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Abstract
This study introduces a mathematical modeling framework specifically designed for electric vehicles (EVs) to tackle intricate 
challenges in real-world transportation scenarios, focusing on two critical areas: parking optimization and vehicle schedul-
ing. The first component centers on developing a mathematical model for optimizing vehicle placement within parking lots 
to minimize maneuvering costs that significantly impact parking efficiency. This model enhances the overall effectiveness 
of parking space utilization by strategically determining vehicle positioning. The second aspect addresses idle time mini-
mization for charging electric vehicles through the idle time minimization for electric vehicle charging scheduling model. 
This mathematical model efficiently schedules multiple EVs by dynamically assigning charging slots based on arrival and 
departure times and the charging station's capacity, thereby reducing waiting time and improving the charging infrastruc-
ture's efficiency. The real-time vehicle scheduling optimization model also focuses on the dynamic management of vehicle 
scheduling, assigning vehicles to service tasks while considering vehicle availability, time constraints, and energy levels. 
Numerical examples are provided to substantiate the proposed models, illustrating their practical applications and validating 
their reliability and effectiveness in optimizing vehicle management systems. The study concludes by examining the spatial 
distribution of vehicles and ideal assignments, demonstrating how these mathematical models facilitate informed decision-
making in real-time, ultimately contributing to enhanced operational efficiency in vehicle management systems.

Keywords  Electric vehicles · Charging scheduling · Mathematical modeling · Optimization · Mathematical programming

1  Introduction

Parking lot optimization is critical in urban planning and 
transportation management, particularly in densely popu-
lated areas with limited parking space and high demand 
(Parmar et al. 2020; Dudaklı and Baykasoğlu 2024). Effi-
cient parking space utilization enhances drivers' convenience 

and reduces traffic congestion, environmental pollution, and 
urban sprawl (Litman 2020). However, traditional parking 
lot design and management methods often need to improve 
to maximize the efficiency of available space. The scope of 
this study centers around optimizing parking lot manage-
ment by developing a mathematical model that addresses 
both vehicle placement and EV charging schedules (Selvik 
et al. 2022; Abdelmoumene et al. 2024). These mathemati-
cal models are designed to minimize various cost functions, 
including maneuvering costs, idle time, and fuel consump-
tion, while also integrating real-time dynamic management 
for effective parking space utilization.

In recent years, there has been growing interest in apply-
ing mathematical modeling techniques to address the chal-
lenges of parking lot optimization (Shen et al. 2019; Zhang 
et al. 2023). By employing mathematical models, research-
ers and practitioners can analyze various factors influencing 
parking lot efficiency, such as vehicle placement, traffic flow, 
and user behavior (Shen et al. 2019; Łach and Svyetlichnyy 
2024). Moreover, these models enable the formulation of 

 *	 Wajahat Ali 
	 gk2721@myamu.ac.in

	 Shakeel Javaid 
	 sjavaid.st@amu.ac.in

	 Sheema Sadia 
	 sadia.sheema63@gmail.com

	 Naseem Abidi 
	 drabidi@yahoo.com

1	 Department of Statistics and Operations Research, Aligarh 
Muslim University, Aligarh 202002, India

2	 Skyline University College, Sharjah, UAE



	 Life Cycle Reliability and Safety Engineering

optimization algorithms aimed at minimizing different cost 
functions, including travel time, congestion, fuel consump-
tion, and environmental impact. In the landscape of modern 
urban development, the management of parking facilities is 
a pivotal challenge, influencing the flow of vehicular traffic 
and the overall efficiency and sustainability of transporta-
tion networks (Louati et al. 2024). With the proliferation 
of vehicles in urban areas, the demand for parking spaces 
has surged, exacerbating issues such as congestion, emis-
sions, and inefficient resource allocation (Kong et al. 2023). 
In response to these pressing challenges, optimizing vehicle 
placement within parking lots has emerged as a critical area 
of focus for researchers, policymakers, and urban planners 
alike (Kirschner and Lanzendorf 2020; Fadhel et al. 2024). 
This research embarks on a journey to explore the intricacies 
of parking lot management through the lens of mathematical 
modeling, with a primary objective of minimizing various 
cost functions associated with this domain.

For instance, Zhao et al. (2024) proposed a real-time EV 
charging scheduling model using ordinal optimization to 
manage charging flexibility efficiently. Similarly, Beermann 
(2024) introduced a war strategy optimization algorithm to 
optimize EV charging operations, focusing on minimizing 
delays and costs. Zhao and Liang (2023) developed a smart 
grid-based framework incorporating reinforcement learning 
to address dynamic EV charging and discharging schedules. 
Moreover, Salam et al. (2024) emphasized the importance of 
integrating real-time traffic data with charging schedules to 
enhance operational efficiency. These studies highlight the 
growing recognition of dynamic management in EV-related 
optimization while underscoring the need for comprehensive 
models that integrate real-time factors effectively (Veza et al. 
2024; Sumitkumar and Al-Sumaiti 2024).

The primary focus is on creating a comprehensive frame-
work that improves the efficiency of traditional parking lot 
systems and enhances the operational performance of EV 
infrastructure. The study aims to optimize static parking 
allocation and dynamic, real-time vehicle scheduling in 
urban environments. This research holds significant practi-
cal implications for urban planners, transportation authori-
ties, and policymakers (Orieno et al. 2024; Choudhary et al. 
2024). By improving space utilization and reducing ineffi-
ciencies, the study alleviates traffic congestion, lowers emis-
sions, and promotes more sustainable urban transportation 
networks (Jamadar et al. 2022; Lv and Shang 2023; Adnan 
et al. 2024). Moreover, integrating EV charging management 
aligns with the global push toward greener cities. As cities 
grow and evolve, the need for effective strategies to opti-
mize parking resources becomes increasingly urgent (Singh 
2023). Real-time data in parking management allows for 
dynamic adjustments based on vehicle flow and demand, 
further enhancing system adaptability (Jamadar et al. 2023a, 
b). The model also provides a scalable solution, making it 

applicable to various urban settings and adaptable to evolv-
ing technologies, such as autonomous vehicles.

