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Abstract

Speculative decoding is an approach for increas-
ing the Tokens Per Second (TPS) of a base LLM
by using a smaller draft model to predict subse-
quent tokens. These draft tokens can be generated
quickly and their verification by the base model
can occur in parallel with generating the next to-
ken. A key determinant of the impact of SD on
TPS is the acceptance rate — the probability that
a draft token will be accepted upon verification.

This work explores Randomised Drafting
wherein a draft is only generated with some prob-
ability a < 1. By introducing this random com-
ponent, we show that the acceptance rate can be
boosted while preserving the distributional guar-
antees of SD. Despite sometimes using the base
model directly, we show that Randomised Draft-
ing can result in an overall boost in TPS. The
improvement in TPS is minor but comes without
cost.

1. Introduction

Large language models (LLMs) have become a key tech-
nology over the past decade, with growing adoption across
many applications. As these models scale, so do their com-
putational requirements. A major bottleneck is their autore-
gressive nature: tokens must be generated one at a time,
which can make inference slow. This limits how quickly
LLMs can produce output—measured in tokens per second
(TPS)—and affects user experience. Faster generation is
increasingly important as demand grows, motivating efforts
to improve the efficiency of LLM decoding.

Speculative Decoding (SD) has been developed to address
the requirement for higher TPS. A significant property of
SD is that one can ensure no alteration in the output distri-
bution relative to using the base model by itself. This makes
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SD more attractive than approaches like model distillation
which alter the output distribution and may perform worse
on certain tasks. SD works by introducing a smaller draft
model that proposes several tokens at once, which are then
either accepted or rejected by the base model - a process
known as verification. Verification happens in parallel with
generation, so when most draft tokens are accepted, TPS
approaches that of the faster draft model. Conversely, if
too many drafts are rejected, SD can underperform, even
slowing down inference. As a result, the effectiveness of SD
requires optimising the acceptance rate of the draft tokens.

1.1. Contributions

This work introduces Speculative Decoding with Ran-
domised Drafting (RD). We demonstrate theoretically and
experimentally how RD allows higher acceptance rates than
vanilla SD while satisfying the fidelity property of vanilla
SD. We theoretically analyse the impact on TPS of RD
showing that may yield a small gain.

2. Related Work

Speculative decoding is a key technique for accelerating
inference in large language models (LLMs) without sac-
rificing output quality (Leviathan et al., 2023). It offers
statistical guarantees on output quality, building on earlier
concepts of block decoding and verification (Stern et al.,
2018) which lacked these guarantees. The fundamental idea
involves using a smaller, faster ‘draft’ model to generate a
sequence of candidate tokens. These tokens are then verified
in parallel by the larger, more powerful ‘target’ model (Fu
et al., 2024). This method aims to reduce the sequential
dependency inherent in autoregressive generation, thereby
decreasing latency and improving throughput. Importantly,
the generated outputs are distributed identically to those
drawn directly from the target model.

Significant research efforts have focused on improving the
efficiency of speculative decoding (Hu et al., 2025). A pri-
mary area of investigation is the optimization of the draft
proposal mechanism. This includes strategies for determin-
ing the optimal number of draft tokens, k, to generate in
each step (Gloeckle et al., 2024). Beyond fixed lengths,
dynamic adaptation of the candidate chain length based on
contextual cues or model confidence has also been explored
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to further boost performance (Huang et al., 2024; Liu et al.,
2024b). Another approach involves generating multiple
draft sequences or utilizing multiple specialized decoding
heads from the draft model. Examples include methods
like Medusa and Hydra (Cai et al., 2024; Ankner et al.,
2024). These techniques aim to increase the probability of
accepting longer sequences of tokens per verification step.

