Specifying exact circuit algorithms in universal
transformers

Takuya Ito* Ruchir Puri
T.J. Watson Research Center T.J. Watson Research Center
IBM Research IBM Research

Parikshit Ram
T.J. Watson Research Center
IBM Research

Abstract

Understanding how transformers can execute specific algorithmic and symbolic
computations remains a challenge in artificial intelligence. Prior work has demon-
strated that standard transformers have trouble generalizing algorithmic problems
of arbitrary length (i.e., length generalization), such as arithmetic problems. Here
we present an interpretable and modular framework for specifying exact algorith-
mic computations with universal transformers that enable these models to perfectly
solve algorithmic problems of arbitrary depth (length), without any training. In
particular, by formulating algorithmic problems as computable circuits, we exactly
map circuit computations onto components of the universal transformer architec-
ture. We showcase this ability by specifying universal transformers that perfectly
solve two fundamental algorithmic problems: modular arithmetic and Boolean
logic. Notably, these two models demonstrate how transformers can generalize
to problems of any length using interpretable architectural modifications. This
framework can be naturally adopted for any algorithmic problem that can be for-
mulated as a circuit, illustrating exactly how transformers can implement arbitrary
circuit algorithms. More broadly, this framework provides an existence proof of
transformer models capable of implementing exact algorithms, providing avenues
of opportunity for exploring their learnability in future work.

1 Introduction

Recent advances in Al have led to remarkable improvements in models capable of complex reasoning
tasks [Shao et al.| 2024, [DeepSeek-Al et al.,|2025| [Yang et al., [2025] Mishra et al., [2024} Bercovich
et al.| [2025]]. These models, often powered by large transformer models trained on vast corpora,
exhibit behaviors that resemble human-like inference and deduction. However, the underlying
mechanisms by which these models reason, or the algorithms by which they reason, remain largely
opaque. This is because the algorithms these models implicitly implement are neither explicitly
encoded, understood, nor easily interpretable.

To address this, recent work has explored the use of circuits — structured, interpretable, computational
graphs — to model and analyze the algorithmic reasoning capabilities of Al systems [Dziri et al., 2023}
Ito et al., [2025 Ram et al., [2024]]. Importantly, a circuit representation of a problem exactly encodes
the algorithm required to solve that problem (follow the edges from the input gates). Moreover,
circuit-based approaches to devising algorithmic problems are closely related to other problems

*taku.itol @gmail.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

widely studied throughout the generalization literature, including compositional generalization and
length generalization problems [Hupkes et al., 2020, Jelassi et al., 2023} Zhou et al., 20244l Lee et al.,
2023]]. These problems require models to generalize to novel, variable-length sequences (often of
greater lengths than seen during training) [Deletang et al.,|2022]]. However, a number of empirical
studies have demonstrated that transformers typically struggle with length generalization problems
(see|Sinha et al.|[2024] for a review).

In this study, we introduce a universal transformer architecture capable of exactly computing algorith-
mic circuit problems of arbitrary depth. We focus on two simple yet widely important algorithmic
problems: Boolean logic and modular arithmetic. Critically, provided a problem’s circuit encoding,
we implement universal transformer models that exactly solve these problems of arbitrary length
without any training. We achieve this by ensuring the transformer’s mechanisms — namely the
attention mechanism and multilayer perceptron (MLP) — implement well-defined roles when solv-
ing the problem: syntactic parsing (attention) and semantic evaluation (MLP). We provide formal
descriptions of this transformer formulation, as well as empirical experiments that exhibit perfect
performance on Boolean logic and arithmetic problems of arbitrary circuit depths. Overall, our results
provide an existence proof (in the form of a tangible, performant model) of a minimal universal
transformer architecture capable of solving arbitrary algorithmic circuit problems.

2 Circuit Problems

Overview. We focus on computing Boolean circuit and arithmetic circuit problems, varying the
size and depth of these formulas. These problems are highly related to compositional and length
generalization problems (compositional problems can be reformulated as a circuit) [Hupkes et al.|
2020, [Jelassi et al., [2023]]. However, circuit problems have the added benefit of having algorithmically
meaningful descriptions; the circuit describes the algorithm to solve that problem (follow the edges
from the input gates), and the circuit depth and size correspond to algorithmic time and space
complexity, respectively. Figure[TJA depicts an example of a depth-2 arithmetic circuit, and Figure[TB
depicts an example of a depth-2 Boolean circuit.