By delving into mathematical modeling, we aim to 
harness the power of quantitative analysis to unravel the 
complexities inherent in parking lot management. The 
mathematical modeling offers a systematic and rigorous 
framework for understanding the dynamics of parking facili-
ties, enabling us to formulate optimization problems that 
address key factors such as space utilization, traffic flow, and 
environmental impact (Lee et al. 2023). At the heart of this 
research lies the recognition that traditional approaches to 
parking lot management often need to be revised to address 
the multifaceted challenges urban centers face. The conven-
tional methods based on heuristic rules or intuitive deci-
sion-making need more precision and scalability to optimize 
parking resources in a rapidly changing urban environment 
(Feng et al. 2022). By contrast, mathematical modeling pro-
vides a principled approach to problem-solving, allowing 
us to formulate and solve optimization problems with clear 
objectives and constraints (Tian et al. 2024). We propose 
a mathematical model for vehicle placement to minimize 
maneuvering costs, applied to two mathematical models: 
optimizing electric vehicle charging schedules to reduce idle 
time and dynamically managing vehicle assignments in real 
time. Our results demonstrate significant improvements in 
EV charging efficiency and real-time vehicle scheduling, 
highlighting the model's practical applicability and effec-
tiveness. Figure 1 illustrates a parking layout consisting of 
three rows of parking spaces, with four stacks allocated to 
each row. This configuration provides a visual representation 
of the spatial arrangement that will be analyzed and opti-
mized in the context of the proposed mathematical modeling 
approach for parking lot optimization.

Through this study, we seek to advance state-of-the-
art parking lot management by developing mathematical 
models that minimize different cost functions relevant to 
various optimization domains. By optimizing vehicle place-
ment within parking lots to minimize these costs, we aim to 
enhance urban transportation networks' overall efficiency, 
sustainability, and user experience (Alho et al. 2018; Jama-
dar et al. 2023a, b). Although extensive research has been 
conducted on parking lot optimization, a significant gap 
remains in integrating EV charging schedules with real-
time dynamic vehicle management. Previous studies have 
focused mainly on static optimization for traditional vehi-
cles, neglecting the complexities introduced by EVs and 
real-time scheduling demands.

The paper is organized as follows. Section 2 explains the 
literature review of the proposed problem. Section 3 devel-
oped a mathematical model and its numerical illustration. 
Section 4 discussed the methodology part of the proposed 
study. Section 5 shows the case of the mathematical model 
and its numerical illustrations, while Sect. 6 discuss the 
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managerial and practical implications. Finally, Sect. 7 dis-
cusses the conclusion, discussion and future direction.

2 � Literature review

The literature review is divided into two sections to com-
prehensively understand different aspects of the proposed 
problem. Each subsection focuses on a specific topic relevant 
to the research, namely the role of EVs in the transportation 
sector and efficient parking methods, and energy manage-
ment systems in transportation.

2.1 � Role of EVs in the transportation sector 
and efficient parking methods

EVs are increasingly pivotal in revolutionizing the transpor-
tation sector (Patil 2021). As society seeks to reduce green-
house gas emissions and combat climate change, EVs offer 
a promising solution by providing a cleaner alternative to 
traditional internal combustion engine vehicles (Rossi and 
Bianchi 2024). Improvements in battery technology have 
led to longer driving ranges and quicker charging periods 
for EVs, making them more feasible for daily usage (Ghosh 
2020; Aijaz and Ahmad 2022). Additionally, governments 
everywhere are putting policies into place to encourage 
the adoption of EVs, such as infrastructure expenditures in 
charging stations, tax reductions, and subsidies (Qadir et al. 
2024).

According to Kouhi and Moradi (2024) and Aldhanhani 
et al. (2024), a new method was proposed to efficiently park 
multiple vehicles, focusing on space optimization and safety. 

The method utilizes connected fifth-degree polynomials and 
genetic algorithms to plan the optimal vehicle paths, ensur-
ing smooth and collision-free movements within parking 
lots. The mathematical model accounts for vehicle dynam-
ics, predicting real-time movements to avoid collisions while 
reducing parking time. By framing the problem as an optimi-
zation task, the researchers successfully minimized vehicle 
maneuvering time and maximized the efficiency of parking 
spaces. In addition, the model incorporated real-world con-
straints such as vehicle speed and turning radii, making it 
more applicable to practical scenarios. On a similar note, 
Mirzaei and Kazemi (2020) and Squalli (2024) developed 
a model for planning EV parking lots, considering electri-
cal constraints like current flow and voltage limits at differ-
ent locations. Their approach ensures optimal parking and 
energy efficiency, preventing potential overloads on the grid, 
which is crucial for large-scale EV adoption. These studies 
highlight the importance of integrating parking infrastruc-
ture with energy management systems to achieve sustainable 
and efficient operations.

Beyond the above consideration, the pivotal research 
established by Hadian et al. (2020) developed a planning 
model for EV charging stations that balances electricity 
demand. They used a combination of optimization algo-
rithms and simulation to schedule EV charging and discharg-
ing efficiently. Liu et al. (2020) proposed a new method for 
effectively managing intelligent parking lots that use hydro-
gen storage, particularly in uncertain environments where 
power prices fluctuate. Hossain et al. (2023) and Niri et al. 
(2024) examined the approaches of various groups involved 
in the EV battery industry, including government agencies, 
mining companies, and vehicle and battery manufacturers, 

Fig. 1   Parking layout with three spaces and four stacks each
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to address the challenge of reducing carbon emissions from 
transportation while meeting sustainability goals. Zeb et al. 
(2020) and Carey (2023) demonstrated the effective use of 
all three EV chargers to handle EV charging needs while 
reducing costs, power losses, and strain on distribution 
transformers. They developed a model that predicts hourly 
EV charging demand by considering vehicle arrival and 
departure times and distances traveled. Sun et al. (2023) 
and Zahoor et al. (2023) investigated the interconnections 
between factors such as EV usage, economic growth, urban 
development, renewable energy consumption, population 
size, and carbon dioxide emissions in five major countries: 
the USA, China, France, Germany, and Norway.

