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Abstract

Understanding the comparative performance of L0 and L1 models is crucial for developing
accurate and efficient machine learning systems, particularly in noisy, real-world settings.
The current understanding in the literature is that L1-penalized linear models perform bet-
ter than L0 models as noise increases. However, prior studies have largely relied on small
and synthetic datasets and limited comparisons between differing optimizers, while leav-
ing experimentation reflective of practitioner concerns underexplored. We fill these gaps in
analysis by testing multiple different L0 and L1 approximate optimizers on a larger variety
of real datasets and using a realistic workflow for a practitioner who at the end of the day
values empirical out-of-sample performance. We demonstrate that empirical performance
differences between L0 and L1 models depend significantly on the choice of optimizer and
dataset characteristics. In many cases, the difference in performance by changing the op-
timization algorithm, while leaving the regularization penalty constant, is larger than the
differences in changing the penalty. Together, our results show that L0-penalized approxi-
mate optimizers with early stopping can remain competitive with L1 models even for noisier
datasets and are more viable than previously recognized.

1 Introduction

Methods for sparse regression and classification are useful for a multitude of reasons, especially when con-
fronting problems with a large number of features. Induced sparsity can be important for reducing overfitting
and improving model generalization on unseen data. The regularization reduces the variance of the model
predictions, and this has been demonstrated to improve model generalization on real-world datasets. More-
over, sparsity can reduce required resources, and improve model interpretability. These are some of the
reasons why methods for sparse linear and logistic regression are among the most commonly used tools in
the toolbox for machine learning (Hastie et al., 2015).

The LASSO (Tibshirani, 1996) is a widely used and highly successful regularization method for regression
and classification problems and induces both coefficient sparsity as well as coefficient shrinkage. Its wide
and continued use has led to ongoing studies to implement efficient solvers (Massias et al., 2018).

If we denote by f(θ) the loss function of a regression or classification problem, the LASSO is given by

min
θ

f(θ) + λ1∥θ∥1. (1)

Solutions to the optimization problem naturally induce sparsity – some subset of the coefficients θ will be
zero. In addition, the L1 constraint (or penalty) on

∥θ∥1 =
p∑

i=1
∥θi∥1 (2)

induces shrinkage of the coefficient magnitudes.
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The Best Subset Selection regularization scheme instead uses the L0 pseudo-norm. Therefore, it induces
sparsity but without any shrinkage of the coefficient magnitudes.

It is stated,

min
θ

f(θ) + λ0∥θ∥0 (3)

where

∥θ∥0 =
p∑

i=1
1(θi ̸= 0). (4)

Solving this exactly poses solving a mixed-integer optimization problem. Exact solutions for regression
problems via the leaps and bounds algorithm (Furnival & Wilson, 1974) were available in the leaps and
bestglm packages, but could only solve problems with p ∼ 30 features. Recent advances enabled mixed-
integer optimizers for regression problems such as (Bertsimas et al., 2016) to tackle problem sizes roughly
having a number of samples n ∼ 102 and a number of features p ∼ 104.

There also exist first order methods (Blumensath & Davies, 2009; Bahmani et al., 2013) and second-order
methods (Yuan & Liu, 2017; Zhou et al., 2021; Wang et al., 2021) for approximately solving L0-regularized
problems for regression and classification.

In this manuscript, we revisit and challenge earlier findings applicability to realistic workflows by comparing
several L0-regularized and L1-regularized approximate solvers with early stopping on an extensive selection
of datasets for binary classification, with varying amounts of feature and label noise. We demonstrate that
the choice of optimizer can be equally as important as the choice of regularization class under large levels of
noise, and certain L0-regularized optimizers retain stable performance at moderate levels of noise.

2 Related Studies

Having coefficient shrinkage, the LASSO was believed to be superior to L0-regularization for datasets for
data with a lower signal-to-noise ratio (SNR) (Hastie, 2001). Some evidence was presented to this effect
in previous studies for regression (Hastie et al., 2020) and classification (Dedieu et al., 2021). However,
these studies primarily demonstrated results on simulated data and had very limited results on real datasets.
Hastie et al. (2020) compared L0-regularization and LASSO for regression problems, and only used the
mixed-integer optimization method provided by (Bertsimas et al., 2016) for the L0-regularized model. They
concluded that LASSO gave better test accuracy in the low SNR regime, and worse accuracy in the high
SNR regime, and the transition point in SNR depended on the problem dimensions: the number of training
samples n and number of features p. This work only studied regression problems, rather than classification
problems which are the focus of this manuscript. Moreover, this work performed comparisons exclusively on
simulated/synthetic data, where the underlying data-generating process is known.