More advanced strategies include self-decoding, where early
layers of the target LLM itself generate drafts. This poten-
tially reduces the need for a separate draft model reducing
resource utilization, as seen in systems like DeepSeek-V3
(Liu et al., 2024a; Li et al., 2024). Tree-based speculative
decoding methods build a tree of possible continuations
from one or more models, allowing for exploration of more
diverse candidate sequences (Miao et al., 2024; Wang et al.,
2025). Researchers are also actively combining speculative
decoding with blockwise parallel decoding principles. The
goal here is to break sequential dependencies even further
and achieve greater parallelism during the generation pro-
cess (Kim et al., 2024; Yang et al., 2023; Monea et al., 2023;
Narasimhan et al., 2024).

3. Background
3.1. Notation

We list the notation used in this paper below. For the sake
of simplicity we will discuss the case where the draft model
generates a draft of length & = 1.

e z: Prompt tokens
* x,: The n'™ reponse token output by the model

* p(z | 2),q(z | z): Base and draft models respectively,
assumed to be LLMs

* «a(z) Acceptance rate; the probability that a draft token
will be accepted given prompt 2z

* a: Draft probability
* Dres(x | z) the residual distribution
¢ k: Draft chain length (assumed to be 1 for simplicity)

e V/: Vocab size - total number of tokens

We occasionally abuse notation for brevity. For instance, we
sometimes omit dependencies, writing p(x) in place of p(x |
z). In other cases, we compress notation further by letting
p and g denote the probability vectors representing the
predicted token distributions of the base and draft models,
respectively.

3.2. Vanilla SD

As previously discussed Speculative Decoding works by
having a draft model ¢ generate draft tokens which are then

verified by the base model p. Specifically, we sample a draft
Zpn ~ q(x). We then compute p(Z,, | z) and accept &,

p(&|2)
? q(E]2)
this sample and obtaining a replacement from the residual

distribution defined

with probability & = min (1 ) otherwise rejecting

Pres(x) = norm(maz(p(z) — ¢(x),0)). (1)

This construction ensures that SD satisfies a property we
will refer to as fidelity where samples obtained through
SD and those sampled directly from the base model are
indistinguishable. An algorithmic description of SD in given
in Algorithm 1.

Fidelity: When the outputs of a Speculative Decoding
variant are distributed identically to those of the base model
we say that this approach satisfies the Fidelity property.

Algorithm 1 Vanilla SD

1: Input: Base model p(z | z), draft model g(x | z),
prompt z
Sample draft & ~ q(z | z)

Compute acceptance probability o = min (1, f; gtg)
With probability «, set x < =

Otherwise, sample  ~ prs(x | z) {As defined in
Eqn. 1}

6: Output: Sample x

In order to ensure that SD satsifies fidelity, some tokens
drafted by the draft model must be rejected. To illus-
trate intuitively why this is necessary suppose that for a
given prompt z the probability of the next token being
"cat" is p("cat" | z) = 0.4 for the base model and
g("cat" | z) = 0.8 for the draft model. If we sample
from the draft model without discarding at least half of the
"cat" tokens we will oversample this word relative to the
desired frequency. The necessity of discarding a certain
proportion of draft tokens to avoid oversampling mitigates
the speed-up which might otherwise be realised by SD.

4. Randomised Drafting

Our proposal is that, during inference, we only generate a
draft with the draft model with probability a € [0, 1]. Le.
with probability a we draft the next token from & ~ ¢(z)
and with probability 1 — a the next token is not drafted. We
call this Randomised Drafting. By only sometimes sam-
pling from the draft model we mitigate the oversampling
problem. To illustrate this let us return to the previous exam-
ple where p("cat" | z) = 0.4 and ¢("cat" | z) = 0.8
and suppose that we only draft with probability 0.5. Even if
we accept all "cat " tokens output by the draft model we
still do not oversample this token. Consequently, random
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Figure 1. A comparison of vanilla SD (left) with RD SD (right): The figure compares vanilla SD with SD employing Randomised
Drafting. In vanilla SD the base model ‘waits’ for the draft model to produce a token and then verifies this token. In the RD setting
there are two possibilities: i) The ‘draft’ setting occurs with probability a and is identical to the vanilla SD setting albeit with a higher
acceptance rate. ii) In the ‘no-draft’ case (occuring with probability 1 — a) the base model and draft model are run in parallel so the base