A new method for determining the optimal size of energy 
storage systems for EV parking lots and DGs in modern dis-
tribution networks was created by Abo-Elyousr et al. (2022). 
In these types of problems, various advanced optimization 
algorithms were used to optimize the different objectives 
subject to the constraint. Ahmad et al. (2022) investigated 
different methods proposed by researchers to identify opti-
mal locations for EV charging stations. They evaluated 
these solutions using various techniques, including Chance 
constraint programming, GA, and NSGA-2. Shareef et al. 
(2016) conducted a comprehensive review of EV charging 
technologies and their impact on society. They discussed the 
optimal placement and size of EV charging stations in dif-
ferent environments. Chen et al. (2013) analyzed data from 
over 30,000 personal trips to determine the locations and 
durations of public parking. Using mathematical program-
ming and data analysis, they created mathematical equa-
tions to predict parking demand and optimally assigned 
locations for EV charging stations. The aim was to reduce 
the expenses for EV users to access charging stations while 
ensuring sufficient charging demand.

2.2 � Energy management systems in transportation

Energy management systems in transportation play a crucial 
role in optimizing the utilization of energy resources and 
enhancing the efficiency of various transportation modes, 
particularly in the context of EVs and microgrids (Sami 
et al. 2021; Khan et al. 2024). These systems encompass a 
range of technologies and methodologies aimed at managing 
energy consumption in transportation networks. Integrating 
renewable energy sources, advanced control optimization 
algorithms, and energy management systems enables the 
effective management of EV charging infrastructure, balanc-
ing supply and demand while minimizing costs and environ-
mental impact (Li et al. 2020; Kumar et al. 2023).

Apart from this, Ghadikolaei et al. (2024) developed a 
new MOPSO-HS system to manage energy in a microgrid 
under an uncertain environment. The system considers 
renewable energy sources, parking lots, and variations in 

energy demand. MOPSO-HS is an algorithm that combines 
two existing algorithms, mutant multi-objective particle 
swarm optimization, and harmony search, to manage energy 
in the microgrid. They developed a method to efficiently 
manage energy in a small-scale power grid, even when 
there is uncertainty regarding factors such as renewable 
energy availability and fluctuating energy demand. Zanvet-
tor et al. (2022) investigated the energy pricing in parking 
lots for EVs, mainly when the number of vehicles and their 
charging times are uncertain. They proposed a novel pric-
ing strategy that guarantees a daily profit for the parking lot 
with a high level of confidence. Betkier et al. (2021) and 
Trinko et al. (2023) proposed a new mathematical model 
for transporting vehicles carrying hazardous, oversized, or 
valuable cargo within a transportation network. The method 
was implemented into a computer program using the Neo4j 
graph database, enabling the analysis and assessment of 
these routes.

However, on the other hand, Park and Choi (2021) pro-
posed a new control method for electric four-wheel drive 
vehicles using model predictive control. The method con-
siders vehicle constraints, predicts future movement, and 
provides stable control inputs for path tracking. Additionally, 
they developed a more efficient algorithm for linear pro-
gramming and optimized torque distribution for improved 
performance. Mozaffari et al. (2020) developed an algorithm 
to predict EV behavior and estimate the number of EVs at 
charging stations. They formulated a model to optimize 
the placement of charging stations and upgrade the power 
grid, considering various stakeholders' needs. They also 
developed a simplified energy consumption model for EVs 
at charging stations, aiding future infrastructure planning. 
Abapour et al. (2019) proposed a strategic and forward-look-
ing approach for planning distributed generation systems and 
EV parking facilities while considering demand response 
(DR) programs. They used Stackelberg game theory to 
model the interaction between the distribution company 
and customers participating in DR initiatives. Mortaz et al. 
(2019) developed a mathematical model to decide where 
and how large vehicle-to-grid (V2G) facilities should be in 
a microgrid. They proposed a novel approach for identify-
ing the most suitable location and size of parking facilities 
that integrate V2G technology into a microgrid connected 
to the primary power grid. Shafie-Khah et al. (2017) pro-
posed a model for EV parking lot operators to participate in 
energy markets while considering uncertainties in EV owner 
behavior. Yi and Bauer (2016) addressed the challenge of 
identifying optimal locations for charging stations in urban 
areas. They focused on two primary objectives: maximiz-
ing the accessibility of charging stations to households and 
minimizing energy costs associated with electric transpor-
tation. Furthermore, they also proposed a decision-making 
framework that considers factors related to energy efficiency 
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and household accessibility to enhance overall electric trans-
portation infrastructure planning.

Given this importance, the potential research study of 
Bagula et al. (2015) and Sirbiladze et al. (2022) proposed 
a method for determining the optimal locations of nodes in 
wireless sensor networks, specifically for intelligent parking 
systems. They proposed a precise solution method based 
on integer linear programming to address this issue effec-
tively. Fazelpour et al. (2014) studied the optimal design 
and placement of a distributed generation (DG) system in an 
electrical grid to enhance voltage stability and reduce power 
loss. They examined selecting a hybrid renewable energy 
system that connects to the grid to meet the DG system's 
requirements. Ko and Jang (2013) examined the potential 
of the online electric vehicle (OLEV) system as a future 
public transportation option in South Korea. They proposed 
a mathematical model and optimization approach to deter-
mine the optimal placement of power transmitters and bat-
tery size for the OLEV-based mass transit system. Su and 
Chow (2011) proposed an efficient method for controlling 
multiple plugin hybrid EVs charging at a municipal parking 
station. The method considers factors such as energy cost, 
the current charge level of each vehicle, and the remaining 
charging time.

