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Abstract— Despite the recent advancements of vision-
language-action (VLA) models on a variety of robotics tasks,
they suffer from critical issues such as poor generalizability
to unseen tasks, due to their reliance on behavior cloning
exclusively from successful rollouts. Furthermore, they are typi-
cally fine-tuned to replicate demonstrations collected by experts
under different settings, thus introducing distribution bias and
limiting their adaptability to diverse manipulation objectives,
such as efficiency, safety, and task completion. To bridge this
gap, we introduce GRAPE: Generalizing Robot Policy via
Preference Alignment. Specifically, GRAPE aligns VLAs on
a trajectory level and implicitly models reward from both
successful and failure trials to boost generalizability to diverse
tasks. Moreover, GRAPE breaks down complex manipulation
tasks to independent stages and automatically guides preference
modeling through customized spatiotemporal constraints with
keypoints proposed by a large vision-language model. Notably,
these constraints are flexible and can be customized to align the
model with varying objectives, such as safety, efficiency, or task
success. We evaluate GRAPE across a diverse array of tasks
in both real-world and simulated environments. Experimental
results demonstrate that GRAPE enhances the performance
of state-of-the-art VLA models, increasing success rates on in-
domain and unseen manipulation tasks by 51.79% and 58.20%,
respectively. Additionally, GRAPE can be aligned with various
objectives, such as safety and efficiency, reducing collision rates
by 37.44% and rollout step-length by 11.15%, respectively.

I. INTRODUCTION

The recent rapid proliferation of vision-language-action
(VLA) models has streamlined general robotic manipulation
tasks, demonstrating impressive capability across a range of
tasks under controlled environmental variations [4], [6], [25],
[42]. However, these models face several critical challenges
such as poor generalizability across new environments, ob-
jects, tasks, and semantic contexts [25]. A significant factor
contributing to this limitation is their reliance on supervised
fine-tuning (SFT), where VLAs simply imitate actions from
successful rollouts via behavior cloning while not developing
a holistic understanding of the task goal or potential failure
patterns [26]. While reinforcement learning (RL) algorithms
such as PPO [40] have proved promising in enhancing their
generalizability [51], the high cost of gathering sufficient
online trajectories and explicitly defining reward make them
impractical for training VLA [42].

Furthermore, training VLAs to solely replicate expert
behaviors often results in behavior collapse [27] where
the planned trajectories are often suboptimal [25]. This is
because the SFT datasets are usually uncurated and consist
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Fig. 1: Comparison of GRAPE with SOTA VLA models
fine-tuned on the same data across a large variety of general-
ization and in-domain tasks in both real-world and simulated
environments.

of offline demonstrations collected from experts that em-
bed implicitly different values (e.g. task completion, safety,
and cost-efficiency) that are not clearly defined within the
data [35], [43]. Simply imitating these behaviors via SFT
can potentially confuse the model and result in suboptimal
trajectories that deviate from the actual objective of the
demonstrations. Some approaches attempt to address this
challenge by explicitly defining a set of objectives and solv-
ing them hierarchically [22]. However, this approach incurs
additional inference overhead and lacks scalability [29].

To address these issues, we propose GRAPE:
Generalizing Robot Policy via Preference Alignment
to alleviate the high cost of training VLAs with RL
objective, while offering flexibility for aligning towards
customized manipulation objectives. As shown in Fig. 2,
GRAPE introduces trajectory-wise preference optimization
(TPO) to align VLA policies on a trajectory level by
implicitly modeling reward from both successful and failure
trials, boosting generalizability to diverse tasks. To further
alleviate the difficulty in ranking trajectories and providing
preferences towards arbitrary alignment objectives, GRAPE
proposes to decompose the complex manipulation tasks into
multiple independent stages and adopt a large vision model
to propose keypoints for each stage, each associated with
a spatial-temporal constraint. Notably, these constraints are
flexible and can be customized to align the model with
varying manipulation objectives, such as task completion,
robot-interaction safety, and cost-efficiency. We evaluate
GRAPE across a wide range of real-world tasks and
two simulated environments. Experimental results show
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Fig. 2: Overview of GRAPE. GRAPE first uses a VLM to decompose a manipulation task (top) into temporal stages
and identify key spatial points for each subtask. Given user-specified alignment goals, it prompts a VLM to generate cost
functions for each stage. During iterative preference optimization (bottom), offline trajectories are sampled from the base
VLA model, scored using multi-stage cost, self-evaluation and task success indicators, and ranked to form preferences.
GRAPE then optimizes the VLA models iteratively until convergence.

that GRAPE outperforms state-of-the-art VLA models,
improving success rates on both in-domain and unseen
manipulation tasks by 51.79% and 58.20%, respectively.
Moreover, GRAPE can be aligned to diverse objectives
such as safety and efficiency, to further reduce collision rate
by 37.44% and rollout step-length by 11.15%, respectively.

II. GENERALIZING ROBOT POLICY VIA PREFERENCE
ALIGNMENT

A. Preliminaries
During inference, a VLA typically initializes with an task

instruction q, and at each timestep t, it takes an environment
observation ot (usually an image) and outputs an action at,
where we can denote πθ(ai|(oi, q)) as the action policy of
a VLA parameterized by θ. To complete the task, VLA
iteratively interacts with the environment and obtains a
trajectory ζ = {o1, a1, · · · , oT , aT |q} of length T . Typically,
VLAs are fine-tuned to imitate expert behaviors via SFT:

LSFT = −
∑

(ζ,q)∈D

T∑
t=1

log p(at|ot, q;πθ), (1)

where D = {(ζ1, q1), . . . , (ζN , qN )} denotes the training
set containing N expert trajectories. Specifically, LSFT en-
forces VLA to memorize the action associated with each
observation sampled from a distribution PD, resulting in
poor generalizability to new task settings. It is worth to
note that while we follow [6], [35] and consider the step-
wise policy based on the Markov decision process (MDP)
assumption [41], our approach can be easily adapted to
both non-MDP case which takes past interaction histories

(usually a video or a series of images) as state [9] and
diffusion policy [16] which generates multiple future steps
all at once [42].
B. TPO: Trajectory-wise Preference Optimization

To improve generalization, we follow [3], [40] and further
fine-tune VLA policies via RL objective. Let rϕ denote a
reward function parameterized by ϕ, we have

max
πθ

Eζ∼πθ [rϕ(ζ)]− βDKL [πθ(ζ) ∥ πref(ζ)] , (2)

where β controls the deviation from the base reference
policy πref trained via SFT in Eq. (1) and π(ζ, q) is the
likelihood of policy π generating the entire trajectory ζ under
instruction q. Then we follow [38] and derive the analytical
reparameterization of the trajectory reward r(ζ) as:

r(ζ, q) = β log
πθ(ζ | q)
πref(ζ | q) + β logZ(ζ). (3)

Similar to [38], we adopt the Bradley-Terry (BT) [5] model
and model rϕ from a set of trajectories ranked with pref-
erences. Specifically, let ζw and ζl denotes the chosen and
rejected trajectory starting from the same initial state, we can
formulate the trajectory-wise reward modeling objective as:

P (ζw ≻ ζl) =
exp (r(ζw), q)

exp (r(ζw), q) + exp (r(ζl), q)
. (4)

Then, we follow [38] and substitute Eq. (3) into Eq. (4) and
obtain the following trajectory-wise preference optimization
(TPO) loss LTPO equivalent to Eq. (2):

