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Abstract

Bridging the gap from transcriptomic to imag-
ing data at single-cell resolution is essential for
understanding tumor biology and improving can-
cer diagnostics. Spatial transcriptomics enables
mapping gene expression onto H&E images of
segmented single cells, but remains limited by
cost and throughput. We introduce H&Enium, a
contrastive alignment framework that projects im-
age and gene expression embeddings from foun-
dation models into an aligned latent space using
projection heads and a novel soft alignment tar-
get. This alignment enriches image-derived em-
beddings with transcriptomic context improving
downstream tasks such as cell type classification
and gene expression prediction. Additional evalu-
ations on independent pathology datasets demon-
strate superior generalization of our aligned repre-
sentations over unaligned baselines. Our method
offers a scalable path to enhance the utility of stan-
dard H&E imaging in both research and clinical
settings.

1. Introduction

Cancer remains a leading cause of death worldwide, with
its complexity posing significant challenges to effective
treatment. Consequently, advancing research to improve
diagnosis and therapeutic strategies is crucial. Recently,
large pretrained machine learning models have shown great
promise in cancer genomics and pathology, with clinically
approved applications emerging in computational pathology
(Campanella et al., 2019; Yates & Allen, 2025).

Foundation models, leveraging extensive datasets to cap-
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ture complex patterns, have become particularly influen-
tial in digital pathology. They have successfully addressed
tasks such as tissue classification, biomarker detection, and
gene expression prediction. Example models include UNI
(Chen et al., 2024) and CONCH (Lu et al., 2024). Addition-
ally, CONCH uses a bi-modal training procedure, including
pathology reports, to improve image embeddings. Similarly,
transcriptomics foundation models have enabled significant
progress in the characterization of cellular heterogeneity
and gene expression dynamics. Notable models include
CellPLM (Wen et al., 2023) and scGPT (Cui et al., 2024)
which are pretrained on single-cell RNA sequencing data us-
ing masked gene prediction objectives, analogous to masked
language modeling in NLP.

With the advent of spatial transcriptomics, recent studies
have aimed to align imaging and transcriptomic modali-
ties using contrastive training frameworks inspired by CLIP
(Radford et al., 2021). Methods such as BLEEP (Xie et al.,
2023), ST-Align (Lin et al., 2024), and PathOmCLIP (Lee
et al., 2024) improved spatial modality alignment, primarily
at the spatial-spot resolution. BLEEP uses soft targets to
account for input embedding similarities. ST-Align intro-
duced patch-level foundation models to embed the two input
modalities. Finally, PathOmCLIP (Lee et al., 2024) adds the
usage of a local transformer to allow for the incorporation
of neighboring patch embeddings, thus improving spatial
context and alignment. While recent advancements have
improved the alignment between H&E imaging and spatial
transcriptomics at the spot level, they fall short at single-
cell resolution, the scale at which key biological insights
emerge from interactions between individual cells and their
surrounding microenvironments.

In this work, we introduce H&Enium, a self-supervised
model leveraging pathology and transcriptomics foundation
models to learn aligned latent representations of single cells
across both modalities. Using Xenium (Janesick et al., 2023)
spatial transcriptomics slides, we demonstrate that readily
available H&E foundation model embeddings, although
trained only on patch level data, substantially improve cell
type classification accuracy from H&E images. This perfor-
mance can be further improved by the aligned latent space.
Aligned cell embeddings derived from imaging outperform
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zero-shot foundation model embeddings, enhancing cell
typing accuracy by more than 16% and gene expression

prediction by more than 10% consistently across samples.

The ability to accurately predict cell types directly from
H&E whole-slide images unlocks the potential for spatial
analyses in existing large-scale pathology datasets. This
will significantly advance our understanding of the tumor
microenvironment and tumor biology.

2. Methods

2.1. H&Enium Architecture

Each (single) cell is represented by the tuple
(I,G,Y) e RPXPX3 « RY % {1,...,K},

where [ is the P x P H&E-stained image patch, G the
C-dimensional gene-expression vector, and Y the cell-type
label out of K classes.
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Figure 1. Overview of the H&Enium single-cell alignment model
architecture. During training, all foundation models (FMs) remain
frozen, while projection heads P and Pg are jointly trained using
the contrastive 10ss Lcontrast-
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Figure 1 illustrates the H&Enium architecture. Given an
image patch I and a gene vector G of a single cell, we
first extract frozen embeddings via a pathology foundation
model and a transcriptomic foundation model, respectively:
Z]:FM[(I) ERdI, ZG:FMG(G) GRdG.
Where d; and dg are the foundation model embedding
dimensions. For a batch of B cells we write Z; € RE>dr
and Zg € RP*4¢ Two projection heads Py, Pg are then
jointly trained to align these embeddings:

ar = Pr(zr), ac=Pg(zg) € A€ R%.