Although considerable advancements have been made in 
optimizing EV parking and charging infrastructure, signifi-
cant gaps remain. Existing models primarily focus on static 
optimization, often overlooking the dynamic and real-time 
complexities of vehicle scheduling and charging management 
(Tan et al. 2022; Elghanam et al. 2024). Moreover, many stud-
ies must fully account for integrating vehicle parking optimi-
zation and energy management in scenarios where real-time 
decision-making is crucial (Jamadar et al. 2023a, b; Abdel-
moumene et al. 2024). Additionally, the optimization meth-
ods in these studies often fail to address the idle time during 
charging, which can significantly affect the overall efficiency 
of EV charging stations. This research contributes by address-
ing these gaps by developing two novel mathematical models. 
The ITMEVCS model aims to minimize idle time in charging 
schedules, dynamically optimizing charging slot assignments 
based on EV arrival and departure times. The RTVSO model, 

on the other hand, focuses on real-time vehicle scheduling, 
optimizing vehicle assignments to service requests by consid-
ering vehicle availability, energy levels, and time constraints. 
These models, validated through numerical illustrations, 
offer practical solutions for real-world EV management chal-
lenges, ensuring efficient parking and charging while reducing 
operational costs and improving decision-making in dynamic 
environments.

3 � Formulation of the mathematical model

3.1 � Mathematical model 1

In the initial part of this section, the notations are outlined and 
presented in Table 1. Following this, mathematical modeling 
is introduced and elaborated.

Equation (1) calculates and minimizes the total maneuver-
ing cost of the proposed mathematical model.

Constraint (2) indicates that each vehicle must be parked 
exactly once. No vehicle can be parked in multiple positions, 
and each must be assigned to a parking position.

Constraint (3) indicates that each parking space in the pro-
posed model can accommodate at most one vehicle in a given 
position. There are no overlaps or conflicts in vehicle positions 
within the parking area.

Constraint (4) indicates that vehicles can only be removed 
in the order they are parked, preventing the situation where a 
vehicle parked behind another must be removed first.

(1)Z1 =
∑

i∈I

∑

j∈I

∑

k∈K

∑

l∈L

dij.xijkl

(2)
∑

j∈I

∑

k∈K

∑

l∈L

xijkl = 1 for i ∈ I

(3)
∑

i∈I

xijkl ≤ 1 for j ∈ J, k ∈ K, l ∈ L

(4)
∑

k∈K

∑

l∈L

dij.xijkl ≤
∑

k∈K

∑

l∈L

di(j+1).xi(j+1)kl for i ∈ I, j ∈ J

Table 1   Notations of 
mathematical model 1 Sets

I Set of vehicles,i = 1,2,… .., |I|

J Set of stacks, j = 1,2,… .., |I|

K Set of positions in each stack,k = 1,2,… .., |K|

L Set of parking spaces,l = 1,2,… .., |L|

Decision variables
xijkl Binary variable indicating whether vehicle i is parked in stack 

j , position k , parking space l
Parameters
dij Distance or maneuvering cost to remove vehicle i from stack j
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Equation  (5) represents the binary constraints of the 
mathematical model.

This generalized model can be customized by providing 
specific values for the maneuvering cost ( dij ) based on the 
layout and characteristics of the parking lot. The objective 
is to determine the optimal placement of vehicles that mini-
mizes the overall maneuvering cost.

3.2 � Numerical illustration and analysis

An organization in a bustling city center grapples with ineffi-
ciencies in its parking lot. With limited space and a constant 
stream of vehicles, the parking manager faces a significant 
challenge in optimizing the placement of cars to minimize 
maneuvering efforts during vehicle removal. The parking lot 
comprises three spaces ( X , Y  , and Z ) and three stacks ( A , B , 
and C ). Eight vehicles arriving at a different time must be 
strategically placed to avoid unnecessary maneuvers during 
departure. An optimization model is proposed to identify the 
optimal vehicle configuration within a parking lot to mini-
mize the total maneuvering cost.

L e t ,  S e t s :  I = {1, 2,3, 4,5, 6,7, 8}, J = {A, B, C},
L = {X, Y, Z} , Maneuvering Costs: Let us assume the 

maneuvering costs dij for removing vehicle i from stack j 
are as follows:

d1A = 1 , d2A = 2 , d3A = 3 , d4A = 4 , d5A = 5 , d6A = 6 , 
d7A = 7 , d8A = 8

d1B = 2 , d2B = 3 , d3B = 4 , d4B = 5 , d5B = 6 , d6B = 7 , 
d7B = 8 , d8B = 9

d1C = 3 , d2C = 4 , d3C = 5 , d4C = 6 , d5C = 7 , d6C = 8 , 
d7C = 9 , d8C = 10

Equation  (6) calculates the minimization of the total 
maneuvering cost of the proposed mathematical model 1.

Constraint (7) states that each vehicle must be parked 
exactly once.

Constraint (8) represents each parking space that can 
accommodate at most one vehicle at a given position.

(5)xijkl ∈ {0,1} for i ∈ I, j ∈ J, k ∈ K, l ∈ L

(6)Z =

8
∑

i=1

∑

j∈{A,B,C}

∑4

K=1

∑

l∈{X,Y ,Z}

dij.xijkl

(7)
∑

j∈{A,B,C}

∑4

k=1

∑

l∈{X,Y ,Z}

xijkl = 1 for i ∈ {1,2, .., 8}

(8)
∑8

i=1
xijkl ≤ 1 for j ∈ {A,B,C}, k ∈ {1,2, 3,4}, l ∈ {X,Y ,Z}

Constraint (9) indicates that vehicles can only be removed 
in the order they are parked.

Equation (10) shows the binary constraints of the pro-
posed mathematical model 1.

In this proposed numerical example, Table 2 shows the 
optimal solutions for vehicle placement in the parking lot 
using the Pulp optimization library in Python.

