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Abstract

Backdoor attacks inject poisoned samples into the training data, resulting in the
misclassification of the poisoned input during a model’s deployment. Defending
against such attacks is challenging, especially for real-world black-box models
where only query access is permitted. In this paper, we propose a novel defense
framework against backdoor attacks through Zero-shot Image Purification (ZIP).
Our framework can be applied to poisoned models without requiring internal
information about the model or any prior knowledge of the clean/poisoned samples.
Our defense framework involves two steps. First, we apply a linear transformation
(e.g., blurring) on the poisoned image to destroy the backdoor pattern. Then, we use
a pre-trained diffusion model to recover the missing semantic information removed
by the transformation. In particular, we design a new reverse process by using the
transformed image to guide the generation of high-fidelity purified images, which
works in zero-shot settings. We evaluate our ZIP framework on multiple datasets
with different types of attacks. Experimental results demonstrate the superiority of
our ZIP framework compared to state-of-the-art backdoor defense baselines. We
believe that our results will provide valuable insights for future defense methods for
black-box models. Our code is available at https://github.com/sycny/ZIP.

1 Introduction

Machine learning has been increasingly integrated into real-world applications such as healthcare [45],
finance [28] and computer vision [66]. Despite great success, machine learning models are susceptible
to adversaries such as backdoor attacks [15, 8, 43, 54, 17], which compromises model security and
reliability. Backdoor attacks can manipulate a model’s behavior by injecting malicious samples
into the training data or altering the model’s weights. Although many defense strategies have
been proposed to mitigate backdoor attacks, most of them require access to the model’s internal
structure and poisoned training data [32]. Deploying these defenses is challenging in real-world
black-box scenarios, where defenders do not have access to verify or audit the inner workings of the
model [18, 19]. For example, many developers and end-users now prefer using machine learning as a
service (MLaaS), relying on models provided by third-party vendors for their applications. However,
these models may contain backdoors, and due to copyright concerns, the services typically operate in
a black-box setting with query-only access. In such scenarios, detecting and mitigating backdoor
attacks is very difficult.

Currently, there are only a few backdoor defense methods that work in black-box settings. They can
be categorized into two types: detecting-based and purification-based. Detecting-based methods [65,
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18, 31, 12, 56] can detect the poisoned sample but could not remove the poisoned patterns. These
methods are not applicable when critical poisoned samples must be used by downstream classification
models. Purification-based methods can address this problem since they aim to retrieve clean images
given the poisoned images. However, state-of-the-art purification approaches rely on masking and
reconstructing the poisoned area [42, 53]. It can only protect against patch-based attacks. Other
purification-based methods that employ image transformations for defense have the potential to
defend against more sophisticated attacks but may result in a reduction in classification accuracy due
to the loss of semantic information [35].

To overcome these challenges, we propose a novel framework to defend against attacks through Zero-
shot Image Purification (ZIP). We define "purification" as the process of maximizing the retention of
important semantic information while eliminating the trigger pattern. With this goal, we preserve the
classification accuracy while breaking the connection between trigger patterns and poisoned labels.
We also define "zero-shot" as the ability to defend against various attacks without relying on prior
knowledge of attack methods. In other words, our approach does not require access to any clean or
poisoned image samples (patch or non-patch based), and could be applied directly to unseen attack
scenarios. This setting is crucial because real-world users usually have limited information, while new
threats continue to emerge. Our proposed framework contains two main stages: we first utilize image
transformation to destruct the trigger pattern, and then leverage an off-the-shelf, pre-trained diffusion
generative model to restore the semantic information. Our defense strategy is based on the motivation
that the semantic information in a poisoned image (e.g., faces, cars, or buildings) constitutes the
majority of the data and typically falls within the training data distribution of a pre-trained image
generation model. In contrast, engineered trigger patterns (e.g., mosaic patches and colorful noise) are
subtle and unlikely to exist in the pre-training datasets [32, 34]. Since the diffusion model learns to
sample images from the training distribution [22], purified images generated from the diffusion model
will retain only their semantic information while eliminating the trigger patterns. As a result, our
purification approach can effectively defend against various attacks while maintaining high-fidelity in
the restored images.

Our main contributions are summarized as follows. (1) We develop a novel defense framework that
can be applied to black-box models without requiring any internal information about the model. Our
method is versatile and easy to use without retraining. (2) The proposed framework is designed
for zero-shot settings, which do not require any prior knowledge of the clean or poisoned images.
This feature relieves end-users from the need to collect samples, thus enhancing the framework’s
applicability. (3) Our defense framework achieves good classification accuracy on the purified images,
which were originally poisoned samples, even when using an attacked model as the classifier. This
improvement further enhances the framework’s effectiveness and usability.

2 Preliminaries

2.1 Problem Definition

This paper addresses the backdoor defense problem in the context of image classification tasks.
The goal of image classification is to learn a function fθ(x) that maps input images x ∈ X to
their correct labels y ∈ Y , where X denotes the image space, Y denotes the label space, and θ
represents model parameters. Typical backdoor attacks include poisoning training data and perturbing
model weights, and we use fattack

θ to denote the model that has been attacked. During inference, an
attacker can take a clean sample x and manipulate it to create a backdoor sample xP , e.g., adding
the trigger pattern p to make xP = x+ p. The backdoored model will misclassify xP as the target
label ytarget = fattack

θ (xP ) ̸= y. Our threat model is in a challenging black-box setting, where
defenders can only query the poisoned model and have no access to the model’s internal parameters
or training datasets. The attackers can modify model components or any other necessary information
to implement their attacks. We formally define our backdoor defense problem as below.

Problem 1. Image Purification for Backdoor Defense. Our defense is implemented in the model
inference stage. Let fattack

θ denote the attacked model, whose parameters are not accessible. Given
a poisoned image xP , our goal is to obtain a purified image x∗ from xP by removing the effect of
trigger p. The purified image should be classified as the same category as the original clean image x,
i.e., fθ(x∗) = fθ(x) ̸= fθ(x

P ).
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Figure 1: The proposed ZIP backdoor defense framework. In Stage 1, we use a linear transformation
such as blurring to destruct the trigger pattern in poisoned image xP . In Stage 2, we design a guided
diffusion process to generate the purified image x0 with a pre-trained diffusion model. Finally, in x0,
the semantic information from x is kept while the trigger pattern is destroyed.

2.2 Diffusion Models

We leverage the reverse process of diffusion models to purify images. The denoising diffusion
probabilistic model (DDPM) [22] is a powerful generative model for generating high-quality images.
It has two processes: a forward process and a reverse process. In the forward process, the model
iteratively adds noise to an input image x0 until it becomes random Gaussian noises xT ; in the
reverse process, the model iteratively removes the added noise from xT to recover the noise-free
image x0. More details can be found in the DDPM paper [22].