LTPO = −E(ζw,ζl)∼D

[
log σ

(
β

(
log

πθ(ζw)

πref(ζw)
− log

πθ(ζl)

πref(ζl)

))]
,

(5)



where we can further draw from MDP and decompose the
likelihood of a trajectory ζ into individual state-action pairs,
i.e., π(ζ, q) =

∏T
i=1 π(ai | (oi, q)) and further obtain

log
πθ(ζ, q)

πref(ζ, q)
=

T∑
t=1

log
πθ(ai | (oi, q))
πref(ai | (oi, q))

. (6)

Then we can substitute Eq. (6) into Eq. (5) to obtain the
TPO loss LTPO in terms of step-wise state-action pairs. Our
TPO loss Eq. (6) is beneficial as it: (1) aligns policy πθ

globally towards human preferences on a trajectory level
while simply using step-wise rollouts collected by VLAs;
(2) it stabilizes the policy and steers it towards the final goal
by backpropagating the gradients throughout all the state-
action pairs along the trajectory; (3) it significantly boosts
generalizability by learning from both successful and failed
trajectories via a RL objective. Although [20] indicates that
expanding the size of the sampled trajectory can reduce the
bias in reward modeling, it also increases the training costs.
Thus while our method can be easily scaled up, we keep our
discussion to the binary case where only one chosen/rejected
trajectory is present.
C. Guided-Cost Preference Generation

While given the TPO objective Eq. (5) we can align the
policy towards arbitrary objectives defined through trajecto-
ries ranked by the corresponding preference, it incurs high
costs as it requires human expertise and lengthy manual
annotation. Thus to better scale up the preference synthesis
towards arbitrary alignment objectives (e.g. task completion,
safety, efficiency), we propose Guided-Cost Preference Gen-
eration (GCPG) to automatically curate such preferences that
integrate different alignment objectives.

1) Multi-Stage Temporal Keypoint Constraints
Building on insights from [22], we address the complexity

of specifying precise trajectory preferences for complex
manipulation tasks by decomposing trajectories into temporal
stages and assigning costs to quantify performance at each
stage. Then, we aggregate these stage-specific costs to obtain
a holistic evaluation for each trajectory. Specifically, we
adopt a VLM-based stage decomposer MD (detailed in
Appendix VIII), to partition a trajectory ζ into a sequence
of S consecutive stages, formulated as

{ζ1, . . . , ζS} = MD(ζ, q), ζi = {(oit, ai
t)}Ti

t=1, (7)

where ζi represents the ith stage of trajectory ζ.
After obtaining the stage decomposition, we further em-

ploy a vision-language model (e.g. DINOv2 [36]) to identify
keypoints that serve as reference metrics across each stage.
Then we prompt a powerful LLM [1] to propose cost func-
tions (see examples in Appendix XII-B.) for each stage that
corresponds with the alignment objective, where lower cost
indicates better objective compliance. Specifically, the cost
CSi({κSi}) at stage Si is calculated using its corresponding
keypoints {κSi}.

Then to aggregate the costs for the entire trajectory, instead
of summing each stage linearly, we apply an exponential
decay to capture the casual dependencies of each temporal
stage (e.g. if a trajectory incurs high costs in preceding stages

it is not expected to perform well subsequently), defined as
the external reward:

Rext(ζ) =

S∏
i=1

e−CSi ({κSi
}) (8)

where Eq. (8) aggregates the individual costs and sub-
objectives from each stage to tackle the curse of dimension-
ality and effectively adhere to the customized alignment.

2) Guided-Cost Preference Generation
To further improve the stability and optimality of

the preference synthesis, we draw inspirations from self-
rewarding [53] and determine that a more optimal trajectory
should be confirmed by both the external judge (as in Eq. (8))
and the model itself. Thus we incorporate two additional
rewards and obtain the GCPG reward:

RGCPG(ζ) = λ1Rself(ζ) + λ2Rext(ζ) + λ3Isuccess(ζ) (9)

where Rself(ζ) is the self-evaluated score provided by π,
which equals the log-likelihood of generating trajectory ζ:

Rself(ζ) = log(π(ζ, q)) = log(

T∏
i=1

π(ai | (oi, q))) (10)

and Isuccess(ζ) is a binary indicator function that indicates
whether the trajectory ζ successfully completes the task:

Isuccess(ζ) =

{
1, if ζ is successful,
0, otherwise.

(11)

where λ are the weight parameters that adjust the importance
of each reward. Intuitively, Eq. (10) can be seen as a dense
approximation of the sparse signal provided by Eq. (11),
which are further calibrated by Eq. (8) to obtain a holistic
evaluation of the trajectory that accounts for both its opti-
mality and degree of alignment to a customized objective
specified through the external reward in Eq. (8).
D. Iterative Preference Optimization

After generating the preference, we then discuss our
iterative preference optimization strategy. Inspired by the
practices of on-policy RL [40] which often yield more
optimal policy than off-policy training, we iteratively fine-
tune the SFT VLA model via TPO with trajectories collected
online. For example, during the kth iteration, we (1) first
sample numerous trajectories for a variety of tasks and
obtain Dk; (2) then we calculate the costs for each trajectory
using Eq. (9) and rank these trajectories accordingly per task;
(3) we pair the top-m and bottom-m trajectories with each
other for each task, and obtain m2 chosen-rejected trajectory
pairs; (4) then we fine-tune the same sampling policy with
TPO via Eq. (5) and obtain an updated policy. We iterate
this process for K times and obtain the final model aligned
with the target objective. We detail the GRAPE iterative
preference optimization procedure in Algorithm 1.

III. EXPERIMENT

In this section, we evaluate GRAPE’s performance in
both real and simulated environments, addressing four key
questions: (1) Does GRAPE improve the VLA model’s
performance relative to SFT-based baseline models? (2) How



effective are guided-cost preference selection and iterative
preference optimization in enhancing the model’s perfor-
mance? (3) What is the individual contribution of each
reward component to overall model performance? (4) Can
GRAPE support flexible alignment with different alignment
objectives? The experiment results and additional analysis
can be found in Appendix VI.
A. Experimental Setups