or in batch form A;, A € RBXda,

We align image and gene embeddings via a contrastive loss
that pulls matching pairs together and pushes non-matching

pairs apart. To compute the loss, we first perform row-wise
L2-normalization in the aligned space and then calculate the
cosine similarity matrix between gene and image embed-
dings as follows: S = cossim(Ag, A7) € REXE_ where
each entry S;; = (ag,i,ar ;) measures the similarity be-
tween gene embedding ¢ and image embedding j.

Let T € [0,1]5*B be the target similarity matrix, where
each entry T;; encodes the desired pairing strength between
cell ¢ and cell j. In our contrastive loss, we directly compare
each predicted similarity .S;; to its target T;; via a soft cross-
entropy, formally defined in Appendix A, and apply it in
both directions: Lgene = SoftCE(S, T'), and Limage =
SoftCE(ST, T'T).

The final contrastive loss
Lcontrast = >\ Limage + (1 - )\) Lgene

uses A € [0,1] to balance the contributions of each align-
ment direction.

We evaluate three different targets 7', named CLIP, BLEEP
and BLEEP;,,,.. CLIP is a (one-hot) diagonal target used
in Radford et al. (2021), BLEEP is a soft target derived
from the aligned space A defined by Xie et al. (2023).
BLEEP;p; is our newly introduced soft target based on
the pre-projection embeddings z. Details on target defini-
tions can be found in Appendix B. As projection heads, we
use a simple MLP. For details on the projection heads and
training procedure, refer to Appendix C.

2.2. Downstream Task Modeling

We assess embedding quality on cell type classification
and gene expression prediction using the frozen foundation
model embeddings z; and z and their aligned counterparts
ar and ag.

2.2.1. CELL TYPE CLASSIFICATION

We train L2-penalized logistic regressions with balanced
class weights and the L-BFGS solver (up to 5,000 iterations)
on both frozen foundation model embeddings (27, z¢) and
aligned embeddings (a, ag). We report accuracy, balanced
accuracy (BAC), and F1 score (F1).

2.2.2. GENE EXPRESSION PREDICTION

We predict gene expression solely from the image-based
embeddings z; and a;. Following (Jaume et al., 2024), we
filter out genes expressed in less than 10% of cells, nor-
malize counts to counts-per-million (CPM), apply log 1p
transformation, and select the top 50 most variable genes.
To predict the log-CPM values of the 50 most variable genes,
we standard-scale each embedding vector, apply PCA (keep-
ing 64 principal components if the embedding dimension
is larger than 64), and then fit a Ridge regression model.
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We report Pearson correlation (PCC) and Relative Variance
Distance (RVD), explained in Appendix D.

2.3. Baselines

As a naive baseline, we employ a majority label classi-
fier that consistently predicts the most common label in
the training set. For a more informed comparison, we
construct a morphological baseline using geometric fea-
tures—such as cell and nuclear area, perimeter, and shape
descriptors—extracted from Xenium’s cell segmentations.
This allows us to assess the added value of representations
from pathology foundation models over handcrafted mor-
phological cues (see Appendix E).

3. Results
3.1. Dataset

To train and test H&Enium, we used publicly available
tumor spatial transcriptomic slides generated on the 10x
Genomics Xenium platform. We worked with three distinct
slides from pancreas and breast, capturing over one million
individual cells. We obtained cell type labels Y via expert
annotation based solely on Xenium single-cell gene expres-
sion data. The labels Y correspond to the four PanNuke
(Gamper et al., 2020) classes Connective, Inflammatory,
Neoplastic, and Epithelial.

Additionally, we evaluated our approach on the much
smaller out-of-sample PanNuke H&E test set (Gamper et al.,
2020). No corresponding gene expression data is available
for the PanNuke dataset, i.e. pathologists annotated the
cell type labels by eye. For additional information on the
datasets or visual context, refer to Appendix F.

