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ABSTRACT

While large vision-language models (LVLMs) have demonstrated impressive capa-
bilities in interpreting multi-modal contexts, they invariably suffer from object hal-
lucinations (OH). We introduce HALC, a novel decoding algorithm designed to mit-
igate OH in LVLMs. HALC leverages distinct fine-grained optimal visual informa-
tion in vision-language tasks and operates on both local and global contexts simul-
taneously. Specifically, HALC integrates a robust auto-focal grounding mechanism
(locally) to correct hallucinated tokens on the fly, and a specialized beam search al-
gorithm (globally) to significantly reduce OH while preserving text generation qual-
ity. Additionally, HALC can be integrated into any LVLMs as a plug-and-play mod-
ule without extra training. Extensive experimental studies demonstrate HALC’s
effectiveness in reducing OH, outperforming state-of-the-arts across four bench-
marks. Code is released at https://github.com/BillChan226/HALC.

1 INTRODUCTION

The confluence of natural language processing (NLP) and computer vision (CV) has undergone a
transformative shift over the past years with the introduction of vision-language models (VLMs) (Long
et al., 2022; Zhu et al., 2023; Liu et al., 2023b). Although VLMs have shown exceptional proficiency
in integrating and interpreting intricate data across both textual and visual modalities, a significant
challenge emerged as the phenomenon of object hallucination (OH), where VLMs erroneously
generate hallucinated objects and descriptions within their outputs (Rohrbach et al., 2018). Based on
the different parts of the sentences that are being hallucinated, OH can be categorized into three types:
object existence, attribute, and relationship hallucinations (Gunjal et al., 2023; Zhai et al., 2023).

While OH can be attributed to various factors (e.g. inherent biases related to co-occurrence (Biten
et al., 2022; Zhou et al., 2023), visual uncertainty (Leng et al., 2023)) and exhibits certain patterns
(e.g. knowledge aggregation (Huang et al., 2023), post-positioned (Zhou et al., 2023)), we conclude
that its fundamental cause is the autoregressive nature of VLMs generation, where they increasingly
rely on textual information while unavoidably reducing reliance on the visual input. This is especially
obvious when longer responses are generated, which explains the correlation between higher OH and
larger token lengths (Huang et al., 2023). A detailed literature review can be found in Appendix A.

To mitigate the disproportionate reliance on the textual and visual information during the autore-
gressive text generation, the process can be enhanced by continuously incorporating targeted visual
information. As faithful text generations should guarantee that object-related text tokens are well
grounded in the visual input, we hypothesize that the generation can benefit from focusing more on
the fine-grained visual context for different object-related tokens.

To this end, we introduce Object Hallucination Reduction through Adaptive FocaL-Contrast decoding,
HALC, a novel decoding strategy designed to effectively counter OH and can be easily integrated
into any open-source LVLMs such as MiniGPT-4 (Zhu et al., 2023; Chen et al., 2023), LLaVA (Liu
et al., 2023b) and mPLUG-Owl2 (Ye et al., 2023). Specifically, HALC operates by identifying a
token-wise optimal visual context to provide the most informative visual grounding while decoding
a specific token. Consequently, HALC can uniquely addresses all three types of OH (existence,
attribute, and relationship) while preserving linguistic quality in both local and global levels; locally,
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Figure 2: HALC improves text generation from images (e.g., a man holding a clock on the beach) by addressing
potential errors, such as mistaking a “clock” for a “surfboard.” HALC searches for the optimal visual context
for a token by first identifying its visual grounding, then sampling multiple related FOVs to obtain their logits
distributions. The optimal logits distributions are approximated by the largest JSD between contrasted pairs.

it employs an adaptive focal-contrast grounding mechanism to locate the fine-grained optimal visual
information to correct each generated token that might be hallucinating; and globally, it incorporates
a matching-based beam search that utilizes a visual matching score to steer the generation of the final
outputs to balance both OH mitigation and text generation quality.

2 OH AND FINE-GRAINED VISUAL KNOWLEDGE

Problem Formulation. For an image-grounded text generation task, a θ-parameterized LVLM
MLVLM

θ often generate texts in an auto-regressive manner. Given a textual query x and an input image
v, v is first processed by a vision encoder into a visual embedding, then transformed by a multi-modal
projector together with the query x, and finally decoded into a textual response y. OH happens when
some parts of the text generation y is inconsistent with the input image v. The goal of HALC is to
minimize the occurrence of OH tokens and preserve the faithfulness to v in x, while maintaining a
high-quality generation of text y. A detailed problem formulation can be found in Appendix B.

Fine-grained Visual Knowledge. To mitigate the disproportionate reliance on the textual and visual
information during the autoregressive text generation, the process can be enhanced by continuously
incorporating targeted visual information. As faithful text generations should guarantee that object-
related text tokens are well grounded in the visual input, we hypothesize that the generation can
benefit from focusing more on the fine-grained visual context for different object-related tokens. We
verify our hypothesis through an empirical pilot study: Fig. 1 shows OH percentages when we feed
the greedy decoding with or without brute-force searched optimal visual contexts on the OH subset
of the MME benchmark (Fu et al., 2023)(the implementation details can be found in Appendix G).
We can see that incorporating such optimal visual contexts can eliminate over 84.5% of the OH.
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Figure 1: On average, over 84.5% of the OH are reduced
by leveraging some optimal visual context v∗.

This observation leads to the key insight in
HALC that mitigating OH lies in identifying a
token-wise optimal visual context to provide the
most informative visual grounding while decod-
ing a specific token, which is achieved through
its adaptive focal-contrast decoding module.

3 HALC
Deriving from the above statistical analysis
of the effectiveness of fine-grained visual con-
text in correcting OH, we propose HALC. A
schematic overview of HALC is shown in Fig. 2.
HALC operates at the token level during generation, with reliance on fine-grained visual information

2



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

represented by samples of different visual contexts. By recomputing the token distributions from dif-
ferent visual context inputs and contrasting them, object-related token probabilities are redistributed
to reduce hallucinations dynamically within the generation steps.

Object-related token identification. To efficiently target likely sources of OH, we initially pinpoint
tokens linked to objects for HALC processing. Specifically, at each generation step, we determine
the part-of-speech (POS) tag of the current token from the modelMLVLM

θ . If the token is a noun,
adjective, adverb, number, verb, pronoun, or preposition—indicating potential for object, attribute, or
relationship hallucinations—we re-generate the token with HALC. For instance, as in Fig. 2, the token
“surfboard” might be flagged for potential object existence hallucination. Notice that we base the
decision to reprocess a token on its syntactic category, without assuming it’s already hallucinating..

Visual context retrieval. To obtain detailed visual information for a token, we identify a correspond-
ing visual context window vd = (wd, hd, pd) defined by its width, height, and center point. We use a
zero-shot detector, such as Grounding DINO (Liu et al., 2023c) or OWLv2 (Minderer et al., 2023),
to pinpoint the token’s location in the image. While these detectors are primarily used for object
detection, they’re also capable of providing visual references for adjectives or prepositional phrases.
This is due to their pre-training goal of linking text descriptions to image regions, encompassing
attributes and relationships in addition to object identification (Liu et al., 2023c).

Adaptive focal-contrast grounding. While off-the-shelf detectors establish a meaningful refer-
ence vd within the original image input v, it is often not the optimal visual context for decoding.

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣

𝐥𝐨
𝐠	
𝐩(
𝐲 𝐭
|𝐯
,𝐱
,𝐲
"
𝐭)

Samples of Field-of-Views (FOVs)

Figure 3: In the FOV space, clear objects (“beach”,
“man”) maintain stable, high likelihoods, while halluci-
nated objects, like ”book” or ”surfboard,” show erratic
or shifting likelihoods. Incorrectly generated tokens, or
”victim tokens” (e.g., ”clock”), typically exhibit a sharp
peak in likelihood, signaling a local maximum.