Forward Process: A noise-free image x0 is transformed to a noisy image xt with controlled noise.
Specifically, Gaussian noise ϵ is gradually added to image x0 in T steps based on a variance schedule
βt ∈ [0, 1] such that q (xt | xt−1) := N

(
xt;
√
1− βtxt−1, βtI

)
, where q denotes the posterior

probability of xt conditioned on xt−1. A nice property of this process is that the t-th step noisy
image xt could be directly generated by:

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
, xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I), αt = 1− βt, and ᾱt =
∏t

i=1 αi.

Reverse Process: The noisy input image xT is transformed into a noise-free output image x0

over time steps. In each step, the diffusion model takes the current image state xt as input and
produces the previous state xt−1. We aim to obtain clean images x0 by iteratively sampling xt−1

from p(xt−1|xt,x0):

xt−1 ←
√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt + σtϵ, ϵ ∼ N (0, I), σ2

t =
1− ᾱt−1

1− ᾱt
βt. (2)

Based on Equation 1, the original clean image x0 could be approximated based on the t-th step
observation xt as: x0|t =

1√
ᾱt
(xt−

√
1− ᾱtϵt), where ϵt denotes the estimation of the real ϵ in step

t. In each step t, DDPM utilizes a neural network gϕ(·) to predict the noise ϵt, i.e., ϵt = gϕ(xt, t).
With this estimation, we can convert Equation 2 into the following form as reverse process:

xt−1 ←
1√
αt

(xt −
1− αt√
1− ᾱt

ϵt) + σtϵ. (3)

3 Zero-shot Image Purification (ZIP)

3.1 Overview of Proposed Framework

Our defense framework consists of two primary stages: (1) destruct poisoned images through image
transformation, and (2) recover images using a diffusion model, as depicted in Figure 1. The first
stage is based on the observation that the integrity of trigger patterns is crucial for backdoor attacks to
deceive the model. Thus, destructing the trigger pattern would significantly reduce the effectiveness
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of backdoor attacks [34, 46]. On the other hand, a strong transformation may destroy both the trigger
pattern and semantic information. To address this, we introduce the second stage to recover the
semantic information through the reverse process of diffusion models. However, traditional diffusion
models (e.g., DDPM [22]) or image restoration models (e.g., DDRM [29] and DDNM [58]) can not
generate high-fidelity and clean images due to a lack of direct control over the generated output.

To bridge the gap, in the following section, we first propose an image generation constraint based on
the image transformation in Section 3.2. We then apply this constraint to guide the image reverse
process of the diffusion model. In addition, we discuss the guide adaptation when applied in the
zero-shot settings, along with its theoretical justification in Section 3.3. Finally, we introduce our
efforts to improve the inference speed in Section 3.4.

3.2 Image Transformation and Decomposition

In the first stage, we apply image transformation to destruct potential trigger patterns, such as using
average pooling to blur the poisoned images. Formally, we denote the transformation as a linear
operator A, and let the transformed image be xA = AxP = A(x+ p). Previous research [34, 47]
has used the transformed image directly as the purified result. However, such approaches may result
in poor classification accuracy due to the loss of fidelity induced by A.

To recover the lost information, an intuitive way is to apply an image generative model, e.g., the
diffusion model, to yield a purified image. However, the vanilla diffusion model generates images
from random Gaussian noise and lacks control over the fidelity of generated images. Thus, we
propose a constraint to guide the generation process of diffusion models to recover high-fidelity
images. Specifically, for an ideally purified image x0, it should satisfy x0 = x, so we have:

A(x0 + p) = A(x+ p) = xA. (4)

Based on the RND theory [48, 58], it is possible to decompose an image x into two parts using a
linear operator A (e.g., average pooling) and its pseudo-inverse A† (e.g., upsampling) that satisfies
AA†A = A. The decomposition is expressed as x = A†Ax +

(
I−A†A

)
x, where the former

part denotes the observable information in the range-space, and the latter part denotes the information
in the null-space removed by transformation1. Bringing this decomposition to Equation 4, we have:

(x0 + p) = A†A(x0 + p) +
(
I−A†A

)
(x0 + p). (5)

This equation derives a constraint for image purification to restore the original x as below:

x0 = A†xA −A†Ap+
(
I−A†A

)
x0, (6)

accordingly, the ideally purified image could be decomposed into three parts. The first two parts
are in the range space: the observable information stored in the transformed image A†xA, and the
intractable information embedded in the transformed trigger pattern A†Ap; the last part is in the
null-space and is unobservable as it is removed by the transformation. To restore the lost information
in the null-space, we utilize the observable information in the range-space as references.

3.3 Image Purification with Diffusion Model

3.3.1 Reverse Process Conditioned on Poisoned Images

Our proposed image purification is based on the reverse process of the diffusion model, which takes
Gaussian noise xT as input and generates a noise-free image x0. We use xt to denote the image
at time step t in the reverse process of diffusion. To generate high-fidelity images, we propose a
rectified estimation of xt as x′

t, so that it produces x0|t that satisfies the decomposition constraint
in Equation 6. The x′

t is computed using the following equation, which is derived from Equation 1
and 6. The detailed proof is in the Supplementary Material A.

x′
t =
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt, (7)

1Usually, we have A†A ̸= I, which implies that this operation is lossy. When applying A†A to an image,
some information will be removed, making this operation irreversible. More details are in Supplementary
Material C
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where ϵt denotes the estimated noise, which is calculated using the pre-trained diffusion model gϕ:
ϵt = gϕ(xt, t). Then, we modify the original reverse process in Equation 3 to accommodate this
rectified estimation. The modified reverse process is expressed as:

xt−1 ←
1√
αt

(
√
ᾱtA

†xA−
√
ᾱtA

†Ap+(I−A†A)xt+A†A
√
1− ᾱtϵt−

1− αt√
1− ᾱt

ϵt)+σtϵ, (8)

where ϵ ∼ N (0, I) denotes Gaussian noise and we have σ2
t = 1−ᾱt−1

1−ᾱt
βt.

3.3.2 Adapting Reverse Process to the Zero-shot Setting

In this subsection, we show how our reverse process design can be effectively applied in the zero-shot
setting, where the trigger pattern p is unknown to defenders. We propose to omit the intractable term√
ᾱtA

†Ap in Equation 7, and approximate x′
t with x̂t to obtain a new rectified estimation:

x̂t =
√
ᾱtA

†xA + (I−A†A)xt +A†A
√
1− ᾱtϵt. (9)

The intractable term
√
ᾱtA

†Ap can be omitted due to the following reasons:

• The value of
√
ᾱt at the beginning of the reverse process is very small, making

√
ᾱtA

†Ap
negligible compared to other terms. We provide an improved approximation in Section 3.3.3 for
later stages when

√
ᾱt increases.