3.2. Preprocessing

For each nucleus centroid, we extract one square image
patch I of P = 224 pixels centered on the centroid, which
matches the input size for UNI2 and CONCH, the pathology
foundation models used in this study. We upscale the orig-
inal H&E image by a factor of 1.33 using Lanczos-based
resampling ! to approximate single-cell resolution. This def-
inition ensures that each nucleus is fully contained within
the patch while avoiding excessive surrounding tissue. We
selected the patch size such that a nucleus with a radius of
r = 18um remains entirely visible within a crop. Finally,
we remove low-quality Xenium cells exhibiting fewer tran-
scripts than the median transcripts per cell minus the median
absolute deviation (Heumos et al., 2023). We implement
five-fold spatial cross-validation, where the image is split
into 5 evenly sized segments. For each fold, one segment is
held out as the test set, while the remaining four segments

'See the documentation of Pillow resampling filters.

Table 1. Cell type classification performance across five spatial
folds for pathology foundation models (FM;) versus baselines.
Accuracy, balanced accuracy (BAC), and F1 score (F1) are reported
as mean = standard deviation.

SLIDE FM; ACCURACY BAC Fl1
PANCREAS UNI2 0.6856 (= 0.0111)  0.6554 (£ 0.0254)  0.6552 (£ 0.0266)
PANCREAS CONCH 0.6308 (4 0.0070)  0.6042 (£ 0.0264)  0.6038 (£ 0.0258)

PANCREAS
PANCREAS

MORPHOLOGICAL  0.4583 (£ 0.0226) 0.4357 (£0.0224)  0.4271 (£ 0.0328)
MAJORITY LABEL ~ 0.3535 (£ 0.0658)  0.2500 (£ 0.0000)  0.1299 (£ 0.0183)

BREASTIDC  UNI2 0.8097 (£ 0.0599) 0.7853 (£ 0.0386) 0.7427 (£ 0.0519)
BREASTIDC  CONCH 0.7837 (£ 0.0748)  0.7572 (£ 0.0422)  0.7001 (+ 0.0515)
BREASTIDC ~ MORPHOLOGICAL  0.5732 (£ 0.0222) 0.5536 (£ 0.0309) 0.4758 (£ 0.0172)
BREASTIDC  MAJORITY LABEL  0.5971 (£ 0.0553)  0.2500 (& 0.0000) 0.1866 (£ 0.0107)

BREASTILC  UNI2 0.7637 (+0.0892)  0.5860 (+0.0351) 0.5223 (£ 0.0218)
BREASTILC  CONCH 0.7634 (+ 0.0840)  0.6265 (+0.0367)  0.5121 (+ 0.0208)
BREASTILC ~ MORPHOLOGICAL ~ 0.6283 (£ 0.0553)  0.4498 (4 0.0239)  0.3875 (£ 0.0112)
BREASTILC ~ MAJORITY LABEL ~ 0.7787 (£ 0.1089)  0.2500 (4 0.0000)  0.2180 (+ 0.0186)

(80%) form the training set. For each evaluation metric, we
collect the five scores, i.e. one from each held-out test fold,
and then report their mean and standard deviation. Further-
more, within each training set, we randomly reserve 20% of
the cells for validation during H&Enium alignment training.

3.3. Unaligned Results

We first evaluate performance on the cell type classifica-
tion task on frozen foundation model embeddings z; and
z¢. Table 1 shows that the pathology foundation models,
namely UNI2 and CONCH, surpass the morphological and
majority voting baselines. UNI2 beats CONCH on all three
slides according to the F1 score, with F1 ranging from
0.52 (BreastILC) to 0.74 (BreastIDC). Taking into account
UNI2’s superior performance, we selected it as our founda-
tion model for the H&Enium alignment.

Appendix Table 7 shows that transcriptomic foundation
models (CellPLM and scGPT) and the raw gene expression
baseline (G) achieve high cell type classification scores,
with mean F1 exceeding 0.8 across all slides. On the Breast
slides, scGPT and CellPLM yield comparable results (differ-
ence in F1 < 1%), whereas on the Pancreas slide, CellPLM
clearly outperforms scGPT (5% F1 improvenment). We
therefore adopt CellPLM as our primary transcriptomic
foundation model for the H&Enium alignment.

Comparing Tables 1 and 7 we find that the average per-
formance of models trained for cell type prediction on
pathology-derived embeddings is, F1: 0.6401 ([0.5223-
0.7427]) across all three slides. The average performance of
models trained on gene expression embeddings performed
substantially better, F1: 0.9041 ([0.8601-0.9414]). This is
highlighting the potential of the aligned latent space .4; to
better capture informative features from both modalities.
Figure 2 additionally shows that in the UMAP (Mclnnes
et al., 2018) visualization, CellPLM produces more coherent
cell-type clustering than UNI2.
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Figure 2. UMAP (Mclnnes et al., 2018) visualization of Pancreas
data colored by cell type, comparing UNI2 (A) and CellPLM (B)
single cell embeddings.

