and P is bounded by: TV (Pc(·|s, a), P (·|s, a)) = 1/2∥Pc(·|s, a) −
P (·|s, a)∥1 ≤ δc.

Statistical error (estimation error): Due to the limited samples, we assume that the empirical kernel
P̂ lies within an uncertainty set centered around the true P . Specifically, ∀(s, a), the total variance
distance between P and P̂ is bounded by: TV (P (·|s, a), P̂ (·|s, a)) ≤ δg. Additionally, by applying
the triangle inequality on the total variance distance, for ∀(s, a) ∈ (S × A), the distance between
Pc and P̂ is bounded by: TV (Pc(·|s, a), P̂ (·|s, a)) ≤ δg + δc.

Similarly, for the ground-truth upper-level kernel Q and the empirical Q̂, the total variance distance
is bounded by: ∀(P, b) ∈ P × B, TV (Q(·|P, b), Q̂(·|P, b)) ≤ ∆.

5 PERFORMANCE ANALYSIS

Notations: We define some extra notations for the following analyses: By executing the lower-level
policy π : S → A, and executing the higher-order policy Θ : P → B:
V π
Pc

: the ideal lower-level state-value of the ideally configured lower-level MDP with the ideal tran-
sition kernel Pc;
V π
P : the ground-truth lower-level state-value of lower-level ground-truth kernel P (P may be dif-

ferent from Pc due to configuration error);
V π
P̂

: the empirical lower-level state-value of lower-level MDP with empirical transition kernel P̂ ;
WΘ

Q : the ideal higher-order state-value of the upper-level MDP with ground-truth kernel Q, where
we also assume the lower-level MDP has the ideal transition kernel Pc;
WΘ

Q̂
: the empirical higher-order state-value of the empirical upper-level MDP.

We now present the following estimation error lemma which characterizes the effect of estimation
error, highlighting the performance gap which arises from the difference between the true transition
kernel P and its estimation P̂ .

Lemma 1 (estimation error Lemma) If ∀(s, a) ∈ S × A, the total variance distance between the
empirical kernel P̂ and the ground-truth P is bounded by TV (P (·|s, a), P̂ (·|s, a)) ≤ δg , then for
any policy π : S → A, we have

∥V π
P − V π

P̂
∥∞ ≤

γδgVmax

(1− γ)
,

where Vmax := rmax

1−γ . Moreover, let V π∗(P)
P and V

π∗(P̂)

P̂
be the corresponding state-values of the

optimal policies under the respective kernels. Then we also have

∥V π∗(P)
P − V

π∗(P̂)

P̂
∥∞ ≤

γδgVmax

(1− γ)
,

where π∗(P) and π∗(P̂) are respectively the optimal policies for the lower-level MDP under P and
P̂ .

Proof. Please see proof details of Lemma 1 in Appendix E. □

We now bound how the configuration errors and estimation errors affect the upper-level rewards. For
this analysis, we assume the upper-level MDP adopts a finite number of discrete states and the states

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

representing Pc, P and P̂ are the same, namely s(Pc) = s(P) = s(P̂), because of their closeness.
Here we let s(P) be the upper-level state representation of the lower-level kernel P .

Lemma 2 (Propagated Reward Error Bound) We assume ∀(s, a) ∈ S × A, the total vari-
ance distance between the empirical kernel P̂ and the ideally configured kernel Pc is
bounded by TV (Pc(·|s, a), P̂ (·|s, a)) ≤ δg + δc. We assume that for any corresponding pair
(Pc, P̂), the higher-order transition kernel works the same way, i.e. Q(s(P ′

c)|s(Pc), b) =

Q(s(P̂ ′)|s(P̂), b),∀(Pc, P̂), (P ′
c, P̂

′) ∈ Pc × P̂,∀b ∈ B, and that the cost function works the same
way for Pc and P̂ , i.e. C(s(Pc), b) = C(s(P̂), b). Then for any higher-order deterministic policy
Θ : Pc → B, we have the error bound for the upper-level reward function:

∥RΘ
Q − R̂Θ

Q∥∞ ≤
γ(δg + δc)Vmax∥µ0∥∞

1− γ
, (8)

where the elements of R̂Θ
Q ∈ Rm are of the form RQ(s(P̂),Θ(s(P̂))) (see upper-level reward

function definition (3)), the elements of RΘ
Q ∈ Rm are of the form RQ(s(Pc),Θ(s(Pc))), and m is

the number of states in the upper-level MDP.

Proof. Please see proof details of Lemma 2 in Appendix F □

We now present the error gap for the achievable upper-level state-value function, due to configuration
error and estimation errors. We compare the state-value function under ideal configurations and ideal
estimation against the state-value function under configuration errors and estimation errors.

For simplicity of presentation, in this lemma and its proof, for the upper-level MDP, we use lower-
level transition kernel P (or Pc, P̂) and its upper-level state representation s(P) (or s(Pc), s(P̂))
interchangeably.

Lemma 3 (Error bound Lemma of Bi-level MDPs) If ∀(s, a) ∈ S × A, the total variance dis-
tance between the empirical kernel P̂ and the ideally configured kernel Pc is bounded by
TV (Pc(·|s, a), P̂ (·|s, a)) ≤ δg + δc, and if for ∀(P, b) ∈ P × B, the total variance distance be-
tween the ground-truth higher-order kernel Q and the empirical higher-order kernel Q̂ is bounded
by TV (Q(·|P, b), Q̂(·|P, b)) ≤ ∆, then for any higher-order policy Θ : P → B, we have that

∥WΘ
Q −WΘ

Q̂
∥∞ ≤

γ(δg + δc)Vmax∥µ0∥∞
(1− γ)(1− λ)

+
2∆ · ∥µ0∥∞Vmax + 2λ∆ ·Wmax

1− λ
,

where Wmax = Rmax

1−λ .

