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Figure 1. ViSTA-SLAM Results on a Multi-room Scene [8]. By combining the proposed lightweight frontend Symmetric Two-view
Association (STA) model with Sim(3) pose graph optimization and loop closuring as the backend, ViISTA-SLAM achieves high-quality
reconstruction and accurate trajectory estimation on challenging scenes while running in real time.

Abstract

We present ViSTA-SLAM as a real-time monocular vi-
sual SLAM system that operates without requiring camera
intrinsics, making it broadly applicable across diverse cam-
era setups. At its core, the system employs a lightweight
symmetric two-view association (STA) model as the fron-
tend, which simultaneously estimates relative camera poses
and regresses local pointmaps from only two RGB images.
This design reduces model complexity significantly, the size
of our frontend is only 35% that of comparable state-of-
the-art methods, while enhancing the quality of two-view
constraints used in the pipeline. In the backend, we con-
struct a specially designed Sim(3) pose graph that incorpo-
rates loop closures to address accumulated drift. Extensive
experiments demonstrate that our approach achieves supe-
rior performance in both camera tracking and dense 3D re-
construction quality compared to current methods. Github
repository: https://github.com/zhangganlin/
vista—-slam

1. Introduction

1.1. Real-time Monocular Dense SLAM

Simultaneous Localization and Mapping (SLAM) jointly
estimates an agent’s pose and the surrounding 3D scene
from sensor observations. In the monocular dense setting,

a single RGB camera is used to reconstruct a continuous
3D map, enabling both geometric accuracy and visual re-
alism. The camera poses and dense reconstruction outputs
underpin downstream tasks [2, 19, 31, 32, 42] such as se-
mantic perception, object interaction, and scene editing, and
are crucial for applications in VR/AR, robotics, and au-
tonomous driving, where accurate, low-latency 3D percep-
tion is essential.

1.2. Related Work

Classical Visual SLAM  Classical visual SLAM meth-
ods can be broadly categorized into two types. The first,
similar to incremental SfM [1, 26, 41], is feature-based
SLAM [6, 10, 34, 35], relying on keypoint extraction and
descriptor matching to provide constraints for triangulation
and PnP [21, 22] pose estimation. The second, known as di-
rect methods, such as LSD-SLAM [15] and DSO [16], opti-
mizes camera poses by minimizing photometric error from
pixel intensities while estimating a per-frame depth map.
Both categories typically adopt a frontend (feature-based or
direct) and a backend for optimization, most often bundle
adjustment [49] to jointly refine poses and structure. How-
ever, they rely heavily on accurate camera calibration and
are generally limited to sparse 3D reconstructions.

Dense Visual SLAM To enable denser reconstructions,
recent works have incorporated deep learning into either
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the frontend or the scene representation. For example,
DROID-SLAM [48] uses RAFT [47] for dense optical
flow in the frontend and performs dense bundle adjust-
ment on the GPU, while methods such as SuperPrimi-
tive [30] and COMO [12] leverage monocular priors (e.g.,
surface normals, depth distributions) from pretrained mod-
els with direct photometric optimization. BA-Track [7]
augments point-based tracking with a scale-grid deforma-
tion of monocular depth priors. Neural scene represen-
tations have also been adopted, with NICER-SLAM [61]
and MonoGS [29] optimizing camera poses and 3D struc-
ture using NeRF [33] and 3D Gaussian Splatting [20], re-
spectively. Tracking robustness and geometric accuracy
have been further improved by integrating depth priors and
auxiliary trackers [40, 57-60]. However, most approaches
still require accurate camera intrinsics and many struggle
to achieve true real-time performance due to the computa-
tional demands of dense optimization and neural rendering.