Implementation Details. We employ OpenVLA [25]
as the backbone model, using LoRA fine-tuning with the
AdamW optimizer for both supervised and preference fine-
tuning. In the supervised fine-tuning stage, we use a learning
rate of 4×10−5 with a batch size of 16. For preference fine-
tuning, we apply a learning rate of 2× 10−5 with the same
batch size. Further details on the training process and datasets
are available in Appendices VIII and IX.
Baseline Models. We first compare GRAPE with two
leading robot learning models known for their strong per-
formance in robot control tasks. The first model, Octo [42],
is a large transformer-based policy model. The second,
OpenVLA [25], is a 7B VLA model. Both models were
supervised fine-tuned using the same dataset sampled from
corresponding environments. We denote the supervised fine-
tuned models as Octo-SFT and OpenVLA-SFT, respectively.
In addition, we compare GRAPE, which utilizes TPO, with
the original step-wise direct preference optimization, denoted
as OpenVLA-DPO, which is directly trained to optimize
preferences defined at each step.
B. Evaluation in Simulation Environment
Evaluation Setup. Follow [25], we evaluate GRAPE’s
performance in two robot simulation environments: Simpler-
Env [28] and LIBERO [32]. In Simpler-Env, we evaluate the
model’s in-domain performance as well as its generalization
across three aspects: subject (generalize to unseen objects),
physical (generalize to unseen object sizes/shapes), and se-
mantic (generalize to unseen instructions) generalization. In
LIBERO, we test our model on four tasks: LIBERO-Spatial,
LIBERO-Object, LIBERO-Goal, and LIBERO-Long. All
tasks are in-domain tasks. Additional details about the ex-
perimental setup are provided in Appendix X-B.
Results. We use the success rate across all tasks in Simple-
Env and LIBERO as our primary evaluation metric, while we
also record the grasping rate in Simpler-Env. The results of
Simple-Env and LIBERO are reported in Fig. 5 and Fig. 6,
respectively. According to the results, GRAPE outperforms
Octo-SFT and OpenVLA-SFT in Simpler-Env by an average
of 131.72% and 46.10%, respectively, and in LIBERO by
an average of 8.53% and 7.36%, respectively. Additional
results are provided in Appendix XI. This outcome aligns
with our expectations, as learning from preference com-
parisons enhances alignment with trajectory completion,
thereby improving performance. Moreover, while GRAPE
significantly boosts in-domain performance, it also enhances
the generalizability of VLA policies on OOD tasks by
aligning task completion at the trajectory level. Furthermore,
GRAPE outperforms OpenVLA-DPO in both environments,
achieving an average improvement of 33.14%, demonstrating

the effectiveness of trajectory-wise preference optimization
due to learning from both success and failure from a global
trajectory level without low-level step-wise noises.
C. Evaluation in Real-World Robot Environment

Evaluation Setup. We conducted 300 real-world exper-
iments across 30 tasks to evaluate the generalization capa-
bilities of GRAPE. The evaluation focus on in-distribution
evaluation and five out-of-distribution generalization types:
visual, subject, action, semantic, and language grounding
generalizations. Here, visual generalization assesses the abil-
ity to adapt to new visual environments; subject general-
ization evaluates the recognition and handling of unfamiliar
objects; action generalization measures performance across
diverse actions; semantic generalization evaluates responses
to prompts with similar meanings; and language grounding
generalization gauges comprehension of spatial directions.
Detailed experimental setup are provided in Appendix X-A
and illustrated in Figure 3.
Results. In the real-world experiment, GRAPE significantly
outperforms other models across a variety of tasks. Notably,
in in-domain tasks, GRAPE achieves a success rate of
67.5%, which is a 17.5% improvement over OpenVLA-
DPO’s 50%, OpenVLA-SFT’s 45% and substantially higher
than Octo-SFT’s 20%. Additionally, in visual generaliza-
tion tasks, GRAPE demonstrates higher adaptability with
a success rate of 56%. In the more challenging action
generalization tasks, although OpenVLA-SFT shows mod-
est performance, GRAPE still outperforms OpenVLA-SFT,
indicating its potential in understanding various actions and
executing commands based on language. Considering tasks
across all categories, GRAPE’s total average success rate
is 50.3%, marking a 11% improvement over OpenVLA-
DPO’s 39.3%, OpenVLA-SFT’s 32.3% and significantly
ahead of Octo-SFT’s 5.7%. This performance highlights
(1) GRAPE’s effectiveness and adaptability in handling
complex and variable task environments and (2) validates
the effectiveness of trajectory-wise preference optimization
in learning from global success and failure patterns when
compared to OpenVLA-DPO.

The rest of the experiment results and additional analysis
can be found in Appendix VI.

IV. CONCLUSION
In this work, we addressed the critical challenges faced by

vision-language-action (VLA) models, including limited gen-
eralizability and adaptability to diverse manipulation objec-
tives. We proposed GRAPE, which aligns VLA policies on a
trajectory level. GRAPE enhances generalizability by learn-
ing from both successful and failed trials, offering flexibility
in aligning with objectives such as safety, efficiency, and
task success through customized spatiotemporal constraints.
Experimental results demonstrated significant improvements,
with GRAPE enhancing success rates on both in-domain and
unseen tasks while enabling flexible alignment on different
objectives. Moreover, we have demonstrated the potential of
GRAPE to align VLA with customized objectives, effectively
resulting in an improvement of lower collision rate and
average step lengths.
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V. ADDITIONAL INTRODUCTION TO GRAPE
We detail the GRAPE iterative preference optimization procedure in Algorithm 1.

Algorithm 1 GRAPE Iterative Preference Optimization

Require: Base VLA policy πθ, a collection of task instructions Q = {qi}, stage decomposer MD, max iterations K, reward
weights {λ1, λ2, λ3}, stage-wise keypoints {κSi

} cost functions {CSi
j } and thresholds {τSi

j }
Ensure: policy π∗ aligned towards customized objective

1: for k = 1, . . . ,K do
2: Sample trajectories Dk = {ζi}Mi=1 using πθ with Q
3: for trajectory ζ ∈ Dk do
4: Decompose ζ into multiple stages S ▷ Eq. (7)
5: Compute the cost for each stage CSi

6: Calculate external reward Rext(ζ) ▷ Eq. (8)
7: Compute policy self-reward Rself(ζ) ▷ Eq. (10)
8: Examine task success Isuccess(ζ) ▷ Eq. (11)
9: Aggregate GCPG reward RGCPG(ζ) ▷ Eq. (9)

10: end for
11: Rank Dk by their RGCPG(ζ) rewards
12: Pair {ζw, ζl} from top-m and bottom-m trajectories
13: Update πθ using TPO loss ▷ Eq. (5)
14: end for

VI. ADDITIONAL EXPERIMENT RESULTS AND ANALYSIS

subsectionAblation Study of Reward Model In this section, we conduct an ablation study to analyze the contribution of
each reward component in Eq. (9) to the final performance: the external objective-aligned reward Rext(ζ), the self-evaluated
reward Rself(ζ), and the success indicator Isuccess(ζ). Additionally, we perform a separate ablation study to emphasize the
importance of utilizing the entire reward score for preference selection. This approach is compared against a method that
randomly selects one successful trajectory as the preferred trajectory and one failed trajectory as the rejected trajectory. The
results in the Simpler-Env environment are reported in Table II.

The results indicate that: (1) incorporating the full reward score Eq. (9) for preference ranking significantly enhances
performance compared to random selection based on success alone; (2) all reward components contribute to model
performance. These findings align with our expectations. Specifically, Rself(ζ) enhances the robustness of the GRAPE
by encouraging it to select trajectories with higher generation probabilities. In parallel, Rext(ζ) guides the model toward
learning specific behaviors, such as safety and efficiency. Finally, Isuccess(ζ) serves as a critical indicator, steering the model
to prioritize successful trajectories.
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Fig. 3: Comparison of GRAPE with OpenVLA and Octo fine-tuned on the same data on the real-world environment. We
report the in-domain performance, which includes four tasks and five generalization evaluations (visual, subject, action,
semantic, and language grounding), incorporating multiple tasks. We report the average performance across all tasks.