Table 2. Cell type classification performance across pathology
foundation models including non-aligned baseline and H&Enium
aligned models. Metrics as mean =+ standard deviation.

SLIDE T

PANCREAS NON-ALIGNED
PANCREAS CLIP

ACCURACY BAC Fl

0.6856 (£ 0.0111)  0.6554 (£ 0.0254)  0.6552 (£ 0.0266)
0.6989 (£ 0.0060)  0.6653 (£ 0.0285) 0.6673 (£ 0.0279)

PANCREAS BLEEP 0.5965 (£ 0.0108)  0.5681 (£ 0.0351) 0.5674 (4 0.0349)
PANCREAS ~ BLEEPypur 0.6996 (+ 0.0066)  0.6653 (£ 0.0301)  0.6675 (& 0.0295)
BREASTIDC ~ NON-ALIGNED  0.8097 (£ 0.0599) 0.7853 (£ 0.0386)  0.7427 (£ 0.0519)
BREASTIDC  CLIP 0.8123 (£ 0.0559) 0.7882 (£ 0.0382) 0.7474 (£ 0.0509)
BREASTIDC BLEEP 0.7821 (£ 0.0500)  0.7368 (£ 0.0390)  0.6882 (£ 0.0445)
BREASTIDC ~ BLEEP 0.8132 (£ 0.0562)  0.7884 (+ 0.0378)  0.7487 (+ 0.0511)
BREASTILC ~ NON-ALIGNED  0.7637 (£ 0.0892)  0.5860 (£ 0.0351) 0.5223 (+ 0.0218)
BREASTILC  CLIP 0.7670 (£ 0.0888)  0.6546 (+ 0.0371)  0.5590 (£ 0.0146)
BREASTILC  BLEEP 0.7411 (£0.1178)  0.6039 (£ 0.0240)  0.4748 (£ 0.0382)
BREASTILC ~ BLEEPypur 0.7688 (+ 0.0892) 0.6487 (£ 0.0442) 0.5587 (4 0.0203)
3.4. Aligned Results

We choose the best performing foundation models (UNI2
and CellPLM) from Section 3.3 and align their embeddings
using H&Enium. Table 2 shows that alignment via our
H&Enium model consistently outperforms the non-aligned
embeddings when BLEEP;,,,, or CLIP are used as targets,
whereas using BLEEP as target does not outperform the
baseline. The largest relative F1 improvement occurs for
BreastILC (= 7%), followed by Pancreas (~ 2%), while
BreastIDC shows gains under 1%.

We also assess cell type classification performance of
Xenium-trained models on the out-of-sample PanNuke data,
whose H&E images are annotated by expert pathologists.
Specifically, we apply Pancreas-trained models to the Pan-
Nuke Pancreas subset and Breast-trained models to the Pan-
Nuke Breast subset. We compare H&Enium aligned models
with BLEEP;,,,, CLIP as targets to the non-aligned baseline
in Table 3. Alignment with BLEEP;,p,, delivers more than
16% relative improvement in F1 for Pancreas, BreastIDC
and BreastILC.

Further, we analyze gene expression prediction of aligned la-
tent space embeddings in Table 4. Aligned embeddings with
targets BLEEP;,,,, and CLIP consistently outperform the
unaligned baseline in PCC and RVD across all slides. For
BreastILC, BreastIDC and Pancreas, the relative increases
in PCC exceed 10%.

Table 3. Cell type classification performance on out-of-sample Pan-
Nuke dataset across pathology foundation models including non-
aligned baseline and H&Enium aligned models. Metrics as mean
= standard deviation. Evaluation is performed on the entire test
set using the five models trained on spatial Xenium folds.

ACCURACY BAC Fl1

0.3185 (+0.0590)  0.3053 (£ 0.0166) 0.2241 (4 0.0227)
0.3080 (+0.0766)  0.3350 (4 0.0407)  0.2471 (& 0.0499)
0.3333 (+0.0880)  0.3440 (+0.0299)  0.2641 (4 0.0471)