As shown in Fig. 3, we demonstrate that the
likelihood of different objects’ tokens can vary
significantly across various visual context win-
dows fed intoMLVLM

θ . For instance, in a case
where the correct token “clock” is mistakenly de-
coded as “surfboard,” we find that an alternative
visual context, labeled as v1, more accurately
corrects this error by significantly increasing the
“clock” token’s probability. This standout pat-
tern of the “clock” token, compared to the more
uniform patterns of other tokens across differ-
ent visual contexts, underlines our strategy of
focal-contrast grounding. This method aims to
fine-tune the probabilities of object-related to-
kens by exploring and selecting from a spectrum
of FOVs that sharply contrast in their decoding
probabilities, thereby closely approximating the
ideal visual contexts.

FOV sampling. We first sample a sequence
of n FOVs, v1, v2, . . . , vn, based on the initial visual context vd. Various methods can generate
these FOVs based on vd. To attain a larger coverage of the input image quickly, one strategy
of FOVs sampling is through an exponential expanding function, by setting vi = (wi, hi, pi) =(
(1 + λ)iwd, (1 + λ)ihd, pd

)
, where wi, hi, pi are the width, height, and center of the FOV vi.

Dynamic visual context selection. Based on the observation from Fig. 3, we now select a set
of FOVs based on a contrastive criterion in the text decoding space to better approximate the
optimal visual context for the current token. In particular, after obtaining n different FOVs, we feed
these visual contexts back into the modelMLVLM

θ , resulting in n different probability distributions
pi = pθ(·|vi, x, y<t) with i = 1, 2, . . . , n. Between any two candidate FOVs, we adopt the following
distance measure for the discrepancy between their decoded token probability distributions

d(vi, vj) = JSD(pθ(·|vi, x, y<t) ∥ pθ(·|vj , x, y<t)) (1)

where JSD is the Jensen-Shannon divergence, a symmetric metric that measures the difference
between two distributions. With the idea that more different FOV pairs are more likely to include the
optimal visual context for the current victim token generation, we dynamically select the top m pairs
with the largest distance according to Eq. (1).

Contrastive decoding. After obtaining top m visual context pairs with most discrepancies in
influencing the token output, we contrast the decoding probability distributions (pi, pj) within each

3



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

pair in order to amplify the information residing in one visual context over the other. This would
potentially recover the victim token over the hallucinated token as the victim token enjoys a sharper
contrast in the probability comparisons, especially when one of the visual contexts under comparison
is near the optimal grounding. Specifically, we redistribute the probabilities based on the contrast
in log space (Li et al., 2022b) for a given FOV pair (vi, vj), resulting in pvi/vj

(·|vi, vj , x, y<t) ∝
exp

[
(1 + α)fθ(·|vi, x, y<t) − αfθ(·|vj , x, y<t)

]
where fθ again is the logit distribution, α is the

amplification factor where larger α indicates a stronger amplification of the differences.

Unlike traditional uni-modal contrastive decoding methods (Chuang et al., 2023; Gera et al., 2023;
Shi et al., 2023) that distinguish between expert and amateur distributions based on the assumption
that the final or context-aware layer has more accurate knowledge, our approach to determining
an expert distribution among FOV pairs is complex due to the optimal visual context often being
between expanding FOVs. This can lead to OH with too much or too little context. Without knowing
the exact location of the optimal context, we contrast each FOV pair bi-directionally, incorporating
both positive (larger over smaller FOV) and negative (smaller over larger FOV) contrasts to ensure
complete FOV representation. This yields 2m candidate tokens from individual decodings, later
refined by a matching-based beam search algorithm.

Matching-based beam search. Our adaptive focal-contrast grounding corrects individual tokens
during generation, while a sequence-level beam search with a beam size of k ensures overall text
quality. At each HALC decoding step, k beam sequences produce 2mk token candidates from the top
m focal-contrast pairs. Unlike traditional beam search methods that use only textual information, we
select the top k beams from 2mk candidates based on a global visual matching score, comparing text
sequence similarity to the original image, ensuring diversity and accuracy in the generated text. The
BLIP model (Li et al., 2022a) is used for encoding both text and image to compute similarity scores.
The complete HALC process is detailed in the Appendix C. We conduct both theoretical certified
robustness analysis and empirical analysis of our optimal visual contexts approximation, which is the
most important component of HALC, in Appendix D and Appendix G respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate HALC on three benchmarks including (1) quantitative metrics
CHAIR (Rohrbach et al., 2018) and POPE (Li et al., 2023) on MSCOCO (Lin et al., 2014) dataset;
(2) general-purposed Multimodal Large Language Model Evaluation (MME) (Fu et al., 2023) bench-
mark; and (3) qualitative evaluation benchmark LLaVA-Bench (Liu et al., 2023a). These experiments
comprehensively assess HALC’s capability on reducing OH in image captioning, visual-question
answering (VQA) and more challenging tasks that generalize to novel domains.

Baselines. To effectively evaluate HALC, besides regular greedy decoding and beam search baselines,
we further involve layer-wise contrastive decoding SOTA DoLa (Chuang et al., 2023), as well as SOTA
methods specifically designed to mitigate OH, including OPERA (Huang et al., 2023), VCD (Leng
et al., 2023), Woodpecker (Yin et al., 2023) and LURE (Zhou et al., 2023) in our analysis. All the
results are acquired and benchmarked consistently within our unified implementation. Please refer to
Appendix F for the detailed setting of our experiments including hyper-parameters.

LVLM Backbones. Three LVLMs (MiniGPT-4 V2 (Chen et al., 2023), LLaVA-1.5 (Liu et al.,
2023b), mPLUG-Owl2 (Ye et al., 2023)) are assessed for both HALC and all above baselines
except Woodpecker and LURE, where Woodpecker utilizes ChatGPT (Brown et al., 2020) during its
self-correction process and LURE distills an extra reviser model from GPT-4 (Achiam et al., 2023).

4.2 RESULTS

Following existing evaluation procedures (Huang et al., 2023; Yin et al., 2023; Liu et al., 2023b), we
randomly sampled 500 images from the validation split of MSCOCO (Lin et al., 2014) and conduct
evaluations with both CHAIR and POPE. For each metric, we repeat the experiments five times with
different random seeds and report average and standard deviations of all the runs.

CHAIR. The Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al.,
2018) evaluates the occurrence of OH in image captioning tasks. It measures the extent of OH by
determining the proportion of mentioned objects that are absent in the actual label set. CHAIR
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includes two metrics: CHAIRS , assessing sentence-level hallucinations, and CHAIRI , assessing
object instance-level hallucinations. Lower scores in either metric indicate fewer hallucinations.
Besides CHAIRS and CHAIRI , we also report BLEU (Papineni et al., 2002) as an assessment of the
text generation quality. Table 1 demonstrates that our proposed HALC consistently outperforms all
the existing methods by a large margin. Notably, a major advantage of HALC is its strong robustness,
as can be observed by its much lower standard deviations, especially when compared to the non-OH
specific baselines.

Table 1: CHAIR evaluation results on MSCOCO dataset of LVLMs with different decoding baselines and
SOTAs designed for mitigating OH. Lower CHAIRS and CHAIRI indicate less OH. Higher BLEU generally
represent higher captioning quality, although existing work has reported weak correlation between CHAIR and
text overlapping quality metrics. Bold indicates the best results of all methods.