model does not need to wait.
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Figure 2. Two possible ways one could do Randomised Drafting: A ‘naive’ approach (left) where we sample directly from the base
model p(x) with probability 1 — a and otherwise apply vanilla SD. Our insight is that this may be improved upon. Our proposed approach
(right) shows that we can boost the acceptance rate in this setup while preserving fidelity. The base distribution and residual distributions
must be altered (p(z), Pres(T) > pres(x; a), pres(x; a) respectively). Expressions which differ in our variant (relative to the naive

approach) are highlighted in green.

drafting allows us to increase the acceptance rate of draft
tokens from the usual min (1, M) to min (1 p(z) )

q(z) > aq(x)

In the case where a draft token is rejected, a replacement
token is sampled from an ammended variant of the residual
distribution incorporating the probability a

Dres(x; a) = norm(maz(p(x) — aq(z),0)). (2)

In the 1 — a proportion of cases where we do not draft — the
no-draft case — we might naively expect that we can sample
the next token directly from the base model. However, this
would result in oversampling. In the no-draft case we must
sample the next token from the residual distribution Eqn. 2
in order to ensure fidelity (see Figure 2). Superficially this
suggests Randomised Drafting should provide no benefit

since the residual distribution Eqn. 2 is a function of the
draft distribution meaning that the draft model still needs
to be invoked to sample the next token. However, the gain
comes from the fact that, while the draft model needs to be
employed for verfication it does not need to be employed
for drafting. In practice this means that verification does not
need to wait a draft token to be generated. IL.e rather than
sampling a draft token from ¢ and then passing this into
p for verfication we pass the existing prompt though both
p and q in parallel, compute the residual distribution and
sample the next token from it. This is depicted in Figure 1.

In vanilla SD there are rwo scenarios: 1) a draft is generated
and accepted, or 2) a draft is generated and it is rejected
whereafter a replacement is sampled from the residual dis-
tribution. In RD there are three scenarios: 1) a draft is gen-
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erated and accepted, 2) a draft is generated and it is rejected
whereafter a replacement is sampled from the residual dis-
tribution or 3) no draft is generated, a sample is drawn from
the residual distribution. By clever selection of the proba-
bility a € [0, 1] RD can yield a higher Tokens-Per-Second
(TPS).

Algorithm 2 Randomised Drafting SD

1: Input: Base model p(z | z), draft model ¢(z | z),
prompt z, drafting probability a

2: Sample u ~ [0, 1]

3: if u < a then

4:  Sample draft & ~ g(z | z)

5. Compute acceptance probability « =
min (1, 21 )

6:  With probability o, set x < &

7: Otherwise, sample & ~ prs(x | 2;a)

8: else

9:  Sample = ~ prs(z | z;a) {As defined in Eqn. 2}

10: end if

11: Output: Sample x

4.1. Properties of SD with Randomised Drafting

The Total Variation (TV) distance between two probability
vectors p, ¢ may be defined as

lp—qli.

We define the following generalization of the Total Varia-
tion distance between probability vectors p, g given some
probability a;

TVu(p,q) =|p—aq|i +1 —a. 3)

Note that setting @ = 1 returns the standard 7'V between p
and gq.

The acceptance rate for a token when using vanilla SD is
known to be 1 — %TV(p7 q) where p, q denote the next-
token distributions given some prompt z for the base and
draft models respectively. The acceptance rate for SD with
Randomised Drafting may be written in terms of the gener-
alised TV defined in Eqn. 4.

Lemma 4.1. SD with Randomised Drafting at probability
a has a token acceptance rate given by

1 1 1
(1)) = 5 G Ip-aa ). @

a

where p, q denote the next-token distributions for the base
and draft distributions respectively.