SLIDE T

PANCREAS NON-ALIGNED
PANCREAS CLIP
PANCREAS BLEEP ypur

BREASTIDC  NON-ALIGNED  0.5725 (4 0.0492) 0.5119 (£ 0.0415) 0.4977 (£ 0.0333)
BREASTIDC  CLIP 0.5219 (£ 0.1806)  0.4366 (£ 0.1837) 0.4161 (£ 0.2204)
BREASTIDC ~ BLEEP i1 0.6531 (£ 0.0330) 0.5705 (£ 0.0311)  0.5804 (£ 0.0316)
BREASTILC ~ NON-ALIGNED  0.4387 (+ 0.0628) 0.3903 (£ 0.0528) 0.3558 (£ 0.0823)
BREASTILC ~ CLIP 0.5507 (£ 0.0420)  0.5149 (£ 0.0501)  0.4903 (£ 0.0675)
BREASTILC ~ BLEEPypur 0.5454 (+0.0548)  0.5039 (£ 0.0492) 0.4759 (£ 0.0742)

Table 4. Gene expression prediction performance across pathology
foundation models non-aligned baseline and H&Enium aligned
models. Metrics as mean = standard deviation.

SLIDE T PCC 1T RVD |

PANCREAS NON-ALIGNED  0.3612 (£ 0.0335) 0.7283 (£ 0.0174)
PANCREAS CLIP 0.4014 (£ 0.0316)  0.6603 (£ 0.0295)
PANCREAS BLEEP 0.3297 (£ 0.0393)  0.7589 (£ 0.0233)
PANCREAS BLEEPinput 0.4012 (£ 0.0316) 0.6617 (£ 0.0274)
BREASTIDC  NON-ALIGNED  0.4313 (£ 0.0117) 0.6323 (£ 0.0257)
BREASTIDC  CLIP 0.4754 (£ 0.0089) 0.5428 (+0.0161)
BREASTIDC BLEEP 0.4306 (£ 0.0099)  0.6258 (£ 0.0193)
BREASTIDC  BLEEPinput 0.4755 (£ 0.0085)  0.5480 (£ 0.0127)
BREASTILC  NON-ALIGNED 0.3337 (£ 0.0149) 0.7437 (£ 0.0155)
BREASTILC  CLIP 0.3688 (£ 0.0116)  0.6733 (£ 0.0303)
BREASTILC BLEEP 0.3190 (£ 0.0124)  0.7591 (£ 0.0231)
BREASTILC ~ BLEEPinpus 0.3698 (£ 0.0113)  0.6744 (£ 0.0300)

4. Discussion and Conclusion

The main contributions of this work are: (1) the adapta-
tion of patch-level pathology foundation models to single
cells, (2) the introduction of a novel soft alignment target
for cross-modal embedding alignment, (3) a demonstration
of improved cell type classification and gene expression
prediction on independent H&E datasets.

Our aligned representation yields richer H&E-based embed-
dings that substantially improve both cell-type classification
and gene-expression prediction. In out-of-sample evalua-
tions, models trained on these embeddings showed increased
performance of 16% on cell type prediction and 10% on
gene expression prediction. To our knowledge this work is
the first single-cell level alignment of the H&E image and
transcriptomics modalities. Future efforts should involve
benchmarking its performance against patch-level models in
a pseudo-bulk manner. Additionally, this provides a founda-
tion for scaling the training and architecture across various
slides and tumor types. Ultimately, H&Enium establishes
a framework for aligning pathology and transcriptomics at
single-cell resolution, enhancing the potential of H&E-only
analysis pipelines in both research and clinical settings.
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A. Soft Cross Entropy Definition

We define the softmax function with learnable temperature 7 > 0 row-wise over a matrix X € RB*5 ag

X
softmax, (X );; = BeXp( i/7) 0
> bt exp(Xin/T)
We define a soft cross-entropy function, which operates row-wise over logits and targets:
B B
SoftCE(logits, targets) = -3 Z Z targets, ; log (softmax (logits); J) )

This function is equivalent to applying standard cross-entropy with soft probability targets.?

B. Target definitions

We experiment with different strategies for defining the (soft) target matrix 7". Each approach encodes different assumptions
about inter-sample relationships.

CLIP Target. The CLIP-style target (Radford et al., 2021) assumes a strict one-to-one correspondence between image and
gene embeddings within a batch. It uses an identity matrix as the target distribution:

1 ifi=j
TCLIP:H ERBXB, 1 = 3
B (@5):s 0 otherwise )

This enforces hard alignment between matched pairs only.

