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ABSTRACT

Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn
representations over speech frames which are randomly masked within an utter-
ance. While these methods improve performance of Automatic Speech Recogni-
tion (ASR) systems, they have one major limitation. They treat all unsupervised
speech samples with equal weight, which hinders learning as not all samples have
relevant information to learn meaningful representations. In this work, we address
this limitation. We propose ask2mask (ATM), a novel approach to focus on spe-
cific samples during MSM pre-training. ATM employs an external ASR model
or scorer to weight unsupervised input samples in two different ways: 1) A fine-
grained data selection is performed by masking over the highly confident input
frames as chosen by the scorer. This allows the model to learn meaningful repre-
sentations. 2) ATM is further extended to focus at utterance-level by weighting the
final MSM loss with the utterance-level confidence score. We conduct fine-tuning
experiments on two well-benchmarked corpora: LibriSpeech (matching the pre-
training data) and Commonvoice, TED-LIUM, AMI and CHiME-6 (not matching
the pre-training data). The results substantiate the efficacy of ATM on signifi-
cantly improving the recognition performance under mismatched conditions (up
to 11.6% relative over published results and upto 4.46% relative over our internal
baseline) while still yielding modest improvements under matched conditions.

1 INTRODUCTION

Self-training and self-supervised training techniques rely on huge amounts of unlabeled speech or
text data for better generalization. The self-training techniques such as pseudo-labeling (Scudder,
1965; Kahn et al., 2020) and student-teacher training (Park et al., 2020) have shown promising
improvements by incorporating the data selection process. This data selection step removes pseudo-
labels with less confidence as denoted by the teacher model before feeding the input to a student
model. Xu et al. (2021) shows that self-training and self-supervised training are complementary
to each other and also show that self-supervised models act as good initialization for self-training
techniques. Self-supervised training (Hinton & Zemel, 1994) is a representation learning approach
which implicitly learns patterns in the data without relying on explicit labels. Masked speech mod-
eling (MSM) is the recent and successful self-supervised learning technique, thanks to the advent
of BERT (Devlin et al., 2018) in NLP which inspired learning speech representations from masked
inputs. MSM techniques such as wav2vec2 (Baevski et al., 2020), HuBERT (Hsu et al., 2021b) and
w2v-BERT (Chung et al., 2021) have shown considerable gains across various down-stream speech
tasks and have become the go-to models for ASR.

Unfortunately, MSM does not have a data selection scheme to discard the irrelevant input samples
and instead imposes burden on the training criterion to learn the relevance of the input samples in
learning meaningful representations. Hsu et al. (2021a) noticed the impact of not selecting relevant
data from the huge amounts of unsupervised data during pre-training by showing degradation in ASR
performance when fine-tuned to a target dataset with limited data. To mitigate this constraint, Chan
et al. (2021) introduced substantially more fine-tuning data related to the target dataset but did not
achieve satisfactory results. Hsu et al. (2021a) attempted to solve this issue by heuristically selecting
the data from a closed set of unsupervised speech databases or by pooling in data relevant to target
dataset along with the existing pre-training dataset. However, this data selection approach is not
done within the existing pre-training dataset and it is not completely empirically motivated.
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In this study, in order to break the above limitation of the MSM techniques, we propose a simple
strategy named ask2mask (ATM) to incorporate data selection within a chosen pretraining dataset.

• In ATM, the masking is done over the input samples or speech frames with higher confi-
dence as determined by the scorer. This is contrary to the random selection of frames to be
masked in conventional MSM models. We hypothesize that this guided selection of frames
to be masked allows the model to focus on the frames which can provide meaningful repre-
sentations. The scoring model used in this work is necessarily a speech recognition model
trained on small amount of data and provides frame-level confidence for each input.

• The ATM technique is further extended to exploit the confidence values provided by the
scorer by directly using them to re-weight the MSM loss. We denote this approach as ATM
with loss scaling (ATM+S). It allows the model training to focus on certain utterances by
down scaling the utterances with low-confidences.

Similar to our work based on masking with external guidance, there is work in NLP that also benefit
by incorporating masking with knowledge. In Sun et al. (2019), masking is done at phrase-level
segments in BERT and has shown to learn semantic dependencies. In Wang et al. (2019), phonetic
knowledge is injected to mask over phonetic segments to perform spectral augmentation.

Our ATM approach is primarily motivated based on the recent work by Veselý et al. (2017) on
semi-supervised learning of conventional ASR systems which shows that performing data selection
at frame-level or token-level on unsupervised data provides better performance. The importance of
pruning out the input samples at frame-level has been studied in Ferreira et al. (2021) to improve
both classification and regression tasks. Few works on unsupervised learning also highlight the
importance of weighting the data based on its confidence (Wessel et al., 2001; Ren et al., 2020;
Coleman et al., 2019). We hypothesize that ATM can leverage the effect of data selection within a
particular training corpus to further enhance the recognition performance of MSM techniques.

To summarize, our contributions are listed as follows:

• Novelty: To the extent of our knowledge, ATM is the first approach to incorporate a within-
corpus data selection strategy in MSM. We also show that data selection can be simply
performed inside MSM by guided selection of frames to be masked using a scorer model.

• Technical contributions: We provide two simple strategies to incorporate data selection into
MSM pretraining by applying the confidence of the scorer: 1) choosing the data at frame-
level by applying guided masking 2) soft weighting the data at utterance level by scaling
the MSM loss of each utterance with its corresponding confidence score. ATM is designed
to be compatible to all MSM based pre-training techniques.