Proof. Please see proof details of Lemma 3 in Appendix G. □

6 NUMERICAL EXPERIMENTS

We present two synthetic numerical examples to describe our approaches for solving both the bi-
level configurable MDP and the cost-constrained optimization problem formulated on the specific
TVCMDP framework. We also conduct experiments in large-scale environments whose dynamics
can be explicitly controlled by configuring kernel parameters, including the Cartpole benchmark
Brockman et al. (2016) and Block-world Russell & Norvig (2022) environment. In the Cartpole
experiment, we employ Deep Q-networks (DQN) to learn lower-level policies corresponding to
each uniquely parameterized (configured) environment, while value iteration is used to optimize the
upper-level environment parameterization (configuration). Conversely, in the Block-world exper-
iment, we use value iteration to compute the lower-level optimal state-values for each discretized
parameter setting, and use DQN in the upper-level to optimize the kernel parameter. These results
demonstrate that our proposed framework is adaptable to more complex and continuous RL envi-
ronments, and that it has potential in realistic applications.

Continuous configuration on TVCMDP: We compose a synthetic TVCMDP as described in sec-
tion 2, special case. The composed TVCMDP has 3 states and 2 actions with number of episodes

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

K = 2. In episodes k = 1 and k = 2, the time-varying kernels P1 and P2 are different. The
details of the numerical TVCMDP setting are in Appendix H.1. We solve the cost-constrained op-
timization problem (4) based on this synthetic example, and optimize the configuration variables
x1 ∈ [−1, 1]3×3 and x2 ∈ [−1, 1]3×3 under a sequence of budgets, with each budget within the
range [0.5, 14]. The optimally configured state value averages (blue curve) are shown in Figure 1a.
For comparison, we also included the baseline state-value averages (gray dotted line) without any
configuration, and the randomly configured state-value averages (orange curve). We observe that
the optimally configured approach obviously performs better than the baseline and the randomly
configured approach, and the baseline average increases by 23% under configuration. The random
configuration variables added to the kernels still satisfy the constraints in (6), but we observe that
incorrect configurations may even deteriorate baseline performance, as shown when B = 3.5 or
B = 6.5. This result is insensitive to the parameters such as budget B, or configuration constraint
parameters α and β, as shown in Figure 7 in Appendix H.3.

Bi-level configurable MDP with model-changing actions: To testify to the feasibility of our bi-
level configurable MDP model, we conduct numerical experiments in three different environments.
We present the configurable CarPole and Block-world experiments here. Please refer to Appendix
H.2 for numerical results of the synthetic bi-level configurable MDP experiment.

1.Configure the Cartpole baseline: We construct an upper-level MDP with 4 discrete states by cre-
ating four lower-level Cartpole environments, each parametrized (configured) differently. The dy-
namics are determined by (g,mc,mp, lp): gravity, cart mass, pole mass, and pole length. The four
parameter sets {(9.8, 1.0, 0.1, 0.5), (9.8, 2.0, 0.1, 0.5), (9.8, 1.0, 0.2, 0.5), (9.8, 1.0, 0.1, 1.0)}, correspond
to 4 different environments. For each, a DQN agent is trained for 400 episodes to obtain a pol-
icy network. The upper-level reward is the performance of a lower-level policy evaluated in a new
environment over 20 episodes. The upper-level MDP has four model-changing actions, each de-
terministically switching to a target environment. Configuration cost depends on which parameter
{mc,mp, lp} is modified, and is modeled with an exponential; g is excluded due to high cost.Upper-
level optimal values are computed via value iteration. Numerical results are shown in 1b.

(a) Optimal Continuous Configuration on
TVCMDP

(b) Bi-level configuration on the Cartpole environ-
ment

Figure 1: Improved returns by continuous and bi-level MDP configurations

2.Configure the Block-World Environment: The block-world environment is a grid-based game
whose state transition is controlled by the parameter slip probability parameter α. When the agent
chooses an action, there is a probability α that the agent will deviate from the intended direction, po-
tentially moving in an orthogonal direction instead. In the upper-level MDP, the continuous values of
α (as a proxy for the lower-level transition kernel) are treated as the upper-level state, and the agent
can optimally adjust α using a DQN algorithm. We discretize the continuous parameter α ∈ [0, 1]
with 1000 points, and the corresponding upper-level reward for each lower-level parameter setting
is pre-calculated using offline value iteration before training the upper-level DQN. The cost function
of configuration action b is C(α, b) = EQ(α′|α,b)[exp(|α′ − α|)]. The training performance of the
upper-level DQN, and its evaluation results are presented in Figures 2a and 2b.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) DQN Training Progress (Smoothed) (b) Test on the DQN configured environment

Figure 2: Bi-level Block-world Configuration: Training and test performances

7 CONCLUSION

In this paper, we propose a new framework in the context of configurable reinforcement learning
in which an agent can actively change the environment while simultaneously optimizing its policy
in a time-varying setting. We formalize this idea through the multi-layer configurable time-varying
Markov decision process (TVCMDP). Within this framework, we analyze two important cases:
the bi-level configurable MDP and the time-variant MDP with continuous configuration. For each
setting, we develop solution algorithms by approaches like convex optimization and bi-level value-
iteration, and provide an error analysis on the performance of these algorithms. In the future, a
natural next step is to extend our model-based algorithms to fully model-free algorithms for con-
figurable time-varying MDPs and evaluate their effectiveness in larger-scale environments. Another
promising direction is the study of reward design with configuration cost, which would allow a
principled trade-off between reward gains and the cost of modifying the environment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. https://arxiv.org/abs/1606.01540, 2016.

Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, and Zhaoran Wang. Adaptive
model design for markov decision process. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
3679–3700. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
chen22ab.html.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/
1706.03741.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In Proceedings of the 28th International Conference on Machine Learn-
ing (ICML), pp. 465–472. ACM, 2011. doi: 10.5555/3104482.3104541.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning, 2016. URL https://arxiv.org/
abs/1611.02779.