On the other hand, Dedieu et al. (2021) studied binary classification problems, which are also the focus
of this manuscript, and compared their optimizer designed to solve the combined L0 + αLq penalty with
LASSO. They found that combined L0+αL2 penalty could outperform LASSO, with the L2 penalty inducing
coefficient shrinkage and reducing variance. Unfortunately, their study did not share any results for the pure
(L0-only) selector, which would have been highly relevant and informative. At a high level, their conclusions
were largely similar to (Hastie et al., 2020), however, these conclusions were based mostly on simulated
datasets with very limited real datasets. The simulated data were generated as multivariate Gaussian features
with various correlation strengths. For comparison on real datasets, they showed only three (Arcene, Dexter,
and Dorothea) taken from the NIPS 2003 Feature Selection Challenge (Guyon et al., 2004).

In contrast, in this study, we compare the performance of approximate L0-regularized methods and L1
methods for a wide set of binary classification problems. In addition, we compare a variety of optimizers
within each regularization class. Additionally, we compare the empirical and practical performance of the
methods on a wide variety of binary classification datasets from https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html at variable SNR. We perform this extensive experimentation on real
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datasets to give guidance that applies to real-world classification problems in which the ground truth data-
generating process is not known. Additionally, these experiments are performed to mimic a typical machine
learning workflow for real-world data: models are optimized on training data, hyper-parameters – including
the optimizer termination criteria – are optimized on held-out validation data, and expected performance is
estimated by performance on held-out testing data. Our experiments challenge the applicability to data sci-
ence practice the prior consensus that the relative strengths and weaknesses of L0-regularization and LASSO
are mostly a function of the SNR and coefficient shrinkage. Moreover, by comparing multiple optimizers for
L0-regularization and LASSO, we also challenge the idea that the cost functions alone are predictive of per-
formance as SNR is varied. Instead, we will show that differences between different approximate optimizers
can be as significant and relevant in determining performance.

3 Experimental Method and Results

In this section, we present comparisons between variants of the Iterative Hard Thresholding (IHT) (Blu-
mensath & Davies, 2009), with momentum (IHTM), and L0Learn (Dedieu et al., 2021; Hazimeh et al., 2023)
L0-regularized optimizers, the optimizer with mixed L0 and L2 penalty from L0Learn, and two LASSO
optimizers: LIBLINEAR (Fan et al., 2008) and SAGA (Defazio et al., 2014), which was based on Stochastic
Average Gradient (SAG) method (Schmidt et al., 2017).

In Iterative Hard Thresholding (IHT) (Blumensath & Davies, 2009): the weights are updated at each iteration
by a projected gradient descent method,

θt+1 = Πk(θt − η∇θf(θt)), (5)

where η is a learning rate, and the operator Πk projects the weights onto the nearest point of the L0 ball
|θ|0 < k. This projection is accomplished by sorting the weights θ by their magnitude and keeping the
k-largest while zeroing the rest:

Πk(θ) = θ′ where θ′
i =

{
θi if |θi| ≥ |θ[k]|
0 if |θi| < |θ[k]|,

(6)

where θ[k] denotes the k-th largest element in the sorted list of |θi| values.

We also extend the Iterative Hard Thresholding method to include a proposal vector given by gradient
descent with momentum (IHTM),

θt+1 = Πk(θt − ηvt), (7)

where
vt ≡ βvt−1 +∇θf(θt)), (8)

with momentum decay parameter β = 0.9.

We also compare the L0-regularized optimizers described in (Dedieu et al., 2021) and implemented in (Haz-
imeh et al., 2023), which we refer to as L0Learn. The L0Learn optimizers use coordinate descent and local
combinatorial search to approximately minimize its objective,

min
θ

f(θ) + λ0∥θ∥0 + λ2∥θ∥2, (9)

together with heuristics including correlation screening and greedy cycling order for computational efficiency.

Our focus is to compare L1 to a method in L0 selection as both are oriented towards some form of “minimum
subset”, and represent two widely studied and used approaches. While many interpolations of these exist,
extensive numerical simulations require we limit ourselves from excessive additional penalties like the Elastic-
Net (which intentionally will select correlated predictors) and Lq penalties for q ∈ (0, 1). We compare the
L0Learn optimizer with both the pure best subset L0 selector as well as a mixed selector which has both
L0 and L2 penalties. We include the mixed L0 and L2 selector to make contact with the authors’ existing
study and recommendations.
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For LASSO, we compare two optimizers: LIBLINEAR (Fan et al., 2008) and SAGA (Defazio et al., 2014).
LIBLINEAR is a widely used library for large-scale linear classification. LIBLINEAR (Fan et al., 2008)
solves L1-regularized logistic regression problems using coordinate descent, where the objective is

min
θ

1
n

n∑
i=1

log
(
1 + exp(−yi · x⊤

i θ)
)

+R(θ),

with R(θ) = λ1∥θ∥1. The algorithm updates one coordinate θj at a time, holding the others fixed. The
update takes the form:

θj ← sign(zj) ·max (0, |zj | − λ1) ,

where zj is the coordinate-wise update derived from the gradient of the smooth loss. This soft-thresholding
operation promotes sparsity and allows LIBLINEAR to scale efficiently to high-dimensional problems.