• Empirical study: Analysis is done to find an optimal masking percentage for ATM and we
highlight the effectiveness of ATM across varying masking percentages. The importance
of masking frames with high confidence is substantiated by empirically comparing it with
masking low confident frames and random frames respectively. Experiments are performed
on AMI data which is from a distinct condition compared to Libri-light corpus used for
MSM based pretraining. The results confirm the importance of ATM by improving the
recognition performance on evaluation sets of AMI by a significant margin.

2 PRELIMINARIES ON MASKED SPEECH MODELING (MSM)

In this section, we formally define the masked speech modeling (MSM) technique and brief primary
instantiations including wav2vec2 and w2v-BERT. The technique can be formulated by defining
input speech sequence X = [x1, x2, ..., xT ′ ], where xt is the log Mel-filterbank feature vector at
time t. X is sent to the feature encoder Φ to obtain the encoded representations E = Φ(X). The
feature encoder contains convolutional layers performing subsampling at a factor of 4 and reducing
the total number of frames of an utterance from T

′
to T to get E = [e1, e2, ..., eT ]. E is then sent to

two parallel modules: 1) masking component, and 2) quantizer.
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2.1 MASKING

The idea behind masking input samples and predicting them was initially proposed in BERT (De-
vlin et al., 2018) and later adopted to speech (Baevski et al., 2020) with modifications to suit the
characteristics of speech input. The masking is done over sets of frames or blocks b1, b2, ..., bK
and accommodates overlap between blocks. Here K is the number of masked blocks in a randomly
masked encoded sequence Ẽ. The importance of block masking is motivated by the improvements
observed in Span-BERT by Joshi et al. (2020) and ERNIE (Sun et al., 2019). The block bk = [ik, c],
where ik is the starting index of the masked block and c is the corresponding right context size de-
noting the number of consecutive speech frames. Here ik are randomly sampled from a uniform
distribution. It has been empirically observed by Baevski et al. (2020) that 49% of the frames are
masked and c = 10 is chosen as the golden ratio to attain best representation during pre-training.

2.2 QUANTIZER

Gumbel-softmax quantizer component Ψ is used to get quantized representations which act as targets
for wav2vec2 and w2v-BERT models. These quantized representations align to phonetic units as
described in Baevski et al. (2020). Each quantized vector is of L dimensions which denote the
number of targets or codes used in a codebook. Each incoming input E is projected to L dimensions
within the quantizer before applying the Gumbel-softmax.

2.3 CONTEXT NETWORK AND MSM LOSS

Wav2vec2-conformer: In this model type, the unmasked sequence E is sent to Ψ to get Q = Ψ(E),
where Q = [q1, q2, .., qT ] as described in Baevski et al. (2020). The masked sequence Ẽ is fed to
the context network Ω which contains conformer blocks to learn contextual representations from
the input. C = Ω(E) denotes the output of the context network. The contrastive loss Lctr(cj , qj)
objective is computed between the quantized representation qj and context network output cj ∈ C
for all masked time instances j ∈ J . Diversity loss Ldiv is computed as an auxiliary objective
in wav2vec2 to force the model to choose diverse codes in the quantization codebook. Detailed
description of Ldiv is in Baevski et al. (2020). The final training objective is denoted as:

Lwv = Lctr + 0.1 · Ldiv, (1)

where Lctr =
∑J

j=1 Lctr(cj , qj).

HuBERT-conformer: This is another variant of wav2vec2-conformer model with two major dif-
ferences: 1) Targets are k-means cluster ids which are computed over a small portion of input 2)
Cross-entropy loss Lce(ŷj , yj) is computed between the prediction of the context network ŷj and
the k-means cluster id target yj .

W2V-BERT: This model marries the concept of wav2vec2 and BERT model by including an ad-
ditional context network Λ containing conformer blocks in addition to Ω as in wav2vec2. The
Λ receives the output of the Ω and strives to further learn refined contextual information to get
H = Λ(C). The targets of w2v-BERT yj is computed by taking an argmax over the codebook
dimensions L of quantized representations qj,l as:

yj = arg max
l

qj, l, l ∈ L (2)

Finally, the cross-entropy loss Lce(ŷj , yj) is computed between the prediction ŷj = softmax(hj)
and the target yj over the masked time instances J . The final training objective Lwb = Lce + Lwv

is a combination of cross-entropy loss and wav2vec2 loss. A block diagrammatic overview of the
above MSM architectures are available in appendix A.7.

3 ASK2MASK (ATM)

The primary reason to employ pre-training models is to exploit the abundantly available unsuper-
vised data for improving ASR under limited availability of supervised data. While the MSM models
such as wav2vec2 and w2v-BERT described in Section 2 exploit the unsupervised data, they treat
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each data with equal weight for computing the final objective.Instead, we generate a score st for
each encoded frame et. This is used to select relevant data in a fine-grained manner during masking
for computing the loss objective.