SLAM with 3D Foundation Models All aforementioned
methods require known and accurate camera intrinsics.
With the advent of 3D foundation models [23, 51, 53], sev-
eral intrinsic-free SLAM frameworks have emerged, aim-
ing to produce dense outputs without calibration. Meth-
ods such as Spann3R [50] and others [5, 27, 52] extend
the two-view DUSt3R [53] model to sequential inputs, di-
rectly regressing point clouds in a unified global coordinate
system. Reloc3r [13] instead regresses only relative poses
and performs offline global optimization using SfM tech-
niques [37, 46, 56]. MASt3R-SLAM [36] extracts dense
correspondences from MASt3R [23] and feeds them into a
classical optimization pipeline, while submap-based meth-
ods [11, 28] employs the multiview model VGGT [51] to
regress local submaps before stitching them via pose graph
optimization. While these approaches address some classi-
cal limitations, they still face notable drawbacks:

1. Current two-view models [23, 53] use asymmetric archi-
tectures that regress pointmaps of both views to the first
view’s coordinates, making it difficult to decouple views
for backend optimization (e.g. loop closure).

2. Pure regression methods [27, 50, 52] predict incoming
frames with previous memory, but suffer from drift and
start forgetting once the trajectory gets longer.

3. Methods [27, 36, 50, 52] built on current two-view mod-
els inherit the asymmetric architecture with two sepa-
rate decoders, resulting in large model size. Submap-
based methods [1 1, 28] employ an even larger multiview
model [51] to build submaps, which further increases the
size of the frontend model.

1.3. Contributions of ViSTA-SLAM

To address these concerns, we propose ViSTA-SLAM, a
novel real-time monocular visual SLAM pipeline based on
symmetric two-view association. At its core is a lightweight

Symmetric Two-view Association (STA) model frontend,
which takes two RGB images as input and simultaneously
regresses two pointmaps in their respective local coordi-
nate frames, along with the relative camera pose between
them. During training, we enforce cycle consistency on
relative poses and geometric consistency on pointmaps to
improve accuracy and stability. Unlike prior 3D mod-
els [23, 51, 53], STA is fully symmetric with respect to its
inputs: neither view is designated as a reference, and the
same encoder—decoder architecture is applied to both. In
the backend, we perform Sim(3) pose graph optimization
with loop closures to mitigate drift and ensure global con-
sistency. To further enhance robustness, each view is repre-
sented by multiple nodes rather than a single one, which are
connected by scale-only edges to handle scale inconsisten-
cies across different forward passes.

This symmetric design makes our frontend substantially
more lightweight than existing methods, with STA being
only 64% the size of MASt3R [23] and 35% the size of
VGGT [51]. Unlike prior approaches [11, 28] that group
multiple views into a single submap node, our method as-
signs each view its own nodes in the pose graph. Lever-
aging the local pointmaps produced by the STA frontend,
each node can be represented independently, connected to
others solely through relative transformations. Compared to
submap-based methods [28], this design yields a more flexi-
ble graph structure and greater robustness. The combination
of this flexibility and lightweight architecture underpins our
choice of a symmetric two-view model as the frontend.

In summary, our main contributions are as follows:

e We design and train a lightweight, symmetric two-view
association network as the frontend, which takes only two
RGB images as input and regresses their pointmaps in
local coordinates along with the relative camera pose.

e We construct a robust Sim(3) pose graph with loop clo-
sures, optimize it using the Levenberg—Marquardt algo-
rithm for fast and stable convergence.

e By integrating these components, we present a real-time
monocular dense visual SLAM framework that operates
without requiring any camera intrinsics.

e Our method achieves state-of-the-art performance on the
real-world 7-Scenes [43] and TUM-RGBD [45] datasets
for both camera trajectory estimation and dense 3D re-
construction.

2. ViSTA-SLAM Pipeline

As a monocular dense SLAM pipeline (Fig. 2), our aim is
to simultaneously track camera poses and reconstruct the
recorded scene online using a dense pointcloud. To achieve
this, we propose a lightweight and novel symmetric two-
view association model as the frontend of our pipeline,
which extracts the relative pose and local point maps of
two neighboring input frames (Sec. 2.1 and Sec. 2.2). In
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Figure 2. ViSTA-SLAM Overview. Given sequential video frames without intrinsics as the input, our frontend model takes in view pairs
and predicts local pointmaps and relative poses within each pair. We then use the pair-wise predictions to construct a Sim(3) pose graph
with loop closure and optimize it via Levenberg—Marquardt algorithm. The frontend model employs a fully symmetric design, making
the model lightweight and supporting more flexible pose graph optimization. The blue edges in the pose graph and final results represent
connections between neighboring nodes (views), while the orange edges correspond to loop closures.

the backend, a sparse and efficient Sim(3) pose graph op-
timization with loop closure is performed to mitigate drift
accumulation (Sec. 2.3).