BLEEP Target. The BLEEP target introduces soft alignment by measuring intra-modality similarity over the output
embeddings (Xie et al., 2023). This is advantageous because, within each batch, gene and image embeddings often exhibit
significant similarity, particularly among cells of the same type. BLEEP therefore computes a weighted combination of
intra-image and intra-gene similarities:

TBLEEP — softmax, (« - cossim(Ag, Ag) + (1 — ) - cossim(A;, Aj)) € RP*B 4)

Here, 7/ is a softmax temperature hyperparameter (non-learnable), and « € [0, 1] controls the relative weight of gene vs.
image similarity.

BLEEP;,y Target. We extend BLEEP by computing intra-modality similarities based on Z instead of A since we consider
the pre-projection embeddings from the foundation models to be more reliable, especially at the early stages of H&Enium
model training.

TBLEEPu — softmax, (o - cossim(Zg, Zg) + (1 — a) - cossim(Z;, Z;)) € RB*B ®)

C. Projection Heads

Pr and Pg are simple one-layer projections with d, = 128 and batch size B = 64 using GELU activation (Hendrycks &
Gimpel, 2016), Layer Normalization (Ba et al., 2016) and dropout (Srivastava et al., 2014) with p = 0.3 using the AdamW
optimizer (Loshchilov & Hutter, 2017) with an initial learning rate of 0.001 and a weight decay of 0.0001, training for a
maximum of 20 epochs with early stopping after 5 epochs, only saving model checkpoints if validation loss decreases.

*Implemented with PyTorch’s cross entropy function


https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
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D. Relative Variation Distance

Relative Variation Distance (RVD) is defined as follows:

c’ 2 2
1 O pred — Ti,gt 2
D = & 5
i=1 1,8t
C’ denotes the number of predicted genes (C’ = 50 for this work) and U?.pred is the variance of the predicted expression for
gene ¢ across cells, and 02 ot 18 the variance of the true expression for gene ¢ across cells.

The RVD metric was introduced in Zhu et al. (2025) in response to Xie et al. (2023)’s observation that in log-transformed
space, a naive baseline predicting the cell-wise mean expression across all genes can produce deceptively high PCC. RVD
thus quantifies the average squared relative deviation between predicted and true gene variances, providing a more sensitive
measure of how well the model captures heterogeneity in gene expression across cells.

E. Morphological Baseline

Xenium provides cell segmentation information that allows us to derive features based on morphology. In contrast to H&E
images - which capture detailed visual cues such as color, texture, and tissue architecture - the features presented here are
solely derived from the geometric shapes of cells and nuclei and their neighbors. This morphological baseline serves as a
comparison to the features extracted from pathology foundation models.

Every cell is represented by a set of vertices that define its boundary, and each cell is associated with a nucleus that is also
defined by its own vertices. These vertex coordinates provide the necessary information to calculate geometric descriptors
that characterize the shape and spatial relationships of the cells. Based on the segmentation information, we compute 16
features:

¢ Cell Features:

Cell Area: The area enclosed by the cell boundary.

Cell Maximum Radius: The maximum distance from the cell centroid to the cell boundary.

Cell Perimeter: The total length of the cell boundary.

Cell Perimeter-to-Area Ratio: A measure that reflects the compactness of the cell shape.

Cell Concavity: An indicator of the deviation of the cell shape from a perfect circle.

Cell Smoothness: Quantifying the regularity of the cell boundary, i.e. the perimeter divided by the number of
boundary vertices.

¢ Nucleus Features:

Nucleus Area: The area enclosed by the nucleus boundary.

Nucleus Maximum Radius: The maximum distance from the nucleus centroid to its boundary.

Nucleus Perimeter: The total length of the nucleus boundary.

Nucleus Perimeter-to-Area Ratio: A descriptor of the nucleus shape.

Nucleus Concavity: A measure of the deviation of the nucleus shape from an ideal circle.

¢ Combined Features:

— Nucleus-to-Cell Area Ratio: The ratio of the nucleus area to the cell area.
— Nucleus-to-Cell Centroid Distance: The Euclidean distance between the centroids of the cell and its nucleus.
— Nearest-Nucleus Features: Spatial features based on a nearest neighbor search:

% The distance from the nucleus centroid to the nearest nucleus centroid.

x The distance from the cell membrane to the nearest nucleus centroid.

+ The distance from the cell membrane to the kth nearest nucleus centroid.
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F. Datasets overview
F.1. Pancreas

The Xenium Pancreas dataset comprises 190,965 cells and employs a gene panel of size C' = 474. After preprocessing,
147,707 cells are left for training and testing, see Table 5 for cell type distribution statistics across folds. Downloaded from
the 10x Genomics Xenium dataset page.