3.1 METHODOLOGY

For each encoded feature frame et ∈ E, the scorer emits probabilities p(vt = l |E); l ∈ L of the
frame belonging to a particular label. The scorer model is a CTC based frame-synchronous ASR
model separately trained with a limited amount of data. Our initial intuition was to chose the scorer’s
training data to match the target data condition, however our empirical analysis in (cf. Section 5.3)
shows that the performance is agnostic to the scorer model’s training data. Finally, the confidence
score st of the frame is defined as the maximum probability across all labels:

st = max
l
p(vt = l |E) (3)

We sample K masking start indices {i1, .., ik} with probabilities:

p(ik = t) =
st∑
sv

v/∈{i1,..,ik−1}

· δt/∈{i1.,,ik−1}, (4)

That is, we sample beginning frames with probability proportional to the scores of each frame.
The indicator function δt/∈{i1.,,ik−1} ensures that we sample without replacement. This is the key
difference between ATM and the random masking in prior works as described in Section 2.1. Prior
works uniformly sample the start indices of each masking block b1:K , while the ATM uses the
probability distribution induced by the scorer. K is determined by the percentage of frames to be
masked.

We hypothesize that frames with maximum confidence from an external scoring model will be 1)
easiest to learn using an MSM training criteria and 2) most informative in for pretraining to facilitate
fine-tuning. Conversely, the lowest confidence frames, those more confusable to an external scoring
model, will be the least reliably learned by MSM and least informative for pretraining.

The resulting frames are sent as input to the MSM architecture and the final loss objective L is
determined by either of the MSM objectives Lwv or Lwb described in Sections 2.3. This modified
training objective allows the model to focus on learning from gradients calculated from the frames
with high confidences.

3.2 ATM WITH MSM LOSS SCALING (ATM+S)

The ATM loss is computed over the frames with high confidence performing a fine-grained data
selection within a uth speech sequence Xu. Utterances with higher average frame confidence as
measured by the scorer are accorded higher value than those with more confused frames. To perform
data selection at a coarser utterance level, confidence scores su are computed as:

su =
1

T

T∑
t=1

st,u (5)

For simplicity, we denote s = su and the MSM loss computed over each masked frame is scaled
by s to impose the importance of a particular utterance u. The final training objective L′atm of a
particular speech sequence is denoted as:

L
′

atm = s · Latm (6)

3.3 PROBABILITY AS CONFIDENCE MEASURE IN ATM

The ATM uses probability as a simple form of confidence measure to each frame. The analysis of
confidence measures for semi-supervision in ASR has been done in Veselý et al. (2017) and they
show that posterior probability acts as a reliable confidence measure for frame, word and sentence
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based data selection. They also perform an extensive analysis on using the posteriors for hybrid
ASR systems. Based on the motivation from this work we chose to use softmax probability directly
as our confidence score. A similar observation has been noted in Ferreira et al. (2021), where the
usage of softmax probability directly as a confidence measure has been applied to select relevant
data samples during training. We also experimented with Entropy and exponential scaling or log
scaling on softmax probabilities as confidence measure, but it did not fetch advantage over simple
usage of probability.

4 EXPERIMENTAL SETUP

All experiments including pre-training and fine-tuning are performed using 80 dimensional log Mel-
filterbank features computed over the sampled 16kHz audio. Datasets (such as AMI) contains wide-
band audio and are downsampled to 16kHz. We evaluate with the test-other (LibriSpeech partition)
to show the importance of ATM on matched data conditions, while IHM-eval and SDM-eval (AMI
partitions) is used to validate the model under mismatched conditions.

4.1 DATASETS USED

Pretraining (PT): Libri-light (LL-60k) dataset contains 60k hours of unlabeled speech and is used
to pre-train all MSM models. LL-60k is the most widely used large unsupervised speech corpus for
various PT techniques. Each input speech sequence is constructed by first randomly selecting 32-64
seconds segments from the original utterance. From these segments, a contiguous 32 second region
is extracted from a random starting point on-the-fly during MSM PT as described in Zhang et al.
(2020b).

Finetuning (FT): Different target datasets including 1) 100 & 960 hours of Librispeech (LS-100 &
LS-960) (Panayotov et al., 2015). 2) 100 hours of AMI and 3) speechstew (approx. 5k hours) (Chan
et al., 2021) are used to perform our FT experiments. Each dataset used is specific to a certain
target data condition, for instance LS-960 is closely matches the LL-60k, AMI dataset is distinct
from the LL-60k condition and it contains speech from two kinds of microphones (i) Independent
head microphone (IHM). (ii) single distant microphone (SDM). SpeechStew is composed of datasets
chosen from multiple conditions to create a mixed domain aggregate corpus. Details of its processing
are described in Chan et al. (2021).

Evaluation: We hypothesize that evaluation over AMI using IHM-eval and SDM-eval reveals the
effectiveness of ATM in providing informative samples for better representation learning. We also
evaluate using evaluation sets from Tedlium and Common voice as their training counter parts are
used in SpeechStew based FT. Finally, we also evaluate using CHiME-6 Watanabe et al. (2020)
without using any FT data from CHiME-6 training set to compare the performance of ATM on
completely unseen target dataset.

Scorer training data: A CTC (Graves et al., 2006) based conformer model with 100M parameters
is trained on LS-100 (“LS-scorer”). A similar model is also trained on AMI (“AMI-scorer”). Word-
piece model (WPM) with 1024 tokens are used as labels for training the scorer models. All the
results in this paper use “LS-scorer” besides the comparison Section 5.3.