A. Analysis of Iterative Preference Optimization
In this section, we analyze the iterative preference optimization performance. We conduct the experiments on the Simpler-

Env environment and report the results with respect to the training iterations in Figure 4. Here, SFT means the supervised
fine-tuned OpenVLA model before preference optimization. In our experiments, GRAPE achieves 17.5%, 9.0%, 15.0%,
21.0% improvements in in-domain performance, subject generalization, physical generalization and semantic generation,
respectively. The findings suggest that GRAPE progressively enhances model performance across iterations, showcasing
its ability to enhance the quality of generated preference data and achieve better generalization. Notably, the magnitude of
improvement diminishes over time, aligning with our expectations as the model approaches convergence.
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Fig. 4: Performance of GRAPE during iterative preference optimization via TPO. We demonstrate the average success rate
for each iteration across in-domain tasks and three types of generation tasks (subject, physical, semantics).

TABLE I: Results with respect to different objectives. GRAPE-Safety, GRAPE-Efficiency, GRAPE-TC are models trained
with safety, efficiency, task completion objectives, respectively. Here, we use collision rate (CR), step length (SL), success
rate (SR) to evaluate the safety, efficiency and task completion capabilities.

Method
Real-World Simulation

CR ↓ SL ↓ SR ↑ CR ↓ SL ↓ SR ↑

OpenVLA-SFT 53.33 142.32 34.61 66.50 72.68 27.50
GRAPE-Safety 29.84 146.11 54.31 46.00 74.49 37.00
GRAPE-Efficiency 58.45 125.79 51.67 57.50 64.92 38.50
GRAPE-TC 38.60 131.66 58.46 59.50 70.24 42.50

B. Analysis of Different Alignment Objectives
1) Quantitative Analysis
After demonstrating the effectiveness of GRAPE in improving the generalization of the VLA model (measured by success

rate), we further investigate its potential to align the model with flexible objectives, such as efficiency and safety. Revisiting
Eq. (8), we observe that adjusting the threshold parameters can guide the model to prioritize specific objectives by influencing
trajectory preference selection. In this study, we focus on two new alignment objectives: safety and efficiency. Safety aims
to minimize collisions between the robot and objects, while efficiency seeks to reduce the average number of steps required
for the robot to complete a task. To achieve these objectives, we set a lower threshold for collision costs to emphasize
safety and a lower threshold for path costs to prioritize efficiency. These modified settings are then applied to the original
real-world and simulation evaluations. We train models to align with the safety and efficiency objectives, referring to these
models as GRAPE-Safety and GRAPE-Efficiency, respectively (see detailed experimental setup in Appendix X-B).

The results are reported in Table I, where we use collision rates, step lengths, and success rates to evaluate safety, efficiency
and generalization capabilities, respectively. According to Table I, the GRAPE-Safety and GRAPE-Efficiency have better
performance on collision rate and step length respectively, meanwhile maintain a comparable success rate, compared with
OpenVLA-SFT. The results indicate that GRAPE can be easily adapted to account for flexible alignment objectives such as
safety, efficiency by adjusting the multi-stage cost functions accordingly, while incurring minimal drop in task success rate.

2) Case Study
We further demonstrate a case study in Fig. 7 to analyze GRAPE’s adaptability towards different alignment objectives.

Specifically, we consider a safety-critical pickup task where an obstacle is placed between the object and the target.
Specifically, OpenVLA-SFT fails to complete the task without preference alignment. However, we can see that while
GRAPE aligned towards task completion (on the second-row of Fig. 7) can effectively pick up and place the object, it
also collides with the obstacle, due to the policy is aligned to aggressively boost task success without explicitly addressing
safety concerns. On the contrary, GRAPE-safety learns to avoid colliding with the obstacle while efficiently completing the
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Fig. 5: Comparison of GRAPE with OpenVLA and Octo fine-tuned on the same data on the Simpler-Env environment.
We report the in-domain performance, which includes four tasks and three generalization evaluations (subject, physical, and
semantic), where each incorporates multiple tasks.
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Fig. 6: Comparison of GRAPE with OpenVLA and Octo fine-tuned on the same data on the LIBERO environment. We
report the performance on four types of LIBERO tasks.

task. Both Table I and Fig. 7 indicates that by simply tweaking the cost function, GRAPE can effectively adapt to different
objectives. More cases and detailed safety evaluation tasks could be found in Appendix XII-A.

OpenVLA-SFT 

Fig. 7: Comparison of GRAPE aligned via safety objective (GRAPE-Safety) with GRAPE aligned via task-completion
(GRAPE-TC) objective and OpenVLA-SFT. Specifically, we assess their performance on a safety-critical task with the
instruction: pick up the white box and place into the black pot.



TABLE II: Ablation study of reward score. Here, Random w/ Isuccess refers to randomly selecting one successful trajectory
as the chosen trajectory and one failed trajectory as the rejected trajectory, Rself(ζ) is the self-evaluated score provided
by the log-likelihood of generating trajectory ζ, Rext(ζ) represents objective-aligned multi-stage reward defined in Eq. (8),
Isuccess(ζ) is a binary indicator function that indicates whether the trajectory ζ successfully completes the task.

In-domain Subject Gen. Physical Gen. Semantics Gen. Average
Grasp Success Grasp Success Grasp Success Grasp Success Grasp Success

Random w/ Isuccess 62.00% 35.50% 60.33% 33.00% 44.00% 33.50% 54.50% 36.50% 55.21% 34.63%
w/o Rself(ζ) 66.50% 38.00% 62.33% 37.00% 51.25% 36.75% 68.00% 42.50% 62.02% 38.56%
w/o Rext(ζ) 63.50% 37.50% 61.00% 34.33% 48.50% 35.50% 62.50% 40.00% 58.88% 36.83%
w/o Isuccess 58.50% 32.00% 59.67% 34.67% 42.25% 31.75% 58.50% 39.00% 54.73% 34.36%

GRAPE 71.00% 43.00% 62.67% 40.67% 63.50% 41.75% 72.00% 47.00% 67.29% 43.11%

VII. RELATED WORKS
Vision-Language-Action Models. Previous robot learning works [14], [22], [23], [29], [30], [33], [34] typically take a

hierarchical planning strategy. For example, Code as Policies [30] and EmbodiedGPT [34] use LLMs and VLMs to generate
high-level action plans, then rely on a low-level controller for local trajectories. However, such models suffer from limited
low-level skills and are hard to generalize to everyday tasks. VLAs tend to scale up low-level tasks by incorporating VLM
as backbones and directly generating actions within the model. They generally achieve action planning via two mainstream
approaches: (1) Discretizing the action space [6], [7], [25], as in OpenVLA [25], preserves the autoregressive language
decoding objective by truncating actions into a small set of action tokens. However, this introduces errors, leading some
methods [4] to adopt newer structures [52] that integrate diffusion heads for action prediction, avoiding discretization. (2)
Diffusion models [2], [16], [24], [31], [48], such as Diffusion Policy [16], serve as the action head, generating a sequence
of future actions through iterative denoising instead of stepwise action generation.