• Backdoor attacks are generally stealthy or use more negligible patterns compared to the original
images since the attacker wants to minimize the impact on the model’s accuracy on legitimate
data [43]. Thus, the destructed pattern Ap is usually negligible compared to xA = A(x+ p).

• The effect of A†Ap is further reduced by selecting appropriate image transformations. Most back-
door attacks are characterized by severe high-frequency artifacts [65]. Therefore, transformations
such as average pooling can remove the high-frequency information in p.

Nevertheless, approximation in an iterative process such as diffusion can be risky because errors from
the previous step can accumulate rapidly (e.g., exponentially) and lead to significant inaccuracies. Our
method addresses this issue by ensuring the approximation error between each step is well-bounded
theoretically. As a result, the final recovered image x̂0 preserves the essential information of the
original image, while the trigger pattern undergoes a transformation and is likely to be destroyed.
Lemma 3.1. Suppose the estimated noise output by gϕ(·) is Gaussian. Given gϕ(xt, t) = ϵt, we
have gϕ((xt +

√
ᾱtA

†Ap), t) = ϵt + ϵ′t, where ϵt, ϵ
′
t are also Gaussian.

The error ϵ′t in Lemma 3.1 is much smaller than the real estimated noise ϵt. This is because the trigger
pattern

√
ᾱtA

†Ap, which is weighted by
√
ᾱt, is relatively subtle compared with the intermediate

image xt. Additionally, the attacker-engineered trigger pattern p is unlikely to be present within the
natural image distribution learned by the pre-trained diffusion model. Therefore, it is unlikely to
activate the model gϕ(·) and generate significant output.
Theorem 3.2. Suppose that gϕ((xt +

√
ᾱtA

†Ap)) = ϵt + ϵ′t. We define the error at step t between
x̂t and (xt +

√
ᾱtA

†Ap) as δ′t, i.e., δ′t = x̂t − (xt +
√
ᾱtA

†Ap). Let δt = Aδ′t, we have the
following bound on its norm: ∥δt∥ ≤

(1−ᾱt)
√
αt+1√

1−ᾱt+1

∥A∥∥ϵ′t+1∥.

This theorem means that our proposed approximation introduces only limited approximation error
at each time step after considering the error from the previous step. When paired with a common
linear transform A like average pooling, its norm is relatively small [58]. Additionally, at the
initial steps of the reverse process, the term ∥ϵ′t+1∥ is also small according to Lemma 3.1, and

we have (1−ᾱt)
√
αt+1√

1−ᾱt+1

≤ 1−ᾱt+1+αt

2 , which is also a small value. Collectively, the error from our

approximation is well bounded by a small number. According to this theorem, the final purified
image exhibits the following property.
Corollary 3.2.1. When t = 0, we have x̂0 = x0 +A†Ap + δ′0, where Aδ′0 = 0.

According to Corollary 3.2.1, our final purified image contains three parts: the ideally purified image
x0, the altered trigger pattern A†Ap, and an approximation error δ′0. Therefore, compared with the
original poisoned image xP = x+ p or the transformed image xA = A(x+ p), our purified image
x̂0 reduces the effect of the trigger pattern p and preserves the high fidelity of the image. This is
critical for achieving good performance in the downstream image classification task. The proofs can
be found in Supplementary Material A.
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3.3.3 Improving ZIP with Theoretical Insights

Based on the above theoretical analysis, we propose two further improvements to our guided image
purification framework to enhance its effectiveness, which include (1) adding a confidence score to
the rectified estimation, and (2) introducing multiple transformations.

Confidence Score. The effectiveness of our framework depends on the confidence of the proposed
rectified estimation. As the reverse process proceeds, the

√
ᾱt value increases, making it difficult

for
√
ᾱtA

†Ap to be neglected. Simply omitting this pattern would weaken the confidence in our
proposed estimation.

To address this issue, we re-formulate the rectified estimation at step t as: x̃t = (1− ᾱλ
t )x̂t + ᾱλ

t xt,
where xt denotes the result of a pure diffusion model (e.g., DDPM) at step t + 1, and λ ≥ 0 is a
hyper-parameter. Since 0 < ᾱt < 1, when λ = 0, we obtain a pure reverse diffusion process without
any rectification; when λ = +∞, the reverse process reduces to ZIP. A nice property of x̃t is that, ᾱt

increases as the reverse process proceeds (t decreases), making the contribution of xt larger. This is
reasonable because the intermediate image becomes increasingly informative over time, reducing
the reliance on x̂t in reverse diffusion. We set λ value to achieve desirable fidelity scores (e.g.,
PSNR [29, 58]) for the resultant purified images. Finally, our revised reverse process is defined as:

xt−1 ←
1√
αt

(x̃t −
1− αt√
1− ᾱt

ϵt) + σtϵ . (10)

Multiple Transformations. To improve the effectiveness of our approach in removing the poisoning
effect, we propose including multiple transformations to more effectively destroy the unknown trigger
pattern in a zero-shot setting. Specifically, given N transformations, the intermediate image xt and
estimated noise ϵt should all satisfy:

x̂n
t =
√
ᾱtA

†
nx

An + (I−A†
nAn)xt +A†

nAn

√
1− ᾱtϵt, n = 1, 2, ..., N. (11)

Finally, we have x̂t =
1
N (x̂1

t + x̂2
t + ...+ x̂N

t ). We provide our proposed algorithm in Algorithm 1.
We focus on two types of transformation pairs in this paper: blurring, represented by A†

1A1, and
gray-scale conversion, represented by A†

2A2.

3.4 Purification Speed-up

Algorithm 1 Zero-shot Image Purification

Require: Test image for purification xP ; lin-
ear transformation A1,A2, ...,An and their
pseudo-inverse A†

1,A
†
2, ...,A

†
n; diffusion

model g; hyperparameter λ.
Ensure: xAn = Anx

P , n = 0, 1, ..., N
1: xT ∼ N (0, I)
2: for t = T, T − 1, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: ϵt = gϕ(xt, t)
5: for n = 1, 2, ..., N do
6: x̂n

t =
√
ᾱtA

†
1x

An+(I−A†
nAn)xt+

A†
nAn

√
1− ᾱtϵt

7: end for
8: x̂t =

1
N
(x̂1

t + x̂2
t+, ...,+x̂N

t )

9: x̃t = (1− ᾱλ
t )x̂t + ᾱλ

t xt

10: xt−1 ← 1√
αt

(x̃t − 1−αt√
1−ᾱt

ϵt) + σtϵ

11: end for
12: return x0

The purification speed is crucial when performing
defense at inference time. Our framework leverages
pre-trained diffusion models, and conducts purifica-
tion on each test image. Hence, we propose several
techniques to speed up purification and reduce costs.