Method MiniGPT-4 LLaVA-1.5 mPLUG-Owl2
CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑

Greedy 30.87±5.45 12.33±2.07 14.33±0.00 20.80±0.08 6.77±0.07 15.93±0.00 23.20±0.35 8.33±0.28 15.37±0.00
Beam Search 29.56±6.09 11.36±0.99 14.94±0.00 18.67±0.38 6.30±0.05 16.17±0.00 21.67±1.61 7.63±0.40 15.77±0.00
DoLA 30.87±2.52 11.70±0.13 14.93±0.00 21.00±0.67 6.70±0.38 15.93±0.00 24.60±0.24 8.73±0.30 15.40±0.00
OPERA 30.00±0.43 11.67±0.22 14.87±0.00 21.13±0.12 6.73±0.18 16.27±0.01 22.13±0.86 7.57±0.16 15.53±0.00
VCD 30.27±0.44 12.60±0.45 14.33±0.00 23.33±5.66 7.90±0.53 14.67±0.01 27.27±7.32 9.73±1.22 14.40±0.00
Woodpecker 28.87±2.20 10.20±0.85 15.30±0.01 23.85±4.62 7.50±0.01 17.05±0.00 26.33±1.98 8.43±0.80 16.43±0.00
LURE 27.88±2.25 10.20±0.85 15.03±0.11 19.48±2.35 6.5±0.38 15.97±0.01 21.27±0.06 7.67±0.16 15.65±0.05

HALC 17.80±0.03 8.10±0.14 14.91±0.00 13.80±0.08 5.50±0.14 16.10±0.01 17.33±4.30 7.43±0.11 16.27±0.00

POPE. Polling-based Object Probing Evaluation (POPE) (Li et al., 2023) evaluates OH via a
streamlined approach, which incorporates a list of yes-or-no questions to prompt LVLMs for presence
of positive and negative objects. Unlike CHAIR, POPE directly interacts with the examined large
vocabulary language model (LVLM), which is suitable for decoding-based baselines but less adaptable
for post-hoc methods like LURE (Zhou et al., 2023). This approach also leads to greater instabilities
with smaller language backbones such as LLaMA-7B, which has weaker chat capabilities. In response,
we introduce offline POPE (OPOPE), which retains POPE’s object sampling and yes/no queries but
substitutes live interactions with offline checks. Specifically, instead of querying, ”Is there a in the
image?”, OPOPE first obtains the LVLM’s detailed image descriptions and then manually verifies
the presence of sampled objects in these captions to compute the scores. The evaluation results
incorporating OPOPE is shown in Table 2. HALC outperforms other methods in most of the settings.

Table 2: Proposed OPOPE evaluation results on MSCOCO dataset of LVLMs with different decoding baselines
and SOTAs designed for mitigating OH. Higher accuracy, precision, and F score indicate better performance.
Bold indicates the best results of all methods.

Method MiniGPT-4 LLaVA-1.5 mPLUG-Owl2
Accuracy↑ Precision↑ Fβ=0.2 ↑ Accuracy↑ Precision↑ Fβ=0.2 ↑ Accuracy↑ Precision↑ Fβ=0.2 ↑

Greedy 66.78±1.27 90.43±25.1 85.79±18.7 70.56±1.51 91.08±20.6 87.72±16.3 69.77±1.18 91.07±17.8 87.45±13.9
Beam Search 67.22±0.74 91.20±14.4 86.57±10.8 69.87±1.37 91.72±20.4 88.01±15.97 69.20±0.90 91.90±15.1 87.91±11.7
DoLA 67.06±1.19 90.84±23.1 86.22±17.3 70.69±1.50 90.87±19.8 87.59±15.74 70.17±1.69 91.97±24.5 88.30±19.26
OPERA 67.26±1.04 90.76±20.0 86.25±15.0 69.73±1.34 91.10±19.4 87.46±15.3 69.26±0.45 93.06±8.01 88.83±6.14
VCD 65.78±0.96 90.02±20.7 85.00±15.1 70.67±1.22 91.62±16.7 88.19±13.3 69.81±0.65 92.70±11.0 88.76±8.49
Woodpecker 67.78±0.88 91.33±16.66 86.91±12.6 69.80±0.54 91.80±8.41 88.04±6.56 68.90±1.02 92.22±17.98 88.05±13.77
LURE 68.14±0.99 90.95±17.34 86.76±13.23 70.00±1.53 90.89±21.9 87.38±17.3 69.24±1.60 90.54±23.37 86.85±18.28

HALC 66.76±0.68 91.95±15.0 86.92±11.1 70.59±0.82 92.94±12.18 89.22±9.55 70.12±0.98 91.94±15.1 88.26±11.85

More results. More detailed results on CHAIR, POPE, and additional evaluations on LLaVA-Bench
can be found in Appendix E.

5 CONCLUSION

We present HALC, a novel decoding algorithm designed to mitigate OH in LVLMs. HALC operates
on both local and global levels, integrating a robust adaptive focal-contrast grounding mechanism
to better utilize fine-grained visual information for correcting hallucinated tokens, and a special-
ized beam search algorithm that promotes further visually matched generations. Comprehensive
experiments demonstrate that HALC effectively reduces OH, achieving SOTA performance while pre-
serving sequence generation quality, and can be conveniently integrated into existing LVLMs without
additional training or data. A benchmarking tool was also built to support convenient comparisons
across all available OH reduction strategies comprehensively.
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A RELATED WORK

Object hallucination (OH). OH refers to the phenomenon where vision-language models (VLMs),
including both the earlier BERT-based models (Li et al., 2019; Radford et al., 2021) and the more
recent LVLMs (Liu et al., 2023b; Zhu et al., 2023), erroneously generate unfaithful contents. More
specifically, Gunjal et al. (2023) and Zhai et al. (2023) proposed that OH could be categorized into
three types: object existence hallucination for the creation of non-existent objects, object attribute
hallucination for providing misleading descriptions, and object relationship hallucination for depicting
incorrect inter-object relationships.

Why does OH occur? OH in VLMs can be attributed to various factors, including but not limited
to the inherent biases in the training data caused by co-occurrence (Biten et al., 2022; Zhou et al.,
2023), visual uncertainty due to model’s statistical bias and priors (Leng et al., 2023), as well as the
limitations in current models’ ability to discern context and fact accurately during the entire output
generation process (Daunhawer et al., 2021). Studies have also shown that OH is not random but
exhibits certain patterns and dependencies, such as its co-existence with knowledge aggregation
pattern (Huang et al., 2023), and the tendency to occur with objects positioned later in the generated
descriptions (Zhou et al., 2023).

A closer examination of these analysis suggests that the autoregressive nature of the LVLMs may
be a fundamental factor contributing to their hallucinatory behaviors. Specifically, autoregressive
decoding makes LVLMs progressively rely more on textual information including both the query
x and the increasing history generations y<t, while unavoidably reducing reliance on the visual
input. This imbalance results in a significant deviation from accurate representation of the visual
input, ultimately culminating in OH with behaviors and patterns observed in the aforementioned
studies (Zhou et al., 2023; Leng et al., 2023). This is especially obvious when longer responses are
generated, which explains the correlation between higher OH and larger maximum token lengths, as
seen in (Huang et al., 2023).

OH assessment. The most well-adopted metric specifically designed to evaluate OH is
CHAIR (Rohrbach et al., 2018), which was motivated after Rohrbach et al. (2018) discovered
that existing metrics that measure the output’s text quality, such as CIDEr (Vedantam et al., 2015),
is misleading at representing hallucinations (higher CIDEr score may correlate with higher OH).
Another notable and more recent metric is POPE (Li et al., 2023), which transforms the assessment
of OH into a binary classification problem where metrics such as precision, recall and accuracy are
used to represent the level of OH. In our evaluations, we utilize CHAIR and propose a new metric
based on POPE, named OPOPE, for thorough assessments of OH, while keeping the standard text
generation quality metrics such as BLEU (Papineni et al., 2002), as an additional indicator to make
sure little sacrifice in quality was made when mitigating OH.

Challenges and existing approaches. OH has been a persistent challenge since the earlier stages of
the VLM development (Rohrbach et al., 2018; Cui et al., 2023). And it has been gaining increased
attention, especially when recent research indicates that even the much more sophisticated and capable
large vision-language models (LVLMs) are not immune to it (Dai et al., 2022; Li et al., 2023; Guan
et al., 2023). Despite numerous advancements in LVLMs (Zhao et al., 2023; Chen et al., 2024; Zhang
et al., 2024), none of them can produce faithful outputs without suffering from some level of OH.
Various strategies have been developed to this matter. For instance, Zhou et al. (2023) and Yin et al.
(2023) proposed post-hoc and self-correction pipelines, respectively. Huang et al. (2023) and Leng
et al. (2023) developed decoding strategies emphasizing better prior utilization. While effective, these
approaches often require powerful external LVLMs or additional data, limiting their adaptability.