The optimization model successfully achieved opti-
mal vehicle placement in the parking lot, resulting in total 
maneuvering costs 36.0. The solution status was deemed 
optimal. The configuration indicates that Vehicle 1 is parked 
in Stacks A, Position 1, and Space Y, followed by strategi-
cally arranged placements for Vehicles 2 to 8. This optimal 
arrangement streamlines the parking process and minimizes 
the overall maneuvering efforts required for vehicle removal. 
These results offer valuable insights for the parking man-
ager, enhancing the efficiency of the parking system and 
exemplifying the effectiveness of mathematical optimiza-
tion in addressing real-world challenges. Figure 2 illustrates 
the optimal placement of the eight EVs in the parking lot, 
ensuring efficient use of space and accessibility to charg-
ing stations. The arrangement maximizes the parking lot's 
capacity while facilitating smooth entry and exit for each 
vehicle based on arrival and departure times.

4 � Proposed methodology

In this study, we tackled several challenges in parking lot 
management and real-time vehicle scheduling optimization 
by developing three distinct mathematical models. Leverag-
ing the Pulp optimization library in Python, each model was 
formulated and solved to address specific objectives.

(9)

4
∑

K=1

∑

l∈{X,Y ,Z}
dij.xijkl ≤

4
∑

K=1

∑

l∈{X,Y ,Z}
di(j+1).xi(j+1)kl

for i ∈ {1,2, .., 7} j ∈ {A,B,C}

(10)xijkl ∈ {0,1} for i ∈ {1,2, .., 8}, j ∈ {A,B,C}, k ∈ {1,2, 3,4}, l ∈ {X, Y , Z}

Table 2   Optimal solution for vehicle placement in the parking lot

Vehicle Stacks Position Space

1 A 1 Y
2 A 3 X
3 A 2 X
4 A 4 Y
5 A 2 Z
5 A 4 Z
7 A 3 Z
8 A 4 X
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Firstly, we addressed the issue of optimizing vehicle 
placement in a parking lot with three spaces and four 
stacks to minimize inefficiencies associated with vehicle 
removal. Formulating a mathematical model using linear 
programming, we defined decision variables for vehicle 
placement and considered constraints on parking space 
capacities and sequential removal order. By implement-
ing the model with Pulp, we obtained the optimal con-
figuration of vehicles, significantly reducing the overall 
maneuvering efforts required for vehicle removal. Next, we 
focused on minimizing idle time for electric vehicle charg-
ing scheduling (ITMEVCS). Formulating a mathematical 
optimization model, we dynamically allocated charging 
slots while considering arrival and departure times, charg-
ing station capacities, and idle time minimization. Imple-
menting the model with Pulp allowed us to optimize the 
charging schedule, significantly reducing idle time and 
enhancing charging infrastructure efficiency.

Finally, we developed a real-time vehicle schedul-
ing optimization (RTVSO) model to manage vehicles 
dynamically based on operational conditions and diverse 
requirements. We formulated an optimization approach to 
optimally assign vehicles to service requests over discrete 
time intervals, considering vehicle availability, location 
constraints, and energy levels. By implementing and solv-
ing the model with Pulp, we achieved an optimized real-
time vehicle scheduling solution that minimized idle time, 
efficient resource allocation, and response times. The Pulp 
optimization library enabled us to implement and solve 

each mathematical model efficiently, providing practical 
solutions to complex optimization problems in parking lot 
management and real-time vehicle scheduling.

5 � Application of mathematical models

5.1 � Idle‑time minimization for electric vehicle 
charging scheduling (ITMEVCS)

The mathematical model of the ITMEVCS is designed to 
address the complex challenges associated with schedul-
ing EVs for charging, emphasizing the reduction of idle 
time and efficient utilization of charging resources. The 
primary objective of the ITMEVCS is to dynamically allo-
cate charging slots for EVs while considering their arrival 
and departure times, charging station capacity, and the 
need to minimize idle periods when an EV is stationed at 
the charging station but not actively charging. The model 
employs binary decision variables to determine the opti-
mal charging schedule for each EV, considering constraints 
such as the station capacity, individual EV charging power, 
and temporal limitations. By minimizing idle time, the 
ITMEVCS aims to enhance the charging infrastructure's 
overall efficiency, contributing to EV's effective integra-
tion into the energy grid.

Fig. 2   Depicts the optimal vehicle placement in the parking lot
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5.1.1 � Mathematical model 2

Decision variable: Let xit be a binary decision variable 
that equals one if EV i is scheduled to charge at time slot 
t  , and 0 otherwise.

Parameters: Ai is the arrival time of EV I, Di is the 
departure time of EV I, Ct is the charging capacity at time 
slot t  , Pi is the charging power of EV I, and n represents 
the number of EVs.

Constraint (11) minimizes the total idle time, where 
idle time is the time when an EV is at the charging station 
but not charging.

Subject to the constraints

Constraint (12) shows that each EV must be charged 
during its time at the station.

Equation  (13) shows the charging station capacity 
constraint.

Equation (14) represents the binary decision variable 
constraints.

Equation (15) represents the time slot constraints of the 
proposed mathematical model.

This mathematical model aims to minimize idle 
time while ensuring that each EV is charged during its 
scheduled time at the station and respecting the capacity 
constraints of the charging station. Binary variables xit 

(11)MinimizeZ2 =

n
∑

i=1

Di−1
∑

t=Ai

1 − xit ∀t

(12)
Di−1
∑

t=Ai

xit = 1 ∀i

(13)
n
∑

i=1

Pixit ≤ Ct ∀t

(14)xit ∈ {0,1} ∀i, t

(15)xit = 0t < Ai or t ≥ Di

indicates the EV i is scheduled to charge at time t. The 
objective function reflects the total idle time we seek to 
minimize.

5.1.2 � Numerical illustration and analysis

In this case, the primary objective is to minimize idle time 
for a fleet of eight EVs, each with distinct arrival and depar-
ture times, charging power requirements, and a shared charg-
ing station with fixed capacities at different hourly time slots.

Let Sets: i ∶  Set of EVs (i = 1,2,… , 8) , t ∶ Set of hourly 
time slots (t = 1,2,… , 10)

Decision variable: Let xit be a binary decision variable 
that equals one if EV i is scheduled to charge at time slot t , 
and 0 otherwise.