Circuit sampling. For experiments, we constructed a dataset of circuits by constructing a Boltzmann
sampling procedure over a simple logical grammar. For Boolean formulas, the grammar consisted of
two terminals/leaves (TRUE, FALSE), two binary operators (AND, OR), and one unary operator (NOT).
For arithmetic formulas, the grammar consisted of 10 terminals/leaves (integers O through 9, and two
binary operators (4 and Xx). Boltzmann sampling provides a principled way to randomly generate
these combinatorial objects (circuits). Specifically, by using the generating function

Z(x) = L + Uz Z(x) + BxZ(x)? (1
where L, U, and B are the number of leaf, unary, and binary productions, respectively, we can encode
the counts of formulas of each size. For Boolean circuits specified above, L =2, U = 1, and B = 2.
For arithmetic circuits specified above, L = 10, U = 0, and B = 2. This procedure and dataset was
implemented in PyTorch (version 2.6.0).

3 Universal Transformer Architecture for Computing Circuits

At a high-level, we consider a 1-layer universal transformer. The goal of this universal transformer
is to simulate a depth-1 circuit, capturing the minimal circuit computation. For Boolean formulas,
this is equivalent to a finite truth table. This implies that the number of forward passes required for
a universal transformer to simulate a depth-£ circuit is exactly k. To architect this transformer, we
assign specific functions — syntactic parsing and semantic evaluation — to two of the transformer’s
core components — attention and the MLP, respectively. Using the attention mechanism to impose
a syntactic parse (via the circuit’s adjacency matrix), we control the read/write access to residual
token streams in the transformer to mimic the structure of the circuit. This can be conceptualized as
deriving an attention mask determined by relative positional encodings, where the distance between
tokens (circuit gates) is determined by the existence of an edge between circuit gates. This ensures
that the MLPs only need to implement a finite look-up table, such that it evaluates a depth-1 circuit
(e.g., 1 V1=1or5 x4 =0) We illustrate the high-level intuition for a single forward pass of this
universal transformer in Fig. and step-by-step computations in Algorithms|1|and 2[(Appendix).
In the Appendix, we also provide additional details for how to construct the token embeddings (A.T),
attention mechanism (A.2), and MLP (A3).

A Modular arithmetic circuits

Ex (mod 10): {3 +4) *(2+7)”

a Input a Iteration 2
B Boolean circuits
A and Ex: “(TRUE OR FALSE) AND (NOT FALSE)”
Iteration 2
Iteration 1
4 B = = ~ -~
/
D .’ Transformer intuition Post-Atn ~~~ _ oStMLP
1-layer .’ (1-layer forward pass) /~ embedding ‘@‘b\eidmg
transformer sketch |I| |:| |:|
token embeddings , 1\V0A~O0 O |I|
o] v WOl 208 [
— A — g o 8 o —
0 O |I|
T
token embeddings IE‘ ax |:T| f |:T|
T Syntactic parsing S Semantic evaluation D

Layer attention weights MLP fthat
Input encode the circuit computes a depth-1 circuit
(

dictionary/truth table look up)

Figure 1: Circuit problems and transformer architecture intuition. A) An example of an arithmetic
circuit (mod 10) of depth 2, and our approach to solving these circuits in transformers. Importantly,
at each universal transformer iteration, we update the operator gate into the evaluated operator.
B) An example of a depth-2 Boolean circuit with gates 1, 0, A, V, ~. C) The key architectural
components of a 1-layer universal transformer. D) An intuition of how to compute one iteration of a
circuit algorithm with the transformer. Given a sequence of tokens as the input string, the attention
mechanism implements a syntactic parse of that string by using the circuit’s adjacency matrix as
the attention mechanism (i.e., the QK 7). By setting the values matrix V' as the identity matrix, the
attention weights map the embeddings of input gates (which are one-hot encodings) to the target
(operator) gate, yielding a superposition of token embeddings (multi-hot encoding). The token-wise
MLP implements a depth-1 circuit evaluation (in this case, a truth table lookup) that maps a vector
of token counts (equivalent to a superposition of token embeddings) to the correct token. When a
counts vector cannot be evaluated (e.g., an invalid expression), a conditional residual connection is
used to carry the layer’s input embedding to the post-MLP embedding. When all operator gates are
computed, the circuit computation is completed.