2.1. Symmetric Two-view Association Model

In classical monocular SLAM pipelines, the two-view esti-
mation is one of the most critical building block, as it es-
tablishes geometric constraints that allow for further opti-
mization. In this work, we follow the same principle; how-
ever, instead of relying on traditional methods, we propose
a deep learning based Symmetric Two-view Association
(STA) model that eliminates the need for camera intrinsics
in the SLAM process.

Encoder Our STA model takes in two images I;, I; as
input. It uses a shared ViT encoder [14] to divide input
images into patches and encode them into features

E;; = Encoder (I;);) € RF*Y,

where K represents tokens and C' denotes the dimensions.
Subsequently, we insert a camera pose embedding p to the
encoding features of each view, forming

(p, Ei/5)

Decoder The decoder further processes and fuses infor-
mation between the encoding features E} and E?. It con-
tains a sequence of B decoder blocks, each conducting a
self-attention operation followed by a cross-attention oper-
ation, producing decoding features

(D9, D4

Ej,; = e RE+DXC,
i/j

D(b) = DecoderBlock®

i/j i/j jli
where b € {1,2,..., B} is the index of a decoder block,
and Df% =E] /i

Symmetric Formulation  Prior approaches [23, 53]
regress both point maps into the coordinate frame of the

) c R(K+1)><C/,

first view, thus requiring two separate decoders. In contrast,
our model predicts only local point maps and relative poses
between views. This fully symmetric formulation makes it
possible to use only one decoder. As a result, the number
of parameters for decoding is effectively reduced by half
(shown in Fig. 3), forming a more compact model for real-
time applications. Moreover, producing local view outputs
in their own coordinate systems is better suited for the sub-

sequent pose graph optimization, see Sec. 2.3 for details.

Local Point Maps Given decoding features Dg%, we use

a DPT head [38] to regress the local point maps P and cor-
responding confidence maps W':

— Poi (b)
P;,;, W;,; = PointHead (Di/j>
Relative Poses Given the first embedding of the decod-
ing feature DEB), i.e., the camera pose embedding pEB) S
R we use an MLP to regress the relative transfor-
mation from view ¢ to j . Specifically, the MLP outputs

a matrix M;; € R3*%3 for rotation, a translation vector
t;; € R®*!, and a confidence score w;; € [0, 1]:

)

Since M;; is not guaranteed to lie on the SO(3) manifold,
we apply SVD orthogonalization [24] to it to obtain a valid
rotation matrix R;;. Then, the relative transformation is
T;; = [Ri;|t;;]. With our symmetric formulation, we could
also input p; into the pose head to regress T7;. But in prac-
tice we only regress one of them for building pose graph.

(B)

%

M, t;;, w;; = PoseHead(p

2.2. Training Objective

There are three loss terms to supervise the training of our
STA model. Pointmap Loss compares the regressed lo-
cal pointmap with ground-truth points. Relative Pose Loss



penalizes errors in relative rotation and translation, with
a cycle-consistency term ensuring the two predicted poses
are mutual inverses. Geometric Consistency Loss enforces
alignment of the two local point maps after applying the
predicted relative transformation, improving local recon-
struction consistency.

Local Pointmap Loss Following DUSt3R [53], we ap-
ply the confidence-weighted regression loss for all pre-
dicted point maps with valid ground truths. Since the re-
construction is up-to-scale, we also normalize the regressed
pointmap and the ground-truth pointmap according to their
mean Euclidean distance to the origin, n and n:

Lomp = > > [Wil(x)- (1%;1@_1%753:))

ve{i,j} z€l,

— M og (W, (x)) , 1)

where z is the pixel coordinate. Note that all the points are
regressed in the local coordinate space of each view.