Despite the efforts, these approaches are not yet fully satisfying in terms of eliminating OH. More
importantly, they mainly focus on mitigating object existence hallucination, while assuming the
attribute- and relationship-level hallucinations can be consequently corrected through autoregressive
decoding. Furthermore, their reliance on more powerful external LVLMs (Yin et al., 2023), repeated
processing (Zhou et al., 2023) or additional data (Gunjal et al., 2023) complicates their adaptations to
existing LVLMs and restricts their use cases. The importance of OH reduction combined with the
limitations in existing methods underscore the urgent need for developing novel approaches.

Distinct from these methods, HALC offers a novel decoding strategy that effectively reduces OH
without necessitating extra LVLMs, training, or data. Integrating a novel adaptive focal-contrast
grounding mechanism, HALC addresses both local and global contexts in OH reduction. Its compati-
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bility with open-source LVLMs like MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu et al., 2023b)
further enhances its applicability.

And as previous approaches often study the problem under different settings and metrics (Zhou et al.,
2023; Yin et al., 2023; Huang et al., 2023; Leng et al., 2023), to promote the development of OH
reduction in general, we implement an open-source platform which hosts both the proposed HALC
and other methods, supporting various LVLM backbones and evaluation metrics.1

B DETAILED PROBLEM FORMULATION

We consider an LVLMMLVLM
θ parameterized by θ, with a general architecture consisting of a vision

encoder, a vision-text interface module, and a text decoder. For an image-grounded text generation
task, given a textual query x and an input image v, v is first processed by the vision encoder into a
visual embedding, then transformed by the interface module as the input to the text decoder together
with the query x, and finally decoded into a textual response y autoregressively. Formally, we have

yt ∼ pθ(·|v, x, y<t) ∝ exp fθ(·|v, x, y<t) (2)

where yt denotes the tth token, y<t is the token sequence generated up to time step t, and fθ is the
logit distribution (unnormalized log-probabilities) produced byMLVLM

θ .

OH happens when some parts of the text generation y conflicts with the input image v. The goal of
OH reduction is to minimize the occurrence of hallucination tokens and preserve the faithfulness to v
when addressing the query x, while maintaining a high-quality generation of text y.

C HALC ALGORITHM

Algorithm 1 HALC Decoding

Require: LVLMMLVLM
θ , text query x, image input v, grounding detector Gd, FOV sample size n,

beam size k, number of contrast FOV pairs m.
output Model response ynew.

1: repeat
2: At every decoding step t:
3: for b = 1 to beam size k do
4: MLVLM

θ decoding, obtain current token ybt
5: if ybt ∈ {existence, attribute, relationship} then
6: Retrieve visual context vbd ← Gd(ybt , v)
7: end if
8: if vbd ̸= {∅} then
9: Sample n FOVs v1, . . . , vn by expanding vbd

10: else
11: Randomly sample n FOVs v1, . . . , vn from v
12: end if
13: Compute pair-wise JSDs d(vi, vj),∀i ̸= j
14: Select top-m candidate pairs
15: for i = 1 to m do
16: Apply bi-directional contrast (pvi/vj

, pvj/vi
),

17: get a pair of redistributed logits
18: end for ▷ ybnew with 2m candidates obtained
19: end for
20: Select top k candidates by visual matching
21: if vbd ̸= {∅} and ybnew = ybt then
22: ybnew ← [IDK] ▷ ybt is hallucinating, but no correction token was found
23: end if
24: ybt ← ybnew ▷ Hallucinating token ybt corrected
25: until each beam has terminated

1We make our codes public at https://github.com/BillChan226/HALC.
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D THEORETICAL ANALYSIS ON FOV SELECTION

Based on our observation (in Fig. 1 and Fig. 3) that there exists some underlying optimal visual context
v∗ within the original image v that can largely reduce the object hallucination at the token level, our
method aims to recover this optimal visual context v∗ based on a sampling process conditioned on vd.
To do so, we first select the visual contexts, or FOVs, by taking a sequence of FOV samples starting
from the initial vd based on an off-the-shelf detector. While we cannot guarantee that the initial visual
grounding vd is sufficiently accurate to approximate v∗ (and directly using vd could result in unstable
behaviors), we could effectively certify the robustness of our FOV sampling strategy in Theorem D.1.
To preserve generality, consider the sampled FOVs are taken from a distribution π(·|vd), where π can
either follow normal distribution sampling around vd, or obey an exponential expansion sampling
strategy starting from vd.

Theorem D.1. Let v∗ = (w∗, h∗, p∗) be the optimal visual context. Assume there exists a tolerable
neighborhood B(v∗, ϵ) = {v̂ : ∥v̂ − v∗∥ ≤ ϵ} around v∗, such that decoding from visual contexts
within the neighborhood is robust:

D(pθ(·|v∗), pθ(·|v̂)) ≤ δ ≪ 1, ∀v̂ ∈ B(v∗, ϵ) (3)

where D(·, ·) ∈ [0, 1] is a symmetric discrepancy measure between two probability distributions,
such as the Jensen-Shannon divergence, or the total variation distance.

Let vd = (wd, hd, pd) be the initial detection and vd = v∗ + η with perturbation η. The minimum
deviation of token probabilities from the optimum with n samples v1, v2, . . . , vn distributed according
to π(·|vd) is denoted as

hπ(v
∗, n) = min

i=1,...,n
D (pθ(·|v∗), pθ(·|vi)) (4)

(a) For normal distribution sampling πg(·|vd) ∼ N (vd, σ
2I), the minimum deviation above is

bounded as
hπg

(v∗, n) ≤ δ + (1− Cg(ϵ, η;σ))
n (5)

where Cg(ϵ, η;σ) ∈ (0, 1) is a constant depending on ϵ, η, σ, and the upper bound goes to δ when
n→∞.

(b) For exponential expansion sampling πe(·|vd) ∼ U(r ∈ [rmin, rmax]) with samples vr = ((1 +
λ)rwd, (1 + λ)rhd, pd) uniformly from the r-space, under the conditions (i) |pd − p∗| < ϵ and (ii)
wd/hd = w∗/h∗, the minimum deviation in Eq. equation 4 is bounded below

hπe(v
∗, n) ≤ δ + (1− Ce(ϵ, v

∗, vd;λ))
n (6)

where Ce(ϵ, v
∗, vd;λ) ∈ (0, 1] is a constant depending on ϵ, v∗, vd, λ, and the upper bound goes to δ

when n→∞.

The proof of Theorem D.1 is detailed below. The neighborhood radius ϵ around the optimal v∗
can be roughly interpreted as a valid range of optimal visual context to yield the correct prediction
(e.g., [v1, v2] in Fig. 3). Typically the detection perturbation ∥η∥ > ϵ, making vd outside of the
ϵ-neighborhood of v∗. Through FOV sampling according to some π(·|vd), the above theorem
establishes a formal guarantee that at least one of the n samples achieves good approximation of
the optimal v∗ in the decoding probability space, as the deviation is closer to δ when n grows. The
normal sampling distribution, concentrated around vd, is preferred when vd has minimal perturbations
from v∗. And an exponential expansion sampling distribution, with a more averaged coverage of the
sampling space, is preferable when less prior of the task is available. In practice of our algorithm,
we take discrete integer values of r under the exponential expansion distribution for deterministic
sampling with n = 4, acquiring good efficiency and performance.

Proof. Let v∗ = (w∗, h∗, p∗) be the optimal visual context, represented by a 3-tuple of its width,
height, and center point. The corresponding optimal token decoding probability distribution is
pθ(·|v∗), where θ denotes the parameters of the LVLMMLVLM

θ , and we ignore the condition on
the textual query x and previously generated tokens y<t for simplicity. We rely on a symmetric
discrepancy measure D(·, ·) ∈ [0, 1] to compare the disparity between two probability distributions,
such as the Jensen-Shannon divergence, or the total variation distance. We assume that the model
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prediction is robust around v∗ against small perturbations. In particular, we assume that there exists a
tolerable small ϵ-neighborhood B(v∗, ϵ) = {v̂ : ∥v̂ − v∗∥ ≤ ϵ} around v∗, such that

g(v∗, v̂) = D(pθ(·|v∗), pθ(·|v̂)) ≤ δ ≪ 1, ∀v̂ ∈ B(v∗, ϵ) (7)
Essentially, for any visual context window (or FOV) close enough to v∗, the output token probability
disparity is tiny, which is likely to result no difference in greedy decoding.