Parameters: n = 8 (number of EVs), Time slots = 10 
(number of hourly time slots), Charging capac-
ity = [1,1,1,1,1,1,1,1,1,1] (charging capacity at each time 
slot), Arrival and departure times for each EV, Charging 
power for each EVs.

Table 3 presents the charging schedule for eight EVs, 
detailing their arrival and departure times and respective 
charging power requirements. Each EV is assigned specific 
time slots for charging, ensuring the station's capacity con-
straints are respected.

Constraint (16) is designed to minimize the total idle time 
in the proposed numerical illustration.

Subject to the constraints

Constraint (17) shows that each EV must be charged dur-
ing its time at the station.

(16)MinimizeZ =

8
∑

i=1

Di−1
∑

t=Ai

1 − xit ∀t

(17)
Di−1
∑

t=Ai

xit = 1 ∀i

Table 3   Electric vehicles charging schedule

EVs Arrival time Values Departure times Values Charging power Values

EV1 A1 2 D1 7 P1 2
EV2 A2 4 D2 9 P2 1
EV3 A3 1 D3 6 P3 3
EV4 A4 3 D4 8 P4 2
EV5 A5 2 D5 5 P5 1
EV6 A6 5 D6 10 P6 2
EV7 A7 1 D7 4 P7 1
EV8 A8 3 D8 7 P8 2
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Equation (18) represents the charging station capacity 
constraint.

Equation (19) represents the binary decision variable 
constraints.

Equation (20) represents the time slot constraints.
This numerical illustration captures the essence of the 

hour or day-ahead scheduling problem for 8 EVs, consid-
ering their arrival and departure times, charging capaci-
ties, and the need to minimize idle time while respecting 
constraints.

The eight EVs' hour- or day-ahead scheduling problem 
was successfully addressed using the Pulp library in Python. 
The optimization model efficiently allocates charging sched-
ules, minimizing idle time while adhering to individual 
arrival and departure constraints and charging station capac-
ity limitations. The optimal schedule indicates the specific 
time slots for each EV to charge, demonstrating the effective-
ness of mathematical optimization and the Pulp library in 

(18)
8
∑

i=1

Pixit ≤ Ct ∀t

(19)xit ∈ {0,1} ∀i, t

(20)xit = 0 for t < Ai or t ≥ Di

finding resource-efficient solutions for complex scheduling 
problems. The optimal charging schedule for eight EVs was 
determined through a mathematical model that minimizes 
idle time while considering individual arrival and departure 
times and charging station capacity constraints. The sched-
ule reveals that EV 1 charges during time slots 3 and 4, EV 
2 charges at time slot 9, EV 3 charges at time slot 2, EV 
4 charges at time slot 5, EV 5 charges at time slot 3, and 
EV 8 charges at time slot 7. This result optimally allocates 
charging resources to each EV, ensuring efficient utilization 
and adherence to specific operational constraints. Figure 3 
illustrates the optimal charging schedule for the eight EVs, 
ensuring that each EV is charged within its specified time 
window while minimizing idle time. The schedule adheres 
to the charging station's capacity constraints, effectively dis-
tributing charging times across the available hourly slots.

5.2 � Real‑time vehicle scheduling optimization 
(RTVSO)

The RTVSO represents a comprehensive mathematical 
model designed to dynamically and efficiently make real-
time vehicle management decisions based on current oper-
ational conditions and diverse requirements. This model 
considers vehicle availability, time constraints, location 
constraints, and optimization objectives to formulate an 

Fig. 3   Depicts the optimal scheduling charge of EVs
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approach that optimally assigns vehicles to service requests 
over discrete time intervals. RTVSO minimizes the total 
assignment cost associated with assigning vehicles to 
requests at specific times. The model ensures that each vehi-
cle is precisely located at a single location at any given time 
and that each request is assigned to a single vehicle. Addi-
tionally, energy constraints are incorporated, accounting for 
the energy levels of the vehicles and the distances traveled. 
By addressing these complexities in real-time scheduling, 
the RTVSO aims to enhance the efficiency and effectiveness 
of vehicle management systems in dynamic environments.

5.2.1 � Mathematical model 3

Table 4 outlines the essential notations for the RTVSO 
model, including sets, parameters, and decision variables, 
such as the assignment of vehicles to locations and requests 
over time.

Constraint (21) minimizes the total assignment of vehi-
cles to requests overtime cost, where Cvrt is the cost associ-
ated with assigning vehicle v to request r at time t.

Subject to the constraint

Constraint (22) represents that each vehicle must be at 
exactly one location at any given time.

Constraint (23) represents that each location must have at 
most one vehicle at any given time.

(21)MinimizeZ3 =
∑

v∈V

∑

r∈R

∑

t

Cvrt.xvrl(t)

(22)
∑

l∈L

xvrl(t) = 1 ∀v ∈ V ,∀t

(23)
∑

v∈V

xvrl(t) ≤ 1 ∀l ∈ V ,∀t

Constraint (24) represents that each request must be 
assigned to precisely one vehicle at any given time.

Constraint (25) computes that a vehicle can only be 
assigned to a request if it is at the pickup location at the 
requested time.

Constraint (26) computes that once a vehicle is assigned 
to a request, it must stay assigned until completion.

Equation  (27) shows the energy constraints for each 
vehicle.