Relative Pose Loss Relative pose loss consists of three
parts: rotation loss, translation loss and identity loss. The
rotation loss Ly evaluates the angle between the regressed
rotation RR;; and the ground-truth rotation R7 s

—1p) _
Lr(R, R) = arccos (tr(R2R)1> . (2)

The translation loss L; evaluates the euclidean distance be-
tween the predicted translation ¢;; and the ground truth ¢,
which are normalized by the same factors n and 7 as for the
pointmap loss in Eq. (1):

3)

The pose identity loss L;; minimizes the difference of
T;;T}; and the identity transformation I, essentially con-
straining T3; and T7; to be the inverse of each other to im-
proves the consistency of our pose prediction:

Lii=Lgr(RijR;j;, I)+ Li(R;tj; +t;,0). (4
Then the complete relative pose loss is defined as
Lpose =W (LR(Rij7 Rij) + Ly(tij, tij) + Lid)
— alog(wij), &)

weighted by a separate confidence score w;; for pose re-
gression.

Geometrical Consistency Loss To ensure that the pre-
dicted point maps of each pair are spatially consistent when
placed in the same coordinate space, we introduce a geomet-
ric consistency loss. Given a pair of images with ground-
truth intrinsics, depths, and relative poses, each pixel « in
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Figure 3. Asymmetric vs. Symmetric Architectures. Asymmet-
ric architectures [23, 53] use two decoders to regress point maps
in a shared coordinate space. our symmetric formulation regresses
relative pose and local point maps with only a single decoder, re-
ducing over 36% of the parameters (~ 0.4 vs. 0.7 billion), while
achieving higher accuracy and enabling pose graph optimization
in the backend.
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Figure 4. An Example Pose Graph for 5 views (N = 2). Nodes
of the same view are grouped and connected to the first processed
node of that view via scale edges. Our two-type-edge design en-
hances optimization robustness, yielding more accurate poses.

scale edge

view ¢ can be accurately projected into view j, yielding its
ground-truth corresponding pixel C;;(x) in view j. Then
the geometric consistency loss Lg, is defined as:

Le = Y |T;Pi(z) - P (Cy(@))| /n, (6
zel;

where T;; is the predicted relative transformation and n is
the same normalization factor as in Eq. (1).

The total training objective function L is the weighted
sum of the above three losses,

L= )\pmaprmap + )\poseLpose + )\chgcv (7)
where Apmap, Apose and Agc are weighting factors.
2.3. Backend Pose Graph Optimization

Notation In the backend, a Sim(3) pose graph G = (V, £)
is maintained and optimized to mitigate accumulated errors
introduced by the two-view estimations. The vertex set )V
and edge set £ are defined as

V:{U”ZJEN}, g:{ez]|z7j€N}7 (8)
where 'uf ,€ei; € Sim(3), each vertex 'vf represents an ab-
solute camera pose with scale, of view ¢, with view ¢ and
viewj as the input of STA; each edge e;; encodes the rela-

J
and ’U; Both vf and e;; have a rigid transformation part
T € SE(3) and a scale part s € RT.

Graph Construction To construct the pose graph, for a
given view ¢, the STA model performs 2N forward passes

tive transformation between a pair of connected vertices v



Method chess fire heads office pumpkin kitchen stairs Avg.
< NICER-SLAM [61] 0.033 0.069 0.042 0.108 0.200 0.039 0.108 0.086
'§ DROID-SLAM (48] 0.036 0.027 0.025 0.066 0.127 0.040 0.026 0.049
O GIORIE-SLAM [57] 0.036 0.029 0.014 0.094 0.144 0.053 0.020 0.056
CUT3R [52] 0.743 0.226 0.363 0.664 0.546 0.381 0.413 0.477
< SLAM3R [27] 0.089 0.048 0.036 0.088 0.196 0.102 0.126 0.098
N MASt3R-SLAM [36] 0.063 0.046 0.029 0.103 0.112 0.074 0.032 0.066
S VGGT-SLAM [28] 0.037 0.026 0.022 0.103 0.147 0.063 0.095 0.070
ViSTA-SLAM 0.073 0.035 0.028 0.055 0.129 0.035 0.029 0.055