A Model performance, Boolean circuits B Model performance, arithmetic circuits

-1.0 -1.0

19

17 - 08
£ 15 ’ £
Q. 13 Q.
§ " 0.6 :?3:
© s 02 °©

3

1=

1 I 1 1 1 I I 1 1 1
1 5791113151719 1 5791113151719
Num iterations Num iterations
C 100 trials per Boolean circuit depth D 100 trials per arithmetic circuit depth
g g
g 40 5
[} [
o 2 100
o o
5 20 G
: # -}I : il
E -1--1-{' E 2111l
z 0 ™/ 2 e S ™1
35791113151719 135791113151719
¢ Depth Depth

Figure 2: Empirical evaluation of our universal transformer on circuit problems of various depths. For
each circuit depth, we sampled 100 random problems of A) Boolean and B) arithmetic expressions.
Performance was perfect across all circuit depths when the universal transformer iterated at least k
steps on problems of depth-k. C, D) We illustrate the number of operands across the 100 problems
per circuit depth. Circuits of the same depth can have a variable number of operands. Most notably,
however, as circuit depth increases, the number of operands exponentially increases, despite requiring
only a linear increase in iterations. Boxplots represent the quartiles of the distribution, and the
whiskers the full extent of distribution (n = 100).

4 Experiments

We tested our universal transformer on both Boolean and modular arithmetic problems of arbitrary
length, randomly sampled from a Boltzmann distribution. For each circuit depth, we sampled 100
randomly generated circuits (formulas). Since model parameters were chosen (not learned), no data
were used for training. Note that while we sampled circuits of a particular depth, each randomly
sampled circuit may have a different number of operands, since circuits were not required to be bal-
anced. To correctly evaluate the expression (i.e., flip the output gate to the correct response/operand),
the universal transformer needed to iterate for at least k steps for a depth-k circuit. To verify our
architecture, we sampled Boolean circuits from depth 1 to depth 20, and for each problem, iterated
the universal transformer for 1 to 20 iterations. As expected, we found that when our universal
transformer iterated for at least & iterations on a circuit problem of depth-k, our model achieved 100%
performance (Fig. 2JA,B). When our model iterated for < k iterations, model performance dropped to
0%, despite chance performance being 10% for modular arithmetic, and 50% for Boolean logic. This
is because the output gate, which is an operator, did not update to the correct operand.

We further provide statistics on the range of problems encompassed by the 100 randomly sampled
problems when sampling from a depth-F circuit, counting the number of operands (Fig. 2IC,D). This
provides a meaningful comparison to related length generalization studies, which typically only
evaluate generalization according to the number of operands, rather than depth. Interestingly, while
the number of operands exponentially increases as a function of circuit depth, we illustrate with
our universal transformer that the number of iterations to compute exponentially large problems (in
operands) only scales linearly.

5 Discussion

Relation to length generalization, compositional generalization, and reasoning. Length gen-
eralization and compositional generalization are central challenges in algorithmic reasoning in
transformers. Prior work has shown that standard transformers often fail to generalize to longer or

more complex inputs than seen during training [Dziri et al., [2023| Jelassi et al.,|2023| [Zhou et al.|
2024a, [Ito et al.| 2024, [Shen et al., 2024, Zhou et al., 2024b]]. Our framework directly addresses
this limitation by leveraging 1) a circuit encoding of algorithmic problems, and 2) the iterative
nature of universal transformers, providing an existence proof of an exact, universal transformer
implementation capable of algorithmic reasoning on arbitrary length problems without any training.
By forcing the attention weights to encode the circuit’s edges as an adjacency matrix, we use the
transformer’s attention mechanism as a syntactic parser. This ensures that the MLP layer can act as
a finite semantic evaluator, parallelizing the evaluation of depth-1 subcircuits. This design enables
perfect generalization to arbitrarily deep circuit problems without training, providing a concrete
architectural solution to compositional and length generalization problems.