From the FOV detector Gd, the output visual context is denoted as vd = (wd, hd, pd), which is
in general not the optimal. We assume vd = v∗ + η in the 3-tuple vector space, where η is the
perturbation vector from the optimal. The detection perturbation is often large enough with ∥η∥ > ϵ,
making vd outside of the ϵ-neighborhood of v∗.

vd → v∗: If we directly use the detector output vd as an approximation of the optimal visual context
v∗, the output distribution deviation from the optimum, measured by g(v∗, vd), is often unpredictable,
when vd does not fall in the hypothetical tolerable region B(v∗, ϵ). An example can be seen as the
inaccurate detection vd in Fig. 3 results in the wrong token prediction book. This prompts the need
for our proposed FOV sampling approach with the hope to find samples close to the optimal v∗.

π(·|vd) → v∗: Thus we consider sampling conditioned on vd in the FOV space to enhance the
robustness of optimal visual context approximation, hoping to find some sample that is close to
the optimal. To do this, we obtain an upper bound on the minimum deviation from the output
distribution among a collection of FOV samples. Assume π(·|vd) ∈ Ω is an arbitrary sampling
function conditional on the initial FOV detection vd, where Ω denotes the sampling space over all
potential visual contexts in the entire image v. π can either be a deterministic sampling function,
or a stochastic sampling process with a probabilistic distribution over Ω. Suppose we acquire n
samples v1, v2, . . . , vn according to π(·|vd), we denote the minimum deviation of the resulted token
probability from that of the optimal visual context v∗ as

hπ(v
∗, n) = min

i=1,...,n
g(v∗, vi) = min

i=1,...,n
D (pθ(·|v∗), pθ(·|vi)) (8)

where D is the aforementioned symmetric discrepancy measure between two probability distributions,
which is within the range of [0, 1]. Having a small value of hπ(v

∗, n) would indicate that we can find
some visual context that is close to the optimal v∗ through n samples.

We proceed to estimate the minimum deviation hπ(v
∗, n) from the optimal visual context v∗ with

n samples. We introduce a partition based on the occurrence of two probabilistic events: the event
A where at least one of the samples falls into the ϵ-neighborhood B(v∗, ϵ) close to v∗, and its
complement. Let us denote the probability of at least one sample falling within B(v∗, ϵ) as P (A), and
the complementary event’s probability as P (¬A) = 1− P (A). Hence, we can express the minimum
divergence hπ(v

∗, n) as a marginalization over these events:
hπ(v

∗, n) = P (A) · [hπ(v
∗, n)|A] + P (¬A) · [hπ(v

∗, n)|¬A] (9)
Recognizing that for the one sample in the vicinity of v∗ in the event of A, its decoding token
probability deviation from the optimal is bounded by δ ≪ 1 based on our assumption. Hence we
have

hπ(v
∗, n) ≤P (A) · δ + P (¬A) · 1 ≤ δ + P (¬A) (10)

Next, we consider two instances of the sampling function π(·|vd) that yield an upper bound for
hπ(v

∗, n).

Normal Distribution Sampling. Suppose sampling from π follows a stochastic process following a
normal distribution around vd. We denote this sampling process as πg(·|vd) ∼ N (vd, σ

2I), where
we assume a variance of σ2 for each element of the visual context representation (width, height,
center) independently. For ṽ ∈ Ω, the probability of sampling ṽ following the multivariate normal
distribution is

q(ṽ; vd, σ
2I) =

1√
(2πσ2)s

exp

(
− 1

2σ2
(ṽ − vd)

⊤(ṽ − vd)

)
where s = 3 is the dimension of the FOV representation vector. The probability of event ¬A
happening, which is none of n FOV samples falling within the ϵ-neighborhood of v∗, is

P (¬A) = P (∥v1 − v∗∥ > ϵ) ∧ P (∥v2 − v∗∥ > ϵ) ∧ · · ·P (∥vn − v∗∥ > ϵ) (11)
= P (∥ṽ − v∗∥ > ϵ)n (12)
= P (∥ṽ − (vd − η)∥ > ϵ)n (13)
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From the normal distribution assumption of ṽ, we know that ṽ − (vd − η) also follows a normal
distribution N (η, σ2I). Therefore,

P (¬A) = (1− P (∥ṽ − (vd − η)∥ ≤ ϵ))
n (14)

=

(
1−

∫
ν:∥ν∥≤ϵ

1√
(2πσ2)s

exp

(
− 1

2σ2
(ν − η)⊤(ν − η)

)
dsν

)n

(15)

= (1− Cg(ϵ, η;σ))
n (16)

where we use Cg(ϵ, η;σ) ∈ (0, 1) to denote the constant value given ϵ, η, and σ. Following Eq. (10),
we now have

hπg
(v∗, n) ≤ δ + (1− Cg(ϵ, η;σ))

n (17)

where the second term goes to 0 as n is increasing to larger values.

Exponential Expansion Sampling. Now suppose sampling from π follows an exponential expanding
process, where a sample can be expressed as vr = (wr, hr, pr) = ((1+ λ)rwd, (1+ λ)rhd, pd) with
an expanding factor λ (assuming λ > 0 without loss of generality) and some r.2 Essentially, the
sample space comprises all fields of view (FOVs) that maintain the same aspect ratio (i.e. wd/hd) and
the same center pd with vd. Assume the sampling is uniform among all possible FOVs in the sample
space, which we denote as πe(·|vd) ∼ U(r ∈ [rmin, rmax]), where rmin and rmax correspond to the
smallest FOV allowed (such as a few pixels) and the largest FOV possible (i.e. the entire original
image v), respectively.

For this sampling distribution, we introduce two moderate assumptions regarding the initial detection
vd. First, the center of the detection is relatively close to the optimum, such that |pd − p∗| < ϵ.
Second, The detection vd and the optimum v∗ share the same aspect ratio, meaning wd/hd = w∗/h∗.
This assumption is reasonable since the optimum is unknown, and we can assume it adheres to the
aspect ratio used by a standard detector.

We begin by deriving the range of r such that vr falls into the small neighborhood B(v∗, ϵ) around
v∗. We need

∥vr − v∗∥ ≤ ϵ (18)

=⇒ (wr − w∗)2+(hr − h∗)2 + (pr − p∗)2 ≤ ϵ2 (19)

=⇒ [(1 + λ)rwd − w∗]2+[(1 + λ)rhd − h∗]2 + (pd − p∗)2 ≤ ϵ2 (20)
...

=⇒ (w2
d + h2

d)

(
(1 + λ)r − wdw

∗ + hdh
∗

(w2
d + h2

d)

)2

≤ ϵ2 − (pd − p∗)2 − h2
dh

∗2

(w2
d + h2

d)
(
wd

hd
− w∗

h∗ )
2

(21)

= ϵ2 − (pd − p∗)2 > 0 (22)

Denoting constants Ca = ϵ2−(pd−p∗)2

(w2
d+h2

d)
and Cb = wdw

∗+hdh
∗

(w2
d+h2

d)
, we get the range of r such that

vr ∈ B(v∗, ϵ) as

max

(
rmin,

log(Cb −
√
Ca)

log(1 + λ)

)
≤ r ≤ min

(
rmax,

log(Cb +
√
Ca)

log(1 + λ)

)
if Cb >

√
Ca

(23)

Or rmin ≤ r ≤ min

(
rmax,

log(Cb +
√
Ca)

log(1 + λ)

)
if Cb ≤

√
Ca

(24)

We further denote this range as r ∈ [Cmin(ϵ, v
∗, vd;λ), Cmax(ϵ, v

∗, vd;λ)], with rmin ≤
Cmin(ϵ, v

∗, vd;λ) < Cmax(ϵ, v
∗, vd;λ) ≤ rmax. Based on the independent uniform sampling

2Besides expansion, this could also be an exponential shrinking process when r is negative. We abuse the
use of “expansion” for both.
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assumption, the probability of the event ¬A that none of the n samples fall into the ϵ-neighborhood
around the optimum B(v∗, ϵ) is

P (¬A) =

(
1− Cmax(ϵ, v

∗, vd;λ)− Cmin(ϵ, v
∗, vd;λ)

rmax − rmin

)n

= (1− Ce(ϵ, v
∗, vd;λ))

n (25)

where we use Ce(ϵ, v
∗, vd;λ) ∈ (0, 1] to denote the constant value depending on ϵ, v∗, vd, λ. Follow-

ing Eq. (10), we then have

hπe
(v∗, n) ≤ δ + (1− Ce(ϵ, v

∗, vd;λ)))
n (26)

where the second term goes to 0 as n is increasing to larger values.