Michael O. Duff and Andrew G. Barto. Optimal learning: computational procedures for bayes-
adaptive markov decision processes. 2002. URL https://api.semanticscholar.org/
CorpusID:118819159.

Wenhao Li, Bolei Liu, Dongbin Zhao, and Huaxia Zhang. Hierarchical reinforcement learning: A
comprehensive survey. ACM Computing Surveys, 54(5):1–35, 2022. doi: 10.1145/3453160.

Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. Adversarial deep reinforce-
ment learning in portfolio management, 2018. URL https://arxiv.org/abs/1808.
09940.

Davide Maran, Pierriccardo Olivieri, Francesco Emanuele Stradi, Giuseppe Urso, Nicola Gatti, and
Marcello Restelli. Online configuration in continuous decision space. URL https://api.
semanticscholar.org/CorpusID:264788359.

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable markov decision processes,
2018. URL https://arxiv.org/abs/1806.05415.

Nirbhay Modhe, Harish Kamath, Dhruv Batra, and A. Kalyan. Model-advantage optimization for
model-based reinforcement learning. ArXiv, abs/2106.14080, 2021. URL https://api.
semanticscholar.org/CorpusID:235658870.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Marcello Restelli. Learning
in non-cooperative configurable markov decision processes. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:245122286.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, 4th US ed. USA,
2022. URL https://aima.cs.berkeley.edu.

Rui Silva, Francisco S. Melo, and Manuela Veloso. What if the world were different: Gradient-
based exploration for new optimal policies. In Proceedings of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2018. URL https://www.cs.
cmu.edu/˜mmv/papers/18gcai-SilMelVel.pdf.

Rui Silva, Gabriele Farina, Francisco S. Melo, and Manuela Veloso. A theoretical and algorithmic
analysis of configurable mdps. In Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling (ICAPS 2019), 2019. URL https://www.cs.cmu.
edu/˜mmv/papers/19icaps-config-mdps.pdf. Accessed: 2025-09-23.

11

https://arxiv.org/abs/1606.01540
https://proceedings.mlr.press/v162/chen22ab.html
https://proceedings.mlr.press/v162/chen22ab.html
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://api.semanticscholar.org/CorpusID:118819159
https://api.semanticscholar.org/CorpusID:118819159
https://arxiv.org/abs/1808.09940
https://arxiv.org/abs/1808.09940
https://api.semanticscholar.org/CorpusID:264788359
https://api.semanticscholar.org/CorpusID:264788359
https://arxiv.org/abs/1806.05415
https://api.semanticscholar.org/CorpusID:235658870
https://api.semanticscholar.org/CorpusID:235658870
https://api.semanticscholar.org/CorpusID:245122286
https://aima.cs.berkeley.edu
https://www.cs.cmu.edu/~mmv/papers/18gcai-SilMelVel.pdf
https://www.cs.cmu.edu/~mmv/papers/18gcai-SilMelVel.pdf
https://www.cs.cmu.edu/~mmv/papers/19icaps-config-mdps.pdf
https://www.cs.cmu.edu/~mmv/papers/19icaps-config-mdps.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wen Sun. Note on simulation lemma. Technical report, Cornell University, 2021. URL https:
//wensun.github.io/CS4789_data/simulation_lemma.pdf.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martı́n-Martı́n, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes, 2024. URL
https://arxiv.org/abs/2408.03539.

Vinzenz Thoma, Barna Pasztor, Andreas Krause, Giorgia Ramponi, and Yifan Hu. Contextual
bilevel reinforcement learning for incentive alignment, 2024. URL https://arxiv.org/
abs/2406.01575.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.
doi: 10.1007/BF00992698. URL https://link.springer.com/article/10.1007/
BF00992698.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992. doi: 10.1007/BF00992696. URL https:
//link.springer.com/article/10.1007/BF00992696.

12

https://wensun.github.io/CS4789_data/simulation_lemma.pdf
https://wensun.github.io/CS4789_data/simulation_lemma.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://arxiv.org/abs/2408.03539
https://arxiv.org/abs/2406.01575
https://arxiv.org/abs/2406.01575
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MOTIVATING EXAMPLES

Transportation infrastructure: Consider another example of transportation infrastructure. In this
example, model-changing actions are the actions that build, modify, or improve the transportation
infrastructures in a city. The states are traffic congestion and transportation safety situations in the
city. These model-changing actions will dictate the transition kernels between different traffic con-
gestion and transportation safety situations. The upper-level MDP is for learning how to change
the transportation infrastructure to lead to better transition kernels for the lower-level MDP for traf-
fic. Note that over time, transportation infrastructures can deteriorate, and this is one example of
time-varying MDP configurations, which will be discussed later.

Training of Drones: In another example, let us consider a collection of unmanned drones perform-
ing a certain task. The task needs the unmanned drones to perform sensing, communication, and
control cooperatively. Without manned aircrafts, which are more capable of sensing, payload car-
rying, and communication, the unmanned drones may be in an unfavorable environment. We can
configure a favorable environment for the unmanned drones by using manned aircrafts to transport
the unmanned drones to the desirable location for the task, and to configure sensing and commu-
nication infrastructure for the unmanned drones. The configuration actions using manned aircraft
can lead to random transitions between configurations, depending on random external factors such
as external interference and the fates of the manned aircrafts sent to configure the environment. The
MDP for manned aircrafts to configure the environment will work as an upper-level MDP, and the
adaptations of unmanned drones are governed by the lower-level MDP.