3.4.1 Diffusion Model Inference Speed-up

Algorithm 1 requires a large number of steps to gen-
erate a single sample. Each step involves computing
the estimated noise and diffusion process, which can
be computationally expensive. To address this issue,
we leverage the power of the denoising diffusion im-
plicit model (DDIM) [50] to improve the inference
speed of our reverse process as below:

xt−1 ←
√
ᾱt−1x̃0|t +

√
1− ᾱt−1 − σ2

t ϵt + σtϵ, (12)

where x̃0|t is also an estimated image based on x̃t,
and we have x̃0|t =

1√
ᾱt
(x̃t−

√
1− ᾱtϵt). By using

this speed-up inference method, we can obtain a high-fidelity purified image by sampling only a few
steps instead of conducting sampling in thousands of steps. The modified algorithm based on DDIM
is provided in the Supplementary Material D.
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3.4.2 Framework Speed-up

Batch Data Speed-up. We introduce an acceleration method for purification, when images can be
processed in batch during inference. For instance, if the pre-trained model accepts images of size
L× L as input, and we wish to purify l × l images, we can first combine (L/l)2 images into a single
L×L image by tiling. We then apply our purification method to the tiled image, and split the purified
image back to the original images afterwards. Larger images could be resized into l × l to apply
this method. In this way, our defense approach can handle images of various sizes and significantly
improve the purification speed.

Streaming Data Speed-up. In the streaming data scenarios, defenders may only have access to a
single test image at a time. In such cases, we can use a fast zero-shot detection method such as [19] to
quickly assess whether the image is likely to be poisoned. If the detection result indicates a potential
poisoning, we can apply our purification method to remove the trigger pattern. This approach allows
us to quickly and effectively defend against poisoned images without applying our purification on
every image, thus saving the average processing time.

4 Experiments

4.1 Experimental Settings

For defense evaluation, we conducted experiments on three types of backdoor attacks: BadNet [15],
Attack in the physical world (PhysicalBA) [34], and Blended [8]. The first two attacks are repre-
sentatives of patch-based attacks, while the last one represents a non-patch-based backdoor attack.
To configure these attack algorithms, we follow the benchmark setting in [33] and use the provided
codes. We evaluate the effectiveness of our defense framework ZIP on three datasets: CIFAR-10 [30],
GTSRB [52], and Imagenette [24]. The poisoned classification network is based on ResNet-34 [21].
Specifically, for the CIFAR-10 dataset, we apply both blur and gray-scale conversion as linear trans-
formations. For the GTSRB and Imagenette datasets, we solely apply blur as the linear transformation.
The additional experiment details are in the Supplementary Material E.

Defense methods available for black-box purification in zero-shot are rare. To fairly assess the
effectiveness of our proposed method, we conduct a comparative evaluation against two baseline
approaches: ShrinkPad [35] and image blurring (referred to as Blur). The former is a state-of-the-art
image transformation-based defense method that can work on black-box models in the zero-shot
setting. The latter uses blurred images A†

1x
A1 as purified images. We apply defense methods to all

test samples, and then evaluate the output using a poisoned classification network. In addition to the
clean accuracy (CA) and attack success rate (ASR) metrics for assessing defense effectiveness, we
introduce a new metric called poisoned accuracy (PA). It measures the classification performance of
the purified poisoned samples. A higher value of PA indicates that the purified poisoned samples are
more likely to be correctly classified, even when using an attacked classification model.

4.2 Qualitative Results of Purification

We conduct qualitative case studies (see Figure 2) of our method in purifying poisoned images created
by the Blended and BadNet attacks. We show examples of poisoned images xP and purified image
x0, where the trigger pattern is clearly visible in the poisoned images but has been altered/removed
in the purified images. For comparison, we also show the blurred image A†

1x
A1 and the grayscale

images A†
2x

A2 . The transformed images can destruct the trigger pattern, but they also alter a lot of
semantic information. These results demonstrate the effectiveness of ZIP in removing the effect of
trigger patterns from images while maintaining semantic information. More qualitative results for
different attacks are in the Supplementary Material B.

4.3 Quantitative Results of Defense

We conduct quantitative experiments where the results are in Table 1. Our observations are as
follows: (1) Our method effectively defends against different backdoor attacks. This is because the
transformations in our framework, which are independent of specific attacks, break the connection
between backdoor triggers and backdoor labels. (2) Our method achieves overall better classification
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Figure 2: Qualitative analysis of purification. (Row 1-2: Blended; Row 3-4: BadNets. More
qualitative results are listed in Supplementary Material B)

Table 1: The clean accuracy (CA %), the attack success rate (ASR %), and the poisoned accuracy
(PA %) of defense methods against different backdoor attacks. None means no attacks are applied.

Dataset Attack No Defense ShrinkPad (defense) Blur (defense) ZIP (Ours)
CA ↑ ASR ↓ PA ↑ CA ↑ ASR ↓ PA ↑ CA ↑ ASR ↓ PA ↑ CA ↑ ASR ↓ PA ↑

CIFAR-10 (32 × 32)
(10 classes)

None 80.15 — — — — — — — — — — —
BadNet 82.31 99.98 10.00 62.89 9.34 63.12 58.19 21.78 53.47 78.97 5.53 79.10

Blended 80.26 99.96 10.03 58.97 2.28 40.22 55.91 3.04 49.91 72.62 7.75 57.98

PhysicalBA 85.30 98.73 11.20 82.84 90.50 18.37 41.84 1.09 41.37 80.10 4.33 80.33

Average 82.62 99.56 10.41 68.23 34.04 40.57 51.98 8.64 48.25 77.23 5.87 72.47

GTSRB (32 × 32)
(43 classes)

None 96.95 — — — — — — — — — — —
BadNet 96.53 99.99 5.70 78.33 5.81 78.82 95.98 7.33 95.11 96.18 6.19 96.03

Blended 96.58 99.89 5.79 76.76 10.54 56.41 93.68 11.07 73.91 95.74 8.53 81.27

PhysicalBA 96.83 100.00 5.70 97.41 100.00 5.70 91.00 5.53 90.53 95.44 6.57 94.91

Average 96.65 99.96 5.73 84.17 38.78 46.98 93.55 7.98 86.52 95.79 7.10 90.74

Imagenette (256 × 256)
(10 classes)

None 84.58 — — — — — — — — — — —
BadNet 84.99 94.53 14.98 71.23 8.56 70.72 81.47 16.45 79.94 84.05 7.55 83.97

Blended 86.14 99.85 10.19 74.06 20.63 36.10 78.95 79.41 25.57 81.42 8.35 78.36

PhysicalBA 90.67 72.94 34.29 90.21 96.81 13.07 84.84 32.40 74.87 87.26 10.91 86.54