Relation to transformer expressivity. Theoretical studies have established that transformers are
Turing complete under certain conditions [Merrill and Sabharwal, 2024/, Strobl et al., 2024] |Chen
et al.,|2025| [Yang et al.| 2024]. However, practical demonstrations of this expressivity remain limited.
Our work provides an existence proof of a performant universal transformer architecture for exact
algorithmic circuit evaluation. As circuits are themselves used as models of algorithms — with
associated algorithmic complexity measures, like time and space complexity [Ito et al.|[2025]] — this
provides a framework for understanding algorithmic computation in neural models.

Relation to mechanistic interpretability. Recent efforts in mechanistic interpretability aim to
understand how transformers implement specific computations [Elhage et al., 2021} |Olsson et al.,
2022, [Sharkey et al.l [2025]]. Our framework contributes to this line of work by decomposing
transformer operations into interpretable modules: attention for syntactic parsing and MLPs for
semantic evaluation. Moreover, our use of hard-coded attention weights derived from circuit adjacency
matrices provides a concrete instantiation of functional routing within transformer layers, and is
common in the mechanistic interpretability literature [Elhage et al.,[2021]]. Our approach also shares
conceptual similarities with RASP (Restricted Access Sequence Processing) [Weiss et al., [2021]],
which provides a programming language for expressing transformer computations using restricted
attention and primitive operations. Like RASP, our model uses hard-coded attention patterns to
simulate algorithmic behavior. However, RASP is limited in that only finite-depth transformers
can be programmed, thereby limiting its expressivity. On the other hand, ALTA (A Language for
Transformer Analysis) [Shaw et al., |2024] provides a formal language for specifying universal
transformers that can similarly solve arbitrary depth problems. Our work complements ALTA by
offering a concrete instantiation of algorithmic circuits within a universal transformer, without the
need to specify a specific programming language, and instead demonstrating how such programs can
be executed exactly through interpretable architectural design.

Limitations. While we provide a universal transformer implementation that computes exact circuit
algorithms, there are several limitations to our study. First, our models rely on manually specified
attention weights derived from circuit adjacency matrices. While this enables perfect performance
without training, it bypasses the challenge of learning such attention patterns from data. Future work
should explore whether these mechanisms can be learned end-to-end, and under what conditions.
Second, our approach assumes noiseless input and idealized token embeddings (i.e., one-hot vectors).
This simplifies the semantic evaluation to finite lookup tables, but may not generalize to real-
world settings where inputs are noisy or ambiguous. Third, our experiments focus on two specific
algorithmic domains: Boolean logic and modular arithmetic. While these are foundational tasks (e.g.,
any computable function can in principle be represented as a Boolean circuit), they do not encompass
the full diversity of algorithmic tasks in practice. Generalizing this approach to broader classes of
problems remains an open challenge.

Conclusion. We introduce a modular and interpretable framework for specifying exact algorithmic
computations in universal transformers. By formulating algorithmic problems as circuits and mapping
their structure onto transformer mechanisms, we demonstrate that transformers can solve Boolean and
modular arithmetic problems of arbitrary depth without training. This approach provides a principled
solution to compositional and length generalization problems, and offers a foundation for studying
the learnability and interpretability of algorithmic reasoning in neural models. Our results suggest
that structured architectural design can enhance the reliability and transparency of transformer-based
systems, opening avenues for future research in scalable algorithmic reasoning and mechanistic
understanding.

References

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran
Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
Bakhturina, Prasoon Varshney, Makesh Narsimhan, Jane Polak Scowcroft, John Kamalu, Dan Su,
Kezhi Kong, Markus Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam
Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa
Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su,
Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry Wu,
Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath, Sandip
Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Oleksandr
Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edelman,
Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yuting Wu,
Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin, Michael Evans,
Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Chris Alexiuk, Joey
Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris
Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben,
Yonatan Geifman, and Eric Chung. Llama-Nemotron: Efficient Reasoning Models, June 2025.
URL http://arxiv.org/abs/2505.00949. arXiv:2505.00949 [cs].

Thomas Chen, Tengyu Ma, and Zhiyuan Li. Non-Asymptotic Length Generalization, June 2025.
URL http://arxiv.org/abs/2506.03085. arXiv:2506.03085 [cs].