SAGA (Defazio et al., 2014) is a variance-reduced stochastic gradient method designed for finite-sum prob-
lems. At each iteration, SAGA samples a data point i uniformly at random and computes the gradient of
the loss fi(θt) on that example. It corrects this gradient using stored gradients from previous iterations to
reduce variance, resulting in the update:

θt+1 = proxR
η (θt − η (∇fi(θt)−∇fi(ϕi) + ᾱ)) ,

where ϕi is the previous iterate used to compute ∇fi, and ᾱ is the average of all stored gradients. The
proximal operator is defined as

proxR
η (v) = arg min

θ

{
1
2η
∥θ − v∥2

2 +R(θ)
}

,

and handles non-smooth regularization, in our case the L1-penalty.

Table 1: All the datasets included in comparisons between L0 and L1 optimizers studied.

Dataset # Train # Valid # Test # Features
a1a 624 83 83 123
arcene 88 44 44 10000
australian 512 51 51 14
breast-cancer 362 58 58 10
cod-rna 31732 3979 3979 8
colon-cancer 34 5 5 2000
dexter 300 150 150 20000
diabetes 426 55 55 8
dorothea 156 34 34 100000
german.numer 482 59 59 24
gisette 4786 593 593 5000
heart 198 21 21 13
ijcnn1 9706 8712 8712 22
ionosphere 196 28 28 34
leukemia 22 14 14 7129
liver-disorders 110 100 100 5
madelon 2000 300 300 500
phishing 7884 956 956 68
sonar 162 16 16 60
splice 966 1044 1044 60
svmguide1 2178 2000 2000 4
w1a 144 1407 1407 300
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Select comparisons of L0 Best Subset Selection and L1 LASSO optimizers on a subset of the
datasets studied.

The performance of the optimizers is compared on a wide variety of binary classification datasets from https:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html as well as three datasets from the
NIPS 2003 feature selection challenge, that are all listed in Table 1. The datasets are first balanced by label
via undersampling, and the number of training, validation and test samples in Table 1 are after balancing.
We add noise to the data by two different methods which are plotted separately:

1. we add Gaussian noise with standard deviation σX to the normalized features of each dataset,
allowing us to explicitly vary the amount of noise present in the features not associated with the
true label, or
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2. we flip the binary labels in the dataset with probability py.

These random sources of noise are sampled randomly twenty times. The performance of the optimizers on
the original datasets without added noise is displayed in each figure at the points for which σX = 0 and
py = 0, which is when no feature noise or label noise is added.

We hold out separate validation and test data from the training data. Following a practical/real-world
scenario, in which a practitioner’s primary concern is out-of-sample test performance, each model’s hyper-
parameters are optimized on the validation data with fifty trials of optuna (Akiba et al., 2019).

The hyperparameters include the following: For all methods, the termination conditions are hyperparam-
eterized and optimized. These are the maximum number of iterations, with a ceiling of 1, 000 iterations,
and a convergence tolerance, with a floor of 10−8 and a ceiling of 10−2. For the IHT, IHTM, and L0Learn
methods the integer k, the allowed number of nonzero weights, with a floor of 1 and ceiling of the number
of dataset features, for the LIBLINEAR and SAGA methods the real numbers λ1 for the LASSO penalty.
For the IHT and IHTM methods, the learning rate has a floor of 10−4 and a ceiling of 10−1.

We note importantly that the convergence tolerance parameter is calculated differently by different opti-
mizers. For example, LIBLINEAR checks if the violation of the Karush-Kuhn-Tucker conditions is below
a tolerance (Fan et al., 2008). The original SAGA manuscript (Defazio et al., 2014) does not specify an
early stopping condition, however, the implementation in scikit-learn checks if the maximum relative change
in any of the model weights falls below a tolerance parameter. On the other hand, L0Learn checks if the
relative change in the objective function falls below a tolerance parameter. Finally, the IHT and IHTM
methods check if the relative change in the objective function falls below a tolerance parameter. Given that
all of these optimizers implement different stopping conditions, the only way to compare them in a manner
that is relevant to the practitioner is to let these criteria be independently optimized by the hyperparameter
optimization process on validation data. Ultimately, a practitioner does not care to what degree the opti-
mization has converged to a solution for the training data objective, but instead, values the performance on
unseen test data.