Table 1. Camera Trajectory Estimation (ATE RMSE) on 7-Scenes [43]. ViSTA-SLAM performs the best on average.

with neighboring views j € [¢ — N,i — 1] U [i 4+ 1,i + N].
The predicted pointmap for each view in each forward pass
corresponds to a node in the graph, resulting in multiple
nodes per view since each view is processed multiple times
by the frontend model. As shown in Fig. 4, we define two
types of edges in the graph. Pose edges connect two nodes
generated from the same forward pass, using the estimated
relative camera pose and an identity relative scale, based on
the assumption that the two local point maps from a sin-
gle forward pass share the same scale. Scale edges connect
nodes belonging to the same view but obtained in different
forward passes (paired with different neighboring views),
with the rigid transformation component set to identity, and
the scale component solved via weighted least squares be-
tween the predicted point maps of different forward passes.
Among all nodes of the same view, scale edges are con-
structed only between the first processed node and the oth-
ers for sparsity and simplicity.

Loop Closure We use Bag of Words [17] to detect loop
candidates, which form new pairs. Then we can feed each
candidates pair into our STA model to confirm these prox-
imity. If the predicted confidence score of the relative pose
is higher than a predefined threshold 7, this pair is accepted
as a valid loop, and two new nodes connected by a pose
edge are added. Each new node is also connected to the first
processed node of its corresponding view via a scale edge.
Optimization We perform pose graph optimization us-
ing the Levenberg—Marquardt algorithm in the space of Lie
algebra sim(3).

min Z HlOgSim(?)) (eij (v])7! ”;)‘

{vievy i, CE Qi

2

9

where €2;; represents the covariance matrix, derived from
the confidence score predicted by the STA model. The opti-
mization process takes less than 5 iterations to converge in
most cases.

Using the optimized camera pose and scale, the recon-
structed pointcloud P/ in global coordinate is,

P! =s/RIP! +t, (10)

where R!, t] and s are the orientation, position, scale of
v] respectively. To avoid redundancy, for each view i, we

only keep the pointcloud with largest confidence among all
P/ in the final result.

3. Experiments

Evaluation Datasets and Metrics  Following VGGT-
SLAM [28], we evaluate our method on standard monoc-
ular SLAM benchmarks for camera tracking accuracy and
reconstruction quality. We report root mean square error
(RMSE) of absolute trajectory error (ATE, in meters) on
real-world 7-Scenes [43] and TUM-RGBD [45] datasets us-
ing the evo toolkit [ 18]. Reconstruction quality on 7-Scenes
is assessed via RMSE of accuracy, completion, and Cham-
fer distance (meters), leveraging its ground-truth 3D scenes.

Implementation Details The frontend STA model is ini-
tialized from the weights of DUSt3R [53], and trained on
ScanNet [8], ScanNet++[54], ARKitScenes[4], CO3D [39],
Aria Synthetic Environments [3], and Replica [44] for 7
days using 8 NVIDIA H100 GPUs. We use AdamW op-
timizer to train our STA model with learning rate 1.5¢72,
weight decay 0.01, B = 12, o™ = 0.2, o = (.05,
Apmap = L, Apose = 1, Age = 1, and 7, = 0.75. We
conducted evaluations on a machine with an NVIDIA RTX
4090 GPU and an Intel i19-14900KF CPU, with N = 2 for
7-Scenes and N = 3 for TUM-RGBD.

Baselines  ViSTA-SLAM is primarily compared with
state-of-the-art (SOTA) learning-based SLAM methods
in uncalibrated scenarios: VGGT-SLAM [28], MASt3R-
SLAM [36], SLAM3R [27], and CUT3R [52]. To re-
duce randomness from VGGT-SLAM’s RANSAC, we run
it 5 times per scene as suggested in their paper; results
for other methods, including ours, are deterministic. We
also compare with SOTA methods using known camera
intrinsics [6, 25, 48, 57, 61]. Some results are taken
from [28, 36]. For MASt3R-SLAM and VGGT-SLAM, we
keep their original keyframe selection; for ours, CUT3R,
and SLAMS3R, we use frame strides of 5 (7-Scenes) and 3
(TUM-RGBD). Calibrated methods are shown in gray. Best
results are highlighted as first, second , and third .