It is straightforward to show that Equation 4 is monotoni-
cally decreasing in a. This is to say that the acceptance rate
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Figure 3. Acceptance Rate as a function of the draft probability
a: We plot the acceptance rate Equation 4 as a function of a for a
randomly selected prompt for OpenbookQA dataset. When a = 1
we get the acceptance rate for vanilla SD. As a decreases the
acceptance probability increases. For a < 0.2 all drafted tokens
would be accepted during verification.

of SD with RD for a drafted token is always higher than that
of vanilla SD.

Figure 3 plots the acceptance rate as a function of the draft
probability for a randomly selected prompt drawn from the
OpenbookQA (Mihaylov et al., 2018). Le. given that a token
has been drafted, we plot the probability that this token is
accepted during verification. The base and draft model pair
are the 6.7B and 2.7B parameters OPT models respectively.
a = 1 (corresponding to vanilla SD) has an acceptance
rate of ~ 60% for this prompt. As the draft probability
decreases we see that the acceptance rate increases. In an
extreme case where a = 0.2 all drafted tokens are accepted
upon verfication.

RD has a strictly higher acceptance rate than
vanilla SD when verfiying a draft token.

As discussed a core desirable property of vanilla SD is that
it speeds up inference without altering the distribution of
the output tokens, a property we refer to as fidelity. The
following Lemma shows that this holds also for SD with
Randomised Drafting.

Lemma 4.2. Given a base model and draft model p, q re-
spectively then, for any prompt z, samples obtained from
SD with Randomised Drafting are distributed identically to
those sampled directly from the base model p(x | z).

[ SD with RD satisfies Fidelity. ]

4.2. Impact of Random Drafting on TPS

We have shown that acceptance rate of a draft token when
employing SD with RD is higher than vanilla SD. However,
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this improved acceptance rate is offset by the fact that with
probability 1 — a the TPS is equal to that of the base model.
It is therefore non-trivial that RD could improve TPS over
vanilla SD. This section derives a necessary and sufficient
condition under which RD improves the TPS over vanilla
SD. We then show how to derive the optimal choice of a.

For simplicity, we assume that verfiying and generating a
token using the base model takes the same amount of time
which we denote by T},. We use T, to denote the time taken
to generate a token with the draft model ¢. We let A denote
the ratio of the time taken to generate a token with the draft

and base model; \ := & (= ggp ). For example if, say, the
q

T,
draft model is twice as fpast then A = 0.5.

Lemma 4.3. Given a prompt z let p,q denote the next-
token distributions of the base and draft model respectively.
Randomised Decoding will improve the TPS if the following
condition is satisifed

A> Z q;-

P >qs

Lemma 4.3 states that if we sum up all those g; for which
the draft model underestimates the base model probability,
then this should be less than the TPS ratio between the base
and draft model. In practice this is often true.

Figure 4 plots the TPS as a function of the draft probability
for the SD with RD when using the 6.7B and 2.7B param-
eter Facebook OPT models (as base/draft models) on the
OpenbookQA dataset. We record that, on average the TPS
of the the 6.7B parameter model is 0.6 times that of the
smaller model A = 0.6 in our setup. The y-axis is given
relative to the TPS of the base model, thus a = 0 —the
case where SD is not being applied— gives a TPS of 1x the
base TPS as expected. a = 1 denotes the TPS gain obtained
when using vanilla SD ~ 8%. We observe that for some
choices of a < 1 that the TPS is improved further ~ 10%.

[ Randomised Drafting can improve TPS. ]

4.3. Choosing The Draft Probability

Our analysis so far reveals that the TPS may be enhanced
by the use of random drafting with a suitable choice of a.
Figure 4 shows an example of the relationship between the
TPS and draft probability indicating that a value of a ~ 0.8
would be optimal in this particular setup. However, this
optimal value of a is identified post factum. In practice
we require an approach for selecting the draft probability
during deployment on a workload rather than afterwards.
This section proposes a practical approach for selecting a.