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqgin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
January 2025. URL http://arxiv.org/abs/2501.12948. arXiv:2501.12948 [cs].

http://arxiv.org/abs/2505.00949
http://arxiv.org/abs/2506.03085
http://arxiv.org/abs/2501.12948

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural Networks and
the Chomsky Hierarchy. International Conference on Learning Representations, September 2022.
URL https://openreview.net/forum?id=WbxHAzkeQcn.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and Fate: Limits of Transformers
on Compositionality. Advances in Neural Information Processing Systems, 36:70293-70332, De-
cember 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/
deb3c28192£979302c157cb653c15e90-Abstract-Conference.html,

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, and Tom Conerly. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are univer-
sal approximators. Neural networks, 2(5):359-366, 1989. URL https://www.sciencedirect.
com/science/article/pii/0893608089900208. Publisher: Elsevier.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality Decomposed: How
do Neural Networks Generalise? Journal of Artificial Intelligence Research, 67:757-795, April
2020. ISSN 1076-9757. doi: 10.1613/jair.1.11674. URL https://www. jair.org/index.php/
jair/article/view/11674.

Johan Hastad. Computational limitations for small depth circuits. PhD Thesis, Massachusetts
Institute of Technology, 1986. URL https://dspace.mit.edu/bitstream/handle/1721.1/
1560504/15748273-MIT.pdf ?sequence=1&isAllowed=y.

Takuya Ito, Soham Dan, Mattia Rigotti, James Kozloski, and Murray Campbell. On the generalization
capacity of neural networks during generic multimodal reasoning. International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=zyBJodMrn5&
noteld=zyBJodMrnb|

Takuya Ito, Murray Campbell, Lior Horesh, Tim Klinger, and Parikshit Ram. Quantifying artificial
intelligence through algorithmic generalization. Nature Machine Intelligence, 7(8):1195-1205,
August 2025. ISSN 2522-5839. doi: 10.1038/542256-025-01092-w. URL https://www.nature!
com/articles/s42256-025-01092-w. Publisher: Nature Publishing Group.

Samy Jelassi, Stéphane d’ Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and Francgois
Charton. Length Generalization in Arithmetic Transformers, June 2023. URL http://arxiv,
org/abs/2306.15400. arXiv:2306.15400 [cs].

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching Arithmetic to Small Transformers. International Conference on Learning Representations,
October 2023. URL https://openreview.net/forum?id=dsUB4bst9S.

William Merrill and Ashish Sabharwal. The Expressive Power of Transformers with Chain of Thought.
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=NjNG1Ph8Wh.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria,
Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-
Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White,
Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim
Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel,
Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapanipathi,
Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos Fonseca,
Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda. Granite Code
Models: A Family of Open Foundation Models for Code Intelligence, May 2024. URL http:
//arxiv.org/abs/2405.04324. arXiv:2405.04324 [cs].

https://openreview.net/forum?id=WbxHAzkeQcn
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.jair.org/index.php/jair/article/view/11674
https://www.jair.org/index.php/jair/article/view/11674
https://dspace.mit.edu/bitstream/handle/1721.1/150504/15748273-MIT.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/150504/15748273-MIT.pdf?sequence=1&isAllowed=y
https://openreview.net/forum?id=zyBJodMrn5¬eId=zyBJodMrn5
https://openreview.net/forum?id=zyBJodMrn5¬eId=zyBJodMrn5
https://www.nature.com/articles/s42256-025-01092-w
https://www.nature.com/articles/s42256-025-01092-w
http://arxiv.org/abs/2306.15400
http://arxiv.org/abs/2306.15400
https://openreview.net/forum?id=dsUB4bst9S
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
http://arxiv.org/abs/2405.04324
http://arxiv.org/abs/2405.04324

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context Learning and Induction Heads, September 2022. URL http://arxiv.
org/abs/2209.11895. arXiv:2209.11895 [cs].

Parikshit Ram, Tim Klinger, and Alexander G. Gray. What makes Models Compositional? A
Theoretical View: With Supplement, May 2024. URL http://arxiv.org/abs/2405.02350.
arXiv:2405.02350 [cs].