Average 87.27 89.11 19.82 78.50 42.00 39.96 81.75 42.75 60.13 84.24 8.94 82.96

accuracy (CA) compared to baseline methods because our formulation successfully recovers semantic
information to ensure accurate downstream classification. For example, on the Imagenette dataset,
ZIP reduces the ASR of the BadNet attack from 94.53% (no defense) to just 7.55%, with only
a 0.94% drop in CA. Similarly, on the GTSRB dataset, our approach reduces the success rate of
the PhysicalBA attack from 100% (no defense) to 6.57%, with only a 1.39% drop in CA. (3) Our
method outperforms the baselines in poisoned accuracy (PA), indicating that poisoned samples can
still be used for classification even when using an attacked black-box classifier. It demonstrates
the robustness and usability of ZIP in real-world scenarios. (4) ShrinkPad performs poorly on the
PhysicalBA attack, which is consistent with the findings in [34]. This is because PhysicalBA is
specifically designed to evade defense methods such as ShrinkPad [34]. On the other hand, our
method successfully defends against this attack, demonstrating its superior performance. We include
additional experiment results of defenses in Supplementary Material H.
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Table 2: ZIP with different transformations (CA↑ / ASR↓ / PA↑).
Attack Blur2 Blur4 Blur8 Grayscale
BadNets 84.05/7.55/83.97 82.77/7.15/82.39 72.38/13.41/72.50 70.52/10.79/68.61
Blended 84.05/26.11/63.46 81.42/8.35/78.36 71.03/7.69/67.13 79.79/99.40/10.59
PhysicalBA 90.24/22.88/79.89 87.26/10.91/86.54 76.58/19.43/76.43 76.66/17.51/74.87

4.4 Ablation Studies

4.4.1 Evaluation on Transformations

Comparison of Different Transformations. Image transformation plays a crucial role in our
defense. We evaluate the effectiveness of ZIP on the Imagenette dataset using four distinct types
of transformations: Blur2, Blur4, Blur8, and Grayscale (the results are in Table 2). The subscript
of "Blur" represents the kernel size of average pooling, where a larger number indicates a stronger
transformation. We have the following observations: (1) The blur operation is more effective than
grayscale conversion in reducing the ASR while maintaining good CA and PA. (2) Generally, stronger
transformations are more effective in destructing the trigger pattern, resulting in a lower ASR.
However, they also destroy more semantic information, leading to lower classification accuracy.

Table 3: Comparison to BDMAE (CA↑ / ASR↓).

Attack No Defense BDMAE ZIP
BadNet 82.31/99.98 81.44/1.12 78.97/5.53
Blended 80.26/99.96 78.57/99.88 72.62/7.75

Comparison to Masking and Reconstruction.
Linear transformations are more effective than
masking in removing poisoned effects, particu-
larly in cases like the Blended attack where the
backdoor pattern is distributed across the image.
We compare ZIP with a recently proposed pu-
rification method BDMAE [53] on CIFAR-10.
BDMAE first identifies the trigger region on a test image, masks the region, and then uses a masked
autoencoder to restore the image. To ensure a fair comparison, we apply the defense stage of BDMAE
to our benchmarks using its official code. Table 3 shows that BDMAE effectively defends against the
BadNet attack, but it fails to defend against the Blended attack. This is because the trigger pattern
in Blended attacks is not located in a local region, making it difficult for BDMAE to identify an
appropriate mask. In contrast, our ZIP framework does not make assumptions about trigger patterns
thus successfully defends against both attacks.

4.4.2 Evaluation on Enhanced Attacks

We consider a more challenging scenario, where we assume the attacker is aware of our defense and
has access to the purified backdoor images, which are then used as enhanced poisoned images to
attack a classifier. To demonstrate the effectiveness of our proposed method in defending against such
enhanced attacks, we apply our method to BadNet and Blended as examples and choose blurring and
grayscale conversion together as the transformations of ZIP. Other settings remain the same as the
original attack, and more details about the settings are in the Supplementary Material F.1.

Table 4: Defense against enhanced attacks (CA↑ / ASR↓ / PA↑).
Attack Original Trigger ShrinkPad Blur ZIP (Blur+Grayscale) ZIP (Blur) ZIP (Grayscale)

BadNets 82.36/24.00/76.05 69.32/10.34/70.44 80.58/31.41/70.70 58.01/79.89/28.02 82.39/18.47/77.29 63.26/73.52/32.91

Blended 85.42/21.83/48.30 75.10/11.71/47.13 78.47/63.61/37.04 75.79/75.21/33.01 81.63/28.83/51.32 73.80/40.71/36.22

During the inference stage, we continue to use the original trigger pattern for attacks. From the
experimental results in Table 4, we observe that the original trigger pattern no longer triggers the
attack, but if the purification (Blur+Grayscale) we use has the same transformation as the attacker, the
attacks can still be triggered. However, by switching to a different transformation, such as solely Blur
or Grayscale, the attacks can be effectively mitigated. It is important to note that in practical scenarios,
the attacker may not know which transformation the defender is using, therefore the defender should
consider using diverse transformations to enhance the defense ability.
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4.4.3 Evaluation on Purification Speed
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Figure 3: Inference time with dif-
ferent purification on CIFAR-10.

We analyze the computational costs of classification and purifi-
cation before and after applying speed-up strategies. Figure 3
presents the average time required per image in CIFAR-10. Our
defense method’s efficiency can be enhanced with the intro-
duction of our proposed tiling and detection-based strategies,
resulting in a 33× and 39× speedup, respectively. The results
also show that ZIP can complete the purification step faster
than the classification step under various scenarios, highlight-
ing its efficiency. In addition, our method is three times faster
than another inference time purification model BDMAE [53].
More details about the speed-up settings are provided in the
Supplementary Material F.2.

5 Related Work: Backdoor Defense

In this section, we briefly review backdoor defenses here and provide a more detailed discussion in the
Appendix G. Existing backdoor defense methods are mainly designed for white-box models [32, 61].
However, these methods [47, 10] often require access to model parameters or original training data,
which is not always feasible in real-world scenarios. To address this challenge, existing black-box
defense methods are proposed and can be roughly divided into backdoor detection and backdoor
purification. Detection models [18, 19, 65, 12, 38, 14, 56, 16] aim to identify and reject any detected
poisoned images for further inference as a defense mechanism. However, this approach can limit
the usefulness of these methods in practical settings where users expect results for all of their test
samples. On the other hand, backdoor purification methods aim to remove the poison effect from
the image to defend against attacks. Some methods [42, 53] in this category involve masking the
potentially poisoned region and then reconstructing the masked image to obtain a poison-free image.
However, these strategies may fail when the trigger patterns are distributed throughout the image,
rather than in a specific patch-based location [1, 43, 68, 37]. Another approach [35] involves applying
strong image transformations to the test image to destruct the trigger pattern. While such methods can
defend against more advanced attacks, they typically result in a decrease in classification accuracy.