While these models vary in structure, they are consistently supervised-trained on successful rollouts via behavior cloning,
which can hardly be generalized to unseen manipulation tasks. However, our GRAPE first aligns VLA policies on a trajectory
level via trial and error, effectively boosting generalizability and customizability.
Reinforcement Learning and Preference Optimization. Reinforcement learning (RL) [17], [40], [55] plays a pivotal role
in the post-training of foundation models [1], [12], [13], [15], [18], [19], [44], [49], which has been extensively leveraged
to align the pre-trained FMs to comply with human values embedded through preference data. In the meantime, RL has
also shown tremendous success in training policies for robotics tasks [10], [11], [14], [46], [47], [54]. While it is intuitively
beneficial to post-align VLA via RL, few prior works have reported such success, mainly due to that (1) manipulation
objectives are usually diverse and complex, making the reward hard to define analytically [20]; (2) while such reward can be
modeled from human preferences, annotating such preferences in robotics manipulation tasks are usually lengthy [43]; (3)
the imperfect numerical differentiation of rewards usually leads RL algorithms such as PPO [40] to collapse [8]. However,
various recent works [38], [45] have successfully aligned the policy via RL without explicit reward modeling. Inspired,
GRAPE aligns the policy by contrasting trajectories with each other, avoiding issues in rewarding modeling. Besides, we
introduce an automatic preference synthesis pipeline that easily scales with diverse manipulation tasks and adapts to different
alignment objectives.

VIII. ADDITIONAL DESCRIPTION OF GRAPE AND HYPERPARAMETER SETTINGS
Customized Cost Generation. In our real-world experiments, we first input image-text pairs containing prompts and

initial states into the Vision-Language Model (VLM) Hamster [29]. Using the stage information and stage points generated
by Hamster, we segmented the collected trajectories. This helps analyze complex task sequences more precisely, giving
detailed attention to each stage. And we utilized Grounded-SAM [39] or methods combining SAM [39] and DinoV2 [37]
to extract key point information from the images. These key points, combined with our self-collected trajectory data, enable
us to refine the execution steps and path planning of tasks based on the stage information generated by the Hamster model.
For example, for a simple pick-and-place task, we can decompose it into multiple explicit stages: Grasp the grape, Move
the grape onto the plate, Place the grape on the plate.

To generate detailed operational information and cost functions for each stage, we utilized GPT-4o [1] with customized
prompts. This approach makes stage planning more precise and efficient, allowing us to meet specific task requirements and
constraints. Furthermore, we enhanced our method by incorporating various task-specific constraints, including: Collision
constraints: Ensuring the robot avoids collisions with obstacles. Path constraints: Optimizing the efficiency and safety of
the robot’s movement path. By adopting this strategy, we achieve greater flexibility and specificity in task planning, and
better adapting to different task scenarios.
Iterative Preference Optimization. For Iterative Preference Optimization, we first utilize the fine-tuned VLA model for
online data sampling. For each task, we sample Nt trajectories to facilitate further selection. To simplify the experimental
setup, we set Nt = 5 for each task, which has been found to perform effectively in practice.



After sampling, each trajectory is automatically labeled using the GCPG reward, as defined in Eq. (9). Based on the
distribution of Rself, Rext, and Isuccess observed in preliminary experiments, we set λ1 = 0.01, λ2 = 0.01, and λ3 = 2. These
values ensure that Rself, Rext, and Isuccess contribute comparably to the final reward value. Subsequent experiments validate
the reasonableness of these parameter choices. Using the GCPG reward assigned to each trajectory, we identify the trajectory
with the highest reward as yw and the trajectory with the lowest reward as yl for each task. This selection process enables
the construction of the TPO Dataset, Dtraj , for TPO training.

For the TPO training process, we employ LoRA [21] and the AdamW optimizer, setting the learning rate to 2 × 10−5

and the batch size to 16. The model is trained for a single epoch before being utilized for iterative online sampling. During
iterative online sampling, the experimental settings remain consistent with the aforementioned descriptions.

IX. DETAIL EXPERIMENT DATASETS

In this section, we describe the datasets collected for supervised fine-tuning (referred to as the SFT dataset) and preference
alignment (referred to as the TPO dataset).
A. Real-World Dataset

SFT Dataset. In our real-world robot experiments, we use a robotic platform composed of a Franka robotic arm and a
Robotiq gripper for data collection. To ensure consistency in data collection and evaluation, all operations are performed in
the same experimental environment.

During data collection, we gathered a dataset of 220 instances of pick and place tasks involving common objects such
as bananas, corn, milk, and salt. Additionally, we collected data on 50 instances of tasks involving pressing buttons of
different colors. Since the number of objects used for the button-pressing tasks is limited, we introduced background noise
and interfering objects during the testing phase to create unseen scenarios.

To further enhance the capabilities of OpenVLA in handling different actions, we also collected data on 50 instances of
knock down tasks. These diverse task datasets help improve the model’s generalization ability in processing different types
of actions.
TPO Dataset. In the real-world experiments, we utilized a model fine-tuned on the real-world SFT dataset via OpenVLA
for trajectory sampling. Each task was conducted five times. In the TPO dataset, we experimented with 15 different tasks,
including 10 pick and place tasks, 3 push button tasks, and 2 knock down tasks, accumulating a total of 75 data entries.
After a selection process, we derived a preference dataset consisting of 30 trajectories.
B. Simulation Datasets
SFT Dataset: For Simpler-Env, the SFT dataset comprises 100 trajectories, amounting to approximately 2,900 transitions.
These rollouts are generated from Simpler-Env using Octo, following the methodology described in [50]. For LIBERO,
it is worth noting that we neither collect new data nor fine-tune the OpenVLA model. Instead, we directly utilize the
OpenVLA-SFT model provided by the OpenVLA team, which significantly streamlines the pipeline.
TPO Dataset. In the case of Simpler-Env, trajectories are sampled for each task using the OpenVLA-SFT model, with
five trials conducted per task. This process yields a TPO dataset consisting of 80 trajectories. For LIBERO, OpenVLA-SFT
models (one model per task) are employed to sample data across four tasks in LIBERO. For each task, five trajectories are
sampled for each sub-task, resulting in a TPO dataset comprising a total of 20 trajectories.

X. DETAILED EXPERIMENT SETTINGS AND ADDITIONAL RESULT

A. Real-World
1) Real-World Experiment Setup
In real-world experiment, we used the Franka robot arm, which is known for its precision and flexibility. However, we

encountered a problem with the original Franka gripper, which was not long enough, limiting our ability to handle some
of the tasks, resulting in inefficient completion and a high failure rate. To solve this problem, we decided to replace the
original Franka grippers with Robotiq grippers, which are not only longer, but also provide more grip and flexibility, which
greatly improves the efficiency and success rate of the tasks.

The purpose of this experiment was to assess the cross-task generalization capabilities of OpenVLA under the GRAPE
framework and to compare its performance with several baseline models. Considering the generally poor zero-shot
generalization performance of most VLA models, we performed supervised fine-tuning using the comprehensive rollout
dataset Dr collected from real scenes to construct a fine-tuned model. The selection of baseline models included those
adjusted with domain-specific data, as well as the Octo model, RVT-2 model, and OpenVLA-SFT model.

2) Real-World Tasks
As shown in Figure 3, we performed a comprehensive evaluation on a real machine for several tasks. These tasks

cover five different generalization scenarios: Visual Generalization, Subject Generalization, Action Generalization, Semantics
Generalization, and Language Grounding. Specifically, for each generalization scenario, we set the following tasks:

• Visual Generalization includes 8 tasks, e.g., pick up the GRAPE and put it in the black bowl, with noise objects and
noisy backgrounds. Some tasks have only noisy backgrounds.

• Subject Generalization includes 4 tasks, e.g., pick up the K and put it in the black bowl.