In the event that the condition given in Lemma 4.3 is satis-
fied we must determine a choice of a € [0, 1]. The follow-
ing Lemma describes how to find the optimal a given some
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Figure 4. TPS as a function of the draft probability a when
applying SD with RD: The y-axis is normalised relative to the
base model so that 1.00 denote the TPS of the base model. We use
the 6.7B/2.7B OPT models as the base/draft LLMs respectively
and the OpenbookQA dataset of prompts for the dataset. We plot
the TPS when applying SD with Randomised Drafting as a is
varied. The resulting curve shows that the highest TPS is obtained
for a value of @ < 1 indicating an improvement over vanilla SD.

prompt z in the idealised setting where we have access to
the next token distributions p and q.

Lemma 4.4. Given some prompt z, the value of a which op-
timizes the TPS of SD with Randomised Drafting is given by
the solution to the following convex optimization problem:

minimizing |p —aq|; +a(2X—1).
a€(0,1]

where p, q denote next-token distributions for the base and
draft models respectively given the prompt.

Equation 4.4 is a simple convex optimization problem mean-
ing that, given p and q, the optimal value a* € [0, 1] max-
imising the TPS for the given prompt can be found effi-
ciently using standard techniques. Unfortunately however,
during inference p, ¢ are not known ahead of time. Thus
we have no way to precisely determine the optimal a for a
given prompt in advance.

To resolve this problem, instead of finding an optimal a for
each prompt (i.e. a depending on z) we drop the depen-
dence on the prompt and instead determine a fixed a which
maximises the TPS across a specific workload. Concretely,
letting r(z) denote some prompt distribution we wish to
find @ € [0,1] which optimizes the following objective
equivalent to optimizing the expected TPS on the workload

Eenrz [IP(2) —ag(z)h] +a(2X = 1).

Crucially, given a dataset of samples z; ~ r(z) we can
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estimate a* by solving the following convex optimization

(117 ; p(zi) — aq(zi)1> +a@A—1).

Concatenating the {4 p(z;)}, vectors together into a sin-
gle probability vector of length NV (and likewise for the
g(z;)) we see that this problem is of the same form to the
original optimization defined in Equation 4.4 and thus is
similarly straightforward to solve.

minimizing
a€0,1]

Estimating the optimal draft probability for a given
workload is a convex optimization problem.

5. Conclusions

This work introduces Speculative Decoding with Ran-
domised Drafting. This entails drafting the next token with
probability a. While we draft less frequently, RD allows
us to accept a higher proportion of draft tokens than in
the vanilla setting. For suitable choices of a, the boost in
TPS obtained in the draft setting can be sufficient to offset
the low TPS in the no-draft setting providing a gain over
vanilla SD (See Figure 4). As with vanilla SD, applying
Randomised Drafting generates outputs indistinguishable
to those drawn from the base model directly. Moreover,
applying RD does not increase the computational cost of
applying SD - the total FLOP count remains identical to
that of vanilla SD with the same base/draft model pair. The
difference between these approaches being when the draft
model is invoked (see Figure 1).

5.1. Limitations and Future Work

This research on randomised policies to Speculative De-
coding is ongoing and significant further work is required.
Further experimental analysis of the impact of RD on TPS
in typical deployment scenarios is required. Additionally,
further work should look at extending random drafting to
draft chain lengths beyond £ = 1. An example approach
could be to determine the draft chain length by a randomised
policy such as flipping a ‘coin’ until it comes up heads.

This work has limitations. For example, we demonstrate in
Lemma 4.3 that the TPS ratio between the draft and base
models A should not be close to zero in order for RD to pro-
vide a gain. Intuitively this makes sense since the gain from
RD comes from avoiding time uneccesarily spent drafting
only for the drafted token to then be discarded. Therefore,
when drafting is nearly instantaenous there is no gain to
be obtained from opting not to draft. This could apply to
settings where one uses an N-gram draft models or applies
self-decoding techniques. Another possible limitation, high-
lighted by Figure 1, is that RD requires one to run the draft
model in parallel with the base model. This is practical

when the draft model is run on a separate device (e.g. a
separate GPU to the base model or on the CPU) but may be
impractical in some scenarios.