Trading market: Another example is when the central bank adjusts the short-term interest rate (i.e.,
the federal funds rate), this upper-level action directly influences the market dynamics and ultimately
affects the stock valuation. A widely used framework for stock valuation is the discounted cash flow
model (DCF), which estimates a firm’s value based on its expected future cash flows discounted by
the weighted average cost of capital (WACC). Since the interest rate is a key component of WACC,
an increase in the interest rate raises the discount factor, thereby reducing the firm’s present stock
valuation.

B RELATED WORKS

Our work is different from hierarchical RL/MDP Li et al. (2022) because in our multilayer model,
the upper-level MDP is built upon choosing (configuring) a better transition kernel, while hierarchi-
cal MDP deals with decomposing long-horizon tasks into simpler subtasks or learning hierarchical
policies. For other literature on non-stationary environments, such as semi-MDP Sutton et al. (1999),
Meta-RL Duan et al. (2016) and Bayesian MDPs Duff & Barto (2002), the key distinction from our
formulation lies in the design-driven “configuration” nature of configurable MDPs: the agent is al-
lowed to modify the environment itself to improve its potential returns. In semi-MDPs, the agent
can only temporally extend actions, but the environment remains fixed. In contrast, in a configurable
MDP the agent can choose both the environment configuration and an associated policy. Meta-RL
aims to train the agent across a distribution of tasks to enable rapid adaptation to unseen tasks, while
the configurable MDP assumes a known set of configurations, and the agent’s goal is to pick the best
environment and policy.

C JACOBIAN OF STATE-VALUE FUNCTIONS

We denote V π
i = V π as the i-th element of the state-values, Pπ

i as the i-th row of Pπ , and Pπ
ij as

the (i, j)-th element of Pπ .

We assume that for a sufficiently small configuration x ∈ [−1, 1]n×n on the transition kernel Pπ ,
the policy applied to the configured kernel Pπ + x remains unchanged as π. We fix the discount
factor γ (scalar) and the reward vector rπ , and we let the optimal transition kernel Pπ change by x.
Then, V π is a function of Pπ . The Jacobian of V π with respect to Pπ is denoted as∇PπV π , which

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

is a tensor in Rn×n×n. We write out the Jacobian in the following form:

∇PπV π =


∂V π

1

∂Pπ

...
∂V π

n

∂Pπ

 =




∂V π

1

∂Pπ
11
, . . . ,

∂V π
1

∂Pπ
1n

...
∂V π

1

∂Pπ
n1
, . . . ,

∂V π
1

∂Pπ
nn


...

∂V π
n

∂Pπ
11
, . . . ,

∂V π
n

∂Pπ
1n

...
∂V π

n

∂Pπ
n1
, . . . ,

∂V π
n

∂Pπ
nn




. (9)

To solve for the Jacobian ∇PπV π , we let x be small enough and write the right-hand side of (7),
and here x∗i ∈ [−1, 1]n is the i-th column of x, Ni is a scalar

N +M


x11, . . . , x1n
x21, . . . , x2n

...
xn1, . . . , Pnn



N1

N2

...
Nn


=N +M

[
N1

[|
x∗1
|

]
+N2

[|
x∗2
|

]
+ · · ·+Nn

[|
x∗n
|

]]

=N +

[
N1M

[|
x∗1
|

]
+N2M

[|
x∗2
|

]
+ · · ·+NnM

[|
x∗n
|

]]

We show the process of solving for the gradient of V π
i , denoted as ∂V π

i

∂Pπ , as an example. Here ∂V π
i

∂Pπ

is the i-th element of the Jacobian∇PπV π defined in (9). Based on previous derivations, we have

V π
i (Pπ + x)− V π

i (Pπ) ≈
n∑

j=1

NjMi∗x∗j .

Here Nj is a scalar, Mi∗ ∈ Rn is the i-th row vector of M , and x∗j ∈ [−1, 1]n is the j-th column
vector of x. The gradient ∂V π

i

∂Pπ is therefore

∂V π
i

∂Pπ
=


∂V π

i

∂Pπ
11
, . . . ,

∂V π
i

∂Pπ
1n

...
∂V π

i

∂Pπ
n1
, . . . ,

∂V π
i

∂Pπ
nn

 =


N1Mi1 N2Mi1 . . . NnMi1

N1Mi2 N2Mi2 . . . NnMi2

...
N1Min N2Min . . . NnMin

 =

[| | |
Mi∗ Mi∗ (n cols.) Mi∗
| | |

]
N

Let Ei ∈ Rn×n denote the matrix that has Mi∗ as its repeated n columns. Therefore, the Jacobian
of V π can be represented as:

∇PπV π = [E1N,E2N, . . . , EnN]T (10)

D ALGORITHM: MODEL-BASED BI-LEVEL VALUE ITERATION

To estimate each ground-truth lower-level kernel P ∈ P , given a dataset D of trajectories, D =
{(s1, a1, r1, s2, . . . , sT+1)}, and we convert it into a series of {(s, a, r, s′)} tuples. We break each
trajectory into T tuples: (s1, a1, r1, s2), (s2, a2, r2, s3), . . . , (sT , aT , rT , sT+1). For every state-
action pair (s, a), let D(s,a) be the subset of tuples where the first element of the tuple is s, and the
second element of the tuple is a. Then the elements in D(s,a) can be represented by (r, s′) since they
share the same state-action pair (s, a). Each empirical lower-level kernel P̂ is estimated by the em-
pirical frequency of state transitions, i.e., ∀(s, a) ∈ S ×A, P̂ (s′|s, a) = Count((r, s′))/

∣∣∣D(s,a)

∣∣∣.
14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Similarly, to estimate the ground-truth upper-level kernel Q, given a dataset Dq of trajectories,
Dq = {(P1, b1, R1, P2, . . . , PK+1)}, and we convert it into a series of {(P, b,R, P ′)} tuples. We
break each trajectory into K tuples: (P1, b1, R1, P2), (P2, b2, R2, P3), . . . , (PK , bK , RK , PK+1).
For every lower-level kernel (upper-level state) and model-changing-action pair (P, b), let Dq