6 Conclusion

We propose a novel framework called ZIP for defending against backdoor attacks in black-box
settings. Our method involves applying strong transformations to the poisoned image to destroy
the trigger pattern. It then leverages a pre-trained diffusion model to recover the removed semantic
information while maintaining the fidelity of the purified images. The experiments demonstrate the
effectiveness of ZIP in defending against various backdoor attacks, without requiring model internal
information or any training samples. ZIP also enables end-users to utilize full test samples, even
when using an attacked classification model. Some future directions include designing black-box
defense for other data domains and exploring other types of diffusion models.
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A Theoretical Justification

A.1 Proof on rectified estimation of xt in Equation 7

Equation 7 x′
t =
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt.

Proof. Based on xt =
√
ᾱtx0 +

√
1− ᾱtϵ, we have a nice property [22]:

x0|t =
1√
ᾱt

(xt −
√
1− ᾱtϵt). (13)

To ensure that the approximated clean image x0|t based on the t-th step observation xt satisfies the
constraint in Equation 6, we have:

x0|t = A†xA −A†Ap+
(
I−A†A

)
x0|t. (14)

Combine the above two equations, we can have:

1√
ᾱt

(xt −
√
1− ᾱtϵt) = A†xA −A†Ap+

(
I−A†A

)
(

1√
ᾱt

(xt −
√
1− ᾱtϵt)). (15)

Taking the derivative, we arrive at:

x′
t =
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt. (16)

A.2 Proof of Lemma 3.1

Lemma 3.1 Suppose the estimated noise output by gϕ(·) is Gaussian. Given gϕ(xt, t) = ϵt, we have
gϕ((xt +

√
ᾱtA

†Ap), t) = ϵt + ϵ′t, where ϵt, ϵ
′
t are also Gaussian.

Proof. Let us define the output of gϕ((xt + x′
t), t) as ϵ̂t, so we have gϕ((xt + x′

t), t) = ϵ̂t. Next,
we define ϵt ∼ N(µ1, σ

2
1) and ϵ̂t ∼ N(µ2, σ

2
2).

Since ϵ̂t also follows a Gaussian distribution, we can subtract ϵt from ϵ̂t to obtain ϵ′t, such that:

ϵ′t = ϵ̂t − ϵt ∼ N(µ2 − µ1, σ
2
1 + σ2

2) (17)

This confirms that ϵ′t is also Gaussian, thus completing the proof.

A.3 Proof of Theorem 3.2

Theorem 3.2 Suppose that gϕ((xt +
√
ᾱtA

†Ap)) = ϵt + ϵ′t. We define the error at step t between
x̂t and (xt +

√
ᾱtA

†Ap) as δ′t, i.e., δ′t = x̂t − (xt +
√
ᾱtA

†Ap). Let δt = Aδ′t, we have the
following bound on its norm: ∥δt∥ ≤

(1−ᾱt)
√
αt+1√

1−ᾱt+1

∥A∥∥ϵ′t+1∥.

Proof. We prove the above theorem by induction.

1 The base case is when t = T , where we have x̂T − (xT +
√
ᾱTA

†Ap) = 0, which holds.

2 Suppose for x̂t − (xt +
√
ᾱtA

†Ap) = A†δt, ∥δt∥ ≤
(1−ᾱt)

√
αt+1√

1−ᾱt+1

∥A∥∥ϵ′t+1∥ is true.

3 Induction:

xt−1 ←
1√
αt

(
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt −

1− αt√
1− ᾱt

ϵt) + σtϵ,

(18)

x̂t−1 =
1√
αt

(
√
ᾱtA

†xA+(I−A†A)x̂t+A†A
√
1− ᾱt(ϵt+ϵ′t)−

1− αt√
1− ᾱt

(ϵt+ϵ′t))+σtϵ, (19)
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x̂t−1−xt−1 ←
1√
αt

(
√
ᾱtA

†Ap+(I−A†A)(
√
ᾱtA

†Ap+A†δt)+A†A
√
1− ᾱtϵ

′
t−

1− αt√
1− ᾱt

ϵ′t)

(20)

By definition, we have x̂t−1 − (xt−1 +
√
ᾱt−1A

†Ap) = δ′t−1. Let δt−1 = Aδ′t−1, we have
δt−1 = Aδ′t−1 = A(x̂t−1 − (xt−1 +

√
ᾱt−1A

†Ap)). Since A(I−A†A) = 0, we can have:

δt−1 =
1√
αt

(A
√
1− ᾱtϵ

′
t −A

1− αt√
1− ᾱt

ϵ′t) =
(1− ᾱt−1)

√
αt√

1− ᾱt
Aϵ′t (21)

Based on the Cauchy–Schwarz inequality:

∥δt−1∥ = ∥
(1− ᾱt−1)

√
αt√

1− ᾱt
Aϵ′t∥ ≤

(1− ᾱt−1)
√
αt√

1− ᾱt
∥A∥∥ϵ′t∥ (22)

A.4 Proof of Corollary 3.2.1

Corollary 3.2.1 When t = 0, we have x̂0 = x0 +A†Ap + δ′0, where Aδ′0 = 0.

Proof. First, we have:

x0 ←
1√
α1

(
√
ᾱ1A

†xA−
√
ᾱ1A

†Ap+(I−A†A)x1+A†A
√
1− ᾱ1ϵ1−

1− α1√
1− ᾱ1

ϵ1)+σ1ϵ, (23)

x̂0 =
1√
α1

(
√
ᾱ1A

†xA+(I−A†A)x̂1+A†A
√
1− ᾱ1(ϵ1+ϵ′1)−

1− α1√
1− ᾱ1

(ϵ1+ϵ′1))+σ1ϵ, (24)

Then we can have:

Aδ′0 =
(1− α0)

√
α1√

1− ᾱ1
Aϵ′1. (25)

Since α0 = 1, then we have Aδ′0 = 0.
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B Qualitative Results of Purification

B.1 Qualitative Results of Purification on BadNet Attack

(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

Figure 4: Comparison of Purified and BadNet Attack Images(Part1).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 5: Comparison of Purified and BadNet Attack Images(Part2).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 6: Comparison of Purified and BadNet Attack Images(Part3).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 7: Comparison of Purified and BadNet Attack Images(Part4).
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B.2 Qualitative Results of Purification on Blended Attack

(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

Figure 8: Comparison of Purified and Blended Attack Images(Part1).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 9: Comparison of Purified and Blended Attack Images(Part2).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 10: Comparison of Purified and Blended Attack Images(Part3).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 11: Comparison of Purified and Blended Attack Images(Part4).
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C Details on Linear Transformations

In this section, we discuss details of the linear transformation applied in our paper. Two practical
examples are discussed to illustrate the simplicity and effectiveness of linear transformations, along
with the corresponding operators used.