5.2.2 � Numerical illustration and analysis

In this numerical example, there are eight vehicles (V), 
eight locations (L), and four service requests (R). The dis-
tance matrix ( dvl ) represents the travel distance between 
vehicles and locations. The energy levels ( ev ) indicate the 
initial energy level of each vehicle. Requests are associ-
ated with pickup ( pr ) and destination ( dr ) locations. The 
objective is to minimize the total assignment cost ( Z3 ) for 
real-time vehicle scheduling, where the Cvrt = 1,∀v, rt cost 
is assumed to be 1 for each assignment. The mathematical 
model includes constraints that ensure that each vehicle is 
at exactly one location at any given time, each location has 
at most one vehicle, each request is assigned to precisely 
one vehicle, and vehicles can only be assigned to a request 
if they are at the pickup location at the requested time. The 

(24)
∑

v∈V

yvr(t) = 1 ∀r ∈ R,∀t

(25)yvr(t) ≤ xvrl(t) ∀v ∈ V , r ∈ R,∀t

(26)yvr(t) = yvr(t + 1) ∀v ∈ V ,∀r ∈ R,∀t

(27)ev −
∑

l∈L

dvl(t).xvrl(t) ≥ 0 ∀v ∈ V ,∀t

Table 4   Notations of 
mathematical model 3 Sets

V The set of vehicles, where v ∈ V

R The set of requests for service, where r ∈ R

Parameters
t The time index representing discrete time intervals
L The set of locations where l ∈ L

dvl(t) The distance between vehicle v and location l at time t
pr The pickup location of the request r
dr The destination location of the request r
ev The energy level of vehicle v
Decision variables
xvrl(t) A binary variable indicating whether vehicle v is at location l at time t
yvr(t) A binary variable indicating whether vehicle v is assigned to request r at time t
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energy constraints were also considered for each vehicle. 
The solution to this optimization problem was implemented 
in Python using the Pulp library, a linear programming tool, 
allowing for efficient real-time vehicle scheduling based on 
current operational conditions and diverse requirements.

Let Vehicles: V = {1, 2, 3, 4, 5, 6, 7, 8}, Locations: 
L = {A, B, C, D, E, F, G, H}, Requests: R = {a, b, c, d}.

Table 5 presents the distance matrix dvl , showing the 
travel distances between each vehicle and the eight possible 
locations.

Table 6 lists the pickup and destination locations for the 
four service requests. For example, request a requires a 
pickup from Location A and a drop-off at Location B, while 
request d involves moving from Location G to Location H.

Table 7 specifies the energy levels of the vehicles, which 
influence how far each vehicle can travel.

The optimization model successfully produced a real-
time scheduling solution with an objective value of 4.0. 
they are using the Pulp optimization library in Python. The 
vehicle locations resulting from the optimization model 
show an adequate distribution of vehicles across various 

locations in real-time. Specifically, Vehicle 1 is stationed 
at Location B, Vehicle 2 at Location G, Vehicle 3 at Loca-
tion A, Vehicle 4 at Location C, Vehicle 5 at Location 
D, Vehicle 6 at Location H, Vehicle 7 at Location E, and 
Vehicle 8 at location F. Furthermore, the model has made 
optimal real-time assignments, ensuring that each vehi-
cle is assigned to a specific request. It is encouraging to 
observe that the idle time has been minimized. Specifi-
cally, Vehicle 2 was assigned to request d, Vehicle 3 to 
request a, Vehicle 4 to request b, and Vehicle 7 to request 
c. This spatial arrangement indicates a well-organized 
deployment of vehicles, optimizing their positioning to 
respond efficiently to incoming requests and dynamic 
changes in the operational environment. This allocation 
reflects the model's successful real-time decision-making 
capabilities, contributing to the overall effectiveness of the 
vehicle management system. The distribution of vehicles 
across different locations is vital for minimizing response 
times and ensuring prompt and reliable service.

In Figs.  4 and 5, the vehicle location heatmap and 
vehicle assignments heatmap illustrate the effectiveness 
of the real-time vehicle scheduling optimization model by 
visually representing vehicle distribution and assignments 
within the parking lot management. These figures high-
light optimal vehicle placements and efficient assignment 
strategies.

The idle-time minimization for electric vehicle charging 
scheduling and the real-time vehicle scheduling optimi-
zation models both focus on optimizing scheduling pro-
cesses in distinct contexts. The mathematical model of 
ITMEVCS addresses the challenge of scheduling EVs for 
charging, with the primary objective of minimizing idle 
time at charging stations while considering constraints 
like station capacity, EV charging power, and arrival and 
departure times. In contrast, the RTVSO model tackles 
real-time vehicle assignment to service requests, aiming to 
minimize the total assignment cost while adhering to con-
straints like vehicle availability, location, time, and energy 
levels. While ITMEVCS is concerned with the efficient 
allocation of charging slots for EVs, RTVSO dynamically 
manages vehicle assignments to service requests in real 

Table 5   Distance matrix dvl S. no. A B C D E F G H

1 10 5 15 20 8 12 18 25
2 12 8 14 10 15 7 20 22
3 15 10 18 22 10 8 25 30
4 8 6 12 16 5 10 15 18
5 14 12 20 25 8 6 22 28
6 18 15 25 30 12 8 28 35
7 22 20 30 35 15 12 35 40
8 25 22 35 40 18 14 40 45

Table 6   Pickup locations pr and 
destination locations dr

r (pr, dr)
a (A,B)

b (C,D)

c (E,F)

d (G,H)

Table 7   Energy levels ev Entity Energy levels

e1 30
e2 40
e3 35
e4 25
e5 30
e6 45
e7 40
e8 50
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time, considering operational factors like travel distances 
and energy consumption. Both models leverage optimi-
zation techniques to enhance resource efficiency in their 
respective domains.

6 � Managerial and practical implications

The mathematical models developed in this study carry 
significant managerial and practical implications for stake-
holders in the transportation and urban planning sectors. 
First, optimizing vehicle placement in parking lots can 
reduce operational costs by minimizing maneuvering times 

Fig. 4   Shows the vehicle loca-
tions' heatmap

Fig. 5   Shows the vehicle assignments heatmap
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and improving space utilization. Managers responsible 
for parking facilities can leverage these insights to make 
data-driven decisions that enhance overall efficiency, lead-
ing to higher customer satisfaction and increased revenue 
(Lukic Vujadinovic et al. 2024). Moreover, the idle-time 
minimization for electric vehicle charging scheduling can 
optimize the use of charging infrastructure, addressing the 
growing demand for EVs. It is particularly relevant for 
charging station managers, who can implement these mod-
els to streamline operations, reduce wait times for users, 
and ultimately promote the adoption of EVs, aligning with 
broader sustainability goals.