(P,b) be
the subset of tuples where the first element of the tuple is P , and the second element of the tuple is
b. Then the elements in Dq

(P,b) can be represented by (R,P ′). The empirical upper-level kernel Q̂

is estimated by the empirical frequency of kernel transitions, i.e., ∀(P, b) ∈ P × B, Q̂(P ′|P, b) =
Count((R,P ′))/

∣∣∣Dq
(P,b)

∣∣∣.
With the estimations {P̂}P̂∈P̂ and Q̂, we provide the model-based bi-level value iteration algorithm
as follows:

Algorithm 1 Bi-level Value Iteration

Input: The m empirical infinite horizon lower-level MDPs M̂L = {S,A, P̂ , µ0, r, γ}, for P̂ ∈ P̂ ,
and the infinite-horizon empirical upper-level MDP M̂U = {P̂,B, Q̂, R̂, λ}, number of lower-level
iterations HL > 0, number of upper-level iterations HU > 0, initial estimations {V 0

P̂
}P̂∈P̂ and W 0

Result: upper-level estimation WH ∈ Rm and higher-order policy ΘH

1: for h from 0 to HL do ▷ Lower-level value iterations
2: for P̂ ∈ P̂ , do
3: V h+1

P̂
(s)← maxa∈A

(
r(s, a) + γ

∑
s′∈S P̂ (s′|s, a)V h

P̂
(s′)

)
,∀s ∈ S

4: end for
5: πHL

P̂
← greedy policy with respect to V HL

P̂

6: JP̂ ← µT
0 V

HL

P̂
7: end for
8: for h from 0 to HU do ▷ upper-level value iteration
9: Wh+1(P̂)← maxb∈B

(∑
P̂ ′∈P̂ Q̂(P̂ ′|P̂ , b)

(
JP̂ ′ + λWh(P̂ ′)

))
,∀P̂ ∈ P̂

10: end for
11: ΘHU ← greedy policy with respect to WHU

12: return ΘHU
,WHU

E PROOF OF LEMMA 1

Proof. The first part of this proof mostly follows similar steps in Sun (2021). For any state s ∈ S
and for any policy π, let rπ(s) denote r(s, π(s)), and Pπ(s) denote P (·|s, π(s)) (as a row vector):∣∣∣V π

P (s)− V π
P̂
(s)

∣∣∣ = ∣∣∣rπ(s) + γPπ(s)V π
P − (rπ(s) + γP̂π(s)V π

P̂
)
∣∣∣

= γ
∣∣∣Pπ(s)V π

P − P̂π(s)V π
P̂

∣∣∣
= γ

∣∣∣Pπ(s)V π
P − Pπ(s)V π

P̂
+ Pπ(s)V π

P̂
− P̂π(s)V π

P̂

∣∣∣
≤ γ

∣∣∣Pπ(s)
(
V π
P − V π

P̂

)∣∣∣+ γ
∣∣∣(Pπ(s)− P̂π(s)

)
V π
P̂

∣∣∣
≤ γ

∥∥∥V π
P − V π

P̂

∥∥∥
∞

+ γ
∣∣∣(Pπ(s)− P̂π(s)

)
V π
P̂

∣∣∣
= γ

∥∥∥V π
P − V π

P̂

∥∥∥
∞

+ γ
∣∣∣(Pπ(s)− P̂π(s)

)(
V π
P̂
− Vmax

2
· 1

)∣∣∣
≤ γ

∥∥∥V π
P − V π

P̂

∥∥∥
∞

+ γ
∥∥∥(Pπ(s)− P̂π(s)

)∥∥∥
1

∥∥∥V π
P̂
− Vmax

2

∥∥∥
∞

≤ γ
∥∥∥V π

P − V π
P̂

∥∥∥
∞

+ γδgVmax.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since the above inequality holds for all s ∈ S, we have that∥∥∥V π
P − V π

P̂

∥∥∥
∞
≤ γ

∥∥∥V π
P − V π

P̂

∥∥∥
∞

+ γδgVmax,∥∥∥V π
P − V π

P̂

∥∥∥
∞
≤ γδgVmax

1− γ
.

Let us now prove the second claim. For any state s in the lower-level MDP, by taking π = π∗(P),
we have

V
π∗(P)
P (s) ≤ V

π∗(P)

P̂
(s) +

γδgVmax

(1− γ)
≤ V

π∗(P̂)

P̂
(s) +

γδgVmax

(1− γ)
,

where the 2nd inequality is due to V
π∗(P)

P̂
(s) ≤ V

π∗(P̂)

P̂
(s). By symmetry, we also have

V
π∗(P̂)

P̂
(s) ≤ V

π∗(P̂)
P (s) +

γδgVmax

(1− γ)
≤ V

π∗(P)
P (s) +

γδgVmax

(1− γ)
,

thus the 2nd claim follows.

□

F PROOF OF LEMMA 2

Proof. For a lower-level transition kernel P , we define J(π∗(P), P) as the “reward” J reported
by the lower-level MDP to the upper-level MDP (as J in Algorithm 1) if the lower-level MDP has
transition kernel P and adopts the optimal policy π∗(P). For any higher-order policy Θ, and for any
Pc and its corresponding estimate P̂ , with the definition of the upper-level reward function (3), we
have that∣∣∣RQ(s(Pc),Θ(s(Pc)))−RQ(s(P̂),Θ(s(P̂)))

∣∣∣
=

∣∣∣ ∑
s(P ′

c)

Q(s(P ′
c)|s(Pc),Θ(s(Pc)))J(π

∗(P ′
c), P

′
c)−

∑
s(P̂ ′)

Q(s(P̂ ′)|s(P̂),Θ(s(P̂)))J(π∗(P̂ ′), P̂ ′))
∣∣∣

=
∣∣∣ ∑
s(P ′

c)=s(P̂ ′)