Gray-scale Conversion: To convert an RGB image to gray-scale, the operator A = [1/3, 1/3, 1/3]
can be defined as a pixel-wise operation that transforms each RGB channel pixel [r, g, b] into a gray-
scale value r3+g3+b3. In this case, constructing a pseudo-inverse A† = [1, 1, 1]T is straightforward,
satisfying the condition AA† ≡ I, where I represents the identity matrix.

Image Blurring: Image blurring also involves linear transformations. For a blurring operation with
scale n, the operator A is defined as the average-pooling operator [1/n2, ..., 1/n2]. This operator
aggregates each patch of the image into a single value. Similarly, the pseudo-inverse A† can be built
as A† = [1, ..., 1]T to fulfill the condition AA† ≡ I.

Overall, these examples demonstrate how these two linear transformations, in conjunction with their
respective operators, can be employed to destruct the trigger pattern without relying on a complex
Fourier transform. In cases where the linear transformation is too complex to solve for its pseudo-
inverse, the Singular Value Decomposition (SVD) method can be applied. For more details, please
refer to papers [58, 29].

D Algorithm for improved ZIP based on DDIM

In this section, we include the modified algorithm based on DDIM, which is proposed to speed up the
diffusion model inference speed.

Algorithm 2 Zero-shot Image Purification (based on DDIM)

Require: Test image for purification xP ; liner transformation A1,A2, ...,An and their pseudo-
inverse A†

1,A
†
2, ...,A

†
n; diffusion model g; hyperparameter λ; speed-up pace S.

Ensure: xAn = Anx
P , n = 0, 1, ..., N

1: xT ∼ N (0, I)
2: for t = T, T − S, ..., S, 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: ϵt = gϕ(xt, t)
5: for n = 1, 2, ..., N do
6: x̂n

t =
√
ᾱtA

†
1x

An + (I−A†
nAn)xt +A†

nAn

√
1− ᾱtϵt

7: end for
8: x̂t =

1
N (x̂1

t + x̂2
t+, ...,+x̂N

t )

9: x̃t = (1− ᾱλ
t )x̂t + ᾱλ

t xt

10: x̃0|t =
1√
ᾱt
(x̃t −

√
1− ᾱtϵt)

11: xt−1 ←
√
ᾱt−1x̃0|t +

√
1− ᾱt−1 − σ2

t ϵt + σtϵ
12: end for
13: return x0

E Experiments Settings

E.1 Datasets Informaiton

CIFAR-10 [30] The CIFAR-10 dataset is a widely-used benchmark in computer vision. It consists of
60,000 color images of size 32x32 pixels, belonging to 10 different classes, with 6,000 images per
class. The dataset is divided into 50,000 training images and 10,000 test images, with a balanced
distribution of classes.

GTSRB [52] The German Traffic Sign Recognition Benchmark (GTSRB) dataset is designed for
traffic sign classification tasks. It comprises more than 50,000 images of traffic signs captured under
various real-world conditions. The images have different sizes and aspect ratios, but they are resized
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to 32x32 pixels for our model training and evaluation. The dataset is divided into training and test
sets, with its official split ratio.

Imagenette [24] The Imagenette is a subset of the larger ImageNet dataset and is commonly used
as a smaller-scale alternative for image classification tasks. It consists of 10 classes with a total of
13,000 images. The images in Imagenette have varying sizes, but they are resized to 256x256 pixels
for consistency. The dataset is split into training and validation sets, following a predefined split ratio.

Table 5: Properties of datasets.
Dataset Classes Image Size Train Split Test Split

CIFAR-10 10 32x32 50,000 10,000
GTSRB 43 32x32 39,209 12,630

Imagenette 10 256x256 9,480 3,936

E.2 Attacks Implementation

In this section, we discuss the implementation details of three different backdoor attack methods
employed in our study: BadNet, Blended, and PhysicalBA. We implement these backdoor attacks
using the Backdoorbox framework [33], which is under GNU general public license.

BadNet [15] The BadNet attack injects specific trigger patterns into the training data. In our
implementation, we set the poisoned rate to 5%, i.e., 5% of the training samples are selected as attack
samples and have the trigger pattern added to them. The trigger pattern size is set to 2x2 for 32x32
pixels images and 9x9 for 256x256 pixels images. The trigger patterns are randomly generated.

Blended [8] The Blended attack is a more sophisticated variant aimed at making the backdoor less
conspicuous and harder to detect. Following the suggestion in BackdoorBox, we set the blended rate
to 0.2 and the poisoned rate to 5%. The blended pattern is randomly generated, seamlessly blending
the trigger pattern into the attack samples.

PhysicalBA [34] The PhysicalBA (Physical Backdoor Attack) is a specific type of attack that
introduces variations in the location and appearance of the attack pattern embedded in the test samples
during inference time. In our implementation, we apply the same attack pattern size as the BadNet
attack, using a 2x2 pattern for 32x32 pixels images and a 9x9 pattern for 256x256 pixels images. The
attack patterns are generated randomly. We set the poisoned rate to 5% for this attack.

All other attack settings follow the default configurations in Backboorbox [33].

E.3 Purification Implementation

We utilize a pre-trained model provided by OpenAI [9] under the MIT license. The algorithm
described in Algorithm 2 is employed to accelerate the inference process, allowing us to generate
high-quality images within just 20 steps, and the speed-up pace is set to 50. We set the hyperparameter
λ to a value of 2 for Blended attack defense, and 10 for BadNet and PhysicalBA attack defense.

Specifically, for the CIFAR-10 dataset, we apply both blur and gray-scale conversion as linear trans-
formations. For the GTSRB and Imagenette datasets, we solely apply blur as the linear transformation.
Additional implementation details can be found in the code we have provided.

F Ablation Study Settings

F.1 Enhanced Attack Settings

In the enhanced attack settings, our first step is to extract 5% of the training dataset and inject the
attack’s trigger pattern into these images. We then proceed to purify this subset of data using blur
and grayscale as linear transformations during the first stage of our proposed purification. Once the
attacked images have been successfully purified, we modify their labels to reflect the attack label.
Following this, we introduce these purified images as poisoned samples into the training set and train
a classification model from scratch. This comprehensive procedure is referred to as the enhanced
attack process.
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F.2 Purification Speed Settings

This paper focuses on defending against backdoor attacks during the inference phase using purification
techniques. To evaluate the purification speed, we conduct experiments using a workstation that
features an Intel(R) Core(TM) i9-10900X CPU and an NVIDIA RTX3070 GPU with 8GB of memory.