F.2. Breast

We use two publicly available Breast slides from Xenium. The BreastIDC and BreastILC datasets both profile C' = 380,
containing 574,527 and 365,604 cells, respectively. Statistics for cells passing the preprocessing are shown in Table 5.

Downloaded from the 10x Genomics Xenium dataset page.

Table 5. Distribution of cell types across training and testing folds for each Xenium slide.

SLIDE FoLDp SET NuM. CELLS CELL TYPES Y
CONNECTIVE INFLAMMATORY NEOPLASTIC EPITHELIAL
PANCREAS OVERALL 147707 30470 (20.63%) 29253 (19.80%) 52208 (35.35%) 35776 (24.22%)
PANCREAS 0 TRAIN 118166 23476 (19.87%) 22375 (18.94%) 44689 (37.82%) 27626 (23.38%)
PANCREAS 0 TEST 29541 6994 (23.68%) 6878 (23.28%) 7519 (25.45%) 8150 (27.59%)
PANCREAS 1 TRAIN 118166 23606 (19.98%) 23417 (19.82%) 41768 (35.35%) 29375 (24.86%)
PANCREAS 1 TEST 29541 6864 (23.24%) 5836 (19.76%) 10440 (35.34%) 6401 (21.67%)
PANCREAS 2 TRAIN 118166 27131 (22.96%) 25615 (21.68%) 39288 (33.25%) 26132 (22.11%)
PANCREAS 2 TEST 29541 3339 (11.30%) 3638 (12.32%) 12920 (43.74%) 9644 (32.65%)
PANCREAS 3 TRAIN 118166 25615 (21.68%) 24483 (20.72%) 41149 (34.82%) 26919 (22.78%)
PANCREAS 3 TEST 29541 4855 (16.43%) 4770 (16.15%) 11059 (37.44%) 8857 (29.98%)
PANCREAS 4 TRAIN 118164 22052 (18.66%) 21122 (17.88%) 41938 (35.49%) 33052 (27.97%)
PANCREAS 4 TEST 29543 8418 (28.49%) 8131 (27.52%) 10270 (34.76%) 2724 (9.22%)
BREASTIDC  OVERALL 439534 89125 (20.28%) 66850 (15.21%) 262434 (59.71%) 21125 (4.81%)
BREASTIDC 0 TRAIN 351628 73702 (20.96%) 55667 (15.83%) 202771 (57.67%) 19488 (5.54%)
BREASTIDC 0 TEST 87906 15423 (17.54%) 11183 (12.72%) 59663 (67.87%) 1637 (1.86%)
BREASTIDC 1 TRAIN 351628 69414 (19.74%) 54081 (15.38%) 210515 (59.87%) 17618 (5.01%)
BREASTIDC 1 TEST 87906 19711 (22.42%) 12769 (14.53%) 51919 (59.06%) 3507 (3.99%)
BREASTIDC 2 TRAIN 351628 71433 (20.31%) 54163 (15.40%) 207859 (59.11%) 18173 (5.17%)
BREASTIDC 2 TEST 87906 17692 (20.13%) 12687 (14.43%) 54575 (62.08%) 2952 (3.36%)
BREASTIDC 3 TRAIN 351628 70215(19.97%) 48622 (13.83%) 213845 (60.82%) 18946 (5.39%)
BREASTIDC 3 TEST 87906 18910 (21.51%) 18228 (20.74%) 48589 (55.27%) 2179 (2.48%)
BREASTIDC 4 TRAIN 351624 71736 (20.40%) 54867 (15.60%) 214746 (61.07%) 10275 (2.92%)
BREASTIDC 4 TEST 87910 17389 (19.78%) 11983 (13.63%) 47688 (54.25%) 10850 (12.34%)
BREASTILC ~ OVERALL 270700 34192 (12.63%) 23437 (8.66%) 210800 (77.87%) 2271 (0.84%)
BREASTILC 0 TRAIN 216560 20712 (9.56%) 16185 (7.47%) 178820 (82.57%) 843 (0.39%)
BREASTILC 0 TEST 54140 13480 (24.90%) 7252 (13.39%) 31980 (59.07%) 1428 (2.64%)
BREASTILC 1 TRAIN 216560 27677 (12.78%) 18565 (8.57%) 168204 (77.67%) 2114 (0.98%)
BREASTILC 1 TEST 54140 6515 (12.03%) 4872 (9.00%) 42596 (78.68%) 157 (0.29%)
BREASTILC 2 TRAIN 216560 29882 (13.80%) 20517 (9.47%) 164034 (75.75%) 2127 (0.98%)
BREASTILC 2 TEST 54140 4310 (7.96%) 2920 (5.39%) 46766 (86.38%) 144 (0.27%)
BREASTILC 3 TRAIN 216560 29804 (13.76%) 19256 (8.89%) 165411 (76.38%) 2089 (0.96%)
BREASTILC 3 TEST 54140 4388 (8.10%) 4181 (7.72%) 45389 (83.84%) 182 (0.34%)
BREASTILC 4 TRAIN 216560 28693 (13.25%) 19225 (8.88%) 166731 (76.99%) 1911 (0.88%)
BREASTILC 4  TEST 54140 5499 (10.16%) 4212 (7.78%) 44069 (81.40%) 360 (0.66%)