4.2 MSM ARCHITECTURE

Wav2vec2-conformer: This is a wav2vec2 with conformer based context network which first encodes
the filterbank features using two 2D convolutional layers with strides (2,2). Model has 100M/600M
parameters and is denoted as “w2v2-conformer-L/XL”. HuBERT-conformer-L/XL is similar to
w2v2-conformer-L/XL - it differs in using the k-means based quantizer with 1024 targets and com-
putes the cross-entropy loss as described in Hsu et al. (2021b). The “L/XL” size models contains
context network Ω 12/24 conformer layers with 8 attention heads and 1024 hidden dimensions.

W2v-BERT: W2v-BERT is explored using two model sizes: one with 100M parameters denoted as
“w2v-BERT-L” and containing 2 conformer layers in context net Ω and 4 conformer layers in Λ.
A 600M parameter model is denoted as “w2v-BERT-XL” contains 8 conformer layers in Ω and 24
conformer layers in Λ. Each conformer block contains 1024 hidden dimensions with 8 attention
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heads, kernel size of 5 with local context of 128. The remaining architecture is identical to the
configuration defined in Chung et al. (2021).

4.3 PT AND FT CONFIGURATION

The models L/XL are trained with a global batch size of 512/2048 on 64/256 Google TPU V3
cores for 2-4 days respectively. Adam optimizer is used with a learning rate schedule (Section 5.3
of Vaswani et al. (2017)) with 2e-3 as peak learning rate and 25k warmup steps. The model training
configuration follows similar procedure as described in Zhang et al. (2020b).

The FT is done by employing the context network from the PT model by adding a final layer with
1024 WPM units learnt using the RNN-T objective function (Zhang et al., 2020a). The FT is done
on w2v-BERT-XL, w2v2-conformer-XL and HuBERT-conformer-XL after 400k PT model updates.
The w2v-BERT-L model is FT after 900k PT model updates. w2v-BERT-L is used to initially
perform wide range of analysis and hyper-parameter optimization on ATM. w2v-BERT-XL is finally
used to compare the results of ATM across existing works in literature. w2v2-conformer-XL and
HuBERT-conformer-XL are also used in our experiments. All these models are trained with the
same configuration as in Zhang et al. (2020b).

5 ATM ANALYSIS

The empirical study on ATM is done primarily using w2v-BERT-L since this generates the best
WER performance across similarly sized models (cf. Figure 2). The pre-trained models are fine-
tuned with either LS-100 or AMI. The resulting finetuned models are evaluated on IHM and SDM
evaluation sets to understand the domain generalization aspect of ATM. Librispeech evaluation sets
are used in unison to study how ATM behaves under matching domain condition. These experiments
are performed with using the loss scaling (it will be discussed in Section 5.5).

5.1 MASKING PERCENTAGES
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Figure 1: Recognition performance of w2v-BERT
with ATM and random masking on IHM-eval and
test-other sets by varying the masking percent-
age during pre-training. The FT is performed
on LS-100 for evaluating test-other, while IHM-
eval is evaluated with model FT with AMI. Ran-
dom masking shows a substantial shift in perfor-
mance when varying the masking from 30% to
40%, while the ATM remains robust to changes
in masking percentage.

The number of masked frames within an utter-
ance plays a key role in masked input learning
and in this study, we vary the masking percent-
ages from 30% to 50% to determine the best
percentage for ATM approach. Previous works
on wav2vec2 (Baevski et al. (2020)) showed
that masking 49% of the frames is ideal for
30 second utterance and this has been followed
subsequent works such as HuBERT and w2v-
BERT. In case of ATM, this can differ as the
frames selected are of higher confidences. Fig-
ure 1 shows that ATM achieves its “sweet spot”
with 40% masking for both IHM-eval and test-
other set. Interestingly ATM’s performance is
stable across large variations in masking rates
with relatively good performance with mask-
ing rate as low as 30%. This is a significant
difference from the uniform sampling of prior
work which suffers significant drop in perfor-
mance as the masking rate goes below 40%.
The result indicates that masking the right set of
frames, which ATM aims to do, is able to pro-
mote more stable performance. For instance,
ATM achieves a %WER of 12.65 with 33%
masking and 12.52 with 40% masking on IHM-
eval respectively as shown in Figure 1. The
recognition performance on test-other and IHM-eval improves over baseline from 8.86% to 8.79%
and 13.38% to 12.52% respectively by using ATM.
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5.2 ATM MASKING STRATEGIES

Table 1: Performance comparison (in %WER) on
AMI evaluation sets using w2-BERT with random
masking (baseline) and with ATM using high, low
and mixed confidence scores from the scorer. The
FT is done with AMI.

Model Confidence PT-LL, FT-AMI
Level IHM-eval SDM-eval

Baseline Random 13.38 31.63

ATM
High 12.52 27.34
Low 14.14 37.77

Mixed 13.96 30.51

The default setting of ATM is chosen based on
a hypothesis that those frames that are scored
with high-confidence from an external scoring
model will be most useful as candidates for
MSM pretraining. This hypothesis is interro-
gated in this section by analysing the impact
of choosing the frames with low confidences
or equal mix of both high and low confidence
frames (Mixed). For masking low confident
frames, we modify the score in Equation 3 as:

st = 1−max
l
p(vt = l |E) (7)

We evaluated these three masking strategies of
ATM on both IHM and SDM evaluation sets. Table 1 shows the comparison between these sampling
strategies. We observe that masking high confident frames are consistently better than masking the
low confidence counterparts. In fact, “Low” confident frames perform worse than the baseline with
random masking. Finally, we observe that performance of “Mixed” falls between that of “High”
and “Low”. The “Mixed” strategy is similar to random masking, as both high and low confidence
frames are selected. This similarity is also reflected in comparable performance between “Mixed”
and random masking. These results provide support for our initial hypothesis that masking frames
with high confidence leads to better pre-training.