Q(s(P ′
c)|s(Pc),Θ(s(Pc)))

(
J(π∗(P ′

c), P
′
c)− J(π∗(P̂ ′), P̂ ′

)∣∣∣
≤

∣∣∣ ∑
s(P ′

c)

Q(s(P ′
c)|s(Pc),Θ(s(Pc)))

∣∣∣ max
P ′

c,P̂
′,s(P ′

c)=s(P̂ ′)

∣∣∣J(π∗(P ′
c), P

′
c)− J(π∗(P̂ ′), P̂ ′)

∣∣∣
= max

P ′
c,P̂

′,s(P ′
c)=s(P̂ ′)

∣∣∣J(π∗(P ′
c), P

′
c)− J(π∗(P̂ ′), P̂ ′)

∣∣∣
= max

P ′
c,P̂

′,s(P ′
c)=s(P̂ ′)

∣∣∣µT
0

(
V

π∗(P ′
c)

P ′
c

− V
π∗(P̂ ′)

P̂ ′

)∣∣∣
≤ max

P ′
c,P̂

′,s(P ′
c)=s(P̂ ′)

∥µ0∥∞
∥∥∥(V π∗(P ′

c)
P ′

c
− V

π∗(P̂ ′)

P̂ ′

)∥∥∥
∞

≤ γ(δg + δc)Vmax∥µ0∥∞
1− γ

.

Note that in the derivations above, we have s(P ′
c) = s(P̂ ′) due to the assumption that these two

lower-level kernels have the same state representation in the upper-level MDP. The last inequality
can be achieved by directly applying Lemma 1. Since the above inequality holds for all the ideal-
estimated pair (Pc, P̂) ∈ Pc × P̂ , we have that

∥RΘ
Q − R̂Θ

Q∥∞ ≤
γ(δg + δc)Vmax∥µ0∥∞

1− γ
.

□

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G PROOF OF LEMMA 3

Proof. For any ideal Pc, and its estimate P̂ , using Bellman equation WΘ
Q = RQ(Pc,Θ(Pc)) +

λQΘ(Pc)W
Θ
Q , we have∣∣∣WΘ

Q (Pc)−WΘ
Q̂
(P̂)

∣∣∣ ≤ ∣∣∣RQ(Pc,Θ(Pc))−RQ̂(P̂ ,Θ(P̂))
∣∣∣︸ ︷︷ ︸

1

+λ
∣∣∣QΘ(Pc)W

Θ
Q − Q̂Θ(P̂)WΘ

Q̂

∣∣∣︸ ︷︷ ︸
2

,

(11)

where QΘ(Pc) = Q(·|Pc,Θ(Pc)), and Q̂Θ(P̂) = Q̂(·|P̂ ,Θ(P̂)).

To bound 1 , we have the following derivations. Notice that QΘ(·) ∈ Rm and Q̂Θ(·) ∈ Rm are both
row vectors, and QΘ(Pc) = Q(·|Pc,Θ(Pc)) means the ground-truth distribution of the next upper-
level state given the current state is Pc and the agent follows the higher-order policy Θ. Similarly,
Q̂Θ(P̂) = Q̂(·|P̂ ,Θ(P̂)) is the empirical distribution of the next upper-level state given the current
state P̂ and the agent follows the higher-order policy Θ.∣∣∣RQ(Pc,Θ(Pc))−RQ̂(P̂ ,Θ(P̂))

∣∣∣
≤

∣∣∣RQ(Pc,Θ(Pc))−RQ(P̂ ,Θ(P̂))
∣∣∣+ ∣∣∣RQ(P̂ ,Θ(P̂))−RQ̂(P̂ ,Θ(P̂))

∣∣∣
≤ γ(δg + δc)Vmax∥µ0∥∞

1− γ
+
∣∣∣RQ(P̂ ,Θ(P̂))−RQ̂(P̂ ,Θ(P̂))

∣∣∣ (note: by Lemma 2)

=
γ(δg + δc)Vmax∥µ0∥∞

1− γ
+
∣∣∣∑

P̂ ′

(Q− Q̂)(P̂ ′|P̂ ,Θ(P̂))J(π∗(P̂ ′), P̂ ′)
∣∣∣

≤ γ(δg + δc)Vmax∥µ0∥∞
1− γ

+
∣∣∣∑

P̂ ′

(Q− Q̂)(P̂ ′|P̂ ,Θ(P̂))
∣∣∣max

P̂ ′

∣∣∣J(π∗(P̂ ′), P̂ ′)
∣∣∣

=
γ(δg + δc)Vmax∥µ0∥∞

1− γ
+ 2∆∥µ0∥∞Vmax.

To bound 2 , we have that (we disregard λ for now)∣∣∣QΘ(Pc)W
Θ
Q − Q̂Θ(P̂)WΘ

Q̂

∣∣∣ ≤ ∣∣∣QΘ(Pc)W
Θ
Q −QΘ(P̂)WΘ

Q

∣∣∣︸ ︷︷ ︸
0

+
∣∣∣QΘ(P̂)WΘ

Q − Q̂Θ(P̂)WΘ
Q̂

∣∣∣
=

∣∣∣QΘ(P̂)WΘ
Q − Q̂Θ(P̂)WΘ

Q̂

∣∣∣
≤

∣∣∣QΘ(P̂)WΘ
Q −QΘ(P̂)WΘ

Q̂

∣∣∣+ ∣∣∣QΘ(P̂)WΘ
Q̂
− Q̂Θ(P̂)WΘ

Q̂

∣∣∣
≤

∣∣∣QΘ(P̂)
(
WΘ

Q (Pc)−WΘ
Q̂
(P̂)

)∣∣∣+ ∥∥∥(QΘ − Q̂Θ)(P̂)
∥∥∥
1

∥∥∥WΘ
Q̂

∥∥∥
∞

=
∣∣∣QΘ(P̂)

(
WΘ

Q (Pc)−WΘ
Q̂
(P̂)

)∣∣∣+ 2∆Wmax

≤
∥∥∥QΘ(P̂)

∥∥∥
1

∥∥∥WΘ
Q (Pc)−WΘ

Q̂
(P̂)

∥∥∥
∞

+ 2∆Wmax

=
∥∥∥WΘ

Q (Pc)−WΘ
Q̂
(P̂)

∥∥∥
∞

+ 2∆Wmax,

where the first term on the righthand side of the first inequality is 0 because with s(Pc) = s(P̂),
QΘ(Pc) = QΘ(P̂).