• Action Generalization includes 7 tasks, e.g., fold the green towel from right to left .
• Semantics Generalization includes 4 tasks, e.g., stack carrot and put it on the blue plates.
• Language Grounding includes 3 tasks, e.g., pick up left object to left plate.
We conducted experiments on 30 total different tasks, attempting each task ten times, totaling 300 executions. To ensure

fairness in the evaluation, we maintained the same starting position in each model test. Additionally, we matched the image
resolution when training all models and used exactly the same initial object positions in all evaluations. We set specific
success criteria for each task. For example, in the pick-and-place task, a successful grasp is defined as successfully grasping
the target object. In the push-button and knock-down tasks, a successful grasp is defined as correctly approaching and
manipulating the target object. Overall task success is defined as the object being accurately placed at the target location,
successfully knocked down, or the target button being successfully pressed. Due to the strictness of these criteria, some
models found it difficult to achieve success in specific tasks.

TABLE III: Comparison of GRAPE models in diffierent iteration rounds. We assess their performance in in-domain tasks
and three kinds of generalization evaluations. Each task’s performance is evaluated on the overall grasp rate and success
rate.

In-domain Subject Gen. Physical Gen. Semantics Gen. Average
Grasp Success Grasp Success Grasp Success Grasp Success Grasp Success

Iter-1 71.00% 43.00% 62.67% 40.67% 63.50% 41.75% 72.00% 47.00% 67.29% 43.11%
Iter-2 74.00% 45.00% 64.33% 40.33% 65.75% 44.25% 76.00% 49.50% 70.02% 44.77%
Iter-3 74.50% 45.50% 64.67% 40.67% 66.00% 44.50% 76.00% 49.00% 70.29% 44.92%

B. Simulation Experiments
1) Simpler-Env
We utilize Simpler-Env [28] as the experimental environment in our study. SIMPLER [28] (Simulated Manipulation Policy

Evaluation for Real Robot Setups) is a collection of simulated environments created to assess robot manipulation policies
in a way that closely reflects real-world scenarios. By leveraging simulated environments, SIMPLER effectively serves as a
practical alternative to real-world testing, which is often costly, time-consuming, and challenging to replicate.
Simpler-Env Tasks. In our paper, we use four in-domain tasks from WidowX robot in Simpler-Env. We also design three
kinds of generalization tasks in Simpler-Env. These tasks are described below:
In-Domain Tasks Shown in Fig. 5:

1) Put Carrot on Plate: The robot is positioned in front of a platform with a plate and a carrot. The robot’s goal is to
grasp the carrot and put it onto the plate.

2) Put Eggplant in basket: The robot is positioned in front of a sink with a basket and a Eggplant. The robot’s goal is
to grasp the Eggplant and put it in the basket.

3) Stack Green Cube on Yellow Cube: The robot is positioned in front of a platform with a green cube and a yellow
cube. The robot’s goal is to grasp the green cube and stack it on the yellow cube.

4) Put Spoon on towel: The robot is positioned in front of a platform with a spoon and a towel. The robot’s goal is to
grasp the spoon and put it on the towel.

Three Kinds of Generalization Tasks Shown in Fig. 5:
1) Subject Generalization: The robot is positioned in front of a platform, similar to the environment in in-domain tasks.

But the robot’s goal is to grasp some new objects(i.e. pepsi can, coke can, sprite can) and put it onto the plate.
2) Physical Generalization: The robot is positioned in front of a platform, similar to the environment in in-domain tasks.

But the robot’s goal is to grasp some original objects with different sizes and collision boxes, then put it onto the
plate.

3) Semantics Generalization: The robot is positioned in front of a platform, similar to the environment in in-domain
tasks. And the instruction is similar to in-domain tasks, too. But the instruction has been modified by GPT-4o [1]
while maintaining its original meaning.

2) LIBERO
We further utilize LIBERO [32] as the experimental environment in our study. LIBERO (LIfelong learning BEnchmark on

RObot manipulation tasks) includes a set of 130 language-conditioned robot manipulation tasks inspired by human activities,
organized into four distinct suites. Each suite is crafted to examine distribution shifts in object types, spatial arrangements
of objects, task goals, or a combination of these factors. LIBERO is built to be scalable, extendable, and specifically tailored
for advancing research in lifelong learning for robotic manipulation.
LIBERO tasks In our paper, we use four in-domain tasks from LIBERO, which are shown in Fig. 6. These tasks is described
below:



• LIBERO-Spatial includes the same set of objects arranged in various layouts, testing the model’s ability to understand
spatial relationships.

• LIBERO-Object features consistent scene layouts with varying objects, evaluating the model’s ability to understand
different object types.

• LIBERO-Goal includes of the same objects and layouts but different task goals, testing the model’s knowledge of
different task-oriented behaviors.

• LIBERO-10 consists of long-horizon tasks with diverse objects, layouts, and tasks.
Eash task mentioned above has 10 sub-tasks, with similar task instructions and scenes. Here are some cases from various
LIBERO tasks:

• Open the top drawer of the cabinet and put the bowl in it.
• Pick up the book and place it to the right of the caddy.
• Turn on the stove and put the frying pan on it.
• Stack the right bowl on the left bowl and place them in the tray.

XI. ADDITIONAL REAL-WORLD AND SIMULATION RESULTS
We provide additional results in Table IV , Table V, and Figure 12 with detailed task description. Each table has in-domain

tasks and several kinds of generalization evaluations. These experiments are conducted across Octo-SFT, OpenVLA-SFT
and GRAPE.

TABLE IV: We present the performance of various action policy on real-world robotic manipulation tasks categorized
by different types of generalization. The tasks include in-domain, visual generalization with and without noise, subject
generalization, action generalization, semantics generalization, and language grounding. Each task’s performance is evaluated
based on the number of successful grasps and the overall success rate, comparing results from Octo-SFT, OpenVLA-SFT,
OpenVLA-DPO, and GRAPE. Average success rates are calculated for each generalization category to demonstrate the
effectiveness of the tested models under different conditions.

Generalization Task Octo-SFT OpenVLA-SFT OpenVLA-DPO GRAPE
Grasp Success Grasp Success Grasp Success Grasp Success

In-domain

pick up the corn and put it in the black bowl 3 3 2 2 5 3 8 7
pick up the banana and put it in the black bowl 2 0 6 6 8 6 9 7
pick up the milk and put it in the white bowl 4 2 10 8 8 8 9 9
pick up the salt bottle and put it in the white bowl 4 3 4 2 5 3 6 4
Average 32.5% 20% 55% 45% 65% 50% 80% 67.5%

Visual Generalization
(w/o noise background)

pick up the corn and put it in the black bowl 2 1 6 3 6 4 6 6
pick up the banana and put it in the black bowl 0 0 3 2 4 1 4 1
pick up the milk and put it in the white bowl 4 0 4 4 6 6 9 7
pick up the salt bottle and put it in the white bowl 2 2 6 5 6 6 8 8
pick up the GRAPE and put it in the black bowl 0 0 6 5 8 5 8 6
Average 16% 6% 50% 38% 60% 44% 70% 56%

Visual Generalization
(w/o noise background and object)

pick up the GRAPE and put it in the black bowl 1 0 4 2 5 3 6 4
pick up the milk and put it in the white bowl 2 1 7 5 6 4 5 4
pick up the salt bottle and put it in the white bowl 0 0 2 2 6 5 8 8
Average 10% 3.3% 43.3% 30% 56.7% 40% 63.3% 53.3%