Discussion. In the above, we demonstrated that beginning with the initial detected visual context vd,
under certain mild conditions, acquiring n samples according to a distribution π(·|vd) is an efficient
method for identifying a sample that leads to a small bounded deviation in the token decoding
probabilities from those derived from the optimal visual context v∗. The more samples acquired, the
tighter the bound is. This provides a simple and robust way of approximating the optimum.

Different sampling distributions have distinct characteristics. For normal distribution sampling
πg(·|vd) ∼ N (vd, σ

2I), the variance parameter σ2 determines the spread of the samples and thus
the likelihood of approximating the optimal v∗ within B(v∗, ϵ). For exponential expansion sampling
πe(·|vd) ∼ U(r ∈ [rmin, rmax]) with samples vr = ((1 + λ)rwd, (1 + λ)rhd, pd), the parameter λ
controls the rate of growth for the sampled visual contexts. In practice, we apply discrete integer
values of r to acquire different samples efficiently, thus λ affects the sample coverage of the visual
information around v∗.

The choice of the sampling distribution π is contingent upon factors such as the quality of the
detector Gd, the LVLM backboneMLVLM

θ , the textual query x, and the visual input v. Specifically,
the continuous normal distribution is advantageous for concentrated sampling around vd, which
is particularly effective when the detection perturbation η is small (meaning vd is near v∗). In
contrast, exponential expansion sampling covers an extended range of visual contexts quickly,
which is preferable when limited context information is obtained. In scenarios where significant
underestimation or overestimation in Gd detection is present, the exponential expanding strategy can
discover the optimal visual context more effectively.

E EXPERIMENTS RESULTS

E.1 MORE CHAIR AND POPE RESULTS ON MSCOCO

CHAIR. We also investigate how HALC performs with longer responses, as showed in Fig. 4, where
we plot both the number of generated (dashed) and hallucinated (solid) objects with randomly sample
100 images. This experiment is important to further assess HACL’s robustness, as it is commonly
believed that OH happens more with objects positioned later in the responses (Zhou et al., 2023),
as well as in longer responses (Huang et al., 2023). We observe that HALC is the only method that
can keep even smaller number of hallucinations while the number of generated objects increases,
demonstrating its superior performance and advantageous robustness in reducing OH.

POPE. As all the numbers in Table 2 are averaged results of the three sampling methods (random,
popular and adversarial, as in the original POPE), the complete version of the table is shown in
Table 3. HALC outperforms other methods in most of the settings.
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Figure 4: Comparing four mainstream methods on the ratio of hallucination objects (CHAIRI ) v.s. the number
of max tokens. The right axis (dashed line) indicates the total number of generated objects. HALC outperforms
all other methods by maintaining a low ratio of hallucination with the increasing of generated objects.
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Figure 5: Comparison across OH baselines and SOTAs on four OH-critical MME subsets. All methods adopt
MiniGPT-4 as LVLM backbone. HALC outperforms all other methods with a large margin: existence: +10.7%;
position: +18.3%; color: +19.4% and count: +20.2% in average.

E.2 MME

The Multimodal Large Language Model Evaluation (MME) (Fu et al., 2023) benchmark is a compre-
hensive tool designed to quantitatively compare multimodal LLMs. Following Yin et al. (2023); Leng
et al. (2023), we utilize the “existence” and “count” subsets to evaluate the object existence hallucina-
tions and the “position” and “color” subsets for object attribute and relationship hallucination. The
comprehensive results across six methods are reported in Fig. 5, where HALC significantly outper-
forms all the other methods on each sub-task, indicating an overall performance gain in reducing OH
while preserving generation quality. The numerical results of MME can be found in Appendix H.

E.3 LLAVA-BENCH QUALITATIVE STUDY

LLaVA-Bench (Liu et al., 2023a) is a collection of 24 images, where each image is paired with a
detailed, manually-crafted description and carefully selected questions. The questions are divided
into three categories: simple QA (conversation), detailed descriptions, and complex reasoning. In
this experiment, we leverage LLaVA-Bench as a case study to qualitatively compare the decoding
outputs of HALC with other methods. Results generated by HALC and other OH reduction baselines
incorporating mPLUG-Owl2 (Ye et al., 2023), MiniGPT-4 (Zhu et al., 2023; Chen et al., 2023), and
LLaVA (Liu et al., 2023b) LVLM backbones are shown in Fig. 6, 7 and 8 respectively. In all the plots,
red fonts indicate OH, including any of the object existence, attribute or relationship hallucinations.
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Table 3: Detailed OPOPE results with random, popular and adversarial samplings.

Setting Model Decoding Accuracy Precision Recall F0.2 Score

Random

MiniGPT-4

Greedy 68.30 97.24 37.67 91.67
Beam Search 68.37 96.30 38.20 90.98
DoLa 68.50 97.27 38.07 91.78
OPERA 68.67 96.98 38.53 91.63
VCD 67.10 96.22 35.60 90.30
Woodpecker 69.07 96.99 39.366 91.83
LURE 69.50 96.65 40.4 86.76
HALC 67.90 97.36 40.4 91.74

LLaVA-1.5

Greedy 72.20 97.17 45.73 93.14
Beam Search 71.33 97.48 43.80 93.09
DoLa 72.30 96.78 46.13 92.86
OPERA 71.20 96.76 43.87 92.47
VCD 72.07 96.89 45.60 92.87
Woodpecker 70.83 95.89 43.53 91.65
LURE 71.67 97.24 44.6 93.02
HALC 71.87 97.86 44.73 93.58

mPLUG-Owl2

Greedy 71.27 96.91 43.93 92.62
Beam Search 70.50 97.26 42.20 92.61
DoLa 71.47 96.92 44.33 92.69
OPERA 70.17 96.92 41.67 92.22
VCD 70.93 97.31 43.07 92.81
Woodpecker 70.27 97.99 41.38 93.09
LURE 70.83 96.71 43.13 92.30
HALC 71.50 97.38 44.20 93.07

Popular

MiniGPT-4

Greedy 66.43 88.70 37.67 84.30
Beam Search 67.00 90.09 38.20 85.62
DoLa 66.8 89.50 38.07 85.08
OPERA 66.80 88.65 38.53 84.43
VCD 65.47 65.47 35.60 83.64
Woodpecker 67.37 89.47 39.37 85.29
LURE 67.8 89.38 40.4 85.40
HALC 66.37 90.02 36.80 85.27

LLaVA-1.5

Greedy 70.27 89.79 45.73 86.58
Beam Search 69.80 91.25 43.8 87.6
DoLa 70.43 89.75 46.13 86.60
OPERA 69.63 90.51 43.87 86.95
VCD 70.57 91.08 45.60 87.71
Woodpecker 69.37 90.07 43.53 86.51
LURE 69.63 89.32 44.6 86.00
HALC 70.03 90.74 44.67 87.28

mPLUG-Owl2
Greedy 69.30 89.13 43.93 85.74
Beam Search 68.83 90.27 42.20 86.48
DoLa 69.53 89.35 44.33 85.99
OPERA 69.03 92.02 41.67 87.94
VCD 69.43 91.10 43.07 87.35
Woodpecker 68.58 90.73 41.38 86.75
LURE 69.17 89.99 43.13 86.38
HALC 69.63 89.95 44.20 86.50