By reorganizing terms, our goal (11) is bounded by:∣∣∣WΘ
Q (Pc)−WΘ

Q̂
(P̂)

∣∣∣ ≤ γ(δg + δc)Vmax∥µ0∥∞
1− γ

+ 2∆∥µ0∥∞Vmax︸ ︷︷ ︸
1

+ λ
∥∥∥WΘ

Q (Pc)−WΘ
Q̂
(P̂)

∥∥∥
∞

+ 2λ∆Wmax︸ ︷︷ ︸
2

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Since the above inequality holds for all (Pc, P̂) ∈ Pc × P̂ , we have∥∥∥WΘ
Q −WΘ

Q̂

∥∥∥
∞
≤ γ(δg + δc)Vmax∥µ0∥∞

(1− γ)(1− λ)
+

2∆ · ∥µ0∥∞Vmax + 2λ∆ ·Wmax

1− λ
.

□

H NUMERIC SETTINGS

H.1 SYNTHETIC TVCMP

We are considering a time-varying configurable MDP with the state space S = {0, 1, 2}, action
space A = {left, right, stay}, and the number of episodes is K = 2. The time varying transition
kernel P1 and P3 in episodes k = 1 and k = 2 are, respectively,

P
(l)
1 =

[
0 0.15 0.85

0.75 0 0.25
0.25 0.75 0

]
, P

(r)
1 =

[
0 0.85 0.15

0.15 0 0.85
0.85 0.15 0

]
, P

(s)
1 =

[
0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

]

P
(l)
2 =

[
0 0.45 0.55

0.65 0 0.35
0.45 0.55 0

]
, P

(r)
2 =

[
0 0.75 0.25

0.25 0 0.75
0.85 0.15 0

]
, P

(s)
2 =

[
0.8 0.1 0.1
0.2 0.6 0.2
0.05 0.05 0.9

]
.

For each action a, the transition probabilities are given by the matrix P
(a)
i ∈ R3×3, i = 1, 2, where

the rows index the current state s and the columns index the next state s′. The initial state distribution
of every episode µ0 = [1/3, 1/3, 1/3]T is uniform. The reward function r remains the same in all
episodes. r(s, a) is defined for each state and action pair and is represented as the following matrix:

r(s, a) =

[
10 5 1
2 20 10
20 4 40

]
.

Here, rows correspond to states, and columns correspond to actions. γ = 0.9. The configuration
budgets considered include [0.5, 2.06, 3.61, 5.17, 6.72, 8.28, 9.83, 11.39, 12.94, 14.0].

H.2 SYNTHETIC BI-LEVEL MDP

Synthetic setting: We give the numeric settings of the synthetic bi-level MDP. In the lower-level
MDP, the state space S consists of two dimensions: (price-level, portfolio). The price-level has three
statuses: {0:Low, 1:Neutral, 2:High}. Each price level corresponds to a price in (90, 100, 130). The
portfolio has two statuses: {0:Cash, 1:Holding}, so there are total 6 states in S. The lower-level
action space A = {buy, sell}. There are 3 modes of lower-level transition kernels, or equivalently,
3 states in the upper-level MDP, P1, P2, P3, which respectively determine the price-level transitions
during “boom”, “recession”, and “stabilization”. We set them as

P1 =

[
0.6 0.3 0.1
0.4 0.4 0.2
0.3 0.5 0.2

]
, P2 =

[
0.2 0.5 0.3
0.1 0.6 0.3
0.05 0.25 0.7

]
P3 =

[
0.2 0.6 0.2
0.2 0.6 0.2
0.1 0.5 0.4

]
.

The transitions between the status of the portfolio depend on the action. If s = (·, 0) and a = buy,
then s′ = (·, 1); If s = (·, 1) and a = sell, then s′ = (·, 0). The reward function r is

r(s, a) =


−1, if s = (·, 0), a = buy
new price - old price− 1, if s = (·, 1), a = sell
new price - old price, if s = (·, 1)

γ = 0.95. µ0 is uniformly 1/6. In the upper-level, the state space P = {P1, P2, P3}, the action
space is B = {0:Decrease rate, 1:Increase rate, 2: Keep rate}. The upper-level kernel governs the
transitions between lower kernels Pi and is given by:

Q(De) =

[
0.7 0.2 0.1
0.6 0.2 0.2
0.7 0.1 0.2

]
Q(In) =

[
0.5 0.3 0.2
0.3 0.5 0.2
0.4 0.4 0.2

]
Q(Ke) =

[
0.6 0.25 0.15
0.4 0.4 0.2
0.2 0.3 0.5

]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: Bi-level configuration on the synthetic example

λ = 0.95. The upper-level reward R is computed according to 3. The configuration cost function is
determined by the current upper-level state and configuration action, and we set it to be:

C(P, b) =

[
0.2 0.1 0.05
0.5 0.3 0.1
0.3 0.2 0.1

]
,

with the rows index kernel mode, and the columns index upper-level actions.