For these figures, the medians are plotted as lines with the interquartile ranges shaded. The gisette (Fig. 1a)
and dexter (Fig. 1b) datasets exhibit the behavior of L0-regularization compared to LASSO that we would
expect based on prior studies as feature noise increases. Namely, for these datasets, there is clear degradation
in the performance of all L0-regularized methods as noise is increased, significantly slower degradation in
the performance of the LASSO methods, and both LASSO methods outperform all L0-regularized methods
at large values of noise.

However, for the w1a (Fig. 1c) dataset, we see behavior that was not anticipated in previous studies; as
feature noise increases, the performance of the L0Learn optimizer on test data degrades more rapidly than
the other optimizers. This is a case where the optimizer makes a larger difference in test performance than
the nominal regularization penalty. The ijcnn1 (Fig. 1d) dataset also exhibits behavior not explained in
previous studies; for even the largest values of added feature noise, the LASSO methods do not overtake the
L0-regularized methods in performance.

For the cod-rna (Fig. 1e) the performance of all methods degrades systematically at large levels of added
noise. There is no performance gap between the LIBLINEAR and SAGA L1 methods and the IHT and
IHTM L0 methods as feature noise increases. However, both of the L0Learn optimizers perform much worse
- again, a case where the optimizer yields a much larger difference in test performance than the regularization
penalty. Finally, for the dorothea (Fig. 1f) the performance of both the IHT and IHTM methods remains
stable as feature noise is increased.

Now, we discuss the behaviors on individual datasets as the label noise is increased. For certain datasets,
such as a1a (Fig. 1g) and cod-rna (Fig. 1h) datasets among others, as label noise increases, all models
degrade in test performance. However, for these datasets, no hierarchy develops of L1 over L0 models. For
the ijcnn1 (Fig. 1i) dataset, the performance gap between the L0Learn L0 optimizer performs very similarly
to the LIBLINEAR and SAGA L1 optimizers, with a systematic gap in performance to the IHT and IHTM
L0 optimizers. This is again a case where the differences between optimizers of the same regularization class
are the more significant effect.

6



Under review as submission to TMLR

From these comparisons, we find the absence of a simple pattern or ‘story’ between L0-regularization and
LASSO as it pertains to the effect of coefficient shrinkage and data noise; on the contrary, the performance
differences among the different L0-regularized optimization methods IHT, IHTM, and L0Learn, or between
LIBLINEAR and SAGA LASSO optimizers, are often as large or larger than the differences between L0 and
L1 methods.

(a) Test accuracy as a function of added feature
noise.

(b) Test accuracy as a function of added label
noise.

Figure 2: The test accuracy performance (the median taken over datasets) for each optimizer as a function
of added feature noise (a) and label noise (b).

In Fig. 2a we show plots demonstrating the performance of each optimizer over all datasets studied as feature
noise is varied. At the very largest levels of added feature noise (σX = 0.5), there is weak evidence to the
previous understanding. That is, both LIBLINEAR and SAGA L1 optimizers have test performance which
is systematically slightly higher than all of the L0 optimizers, including L0Learn’s mixed L0 + L2 penalty.
However, these are not statistically significant given the large interquartile spread across datasets.

However, the fact that the L0 + L2 penalty (with coefficient shrinkage) does not systematically improve
performance at the largest levels of noise with respect to all pure L0 methods is surprising. This is contrary
to the L0Learn GitHub page, which ‘strongly recommends’ using the mixed penalty, justified by the same
concerns regarding SNR and overfitting without shrinkage (Hazimeh et al., 2023). In Fig. 2b we show plots
demonstrating the performance of each optimizer over all datasets studied as label noise is increased. The
performance of all methods systematically degrades with increased label noise, but again with no statistically
significant performance gap between L0 and L1 methods.

In Fig. 3a we show plots demonstrating the sparsity, measured by the number of nonzero weights, of each
optimizer over all datasets studied as feature noise is varied. Overall, we see that L0 methods tend to
produce sparser (fewer nonzero weights) models than both L1 methods. The sparsest models are produced
by the L0Learn L0 optimizer. But even the Iterative Hard Thresholding method produces sparser models
than either L1 solver.