F.3. PanNuke

Out-of-sample test data from the PanNuke dataset (Gamper et al., 2020) is downloaded from the Warwick Tissue Image
Analytics (TTA) Centre. For Pancreas, 741 single-cell image patches are available, Breast contains 8471 cells. Table 6 shows
the respective cell type distributions.

Table 6. PanNuke cell type distribution on the PanNuke data used for out-of-sample testing.

ORGAN NuUM. CELLS CELL TYPES Y
CONNECTIVE INFLAMMATORY NEOPLASTIC EPITHELIAL
PANCREAS 741 394 (53.17%) 146 (19.70%) 127 (17.14%) 74 (9.99%)
BREAST 8471 1826 (21.56%) 1057 (12.48%) 3191 (37.67%) 2397 (28.30%)



https://www.10xgenomics.com/datasets/pancreatic-cancer-with-xenium-human-multi-tissue-and-cancer-panel-1-standard
https://www.10xgenomics.com/datasets/ffpe-human-breast-with-custom-add-on-panel-1-standard
https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke
https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke
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F.4. Architecture and Datasets
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Figure 3. Overview of the H&Enium datasets and their downstream tasks after alignment training is complete (i.e., all H&Enium models
are frozen). For the Xenium dataset, we predict the cell type Y separately from the image embedding a; and the gene expression
embedding ai. We also predict gene expression G from a;. In the PanNuke dataset, only H&E data is available, so we only predict cell
type Y from a;. Importantly, Y is ground truth (GT) annotated directly from the imaging data by an experienced pathologist, whereas in
the Xenium dataset, the GT annotations are derived from gene expression G and are performed by an expert.
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G. Cell Type Classification for Transcriptomic Foundation Models

Table 7. Cell type classification performance across five spatial folds for transcriptomic foundation models (FM¢) versus baselines.

Accuracy, balanced accuracy (BAC), and F1 score (F1) are reported as mean =+ standard deviation.

SLIDE FM¢g ACCURACY BAC F1

PANCREAS CELLPLM 0.8709 (£ 0.0071)  0.8593 (£ 0.0065) 0.8601 (£ 0.0046)
PANCREAS SCGPT 0.8242 (£ 0.0178) 0.8132 (£ 0.0136) 0.8136 (£ 0.0118)
PANCREAS GENE EXPRESSION  0.9170 (4 0.0062) 0.9081 (£ 0.0075) 0.9080 (£ 0.0089)
PANCREAS MAJORITY LABEL 0.3535 (£ 0.0658) 0.2500 (£ 0.0000) 0.1299 (£ 0.0183)
BREASTIDC CELLPLM 0.9615 (£ 0.0226) 0.9607 (£ 0.0130) 0.9414 (£ 0.0225)
BREASTIDC  SCGPT 0.9623 (£ 0.0211) 0.9610 (£ 0.0118) 0.9442 (+ 0.0217)
BREASTIDC  GENE EXPRESSION  0.9631 (£ 0.0183) 0.9603 (+0.0119) 0.9439 (£ 0.0206)
BREASTIDC  MAJORITY LABEL 0.5971 (£ 0.0553)  0.2500 (£ 0.0000) 0.1866 (£ 0.0107)
BREASTILC CELLPLM 0.9719 (£ 0.0133)  0.9600 (£ 0.0097) 0.9107 (£ 0.0059)
BREASTILC  SCGPT 0.9722 (£ 0.0120)  0.9509 (£ 0.0093) 0.9112 (£ 0.0115)
BREASTILC  GENE EXPRESSION  0.9720 (£ 0.0120)  0.9456 (+ 0.0096) 0.9046 (£ 0.0117)
BREASTILC  MAJORITY LABEL 0.7787 (£ 0.1089)  0.2500 (£ 0.0000) 0.2180 (£ 0.0186)
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