Impact Statement

“This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.”
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A. Randomised Drafting Derivations
A.1. TPS Analysis

In the following we make some simplifying assumptions. For simplicity we assume that only a single token is being drafted
by the draft model (k = 1). We assume that the time taken to verify and to decode a single token is the same when using the
base model, denoting both by T},. Similarly, we use T} to denote the time taken to generate a draft token using the draft
model. Letting o denote the acceptance rate for the given prompt. Then the expected TPS when using SD is

2 1
TPS =« + (1 -« .
P (Tp+Tq> ( )<Tp+Tq>

This expression reflects the fact that, with probability o we obtained 2 tokens in time 7T}, + T7, and with probability 1 — o we
obtain just one.

For RD the expected TPS is given by

TS 1p = aofa) (7= ) +all = o) () + 0 -z

p

where «(a) denotes the acceptance rate of a draft token for the current prompt when drafting with probability a. This
expression combines the case where we draft and the draft token is accepted, where we draft and it is rejected and where we
do not draft. Our goal is to demonstrate that under certain scenarios that this second expression may be higher reflecting the
fact that Randomised Drafting may boost ones TPS.

The difference in expected TPS between RD SD and vanilla SD can be written as
1—a
T

p

TPSgp — TPSsp =

(aafa) +a—a—1)+

T, + 1Ty

We use A to denote the ratio between T}, and Ty, thatis A = % € [0,1]. By Equation 4

1 1
TPSgp — TPSsp = ( (aa(a)+a—a—1)+1—a),

T, \1+ X
_ 1 ! 1(1+ | )+ 1)+1
_Tp T\ 2 a— | p—aq a—« al,

1 1 3 1 |p—aq]
= (—(Sa-—>-1"—T1— l1—a). 5
Tp<1+A<2a 2 2 B )

This expression is concave since it is of the form —k; | p — aq | +k2a + k3, and | p — aq | is convex. We can evaluate at
a=0
a+1

TPS =0)—TPSgp=1— ——.
RD(a ) SD A+ 1

We assume that we are in a regime where SD improves the TPS thus o > A which implies 1 — % < 0. We evaluate at
a = 1 to obtain

TPSRD(G = 1) - TPSSD =0.
We wish to demonstrate that for some choices p, ¢ that there are choices of a € [0, 1] for which TPSgp(a) — TPSgp > 0
indicating that the expected TPS of RD is greater than SD.

Since we have established that the difference in TPS is zero when a = 1 and the difference in TPS is concave in a this is
equivalent to showing TPSgp(a) — TPSsp may have a negative gradient at a = 1. Taking the derivative of Equation 5 with
respect to a, this may be written as

1 1
— (1 T oong | —1) <0,
Tp <1+)\ ( +; {Z~pz>¢h}q> > —

g Z g < A

1:p;i>q;
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Le, if we sum up all those ¢; for which p; > ¢; then this should be less than the ratio A :== % Thus we have demonstrated
Lemma 4.3 restated below.

Lemma A.1. Given a prompt z let p,q denote the next-token distributions of the base and draft model respectively.
Randomised Decoding will improve the TPS if the following condition is satisifed

A> Z ;-

©pi>qi
Proof. Derived in the TPS analysis above. O
In general we may wish to identify the optimal choice of a. This is the value of a which maximises the expression in

Equation 5. This boils down to solving the convex optimization problem:

minimizing |p —aq|+a(2A —1).
a€l0,1]

Lemma A.2. Given some prompt z, the value of a which optimizes the TPS of SD with Randomised Drafting is given by the
solution to the following convex optimization problem:

minimizing |p —aq|i +a(2A—1). (6)
a€l0,1]

where p, q denote next-token distributions for the base and draft models respectively given the prompt.
Proof. Equation 5 gives the TPS difference between RD and SD. We wish to maximise this with respect to a € [0, 1]. One

may discard constant terms and mutliply through by positive scalars without changing the optima. Finally, multiplying
through by —1 yields the minimization problem given in Equation 6. O

Given p, g this optimization can easily be solved using standard approaches. A difficulty here is that we do not know ahead
of time and thus the optimal a for a given prompt z can only be computed in retrospect.