Subject Generalization)

pick up the chips and put it in the red bowl 4 0 2 2 4 3 6 5
pick up the K and put it in the black bowl 2 0 4 4 6 5 7 6
pick up the box juice and put it in the yellow plate 2 0 8 3 8 5 8 6
pick up the Fanta can and put it in the white bowl 2 2 4 1 5 2 6 4
Average 25% 5% 45% 25% 57.5% 37.5% 67.5% 52.5%

Action Generalization

push down the blue button 1 0 4 4 6 4 6 6
push down the green button 1 0 6 4 7 5 4 4
push yellow the button 2 2 6 3 7 4 8 5
knock down the green bottle 3 1 2 2 3 2 4 2
knock down the popcorn 0 0 4 2 4 3 4 3
fold the green towel from right to left 1 0 2 1 3 1 4 2
fold the white towel from left to right 1 0 3 1 4 2 4 3
Average 12.9% 4.3% 38.6% 24.3% 48.6% 30% 48.6% 35.7%

Semantics Generalization

take green pepper and place it in the black bowl 0 0 10 6 9 7 10 8
move icecream and put it in the red bowl 0 0 6 4 5 4 4 4
stack carrot and put it on the blue plates 0 0 8 8 6 5 6 6
Lift GRAPE and place it in the black bowl 0 0 2 0 3 2 2 2
Average 0% 0% 65% 45% 57.5% 45% 55% 50%

Language Grounding

pick up left object to left plate 0 0 4 0 5 1 5 2
push down right button 0 0 6 2 6 5 8 7
pick up right object to right plate 0 0 4 4 5 4 6 5
Average 0% 0% 46.7% 20% 53.3% 33.3% 63.3% 46.7%

Total Average 14.3% 5.7% 48.3% 32.3% 56.3% 39.3% 62.6% 50.3%

XII. CASE STUDY
A. Case Study of Real-World Generation Tasks

We provide an illustration for each specific task included in the suite evaluation for in-domain tasks in Fig. 8 and for
each type of generation task, including subject generalization in Fig. 9, language grounding in Fig. 13, visual generalization



TABLE V: We compared the performance of Octo-SFT, OpenVLA-SFT, and GRAPE across various robotic tasks within
in-domain, subject, physical, and semantics generalization categories. It shows grasp percentages and success rates for each
task, illustrating how each VLA performs under different generalizations.

Generalization Task Octo-SFT OpenVLA-SFT OpenVLA-DPO GRAPE
Grasp Success Grasp Success Grasp Success Grasp Success

In-domain

put the carrot on the plate 32.00% 16.00% 36.00% 30.00% 46.00% 36.00% 68.00% 48.00%
put the eggplant in the basket 70.00% 44.00% 58.00% 32.00% 70.00% 36.00% 84.00% 48.00%
stack the green cube on the yellow cube 52.00% 0.00% 56.00% 20.00% 52.00% 26.00% 76.00% 40.00%
put the spoon on the towel 54.00% 36.00% 52.00% 28.00% 52.00% 30.00% 56.00% 34.00%
Average 52.00% 24.00% 50.50% 28.00% 55.00% 32.00% 71.00% 43.00%

Subject Generalization
(unseen objects)

put the coke can on the towel 24.00% 14.00% 60.00% 38.00% 66.00% 36.00% 78.00% 32.00%
put the pepsi can on the towel 28.00% 16.00% 58.00% 38.00% 60.00% 42.00% 64.00% 50.00%
put the sprite can on the towel 24.00% 12.00% 62.00% 22.00% 58.00% 26.00% 46.00% 40.00%
Average 25.33% 14.00% 60.00% 32.67% 61.33% 34.66% 62.67% 40.67%

Physical Generalization
(unseen object sizes/shapes)

put the carrot on the plate(size:0.5) 38.00% 22.00% 56.00% 38.00% 60.00% 46.00% 78.00% 64.00%
put the carrot on the plate(size:1.1) 26.00% 12.00% 32.00% 24.00% 42.00% 30.00% 64.00% 42.00%
put the carrot on the plate(wider collision box) 28.00% 16.00% 34.00% 26.00% 46.00% 32.00% 62.00% 42.00%
put the carrot on the plate(longer collision box) 32.00% 14.00% 38.00% 30.00% 50.00% 36.00% 66.00% 48.00%
put the spoon on the towel(size:0.5) 62.00% 38.00% 66.00% 40.00% 66.00% 38.00% 72.00% 38.00%
put the spoon on the towel(size:1.1) 52.00% 32.00% 50.00% 28.00% 58.00% 32.00% 56.00% 30.00%
put the spoon on the towel(wider collision box) 48.00% 30.00% 44.00% 24.00% 46.00% 28.00% 50.00% 32.00%
put the spoon on the towel(longer collision box) 56.00% 36.00% 54.00% 26.00% 54.00% 28.00% 60.00% 38.00%
Average 42.75% 25.00% 46.75% 29.50% 52.75% 33.75% 63.50% 41.75%

Semantics Generalization
(unseen instructions)

put the vegetable on the plate 16.00% 6.00% 32.00% 28.00% 40.00% 32.00% 66.00% 48.00%
move the eggplant into the basket 18.00% 8.00% 50.00% 30.00% 56.00% 34.00% 78.00% 44.00%
put the green cube onto the yellow cube 32.00% 6.00% 62.00% 26.00% 74.00% 42.00% 88.00% 60.00%
place the spoon onto the towel 42.00% 26.00% 48.00% 28.00% 48.00% 30.00% 56.00% 36.00%
Average 27.00% 11.50% 48.00% 28.00% 54.50% 34.50% 72.00% 47.00%

Total average 36.77% 18.63% 51.44% 29.54% 55.90% 33.73% 67.29% 43.11%

in Fig. 10, action generalization in Fig. 11, and semantic generalization in Fig. 12. Specifically, we demonstrate the initial
and final states of GRAPE in handling each of these challenging tasks, as detailed in the corresponding captions. In addition,
we include a safety task to demonstrate how GRAPE adheres to safety requirements once aligned with safety constrains.
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pick up the corn and put it in the black bowlpick up the banana and put it in the black bowl

pick up the milk and put it in the white bowl pick up the salt bottle and put it in the white bowl

Fig. 8: Illustrations of real-world tasks that we evaluated for in-domain capabilities, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the four challenging
tasks detailed in the captions.
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pick up the K and put it in the black bowl pick up the chips and put it in the red bowl

pick up the Fanta can and put it in the white bowlpick up the box juice and put it in the yellow plate

Fig. 9: Illustrations of real-world tasks that we evaluated for subject generation, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the four challenging
tasks detailed in the captions.



(w/o noise background and object)

pick up the grape and put it in the black bowl

pick up the milk and put it in the white bowl

pick up the salt bottle and put it in the white bowl

(w/o noise background)
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pick up the salt bottle and put it in the white bowl

pick up the milk and put it in the white bowlpick up the banana and put it in the black bowl

pick up the grape and put it in the black bowlpick up the corn and put it in the black bowl

Fig. 10: Illustrations of real-world tasks that we evaluated for visual generation, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the eight challenging
tasks detailed in the captions.