5.3 HOW TO CHOOSE THE SCORING MODEL

Table 2: Cross analysis of ATM perfor-
mance (in %WER) using AMI and LS
scorers. The FT is done on LS-100 to
evaluate the test and test-other, while
the FT is done on AMI to evaluate us-
ing IHM-eval and SDM-eval

Evalset LS-scorer AMI-scorer
test 3.89 3.93
test-other 8.92 9.68
IHM-eval 12.52 12.3
SDM-eval 27.34 27.00

The scorer used in this work is a speech recognition
model (100M parameters) trained in a supervised fash-
ion. The scorer is chosen based on the target down-
stream task and in addition to this, the scorer needs to be
frame-synchronous to provide confidence for every frame
in a speech sequence. In this work, we use a frame-
synchronous ASR system as the scorer by employing
the connectionist temporal classification (CTC) objective.
The CTC is preferred over the RNN-T by analysing the
reliability of the frame-level predictions. To analyse the
importance of the supervised data used to train the scorer,
we trained two scorer models: LS-scorer and AMI-scorer
are CTC models trained with LS-100 and AMI dataset
respectively. The AMI-scorer outperforms on SDM-eval
by improving the %WER from 27.34 to 27.00. Surprisingly, our results on Table 2, shows that the
results on IHM-eval using an LS-scorer are comparable to the AMI-scorer. Evaluation on test and
test-other shows that LS-scorer is better than AMI-scorer on both sets. Based on these observa-
tions, we choose the LS-scorer as the universal scoring model for all ATM based pre-trained models
regardless of the target domain (eg: AMI) used in our experiments. Table 2 shows that although
matching the scorer to the target domain improves the performance, the difference is not significant.

5.4 CONSISTENCY ACROSS DIFFERENT ARCHITECTURES

Figure 2 shows that ATM consistently outperforms on both IHM-eval and SDM-eval across
multiple MSM architectures including wav2vec2 and HuBERT. In the case of IHM-eval, ATM
attains a relative improvement of 9% over w2v2-conformer-L, 4% relative improvement over
HuBERT-conformer-L and 5% relative gain over w2v-BERT-L baseline models respectively. W2v2-
conformer-L using ATM obtained 6.2% relative improvement over its baseline counterpart and
HuBERT-conformer-L with ATM attained 7.9% rel. improvement over HuBERT-L baseline on
SDM-eval respectively. On the other hand w2v-BERT-L baseline is better compared to w2v2-
conformer-L and HuBERT-conformer-L on both IHM-eval and SDM-eval by achieving 12.52% and
27.34% WER respectively.
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Figure 2: Performance comparison of different MSM architectures with and without applying ATM
on IHM-eval and SDM-eval in AMI. All these models are FT using AMI. Here “cfr” refers to
conformer.

5.5 ATM WITH LOSS SCALING (ATM+S) ANALYSIS

ATM training can incorporate utterance-level weighting by scaling the MSM loss obtained using
w2v-BERT-L models with the utterance-level confidence score according to Equation 6. We evalu-

Table 3: %WER of ATM+S by fine-tuning on AMI using w2v-BERT-L model

MSM arch. Type IHM-eval SDM-eval

w2v-BERT-L Baseline 13.38 31.63
Baseline+S 13.14 28.16
ATM 12.52 27.34
ATM+S 13.05 27.19

ate the value of utterance-level loss scaling by re-weighting utterances in the context of both base-
line MSM (i.e., without ATM frame selection) and ATM (ATM+S). These results are in Table 3.
Re-weighting utterances by scaling the MSM loss with the confidence score on baseline model is
denoted as “Baseline+S” and on ATM is labeled as “ATM+S”. MSM loss scaling is effective even
without ATM; baseline+S improves over baseline on both IHM-eval and SDM-eval. Moreover,
ATM+S improves over ATM on SDM-eval by attaining 27.19% WER while showing degradation
on IHM-eval. This shows that ATM+S is effective on very hard evaluation task such as SDM-eval
compared to IHM-eval. On the IHM-eval test set, the impact of MSM loss scaling is observed over
the Baseline MSM without ATM. We hypothesize that ATM+S may not able to provide improve-
ment on IHM-eval as ATM already incorporates optimally incorporates scorer information on this
task.

6 RESULTS

In this Section, XL models are used to compare the importance of ATM on LS-960, AMI and
SpeechStew. These three datasets show the effect of ATM on diverse conditions with a much larger
model. Results are compared with appropriate prior work. Table 4 shows that ATM and ATM+S
improves over dev-other while on dev set there was improvement only using ATM and not ATM+S.
Although the ATM and ATM+S does not show improvement on test and test-other, matches the very
strong baseline. Considering the similarity between LS-960 and PT data, ATM manages to provide
gains without hurting the performance across all Librispeech evaluation sets. This validates our
argument that MSM models are better without any data selection when trained under matched data
condition but can benefit under mismatched conditions.