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024. URL http://arxiv.org/abs/
2402.03300. arXiv:2402.03300 [cs].

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders, David
Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom McGrath.
Open Problems in Mechanistic Interpretability, January 2025. URL http://arxiv.org/abs/
2501.16496. arXiv:2501.16496 [cs].

Peter Shaw, James Cohan, Jacob Eisenstein, Kenton Lee, Jonathan Berant, and Kristina Toutanova.
ALTA: Compiler-Based Analysis of Transformers. Transactions on Machine Learning Research,
November 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=h751w19xiR.

Ruoqi Shen, Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
Description Matters for Transformers Arithmetic. International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=ZMuPA0Y80z|

Sania Sinha, Tanawan Premsri, and Parisa Kordjamshidi. A Survey on Compositional Learning of
Al Models: Theoretical and Experimental Practices, June 2024. URL http://arxiv.org/abs/
2406.08787. arXiv:2406.08787 [cs].

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal Languages
Can Transformers Express? A Survey. Transactions of the Association for Computational
Linguistics, 12:543-561, May 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00663. URL
https://doi.org/10.1162/tacl_a_00663|

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking Like Transformers. In Proceedings of the 38th
International Conference on Machine Learning, pages 11080—11090. PMLR, July 2021. URL
https://proceedings.mlr.press/v139/weiss21la.html. ISSN: 2640-3498.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yugiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and
Zihan Qiu. Qwen3 Technical Report, May 2025. URL http://arxiv.org/abs/2505.09388.
arXiv:2505.09388 [cs].

Andy Yang, David Chiang, and Dana Angluin. Masked Hard-Attention Transformers Recognize
Exactly the Star-Free Languages, October 2024. URL http://arxiv.org/abs/2310.13897.
arXiv:2310.13897 [cs].

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What Algorithms can Transformers Learn? A Study in Length
Generalization. International Conference on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=AssTuHnmHX|

http://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2405.02350
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2501.16496
http://arxiv.org/abs/2501.16496
https://openreview.net/forum?id=h751wl9xiR
https://openreview.net/forum?id=ZMuPAOY8Oz
http://arxiv.org/abs/2406.08787
http://arxiv.org/abs/2406.08787
https://doi.org/10.1162/tacl_a_00663
https://proceedings.mlr.press/v139/weiss21a.html
http://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2310.13897
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers Can Achieve Length Generalization But Not Robustly. International Conference on Learn-
ing Representations, April 2024b. URL https://openreview.net/forum?id=DWkWIh3vFJ.

https://openreview.net/forum?id=DWkWIh3vFJ

A Model Details

Notation. We denote scalars as lowercase italics (x), column vectors in lowercase boldface (x), row
vectors as its transpose (z 1), and matrices as uppercase italics (X).We denote =’ as the it element
of vector &, X* as the row vector in the i™ row, and X%/ as the element the i row and ;™ column.
We denote 1,4 as a d-dimensional column vector, and 1,44 as a matrix of ones, and I;asad x d
identity matrix.

A.1 Token embedding

We use one-hot token embeddings, where e; € {0, 1}1*¢ is a basis vector with a 1 in the i position

and Os otherwise. Thus, the model’s embedding dimensionality corresponds exactly to the size of the
vocabulary. For Boolean formulas, d = 5, where the tokens in the vocabulary correspond to 0, 1, A,
V, ~). For arithmetic formulas, d = 12, and the tokens correspond to integers 0-9, +, x. A given
formula of n tokens is then provided to the transformer as a concatenation of token embeddings,
ie., Xo = [€;...,ej]" € {0,1}"*% Xj is then used as the input in to the transformer’s attention
mechanism. Note that for simplicity, we do not include parentheses in the model vocabulary, as
the circuit encoding provides the same information as parentheses. Pragmatically, we assume the
parentheses are either encoded as the relative positional encoding / attention mask.