Adversarial

MiniGPT-4

Greedy 65.60 85.35 37.67 81.38
Beam Search 66.3 87.21 38.20 83.11
DoLa 65.87 85.74 38.07 81.80
OPERA 66.3 86.66 38.53 82.68
VCD 64.77 85.44 35.60 81.08
Woodpecker 66.88 87.53 39.37 83.60
LURE 67.13 86.82 40.4 83.14
HALC 66.00 88.47 36.80 83.94

LLaVA-1.5

Greedy 69.23 86.30 45.73 83.44
Beam Search 68.47 86.45 43.8 83.33
DoLa 69.33 86.07 46.13 83.30
OPERA 68.37 86.01 43.87 82.95
VCD 69.37 86.91 45.60 83.99
Woodpecker 69.20 89.45 43.53 85.96
LURE 68.7 86.1 44.6 83.13
HALC 69.87 90.21 44.67 86.80

mPLUG-Owl2

Greedy 68.73 87.16 43.93 83.98
Beam Search 68.27 88.17 42.20 84.63
DoLa 68.87 87.02 44.33 83.91
OPERA 68.57 90.22 41.67 86.35
VCD 69.07 89.69 43.07 86.10
Woodpecker 67.85 87.94 41.38 84.29
LURE 67.73 84.91 43.13 81.86
HALC 69.23 88.50 44.20 85.21
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HALC: The image is a painting of a face, resembling the famous
Mona Lisa’s portrait. The painting is done in a modern style,
with a blend of colors and textures. The woman's face is the
main focus of the painting, and her expression appears to be
calm and serene. The background is slightly blurred, adding
depth to the artwork.

Greedy: The image is a painting of a woman, possibly a Mona 
Lisa-style portrait, with a smile on her face. She is wearing a 
necklace and appears to be looking directly at the viewer. The 
painting is set against a backdrop of a mountain landscape, 
adding a sense of depth and beauty to the composition.

OPERA: The image features a painting of the famous Mona
Lisa, a portrait of a woman attributed to the Renaissance artist
Leonardo da Vinci. The Mona Lisa is known for her enigmatic
smile and captivating gaze. The painting is displayed on a wall,
showcasing the artwork's beauty and historical significance.

VCD: The image is a painting of the famous Mona Lisa,
capturing the enigmatic smile of the subject. The artwork is
displayed on a wall, and it features a blue background that
accentuates the painting's colors and the subject's eyes,
making the painting stand out. The Mona Lisa is the central
focus of the artwork, showcasing her famous smile and
captivating gaze.

HALC: The image showcases a beautiful view of a mountain range with a
large, sandy beach in the foreground. The beach is bustling with activity,
with numerous cars and trucks parked along the shore. In the
background, the city can be seen, stretching across the landscape. The
sky above the scene is filled with clouds, adding to the picturesque
atmosphere. The combination of the mountain range, the beach, and the
city creates a captivating and dynamic scene.

Greedy: The image showcases a beautiful view of a mountain range with
a large, sandy beach in the foreground. The beach is bustling with
activity, with numerous people enjoying the sunny day. Some of the
people are standing closer to the water, while others are scattered along
the beach, engaging in various activities. In the background, the
mountain range stretches across the horizon, creating a picturesque
scene. The combination of the sandy beach, the lush green mountains,
and the blue ocean creates a serene and inviting atmosphere.

OPERA: The image showcases a breathtaking view of a mountainous area
overlooked by water. A sandy beach stretches along the coast,
surrounded on three sides by mountains. In addition to the beach, there
are several boats visible in the water, adding to the picturesque scene. A
few people can be seen scattered around the beach, enjoying the
beautiful surroundings. Some of them are closer to the water, possibly
swimming or sunbathing, while others are further back on the beach.

VCD: The image depicts a picturesque view of a mountainous landscape
with a beautiful blue ocean in the background. The ocean water is visible
near the bottom of the image, with a sandy beach extending along the
shoreline. The water appears to be calm and inviting, creating a serene
atmosphere. The mountainous area is characterized by a series of hills
and mountains, with some of them rising steeply and others gently. A
few people can be seen scattered throughout the scene, likely enjoying
the natural beauty of the area.

Figure 6: LLaVA-Bench results comparing HALC and other methods with mPLUG-Owl2 (Ye et al., 2023)
backbone.
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HALC: The image shows a dining table with a
variety of items on it, including a bowl of noodles, a
cup of green tea, and some other dishes. The bowl
is placed in the center of the table, surrounded by
several bowls containing different foods. A cup of
green tea is near the top right corner of the table. A
spoon can be seen resting on the table, close to the
bowl of noodles.

Greedy: The image shows a bowl of noodles with
chopsticks and a spoon on the side. The bowl of
noodles is filled with a variety of ingredients,
including meat, vegetables, and sauce. The
background of the image is a wooden table with a
red and white checkered tablecloth. There are also
two glasses of beer on the table.

OPERA: The image shows a bowl of ramen noodles 
with chicken and vegetables on the side. The bowl 
of ramen noodles has a clear broth with chicken and 
vegetables on the side. The noodles are cooked and 
have a chewy texture. The chicken is cooked and 
has a crispy texture. The vegetables are cooked and 
have a crunchy texture. The table is made of wood 
and has a red and white checkered tablecloth on it.

VCD: The image is a table with a bowl of noodles 
and some vegetables in it. There are also some 
chopsticks on the table. There are two chairs on 
either side of the table, and a vase of flowers on the 
table. The background of the image is a wall with a 
large window with a view of a city street.

HALC: The image is a toy of a dinosaur with glasses
on its face. The dinosaur is made of plastic and has
a red and orange flame on its back. The flame is
made of plastic and has a red and orange color.
The dinosaur is standing on its feet and has a pair
of glasses on its face. The dinosaur has a smiling
expression on his face.

Greedy: The image is a toy of a dinosaur with 
glasses on its face. The dinosaur is made of plastic 
and has a red and orange color scheme. The 
glasses are made of plastic and have a black frame 
and lenses. The dinosaur is standing on its hind legs 
and has a long tail. The image is a toy of a dinosaur 
with glasses on its face. The dinosaur is made of 
plastic and has a red and orange color scheme. 

OPERA: The image is of a toy dinosaur with glasses
on its face. The dinosaur is made of plastic and has
a red and orange flame on its back. The dinosaur is
standing on its hind legs and has a smile on its face.
The image is of a toy dinosaur with glasses on its
face. The dinosaur is made of plastic and has a red
and orange flame on its back. The dinosaur is
standing on its hind legs and has a smile on its face.

VCD: The image is a toy flamingo with a red body
and orange wings. It has a pair of glasses on its
head and is standing on its hind legs. The toy is
made of plastic and has a smooth surface. The
image is a toy flamingo with a red body and orange
wings. It has a pair of glasses on its head and is
standing on its hind legs. The toy is made of plastic
and has a smooth surface. The flamingo has a
cartoonish appearance, with large eyes and a
smiling expression.

Figure 7: LLaVA-Bench results comparing HALC and other methods with MiniGPT-4 (Zhu et al., 2023; Chen
et al., 2023) backbone.
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HALC: The image features a man standing on the
back of a yellow taxi cab, holding a blue white
towel. He appears to be ironing clothes while riding
in the taxi. The taxi is driving down a busy with
other such as a and a car visible in the scene. The
man manages to balance himself on the back of the
taxi, making the scene quite unique and interesting.

Greedy: The image features a man standing on the
back of a yellow taxi cab, holding a blue shirt. He
appears to be ironing the shirt while the taxi is in
motion. The taxi is driving down a busy street, with
other vehicles such as a truck and a car visible in the
scene. Additionally, a traffic light can be seen in the
background, indicating that the taxi is driving
through an intersection.

OPERA: In the image, a man is standing on the back
of a yellow taxi cab, ironing clothes. He is wearing a
yellow shirt and appears to be focused on his task.
The taxi is surrounded by other vehicles, including a
truck on the left side and a car on the right side of the
scene. Additionally, there is a handbag placed near
the center of the scene, possibly belonging to the
man ironing clothes or someone else in the vicinity.

VCD: The image depicts a busy street scene where a
man is standing on top of a car, ironing clothes. He
is positioned towards the center of the scene, and
there are multiple other people visible in the area.
Various vehicles are present on the street, including
a truck on the left side, a bus on the right side.
There are also a few more cars on the right side of
the image, near the background.