Table 5 presents the results of ATM on AMI by comparing it with w2v2-conformer-XL baseline and
w2v-BERT-XL baselines. We include w2v2-conformer-XL to further test the consistency of ATM
on XL models when evaluated on harder tasks. ATM+S and ATM observes consistent gains over
baseline on both IHM-eval and SDM-eval when trained with XL models. However, ATM+S did not
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Table 4: %WER obtained by FT with LS-960 using w2v-BERT-XL model using baseline, ATM
and ATM+S. The results show the impact of our proposed approach on matched condition since
Librispeech evaluation sets are treated as closer to Libri-light PT domain.

MSM arch. Type dev dev-other test test-other
w2v2-conformer-XL Baseline (Chung et al., 2021) 1.7 3.5 1.7 3.5

w2v-BERT-XL Baseline (Chung et al., 2021) 1.5 2.9 1.5 2.9
ATM 1.4 2.8 1.5 2.9
ATM+S 1.5 2.8 1.5 2.9

Table 5: %WER obtained by FT with AMI using w2v-BERT-XL model using baseline, ATM and
ATM+S. Evaluation is done on AMI test sets to highlight the effect on mismatched condition.

MSM arch. Type IHM-eval SDM-eval

w2v2-conformer-XL Baseline 10.4 25.7
ATM 10.0 24.5
ATM+S 9.8 23.9

w2v-BERT-XL Baseline 10.1 25.1
ATM 9.5 23.7
ATM+S 9.5 23.5

demonstrate improvement on IHM-eval using w2v-BERT-XL. Table 6 analyses the effect of ATM

Table 6: Comparison with state-of-the-art results on SpeechStew. The FT is done on SpeechStew
and the results are evaluated using Kaldi scoring to match published results. Note that the model has
never seen any CHiME-6 data, and we use it as an example for zero-shot learning mode.

Model Type Commonvoice Tedlium AMI CHiME-6IHM SDM
Speechstew − 12.1 5.3 9.0 21.7 57.2(Chan et al., 2021)
w2v2-conformer-XL − 11.5 5.6 9.6 23.8 56.4(Chan et al., 2021)

w2v-BERT-XL Baseline 11.2 5.3 9.2 21.5 55.5
ATM 10.8 5.3 9.0 21.0 54.3
ATM+S 10.7 5.2 8.9 20.7 53.9

and ATM+S on multiple evaluation sets such as Commonvoice, Tedlium, AMI and CHiME-6. These
four sets are chosen based on the mismatch range from minimum to maximum and for instance,
Commonvoice has the minimum mismatch with Libri-light data, while CHiME-6 has the maximum
mismatch. The state-of-the-art results published in Chan et al. (2021) are obtained by choosing
the best Conformer model supervisedly trained with multiple datasets such as AMI, CommonVoice,
Broadcast News, Librispeech, Switchboard/Fischer, TED-LIUM and Wall Street Journal. Note that
the training data did not include the CHiME-6 data. The authors in Chan et al. (2021) show that
simply training an ASR with lots of data leads to best results compared to the wav2vec2 finetuned
model. Their best results are denoted in table 6 and will be used to compare with our best ATM
results.

Our baseline w2v-BERT-XL attained better results over the published w2v2-conformer-XL and
Speechstew results. In Commonvoice and CHiME-6, the baseline attained 7.4% and 2.9% rela-
tive improvement over Speechstew respectively. However, by including our ATM and ATM+S with
w2v-BERT-XL, there was consistent improvement across all range of mismatched domains. For in-
stance, ATM+S attains 5.76% relative improvement on CHiME-6 over the Speechstew. This result
clearly justifies that selection of reasonable input samples during pre-training reduces the necessity
of having finetuning data from the same domain to improve performance. To further substantiate
this, the results on AMI show a 4.6% relative improvement on AMI-SDM over Speechstew which is
of different domain compared to pre-training domain. In case of minimal mismatch domain such as

9
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Commonvoice, the ATM attained 11.6% relative improvement over Speechstew. These observations
show that ATM and ATM+S demonstrate their effectiveness to generalize to unseen and challenging
speech recognition conditions.

7 CONCLUSION

In this work, we introduce ask2mask (ATM) to perform data selection over unsupervised samples
for MSM based pre-training to focus on relevant information and learn meaningful representations.
ATM achieves 21.0% WER on mismatched AMI SDM set with guided masking and a 20.7% WER
is obtained by including loss scaling (ATM+S). We empirically show that ATM is more robust to
changes in masking percentage compared to random masking. as typically used in MSM. Our re-
sults substantiate the importance of learning from high confident frames by attaining improvements
across multiple evaluation sets. An important aspect of ATM approach is its flexibility to incorporate
into any MSM pretraining techniques and ATM+S can also be easily adopted into self-supervised
pre-training methods. In our future work, we wish to apply ATM over pretraining data contain-
ing data from multiple domains (Hsu et al., 2021a; Likhomanenko et al., 2020) to achieve further
improvements. We also consider two future enhancements to ATM: (1) Joint training of the scorer
model with MSM model by simultaneous training on supervised and unsupervised data. (2) Perform
active learning by sharing the parameters of MSM with the scorer once the MSM is well trained.