A.2 Attention and syntactic parsing

RdXd

In standard transformers, given a query W, € R4*? key W}, € R%*9, and value W, € matrix,

the attention mechanism in transformers is
Attn(X;) = (X; W) (X, W) T (X, W)
For simplicity, here we assume no explicit positional encoding, softmax, or scaling factor (e.g., \/%).
k

However, studies in mechanistic interpretability abstract this attention mechanism into two separate
functional circuits: the attention matrix, QK " = (X;W,)(X;Wy) T € R™ " and the readout matrix
XV = X, W, € Rxd [Elhage et al., 2021]. In particular, the QK T serves as the circuit that routes
information from source tokens to target tokens, and X'V determines how attending to a source token
influences the embedding of the downstream target token. This mimics how in circuits, input gates
map to operator gates.

In our universal transformer model, we leverage the abstractions introduced by [Elhage et al.|[2021]]
to specify attention at the level of QK T. First, we only use a single attention head. Second, we
set QKT € {0,1}™*™ as a binary matrix (no softmax) that is specified by the circuit’s adjacency
matrix. (Note that in our circuit’s adjacency matrix, we additionally encode self-connections for
operator gates.) In practice, in our model implementation, we use QK ' as an attention mask, and
specify W, = W}, = 14x4. Note, that while we provide QK " as a circuit-specific attention mask
in our model implementation, in principle, obtaining the correct attention weights matrix QK ' can
be achieved by incorporating a well-crafted relative positional encoding and leveraging a hardmax
(rather than a softmax) on the attention matrix [Strobl et al.,[2024]. This formulation of the attention
mechanism can then be used to study the learnability conditions of this universal transformer in future
work without the use of the attention mask we use here.

Finally, we set W,, = I;. Since our token embeddings are one-hot encodings, by setting W, as the
identity matrix, our attention mechanism effectively routes one-hot embeddings (in the transformer
layer’s inputs) to produce multi-hot encodings (i.e., a vector of token counts) in the post-attention
embedding layer. This produces a superposition of token embeddings (e.g., see Fig. [TD). Moreover,
because token embeddings are routed via the attention weights (exactly corresponding to the circuit’s
edges), downstream token embeddings are at most a count vector of a depth-1 circuit. Note, however,
that operator gates are sometimes mapped to other internal operator gates (for circuits with greater
than depth 1; e.g., see Fig. [ID). This results in a vector of counts that cannot be evaluated by a finite
table. We specify how this will be handled by the MLP in the subsequent section.

A.3 MLP and semantic evaluation

The post-attention embedding layer provides at most a count vector of a depth-1 circuit, as each target
token has at most fan-in 3 (2 child nodes and itself). Therefore, the MLP’s required functionality

10

essentially reduces to that of a finite lookup table (corresponding to a Boolean truth table or a
2-operand modular arithmetic table). However, in some cases, the attention matrix routes information
that produces a multi-hot encoding that cannot be evaluated. This occurs when an intermediate
operator gate has not yet been computed, yet that operator is routed to its parent gate (which itself is
an operator). This produces situations in which the post-attention count vector contains the incorrect
number of operands (and/or operators). In these situations (when there is no valid expression to be
evaluated), the MLP routes a residual connection from the pre-attention embedding layer (see f in
Algorithms [[|and 2} Appendix). In the present implementation, we use tensor indexing to specify
the function of f rather than an MLP. This was done for the ease of “hard-coding” parameters as a
tensor, rather than an MLP. However, given the finite nature of the MLP’s semantic evaluation, it
is straightforward to train the MLP to compute a depth-1 circuit for either Boolean or arithmetic
formulas, since MLPs are universal function approximators capable of learning Boolean truth tables
[Hornik et al., {1989, [Hastad, |1986|].

A.4 Integrating components into a universal transformer

We have provided specifications for the token embeddings, attention mechanism, and MLP, the three
ingredients required for our model. By putting together each of these components, we compute a
depth-1 circuit in every transformer layer. In essence, at each transformer iteration, if an operator gate
receives two operands, then the operator token is updated to the correct operand (via the MLP) (Fig.
[TA,B). If an operator token cannot be updated because its count vector does not correspond to a valid
depth-1 circuit (e.g., its inputs are themselves operator gates), then it copies the token embedding
to the next layer via residual connection. To retrieve the correct answer for a circuit of depth-k, we
inspect the output gate after k iterations. The output gate is defined as the gate with an out-degree of
0 in the circuit’s adjacency matrix. The algorithm corresponding to each transformer forward pass is
detailed in the Appendix (Algorithm|I|for Boolean circuits, and Algorithm 2|for arithmetic circuits).