Our proposed approach is to determine a by profiling a suitable respresentative workload. Specifically, our goal is finding
a* € [0, 1] which minimises the following expression

Eep [IP(2) —aq(2)[[+a(2A - 1),

where p(z) denotes some distribution over prompts for which we desired the optimal TPS. Thus given samples z; ~ p(z)
we can estimate a* by solving

a€l0,1]

N
1
minimizing (N ; Ip(z:) — aq(zi)|> +a(2A-1).
Lemma A.3. SD with Randomised Drafting at probability a has a token acceptance rate given by

1 1 1
s (1 5T00)) = o (ks [pag), )

where p, q denote the token distributions for the base and draft distributions respectively.

9
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Proof. The probability that the next token is accepted is simply

> g(x)min <1, f;&) = > 4(@) L fag)>pey + P 9@ ag() <p(a)} s

TeEX reX meX
= ql= 1{aq<x)>p(w)} + Z )L {aq(z)<p(@)}s
TzeEX
= Z ]l{aq(m )>p(z) } p + Z ]l{aq(:r )<p(z)}>
zeX zeX
1
= <Z Lag(a)>p(@)P(2) + Y 00(2) 1 fag(a) <p(a >}> ) ®)
rxeX reX
= - (1 - Z ]l{aq(r)gp(m)}(p(ir) - aq(x))> . (9)
reX
Now,
TV, (p, —1—a+Z\p ) —agq(x) |
rxeX
=1-a+ Y (p)— aq(@)liag@)<p@) + P @(x) = p(2)L{ag(e)>p)}
reX reX
=l-a+ (2 > (@) 1 ag@)<p(a)}) — 1) (a —2) (ag()1 {aq(a) <p<m>})>
zeEX reX
=2 (p(®) — ag(2))1 {ag(z)<p(a)})

TEX
From which it follows that we can write Equation 8 as
1 1
o > Lagr<pten (0() — ag(2)) = (1~ fTV (»,q) )
TEX
as desired. [

Lemma A.4. Given a base model and draft model p, q respectively then, for any prompt z, samples obtained from SD with
Randomised Drafting are distributed identically to those sampled directly from the base model p(x | z).

Proof. SD with Randomised Drafting generates samples distributed according to the base model p. For the purposes of this
proof we will let p(z() denote p(zq | z) and ¢(z() denote ¢(z | z) for notational brevity. Let o be some arbitary token
satisfying aq(xg) < p(xo). The probability of sampling token =y when using Randomised Drafting can be written

p(xo)
aq(:co)) +a(l — a(2))pres,a(®o) + (1 — a)pres,a(o)

= aq(x0) + Pres,a(®0) (a(l — a(2)) + (1 —a)). (10)

ag(xo) min (1,

‘We recall that

Pres,a(20) = norm(max(p — ag,0))(xo),
_ max(p(zo) — aq(zo),0)
>, max(p(z) — ag(x),0)’
_ p(o) — agq(zo)
5TVa(p,q)

10
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So, Equation 10 is equal to

p(xo) — agq(wo)
aq(zo) + (1 — aa(z)) W (11)

We recall that a(a) = 1 (1 — 3TV, (p, q)) from which it follows that Equation 11 is equal to

(zo) — aq(zo)

cate) + (57Ve(0na) ) PRI — ).
2 a Y

Now let z be an arbitrary token such that aq(zo) > p(zo). The probability of sampling token zy when using SD with
Randomised Drafting can be written

p(z0)

aq(o)

) + a(l - O‘(z))pres,a(‘rO) + (1 - a)pres,a(xo)

= p(20) + Pres.a(zo) (a(l — a(2)) + (1 — a)). (12)

aq(xo) min <1,

However, pres o (z0) = 0 thus Equation 12 is simply equal to p(z¢). Consequently, we have demonstrated that the probability
of sampling each token z € X when applying RD is equal to the probability of sampling this token with the base model

p(x). O
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