During our experiments, we measure the classification time, which represents the duration taken by
the classifier model to perform inference on a single image. Additionally, we measure the purification
time, which indicates the time required by the purification model to purify a single image.

For the combination of purification with detection, we utilize the Scale-up method [19] as our chosen
detection technique. Furthermore, the dataset used for speed evaluation consists of 5% poisoned
images. Following previous settings [19], we set a batch size of one for the classifier model and
report the average time based on 640 runs.

G Related Work

G.1 Backdoor Attack

Existing backdoor attack methods involve the injection of poisoned samples into the training process
of Deep Neural Networks (DNNs). These attacks can target various types of models, including image
classification models, object detection models [5, 36], contrastive learning models [3], and language
models [40, 49, 69, 6]. The attackers exploit vulnerabilities by embedding adversary-specified
trigger patterns into carefully selected benign samples. Backdoor attacks are characterized by their
stealthiness, as the attacked models behave normally on benign samples, making the hidden triggers
difficult to detect and purify.

There are mainly two categories of backdoor attacks for image classification tasks: patch-based
and non-patch-based attacks. Patch-based attacks are attacks with triggers embedded as patches
or overlays within the input samples. For example, Souri et al. [51] propose the Sleeper Agent
attack, which is a sophisticated backdoor attack where an adversary subtly injects hidden triggers
into an image classification model during training, remaining dormant until specific conditions
activate malicious behavior. Non-patch-based attacks are attacks where triggers are integrated without
explicit patching, often relying on specific input sequences or subtle modifications in the feature
space [67, 23, 20]. For example, Doan et al. [11] introduce Wasserstein backdoor attack, an extension
of the imperceptible backdoor concept to the latent representation. Their proposed attack manipulates
inputs with imperceptible noise, matching latent representations to achieve high attack success rates
while remaining stealthy in both the input and latent spaces.

G.2 Backdoor Defense

Existing defense methods for backdoor models can be broadly categorized into two approaches: (1)
detection-based methods and (2) purification-based methods.

Detection-based methods focus on identifying the presence of backdoors in trained models. These
methods typically involve analyzing the model’s behavior and inputs to detect any suspicious patterns
or triggers that indicate the existence of a backdoor [2]. Various techniques such as anomaly
detection [13, 25, 63], and statistical analysis [18, 7] have been employed to detect backdoors. The
goal of detection-based methods is to provide an early warning system to identify and mitigate the
risks posed by backdoor attacks.

On the other hand, purification-based methods aim to remove or neutralize the effects of backdoors
from the model. These methods involve modifying the model or its training process to eliminate the
influence of the backdoor triggers on the model’s behavior [26, 39]. Some purification approaches
focus on retraining the model using clean or carefully selected training data to reduce the impact of
the backdoor [64, 59, 31, 27, 55]. Other methods aim to directly identify and neutralize the backdoor
triggers within the model’s parameters or hidden representations [57, 4, 62, 60, 41]. The objective of
purification-based methods is to restore the integrity and reliability of the model by eliminating the
malicious behavior induced by the backdoor.
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H Comparison Results with Image Restoration/Purification Methods

In this section, we compare our proposed ZIP with existing purification and restoration methods,
including DiffPure [44] and DDNM [58]. Specifically, DiffPure is a state-of-the-art purification
method designed for adversarial attacks, while DDNM is a state-of-the-art image restoration technique
to repair corrupted images.

H.1 Quantitative Results Comparison with Image Restoration/Purification Methods

We first conduct a quantitative analysis of the defense performance between our proposed method and
DiffPure and DDNM. In order to ensure a fair comparison, we implemented DiffPure and DDNM
using their official code and applied identical linear transformations, diffusion steps, and schedules to
both methods. The defense performance is listed in Table 6.

Table 6: Defense performance on Imagenette.
Attack No Defense DiffPure Blur+DiffPure Blur+DDNM ZIP (Ours)

CA ASR PA CA ASR PA CA ASR PA CA ASR PA CA ASR PA
BadNet 84.99 94.53 14.98 78.85 91.41 18.11 75.13 10.16 74.31 84.56 9.14 82.24 84.05 7.55 83.97
Blended 86.14 99.85 10.19 80.63 43.82 56.68 75.89 13.53 73.98 85.37 93.37 15.46 81.42 8.35 78.36

We can first observe that our ZIP performs better than DiffPure and Blur+DiffPure in all three
metrics regarding defense performance. This is because our ZIP can recover the semantic information
removed by the Blur, while Blur+DiffPure can not. Specifically, DiffPure aims to remove attack
patterns by first diffusing images with noise and then recovering images through an unconditional
reverse process. While coupling DiffPure with Blur enhances its trigger removal capability (lower
ASR), its unconditional generative process fails to effectively recover the semantic information
removed by Blur. This leads to a drop in clean accuracy (CA). In the above table, Blur+DiffPure
exhibits poorer CA compared to both DiffPure and our ZIP. In contrast, our ZIP, after Blur, utilizes a
conditional reverse process to recover semantic information deleted by Blur through RND theory.
Therefore, our ZIPs can outperform DiffPure.

We can also observe that DDNM shows better clean accuracy than ZIP, but it cannot effectively
defend against backdoor attacks like Blended. This is because DDNM restores the attack patterns in
its diffusion process, which decreases the defense performance.

H.2 Qualitative Results Comparison with Image Restoration Methods

In this subsection, we conduct a qualitative analysis of the purification effect between our proposed
method and DDNM.
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(a) Attack Image (b) Restored by DDNM (c) Purified by ZIP

(d) Attack Image (e) Restored by DDNM (f) Purified by ZIP

(g) Attack Image (h) Restored by DDNM (i) Purified by ZIP

Figure 12: Comparison of DDNM and ZIP on defending Blended attack.
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(a) Attack Image (b) Restored by DDNM (c) Purified by ZIP

(d) Attack Image (e) Restored by DDNM (f) Purified by ZIP

(g) Attack Image (h) Restored by DDNM (i) Purified by ZIP

Figure 13: Comparison of DDNM and ZIP on defending BadNet attack.
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I Limitations

Due to our reliance on a pre-trained diffusion model to implement zero-shot purification, the effec-
tiveness of generating purified images may be weakened when our model is applied to highly specific
images that fall outside the distribution of pre-processed data. To mitigate this issue, we suggest
two possible solutions in future work: 1) replacing the current pre-trained diffusion model with a
more suitable pre-trained model for such specific images, and 2) collecting a subset of highly specific
images to perform fine-tuning on the pre-trained model.
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