Furthermore, the real-time vehicle scheduling optimiza-
tion model equips fleet managers with the tools to respond 
dynamically to operational challenges. Managers can 
enhance service delivery and operational reliability by ena-
bling more efficient resource allocation and quicker response 
times to service requests, which is crucial in competitive 
markets (Yuvaraj et al. 2024; Kahlen et al. 2024). Integrating 
these models within intelligent city initiatives can facilitate a 
collaborative approach among stakeholders, including local 
governments, transportation authorities, and private sector 
partners (Wolniak et al. 2024). This collaboration can lead 
to better urban mobility solutions, reduced congestion, and 
a lower environmental footprint, aligning with city-wide 
sustainability objectives (Alamoudi et al. 2024). Finally, 
implementing these mathematical models offers a pathway 
for organizations to improve their operational frameworks 
and contribute to developing more intelligent, sustainable 
urban environments. By embracing these optimization strat-
egies, managers can play a pivotal role in shaping the future 
of urban transportation, driving innovation, and enhancing 
the quality of life for city residents.

7 � Conclusion

In this study, we have presented three comprehensive math-
ematical models to address complex challenges in parking 
lot management and real-time vehicle scheduling optimiza-
tion. These models leverage mathematical optimization tech-
niques to allocate resources and efficiently make informed 
decisions in dynamic environments. The first mathematical 
model, focused on optimizing vehicle placement in parking 
lots, demonstrated the effectiveness of mathematical mod-
eling in minimizing maneuvering costs. The model success-
fully determined optimal vehicle placements by formulating 
binary decision variables and constraints to represent park-
ing configurations and vehicle movements, thereby enhanc-
ing parking lot efficiency and reducing maneuvering efforts. 
The second mathematical model, dedicated to ITMEVCS, 
showcased the application of mathematical optimization 

in enhancing the efficiency of charging infrastructure. By 
dynamically allocating charging slots for EVs while consid-
ering arrival and departure times, charging station capaci-
ties, and minimizing idle periods, the model contributed to 
the effective integration of EVs into the energy grid. The 
numerical result of this model showed a significant reduction 
in idle time, optimizing the charging schedule and enhancing 
overall charging infrastructure efficiency.

Finally, the third mathematical model of RTVSO 
addressed the challenges of dynamically managing vehicles 
based on current operational situations and requirements. By 
formulating an optimization approach that optimally assigns 
vehicles to service requests over discrete time intervals 
while considering factors such as vehicle availability, loca-
tion constraints, and energy levels, the model demonstrated 
the capability to enhance the efficiency and effectiveness of 
vehicle management systems in dynamic environments. The 
numerical result of this model showed an optimized real-
time vehicle scheduling solution with minimized idle time, 
efficient resource allocation, and minimized response times. 
Numerical illustrations accompanying each model provided 
practical insights into their applications, showcasing their 
efficacy in real-world scenarios. By integrating these mod-
els, our study showcases the synergistic benefits of using 
mathematical optimization to enhance vehicle placement, 
EV charging efficiency, and real-time vehicle scheduling, 
providing a cohesive framework for improved decision-
making in vehicle management systems.

Moreover, integrating these mathematical models pro-
vides a holistic framework for enhancing transportation 
systems' overall efficiency and sustainability. By addressing 
various aspects of vehicle management—from optimizing 
parking lot configurations to minimizing idle times in EV 
charging and facilitating real-time scheduling—this study 
highlights the importance of mathematical optimization in 
responding to the increasing demands of urban mobility. The 
findings emphasize the potential for these models to improve 
operational efficiency and contribute to reducing environ-
mental impacts associated with vehicle emissions and 
energy consumption. As urban areas continue to grow and 
the adoption of EVs increases, implementing such optimiza-
tion strategies will be crucial for creating more innovative, 
more efficient transportation ecosystems. Future research 
can explore further refinements to these models, incorpo-
rating advanced algorithms and real-time data analytics to 
enhance their adaptability and performance in ever-changing 
urban environments.

7.1 � Discussion and future directions

The mathematical models presented in this study offer prac-
tical solutions to complex challenges in parking lot man-
agement and real-time vehicle scheduling optimization. By 
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leveraging mathematical optimization techniques, these 
models enable decision-makers to make informed decisions, 
enhance resource allocation efficiency, and improve overall 
system performance (Yan et al. 2021; Shariatzadeh et al. 
2024; Choudhary et al. 2024). Moving forward, integrating 
these models with innovative city initiatives could further 
enhance urban mobility and sustainability by optimizing 
vehicle placement in parking lots and dynamically manag-
ing vehicle scheduling in real-time, contributing to reduced 
congestion and environmental impact (Abdelmoumene et al. 
2024; Tian et al. 2024). Additionally, future research could 
focus on enhancing the scalability and adaptability of the 
models to accommodate larger parking lots, vehicle fleets, 
and more complex operational environments.

Incorporating machine learning algorithms and data 
analytics techniques could improve predictive capabili-
ties, allowing for preemptive resource allocation and better 
adaptation to changing conditions. Furthermore, exploring 
evolutionary algorithms, NSGA-2 and 3, multi-objective 
optimization approaches could balance competing objectives 
such as minimizing maneuvering costs, reducing idle time, 
and optimizing energy consumption. Real-world implemen-
tation and validation of the models in collaboration with 
industry partners and local authorities would provide valu-
able insights into their practical applicability and perfor-
mance. Lastly, involving stakeholders in the design process 
and fostering stakeholder engagement can ensure that the 
models meet their specific needs and address practical chal-
lenges effectively, fostering greater acceptance and adop-
tion in real-world settings. These mathematical approaches 
can contribute to more efficient, sustainable, and resilient 
urban transportation systems through ongoing innovation 
and refinement.
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