Synthetic Bi-level configurable MDP Experiment: We compose a synthetic bi-level configurable
MDP as described in 2, Bi-level Configurable MDP. The upper-level MDP has 3 discrete states
(equivalently, there are 3 discrete lower-level transition kernels) and 3 model-changing actions,
while each lower-level MDP has 3 states and 2 actions. The details of the environment setting
are given in the Appendix H.2. In Figure 3, we show that throughout 100 test episodes, the agent
achieves a higher average return (green bar) when following the optimal upper-level policy derived
from Algorithm 1, compared to the two alternative approaches. For comparison, we also computed
the average return under the non-configuration mode (gray bar), where the lower-level transition
kernel is uniformly sampled over the 100 test episodes and the agent just follows the corresponding
primitive optimal policy within each episode, the random configuration mode (orange bar), where
model-changing actions are chosen randomly, and the oracle (blue bar), where the lower-level ker-
nel is fixed to be the optimal one and the agent uses the corresponding optimal policy over the 100
test episodes. Our bi-level MDP configuration obviously shows better performance than the non-
configuration mode and the random configuration mode, and its performance is the closest to the
oracle, as expected.

Comparison between the theoretical and empirical error bounds: In this synthetic Bi-level
MDP, we separately perturb: 1) the lower-level transition kernel P (·|s, a),∀s, a using δg + δc ∈
[0, 0.25] and we denote the noisy lower-level kernel with P ′, and 2) the upper-level model kernel
Q(·|P, b),∀P, b using ∆ ∈ [0, 0.025], and we denote the noisy upper-level kernel with Q′. This al-
lows us to isolate how lower-level and upper-level errors influence the performance of Algorithm 1.

Figure 4 reports the resulting lower-level state value errors between P and P ′. The blue curve shows
the infinity norm difference between the true and perturbed lower-level value functions. We sample
noisy lower-level kernels P ′ from the distribution of noisy kernels such that TV (P, P ′) = δg + δc
and record the maximum difference between state values in terms of maxP ′ ∥V P,π∗ − V P ′,π∗∥∞
among all the realizations of the perturbations. The error grows linearly with the perturbation size
and stays within the theoretical bound.

Figure 5 reports the resulting upper-level state value errors separately by perturbing the lower-level
kernel and the upper-level kernel. In the first case, ∆ = 0, and in the second case, δg + δc = 0.
The blue curves show the infinity norm difference between the true and perturbed upper-level value
functions. The error grows linearly with the two perturbation sizes separately and stays within the
theoretical bound stated in Lemma 3.

Comparison with classic configurable MDPs: The key distinction between our bi-level config-
urable MDP and the classical CMDP formulations, such as gradient CMDP and Stackelberg CDMP,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of error bounds, lower-level state value

(a) Total variation noise on the lower-level kernel (b) Total variation noise on the upper-level kernel

Figure 5: Comparison between theoretical and empirical error bounds, upper-level state value

is the ability of our model to explicitly capture and react to time-varying environment dynamics.
As discussed in the “transportation infrastructure” example in Appendix A, even if environment is
optimally configured once, its transition dynamics may naturally deteriorate over time if no furhter
configuration actions are taken. (For example, roads degrading without maintenance.)

Classical CMDP approached assume that after configuration, the environment’s transition kernel
changes from P to a better kernel P ′, and that P ′ remains fixed during test-time. They treat configu-
ration as a one-shot operation, and do not model how the environment may drift back to suboptimal
or deteriorated dynamics.

However, our bi-level formulation is fundamentally different: The upper-level MDP allows the agent
to continuously configure the environment over time. This enables the agent to respond to and coun-
teract the natural deterioration of the underlying transition kernel by taking sequential configuration
actions.

To empirically compare with the one-shot configuration baseline, we modify the synthetic two-layer
example by adding a ”no-changing-rate” action to the high-level MDP. If the agent chooses this
action, the lower-level kernel naturally deteriorates toward the “bad” environment.

Using value iteration on the upper-level MDP (with four actions: increase rate, decrease rate, keep
rate, and no-change-rate), we find that the optimal policy selects one of the first three configuration
actions at every upper-level episode k.

For the baseline comparison during test-time, the agent is allowed to configure the environment
only once at the first time step in classic CMDP baseline. For all subsequent steps, it is forced to
take the “no-change-rate” action, making the environment naturally deteriorate to the “bad” kernel.
While in our bi-level model, the agent is allowed to continuously execute the optimal upper-level
configuration policy at every time step.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 6: Comparison with baseline one-shot CMDP

The cumulative rewards over 50 episodes during test-time are shown in Figure 6. The shaded region
is to indicate the deviations of the test. We can see that our modeling is obviously better than one-
shot configuration methods.

H.3 SENSITIVITY TEST ON THE SYNTHETIC TVCMDP EXPERIMENT

In the synthetic TVCMDP experiment, the cost function on the change of the transition kernel x
defined by C(x) =

∑
ij β(e

α|xij|− 1). In Figure 1a, α = 4 and β = 1. We test the sensitivity of the
configured state values with respect to α and β by varying the values of α ∈ [0.5, 8] and β ∈ [0.5, 8].

The results show that the configured rewards of our optimization method decrease steadily as the
cost function increases with parameters α and β separately.

(a) Sensitivity against the parameter α (b) Sensitivity against the parameter β

Figure 7: Sensitivity of optimization method on TVCMDP

I USE OF LLMS

LLMs like ChatGPT are only used for polishing up writing in this paper.

21

	Introduction
	Problem formulation
	Cost-constrained optimization problem on TVCMDP
	Bi-level Model-based Value Iteration
	Performance analysis
	Numerical experiments
	Conclusion
	Motivating Examples
	Related works
	Jacobian of state-value functions
	Algorithm: Model-based Bi-level Value Iteration
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Numeric Settings
	Synthetic TVCMP
	Synthetic Bi-level MDP
	Sensitivity test on the synthetic TVCMDP experiment

	Use of LLMs