ETHICS STATEMENT

While we are unaware of any specific bias in Ask2Mask, it is possible that bias within the Speech-
Stew and LibriLight training corpora themselves may introduce bias to the resulting ASR model.
Ask2Mask uses an ASR model trained on labeled data as a scoring model identify regions for mask-
ing; any bias in this scoring model (trained on LibriSpeech-100 or AMI) could also impact the
fine-tuning process, leading to bias in the final model. Without being aware of specific biasing
effects, it is unclear how, if at all, biases in the scoring model and downstream ASR model may
interact with each other.

Automatic Speech Recognition (ASR) can exacerbate security and privacy issues by facilitating the
search and analysis of speech, though in and of itself ASR does not pose a security nor privacy issue.

REPRODUCIBILITY STATEMENT

All of the corpora used for 1) training the scorer model, and 2) pretraining and finetune the ASR
models, as well as 3) all evaluations are publicly available and use standard published partitions.
We aim to describe Ask2Mask and Ask2Mask with scaling comprehensively in the text to facilitate
reproducibility. Implementation of major components, Conformer RNN-T models, wav2vec 2.0
and CTC training are available within in public, open-source libraries including Nvidia-nemo (link)
and ESPNet (link). This supports the reproducibility of Ask2Mask and the results reported in this
paper within multiple frameworks. Additional details to promote reproducibility are provided in the
Appendix.
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A APPENDIX

A.1 DETERMINE THE BEST PT AND FT CHECKPOINT (CKPT.)

Selecting the best PT ckpt. to perform the fine-tuning is cumbersome as it involves finding the best
PT ckpt. based on the validation accuracy on quantized targets and also run fine-tuning experiments
on multiple PT ckpts. Figure 3 shows that ATM starts to show improved performance after 250k
PT ckpt. On contrary to our belief that ATM might require less FT, both baseline and ATM requires
same number of FT iterations to achieve the best performance.

Figure 3: 2D plot of the %WER on IHM-eval across PT and FT ckpts. using baseline (left) and
ATM (right) models. The FT is done using AMI.

A.2 ANALYSIS OF SCORER BASED ON %WER ON PT DATA (1 HOUR OF LIBRI-LIGHT )

We further analyse the impact of the recognition performance of the scorer on ATM, by choosing
three categories of scorers such as bad, better and best. The 10 hours of supervised libri-light (LL-
10h) data is used to evaluate the performance of these scorers and the results are as follows: Initial
model checkpoint (ckpt.). LS-scorer attains 51.8% WER and AMI-scorer achieves 72.7% at this
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ckpt respectively. Intermediate model ckpt. Evaluating LS-scorer at this ckpt., achieves 45.8% and
AMI-scorer achieves 57.1% WER. Final model ckpt. chosen after convergence. The LS-scorer
gains 35.5% WER and AMI-scorer attains 46.8% by evaluating at this ckpt. Figure 4 shows a more
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Figure 4: Comparing the behavior of ATM using LS-scorer and AMI-scorer having different %WER
on 1 hour of Libri-light (LL-1hr) with AMI evaluation sets)

challenging scenario by testing the ability of ATM using scorers from different domains with varying
range of performances. A LS-scorer with 51.8%WER on LL-1hr performs well on both IHM-eval
and SDM-eval, while the AMI-scorer with 46.8% WER slightly improves over the above mentioned
LS-scorer. The key aspect in selecting better scorer is to choose ckpt. either from the category which
achieves %WER within the range of 50-60 on the small subset of pre-training data.

A.3 ANALYSIS OF ATM ON LIBRISPEECH

Our ATM analysis is also done on w2v-BERT-L to validate the ATM on LS-100 and is present in
table 7. ATM attained 4.3% and rel. imp. on test-other over the baseline model. Apart from that
there is a slight change in test set which can be treated as noise. On both dev-other and test we did
not find any improvement and instead there was slight degradation in performance.

Table 7: %WER of ATM by varying the frames selection based on high, low and mixed confidence
(conf.) scores using w2v-BERT-L on all evaluation sets on Librispeech.

Model Type PT-LL, FT-LS100
dev dev-other test test-other

w2v-BERT-L Baseline 3.78 8.86 3.85 9.32

ATM
High-conf. 3.71 8.97 3.89 8.92
Low-conf. 3.98 9.59 4.15 9.76
Mixed-conf. 3.87 9.25 3.98 9.42

To further evaluate the impact of increasing the model parameters from “L” size to “XL” size, we
FT on LS-100 using MSM models with XL size and the results are in table 8. We did not find any
consistency in the performance across the evaluation sets using any of the MSM architectures. Slight
gains are observed on test or dev or dev-other using w2v2-conformer-XL. Once the baseline in w2v-
BERT-XL gets better, ATM did not achieve gains on test-other. This scenario can be explained due
to effectiveness of MSM pre-training under matched condition and can perform well without any
ncessary data selection approach.

A.4 ATM+S ANALYSIS ON VALIDATION DATA DURING PT

The effect of ATM and ATM+S is analysed by plotting the validation scores on dev-other during
pre-training. The first plot in figure 5 shows that the contrastive loss improves over the baseline with
the aid of ATM and is further enhanced with ATM+S. The second plot shows the number of unique

13



Under review as a conference paper at ICLR 2022

Table 8: Performance comparison of different MSM architectures with and without applying ATM
on all evaluation sets on Librispeech.