Ac
tio
n
G
en
er
al
iz
at
io
n

push down the blue button push down the yellow button

push down the green button

knock down the yellow boxknock down the green button

fold the white towel from left to right fold the green towel from right to left

Fig. 11: Illustrations of real-world tasks that we evaluated for action generation, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the seven challenging
tasks detailed in the captions.
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Lift grape and place it in the black bowl take green pepper and place it in the black bowl

stack carrot and put it on the blue plates move icecream and put it in the red bowl

Fig. 12: Illustrations of real-world tasks that we evaluated for semantic generation, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the four challenging
tasks detailed in the captions.
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pick up right object to right plate

pick up left object to left plate

push down middle button

Fig. 13: Illustrations of real-world tasks that we evaluated for language generation, where we report the detailed results
in Table IV. Specifically, we demonstrate the initial and final state of GRAPE in handling each of the five challenging tasks
detailed in the captions.



GRAPE-Safety

OpenVLA-SFT

GRAPE-Safety

OpenVLA-SFT

Fig. 14: Illustrations of real-world tasks used for safety evaluation, extending the tasks presented in Figure 7. The figure
shows key frames from GRAPE’s trajectory in two challenging scenarios. Due to the lack of safety reward alignment, the
OpenVLA-SFT approach fails, while GRAPE-Safety successfully navigates obstacles and completes the task once the safety
rewards are properly aligned.



B. Case Study of Multi-stage Cost Functions
We demonstrate some case studies of the multi-stage cost functions generated using our proposed pipeline given different

alignment objectives.
1) Task Completion

Cost Functions for Task Completion Alignment

# The task involves picking up the grape and placing it in the black bowl.
# The stages involved are:
# 1. Grasp grape
# 2. Move grape to black bowl
# 3. Drop grape in black bowl

num_stages = 3

### stage 1: Grasp grape

def stage1_target_constraint1(end_effector, keypoints):
"""Align the end-effector with the grape’s center."""

grape_center = keypoints[0]
target_cost = np.linalg.norm(end_effector - grape_center)
return target_cost

### stage 2: Move grape to black bowl

def stage2_target_constraint1(end_effector, keypoints):
"""Calculate the relative distance between grape and black bowl."""

black_bowl_center = keypoints[1]# Assuming keypoint 1 is the black bowl
target_cost = np.linalg.norm(end_effector - black_bowl_center)
return target_cost

### stage 3: Drop grape in black bowl

def stage3_target_constraint1(end_effector, keypoints):
"""Ensure the grape rests in the black bowl."""

black_bowl_center = keypoints[1]
target_cost = np.linalg.norm(end_effector - black_bowl_center)
return target_cost

2) Safety
Cost Functions for Cost-Efficiency Alignment

# The task involves picking up the grape and placing it in the black bowl.
# The stages involved are:
# 1. Grasp grape
# 2. Move grape to black bowl
# 3. Drop grape in black bowl

num_stages = 3

### stage 1: Grasp grape

def stage1_collision_constraint1(end_effector, keypoints):



"""Approach the grape from above to avoid collision."""

grape_center = keypoints[0]
collision_cost = 0 if end_effector[1] > grape_center[1] else 1
return collision_cost

### stage 2: Move grape to black bowl

def stage2_collision_constraint1(end_effector, keypoints):
"""Ensure the grape is aligned above the black bowl."""

obstacles = keypoints[2:]#Assuming keypoints[2:] are obstacles
threshold = 0.1 # Minimum allowable clearance
collision_cost = sum(

max(0, threshold - np.linalg.norm(end_effector - obstacle))
for obstacle in obstacles

)
return collision_cost

### stage 3: Drop grape in black bowl

def stage3_collision_constraint1(end_effector, keypoints):
"""Approach the grape from above to avoid collision."""

black_bowl_center = keypoints[1]
collision_cost = 0 if end_effector[1] > black_bowl_center[1] else 1
return collision_cost

3) Cost-Efficiency

Cost Functions for Safety Alignment

# The task involves picking up the grape and placing it in the black bowl.
# The stages involved are:
# 1. Grasp grape
# 2. Move grape to black bowl
# 3. Drop grape in black bowl

num_stages = 3

### stage 1: Grasp grape

def stage1_path_constraint1(end_effector, keypoints):
"""Align the end-effector with the grape’s center."""

grape_center = keypoints[0]
distance = np.linalg.norm(end_effector - grape_center)
step_size = 0.01 # Assuming a small step size
path_cost = int(distance / step_size)
return path_cost

### stage 2: Move grape to black bowl

def stage2_path_constraint1(end_effector, keypoints):
"""Calculate the relative distance between grape and black bowl."""



black_bowl_center = keypoints[1]# Assuming keypoint 1 is the black bowl
distance = np.linalg.norm(end_effector - black_bowl_center)
step_size = 0.01 # Assuming a small step size
path_cost = int(distance / step_size)
return path_cost

### stage 3: Drop grape in black bowl

def stage3_path_constraint1(end_effector, keypoints):
"""Ensure the grape rests in the black bowl."""

black_bowl_center = keypoints[1]
distance = np.linalg.norm(end_effector - black_bowl_center)
step_size = 0.01 # Assuming a small step size
path_cost = int(distance / step_size)
return path_cost



Prompt Template for Multi-stage Cost Proposal

USER: Instructions
The image shows a robot stage point in a workspace, each point in the diagram represents the point of the
stage split:

• Stage point 0 : Represents the initial position of the carrot.
• Stage point 1 : Represents the intermediate position above the carrot for grasping.

Determine how many stages are involved in the task. Grasping must be an independent stage. Some
examples:
1. Task: Put the carrot on the plate
a) Stages:

• Grasp carrot
• Move carrot to plate
• Drop carrot on plate

b) Stage 1: Grasp carrot
• Path constraints:

– Align the end-effector with the carrot’s center.
• Collision constraints:

– The end-effector must approach the carrot from above to avoid collision.
c) Stage 2: Move carrot to plate

• Path constraints:
– Calculate the relative distance between carrot and plate.

• Collision constraints:
– The carrot is aligned above the plate.

d) Stage 3: Drop carrot on plate
• Path constraints:

– The carrot must rest on the plate.
– The carrot should not bounce out of the basket.

• Collision constraints:
– The end-effector must approach the carrot from above to avoid collision.

Note:
• Sum all Path constraints cost the path_cost variable.
• Sum all Grasp constraints cost the grasp_cost variable.
• Sum all Collision constraints cost the collision_cost variable.
• Each constraint function takes an end-effector point and a set of keypoints as input, returning a

numerical cost. The constraint is satisfied if this cost is zero or less.
• Define any number of path constraints per stage, but avoid using ”if” statements in the functions.
• Avoid using path constraints when manipulating deformable objects (e.g., towels).
• Input format:

– end_effector: np.array of shape (3,) representing the end-effector position.
– keypoints: np.array of shape (K, 3) representing the keypoints positions.

• Use Python and NumPy functions freely in constraint functions.
• Use pairs of keypoints to create vectors if needed.
• Keypoints are indexed starting from 0, matching their order in the keypoints array.

Structure your output in a single Python code block as follows:
# ...

num_stages = ?

### stage 1 path constraints (if any)
def stage1_path_constraint1(end_effector, keypoints):



"""Put your explanation here."""
...
return path_cost

# Add more constraints if needed
...

### stage 1 collision constraints (if any)
def stage1_collision_constraint1(end_effector, keypoints):

"""Put your explanation here."""
...
return collision_cost

# Add more constraints if needed
...

# Repeat for more stages
...

Query
Query Task: ”{instruction}”
Query Image:
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