11

Algorithm 1 Universal transformer for Boolean circuit evaluation

PRIN AN

Definition: Let &,perands = {€1 , €5 } denote input gates 1 and 0, respectively, where e, €
{0,1}'*9 is a basis vector with a 1 in the 7™ position, and Os otherwise (i.e., a one-hot vector).
Here, d = 5.

Definition: Let Eperators = {€3 ,€4 , €4 } denote operator gates A (AND), V (OR), ~ (NOT),
respectively.

Definition: Let X; € NZ}Xd be the token embedding of the i transformer layer (each token e,
is a row vector), where n refers to the number of tokens in the context window.

Definition: Let QK ' € {0, 1}"*" be the attention weights, which exactly encode the circuit’s
binary adjacency matrix. Operator gates additionally have self-connections. We restrict circuits
to be fan-in 2.

Definition: Let X° denote the token containing the output gate. o can be determined by
identifying the index of QK T with out-degree 0.

Definition: Let V = X, - Wy, be the values matrix, where Wy, = 1.

Definition: Let f be a token-wise multilayer perceptron that exactly computes a depth-1 circuit
(Boolean truth table).

140

while 3X7 € &, crators, ¥V do > Each iteration is a single transformer layer
Xia — X; > Store pre-attention token embeddings
Xip 4 Xia QKT -V > Map source gates to target gates via attention
Xip1 + f(Xip) > Compute depth-1 circuit
1 1+1

end while

Output < X? '
More specifically, for an embedding X for token j, the function f is defined as:

eir if 1,1.e.,
Xg}b =e] +ef +ej,correspondingto 1 A 1
X/, = el +e] +e/, corresponding to 1V 1
Xij;b =e; +eg +e ,correspondingto 1V 0
Xi, = e +eg, corresponding to ~ 0
f(X],)={e] ifo,ie,
, lejb =e] +eg4 +ej,corresponding to 1 A0
X/, = es +ej +es, corresponding to 0 A 0
ij,b = e;'— + e;r + eI, corresponding to 0 V 0
Xi, = e; +eg, corresponding to ~ 1

X f . otherwise, i.e., not a valid Boolean expression

12

Algorithm 2 Universal transformer for modular arithmetic evaluation

PRIDE 2N

Definition: Let Eyperands = {€1 ;€3 ..., €10} denote input gates 1, 2, ..., 0, respectively, where
e;.r € {0,1}1*4 is a basis vector with a 1 in the i position, and Os otherwise (i.e., a one-hot
vector). Here, d = 12.

Definition: Let £ perqtors = {e;'—l, ei'—2} denote operator gates + and x (for modular addition
and multiplication), respectively.

Definition: Let X; € Nng be the token embedding of the i transformer layer (each token e,
is a row vector), where n refers to the number of tokens in the context window.

Definition: Let QK ' € {0, 1}"*" be the attention weights, which exactly encode the circuit’s
binary adjacency matrix. Operator gates additionally have self-connections. We restrict circuits
to be fan-in 2.

Definition: Let X° denote the token containing the output gate. o can be determined by
identifying the index of QK T with out-degree 0.

Definition: Let V' = X - Wy, be the values matrix, where Wy, = I,.

Definition: Let f be a token-wise multilayer perceptron that exactly computes a depth-1 circuit
(2-operand modular arithmetic).

140

while 3.X f € Eoperators, VJj do > Each iteration is a single transformer layer
Xia X5 > Store pre-attention token embeddings
Xip Xia QKT -V > Map source gates to target gates via attention
Xit1 < f(Xip) > Compute depth-1 circuit
14 1+1

end while

Output < X? }
More specifically, for an embedding X for token j, the function f is defined as:

£ i) = e; € Eoperands compute two-variable modular arithmetic
b/ T XJ

i,a

otherwise, i.e., not a valid two-variable arithmetic expression

13

	Introduction
	Circuit Problems
	Universal Transformer Architecture for Computing Circuits
	Experiments
	Discussion
	Model Details
	Token embedding
	Attention and syntactic parsing
	MLP and semantic evaluation
	Integrating components into a universal transformer