Model Type PT-LL, FT-LS100
dev dev-other test test-other

w2v2-Conformer-XL Baseline 2.5 4.7 2.6 4.9
ATM 2.4 4.6 2.5 5.0

HuBERT-Conformer-XL Baseline 2.5 4.7 2.6 5.0
ATM 2.5 4.6 2.5 5.0

w2v-BERT-XL Baseline 2.4 4.4 2.5 4.6
ATM 2.3 4.4 2.4 4.7

Figure 5: Validating baseline, ATM and ATM+S using contrastive loss, number of unique codes
used from the codebook and the MSM accuracy on dev-other during pre-training. A small bump is
observed at around 0.1 million training iteration due to the change in learning rate and is ignored
during analysis.

codes used from the quantizer codebook. Analysing this plot helps us to understand if the validation
loss or accuracy is improved by just using less % of unique codes which will affect the performance
at FT. Among the 1024 codes, 94%-95% are used by both ATM and ATM+S. This is similar to the
% unique codes used by the baseline model and confirms that improvement of ATM and ATM+S
is not by choosing smaller set of unique codes. The third plot shows that the MSM accuracy of
ATM and ATM+S improves over baseline model. ATM+S shows that re-weighting each utterance
is complementary to the ATM.

A.5 COMPARISON BETWEEN FRAME-LEVEL AND UTTERANCE-LEVEL LOSS SCALING

ATM+S performs MSM loss scaling using the utterance-level confidences which performs focus on
each utterance at a coarse level. We also experimented with scaling with frame-level confidence
scores. Our experiments showed that scaling all utterances with frame-level confidence hurts the
model performance. To solve this issue, we randomly selected utterances which participate in frame
scaling. Scaling 10% utterances resulted in better performance and the results are shown in Table 9.

Table 9: %WER on Librispeech evaluation sets using ATM with utterance scaling and frame scaling.
The frame scaling is analysed with choosing the best percentage of utterances that participate in
scaling.

Model Type PT-LL, FT-LS100
dev dev-other test test-other

w2v-BERT-L Baseline 3.78 8.86 3.85 9.32

ATM

None 3.71 8.97 3.89 8.92
Utterance-level 3.64 8.79 3.95 8.95
Frame-level-10% 3.73 8.97 3.84 9.06
Frame-level-50% 4.01 9.35 4.14 9.54
Frame-level-100% 4.23 9.77 4.89 9.97
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A.6 RESULTS ON COMMONVOICE WITH PUNCTUATION NORMALIZATION

Some previous work, including Likhomanenko et al. (2020), report Commonvoice results by scoring
with a normalization process that removes punctuation. For comparison, we do the same in Table
11.

Table 10: %WER on Commonvoice using models FT with speechstew.

Model Without norm. With norm.
Speechstew (Chan et al. (2021)) 12.1 9.7
w2v2-Conformer-XL (Chan et al. (2021)) 11.5 9.1
w2v-BERT-XL 11.2 9.3
w2v-BERT-XL + ATM 10.8 9.2
w2v-BERT-XL + ATM+S 10.7 9.1

A.7 BLOCK DIAGRAMMATIC VIEW OF MSM ARCHITECTURES
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Figure 6: Working procedure of HuBERT-conformer model as described in section 2.3. The k-
means cluster ids act as labels and they are refined using the bottleneck features extracted from the
context network itself.
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Figure 7: Working procedure of Wav2vec2-conformer model as described in section 2.3. The en-
coded representations are masked and passed to context network Ω and the resulting output cj is
learnt to be closer to quantized output

A.8 STATISTICAL SIGNIFICANCE ANALYSIS ON %WER PERFORMANCE FOR MULTIPLE
EVALUATION SETS

The table 4 results are on Librispeech and obtaining 0.1% improvement in Librispeech testsets is
statistically signficant. For instance, the dev-clean test set contains 54402 words and 0.1% gains
denotes a recovery of 54 words. Also, the recent works on self-supervised training such as HuBERT
shows improvement between wav2vec2-Large and HuBERT-Large only on dev-clean with 0.1%
gain in Table 3.
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Figure 8: Working procedure of W2V-BERT model as described in section 2.3. Cross-entropy loss
is computed between predictions of context network Λ and the quantized labels yj . Contrastive loss
is computed in parallel as in wav2vec2.

Table 11: %WER on Commonvoice using models FT with speechstew.

Dataset Abs. %WER Imp. # Total words # Words recovered (≈)
dev-clean 0.1 54402 54
test-clean 0.1 52576 52
AMI-IHM 0.1 89635 89

16


	Introduction
	Preliminaries on Masked speech Modeling (MSM)
	Masking
	Quantizer
	Context Network and MSM Loss

	Ask2Mask (ATM)
	Methodology
	ATM with MSM Loss Scaling (ATM+S)
	Probability as confidence measure in ATM

	Experimental Setup
	Datasets used
	MSM architecture
	PT and FT configuration

	ATM analysis
	Masking percentages
	ATM masking strategies
	How to choose the scoring model
	Consistency across different architectures
	ATM with Loss scaling (ATM+S) Analysis

	Results
	Conclusion
	Appendix
	Determine the best PT and FT checkpoint (ckpt.)
	Analysis of scorer based on %WER on PT data (1 hour of Libri-light )
	Analysis of ATM on Librispeech
	ATM+S analysis on validation data during PT
	Comparison between frame-level and utterance-level Loss scaling 
	Results on Commonvoice with punctuation normalization
	Block diagrammatic view of MSM architectures
	Statistical Significance analysis on %WER performance for multiple evaluation sets