In Fig. 3b we show plots demonstrating the sparsity, measured by the number of nonzero weights, of each
optimizer over all datasets studied as label noise is varied. Overall, the situation is similar to the previous
one. L0 methods are sparser on average, with L0Learn’s optimizer producing the sparsest models.

In Fig. 4a we plot the relative (dis)advantages of LASSO methods and L0-regularized methods from a typical
model selection perspective. This is calculated as follows. For each dataset, we take the top-performing
L0 method by validation accuracy and the top-performing L1 method by validation accuracy. The test
accuracy and number of nonzero weights (NNZ) for each are saved. Then we compute ratios: the L1 sparsity
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(a) Model sparsity as a function of added fea-
ture noise.

(b) Model sparsity as a function of added label
noise.

Figure 3: Model sparsity (measured by the number of nonzero weights, median over datasets) and optimizer
performance as a function of added feature noise (a) and label noise (b).

L0 sparser and
more accurate

L1 sparser and
more accurate

(a) Datasets without added noise.

L0 sparser and
more accurate

L1 sparser and
more accurate

(b) Datasets with the largest added feature
noise.

Figure 4: Comparison of the best-performing L0 and L1 optimizers in terms of sparsity and test performance.
(a) Results for datasets without added noise. (b) Results for datasets with the largest amount of added feature
noise.

advantage w.r.t. L0 is given NNZL0/NNZL1 (less nonzero weights is more sparse and more desirable), and
the L1 accuracy advantage w.r.t. L0 is given Test Acc.L1/Test Acc.L0 . We can read this plot as follows: In
the left half, the best L1 method produces a less sparse model than the best L0 method, while in the right
half, it produces a more sparse model than L0. In the top half, the best L1 method is more accurate than
the best L0 method, while in the bottom half, it is less accurate.

We see that, for some datasets, the best L1 method is slightly more accurate and slightly less sparse than
the best L0 method, and for many datasets, the accuracy performance is quite similar. Similarly, in Fig. 4b
we plot the relative (dis)advantages of LASSO methods and L0-regularized methods from a typical model
selection perspective, but now on the datasets with the largest amount of added feature noise σX = 0.5.
Interestingly, in this case, where the data have a large amount of feature noise, the LASSO tends to be
more accurate but usually still at the expense of being less sparse. So although both sparsity and coefficient
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shrinkage are sources of regularization, the best-performing LASSO method usually favors more nonzero
coefficients with smaller magnitudes rather than fewer nonzero coefficients with larger magnitudes.

(a) Average runtime for each hyperparameter
study of 50 trials of each optimizer on the a1a
dataset, with added feature noise standard de-
viation σX .

(b) Average runtime for each hyperparameter
study of 50 trials of each optimizer on the a1a
dataset, with added label noise with probabil-
ity py.

Figure 5: Average runtime for each hyperparameter study of 50 trials of each optimizer on the a1a dataset
as a function of added feature noise (a) and label noise (b).

Finally in Fig. 5 we compare the average runtime for a single hyperparameter optimization experiment of 50
trials on the a1a dataset across the optimizers. We choose to measure the optimizer runtime performance in
this manner to simulate the compute cost a practitioner (who must perform such a study because a priori they
do not know the optimal hyperparameters) would require. Each hyperparameter experiment is performed
on a single Intel Xeon CPU E7-8890 v4 @ 2.20GHz processor. The average runtime for each experiment
is similar for all optimizers except LIBLINEAR, which is roughly six times more expensive for the original
dataset. As noise is added to the features, the LIBLINEAR termination conditions trigger quickly, leading
to a runtime that is faster than all others. As the amount of label noise is added, however, the LIBLINEAR
optimizer remains between two and six times more expensive than the rest.

4 Conclusion

This manuscript provides a thorough evaluation of sparse learning techniques, challenging the applicability
of common assumptions about LASSO and Best Subset Selection approximations across real-world datasets.
Our experiments show that the strengths and weaknesses of these methods vary significantly, especially
under different noise levels.

A key insight is that optimizer-specific behaviors can heavily influence performance, both in terms of test
accuracy and model sparsity, sometimes more than the choice between L1 and L0 regularization. This
underscores the importance of considering the interactions of both the regularization and the optimization
strategy with noise in the data in practice.

Our results indicate that the traditional view linking sparse learning performance primarily to SNR and
coefficient shrinkage may be too simplistic to provide guidance applicable to practitioners operating on real
noisy data. The choice of optimizer plays a critical role, with varied performance under the same noise
conditions. Typically, when the best L1 optimizer is more accurate, it is also less or equivalently sparse.
This study offers actionable insights through a thorough comparison across multiple datasets and optimizers.
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