HALC: The image features a young boy wearing a suit 
and tie, with a red bow tie. He is wearing glasses 
and has a smiling expression on his face. The boy 
appears to be the main focus of the scene, with the 
rest of the image being blurry. The suit and tie give 
him a formal and polished appearance.

Greedy: The image features a young man wearing a 
suit and tie, with a red bow tie. He is wearing 
glasses and has a smiling expression on his face. The 
man appears to be the main focus of the scene, 
with the rest of the image being blurry. The suit and 
tie combination, along with the red bow tie, gives 
the impression that the man is dressed up for a 
special occasion or event.

OPERA: The image features a young boy wearing 
glasses and a red bow tie, standing in front of a 
building. He appears to be the main focus of the 
scene. The boy is wearing a suit and tie, giving him a 
formal and polished appearance. The building in the 
background adds to the overall setting of the image.

VCD: The image depicts a young boy wearing a blue 
suit with a red bow tie. He is dressed in a business 
suit, and his face is adorned with a pair of glasses. 
The boy has a charming smile and appears to be 
posing for a picture. In the background, there is a 
person partially visible, possibly taking the photo.

Figure 8: LLaVA-Bench results comparing HALC and other methods with LLaVA (Liu et al., 2023b) backbone.
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F DETAILED EXPERIMENTAL SETUPS

The overall experiment settings is reported in Table 4. While the regular greedy decoding follows
this setting, the beam search variant in our experiment essentially applies a token-wise beam search
based on accumulated probability scores of the previous tokens y<t. We use the default code for
implementation of these two baselines in HuggingFace TransformersRepository (Wolf et al., 2020).3

Table 4: Overall Experiment Settings

Parameters Value
Maximum New Tokens (CHAIR) 64
Maximum New Tokens (POPE) 64
Maximum New Tokens (MME) 128
Top-k False
Top-p 1
Temperature τ 1

The complete hyper-parameters for HALC in our experiments in §4 is reported in Table 5. Specifically,
there are four major hyper-parameters that can actively adjust the effectiveness of HALC to adapt to
different task settings:

1. FOV Sampling Distribution: Typically, a normal distribution, which concentrated around
vd, provides a tighter bound under minimal perturbations, while an exponential distribution,
with a more averaged coverage of the sampling space, is preferable when less contexts of
the task is available. Thus to preserve generality in our experiment, we have employed the
exponential distribution with exponential growth factor λ = 0.6.

2. Number of Sampled FOVs n: n determines the number of sampled FOVs in the discretized
FOV space. According to Theorem D.1, while increasing n and adjusting the distribution
parameters can efficiently reduce CS and enhance the robustness against bounded pertur-
bations, it’s notable that the runtime costs also raise with n. Consequently, we set n = 4
across all our experiments.

3. JSD Buffer Size m: For each beam in the overall beam search process (beam size k), our
bi-adaptive visual grounding module samples n visual contexts, which through interpolated
JSD calculation would produce n·(n−1)

2 JSD values in total. Then we select the top m FOV
pairs with relatively large discrepancy to produce contrastive candidate distributions.

4. Beam Size k: The beam size k is set to adjust the diversity and range for HALC to search for
the best candidate captions. Essentially, the global visual matching score module selects the
top k diverse captions from 2m · k text sequence candidates passed from the local adaptive
visual grounding module. While a larger k involves a larger search space and hopefully a
better generation, the runtime cost also raises linearly w.r.t. k. HALC adopts Bootstrapping
Language-Image Pre-training (BLIP) (Li et al., 2022a) for both text and image encoding
when computing their cosine similarity scores. Notably given the global search capability of
our visual matching score module, HALC seeks to preserve a more diverse set of captions
within the beam buffer.

Table 5: HALC Hyperparameter Settings

Parameters Value
Amplification Factor α 0.05
JSD Buffer Size m 6
Beam Size 1
FOV Sampling Exponential Expanding
Number of Sampled FOVs n 4
Exponential Growth Factor λ 0.6
Adaptive Plausibility Threshold 0.1

3https://huggingface.co/docs/transformers
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Regarding the comparison of HALC with SOTAs that are specifically designed for OH mitigation,
we adopt the code, hyper-parameters, and pre-trained models of each method outlined in their
public repositories and papers respectively. Specifically, the hyper-paratermers for DoLa (Chuang
et al., 2023)4 is reported in Table 6; OPERA (Huang et al., 2023)5 is reported in Table 7; and the
hyperparatermers for VCD (Leng et al., 2023)6 is reported in Table 8. For each of these baselines, we
strictly follow their implementations and hyper-parameters as reported in the paper to reproduce their
results.

Table 6: DoLa Hyperparameter Settings

Parameters Value
Repetition Penalty θ 1.2
Adaptive Plausibility Threshold β 0.1
Pre-mature Layers [0, 2 · · · , 32]

Table 7: OPERA Hyperparameter Settings

Parameters Value
Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty Weights 1

Table 8: VCD Hyperparameter Settings

Parameters Value
Amplification Factor α 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Regarding post-hoc correction method woodpecker (Yin et al., 2023)7 and LURE (Zhou et al.,
2023)8, we also strictly follow their implementations and hyper-parameters settings as reported in the
corresponding papers to reproduce their results. For woodpecker, we adopt their original code and
use OpenAI API to access GPT-3.5 Turbo. In average, per 500 images would result in approximately
$4.5 cost. For LURE, we also directly adopt their pre-trained projection layer model (for Minigpt4)
to reproduce the results reported in this paper. All the hyper-parameters are default.

G EMPIRICAL STUDIES ON OPTIMAL VISUAL CONTEXTS

We verify our insight that optimal visual context is important in correcting object hallucination
through an empirical pilot study. Fig. 1 shows the oracle performance of OH levels when we rely on
optimal visual contexts for tokens through brute-force search, with greedy decoding on the MME
benchmark (Fu et al., 2023) on three categories of OH. Specifically, each MME sub-task contains 30
images, and we have followed (Leng et al., 2023) and selected four sub-tasks (including existence,
count, color, position) to evaluate the hallucination in our analysis, in total 110 distinct images. Based
on these images, we manually constructed multiple challenging questions (2-4 per image) that are
likely to induce the LVLM to hallucinate (e.g. some minor objects in the distance or some plausible
but unfaithful objects that are likely to co-occur). Then we take each question as a count unit and
calculate the number of hallucinations on word level (instead of token level) which could attributed
for each of the three main OH sources. Then for each question with a hallucination occurring, we
first search across the original image input using a brutal-force breadth-first algorithms until the
hallucinating token is corrected to be consistent with the ground truth. This process effectively

4https://github.com/voidism/DoLa
5https://github.com/shikiw/OPERA
6https://github.com/DAMO-NLP-SG/VCD
7https://github.com/BradyFU/Woodpecker
8https://github.com/YiyangZhou/LURE
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succeed to retrieve the optimal visual context for 54.0% of the questions. For those questions that fail
this brutal-force search, we further manually select the visual context candidates based on human
priors. In total, 84.5% of the questions that contain these three sources of hallucinations can be
eliminated with an explicit optimal visual prior v∗.

H MME EXPERIMENT DETAILS

The experiment details mostly follow Appendix G, where we adopt each sub-task of 30 images from
MME dataset, and reconstruct the question prompt following OPOPE. Specifically, instead of simply
asking a yes/no question, we first ask the decoder to generate a detailed caption then check whether
the MME-targeted positive/negative word existed in the caption. While this modified offline metric
could lower the score for false negative, we argue this holds fair across all methods. The detailed
results are reported in Table 9.

Table 9: Comparison of Decoder Performances on 4 MME sub-tasks

Decoder Existence Position Color Count Max Tokens Num of Samples

HALC 155 73.33 141.67 93.33 128 110
Greedy 145 63.33 118.33 85 128 110
DoLa 145 60 118.33 85 128 110
Opera 135 56.67 115 80 128 110
VCD 135 70 133.33 70 128 110
LURE 140 60 108.33 68.33 128 110
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