3.1. Camera Trajectory Evaluation

In Tab. 1 and Tab. 2, we report ATE RMSE. ViSTA-SLAM
achieves the best average performance on both datasets, out-



Method 360 desk desk?2 floor plant room rpy teddy XYZ Avg.
< ORB-SLAM3 [6] X 0.017 0.210 X 0.034 X X X 0.009 N/A
§ DPV-SLAM [25] 0.112 0.018 0.029 0.057 0.021 0.330 0.030 0.084 0.010 | 0.076
S  DPV-SLAM++ [25] 0.132 0.018 0.029 0.050 0.022 0.096 0.032 0.098 0.010 | 0.054
LN;_) DROID-SLAM [48] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 | 0.038

GIORIE-SLAM [57] 0.128 0.016 0.028 0.021 0.021 0.042 0.020 0.035 0.010 | 0.036
3 CUT3R [52] 0.174  0.592 0.546 0.662 0.467 0.911 0.051 0.845 0.129 | 0.486
§ SLAM3R[27] 0.211 0.861 0.967 0.790 0.755 1.013 0.063 0.986 0.185 | 0.648
= MASEBR-SLAM [36] 0.070  0.032 0.055 0.056 0.035 0.118 0.041 0.116 0.020 | 0.060
§ VGGT-SLAM [28] 0.063 0.031 0.048 0.152 0.023 0.133 0.038 0.039 0.020 | 0.061
S  ViSTA-SLAM 0.104  0.030 0.030 0.070 0.052 0.067  0.023 0.080 0.015 | 0.052

Table 2. Camera Trajectory Estimation (ATE RMSE) on TUM-RGBD [45]. ViSTA-SLAM performs the best on average.

performing current SOTA [36] by 17% (0.055 vs. 0.066)
and 13% (0.052 vs. 0.060), and surpasses some calibrated
methods [25, 61]. ViSTA-SLAM performs less effectively
on TUM-RGBD 360 scene due to predominantly rotational
camera motion that leads to frontend ambiguity and degrad-
ing performance. Other methods [28, 36] use either heavier
multi-view frontend or more intensive optimization to re-
duce the influence. Pure regression-based methods [27, 52]
struggle to maintain consistent registration over long se-
quences with large camera motion due to forgetting effects.

In Fig. 5, we show the estimated trajectories from
different methods on 7-Scenes [43] office and TUM-
RGBD [45] room. CUT3R [52] suffers from severe forget-
ting issues on long sequences; SLAM3R [27] has bad point
registration on the challenged scene TUM-RGBD room,
thus, does not produce correct camera poses. Compared
to pure regression-based methods, MASt3R-SLAM [36]
and VGGT-SLAM [28] work well, while ViSTA-SLAM
achieves even higher trajectory accuracy.

3.2. Dense Reconstruction Evaluation

In Tab. 3, we evaluate reconstruction quality across meth-
ods. Leveraging accurate camera poses and consistent local
point clouds, ViSTA-SLAM achieves the best Chamfer dis-
tance among all approaches. Despite using a lightweight
two-view frontend, ViSTA-SLAM, combined with tailored
Sim(3) pose graph optimization, significantly outperforms
multi-view-frontend methods [27, 28] in accuracy (0.45
vs. 0.52) while matching or exceeding completeness. To
demonstrate the effectiveness of our lightweight frontend,
we add another strong baseline, replacing our STA model
with a two-view VGGT [51] as the frontend and conduct-
ing the same pose graph optimization. ViSTA-SLAM still
achieves better performance in Chamfer distance, complete-
ness, and absolute trajectory error, highlighting the effec-
tiveness of our lightweight symmetric frontend over larger
multiview models like VGGT for SLAM tasks

In Fig. 6, we show qualitative reconstruction results
on 7-Scenes redkitchen, TUM-RGBD [45] room, and
BundleFusion [9] apt1. CUT3R [52] fails to reconstruct

Method ATE| Acc.| Comp. ] Chamfer|
DROID-SLAM [48] 0.049 | 0.141 0.048 0.094
MASt3R-SLAM [36] 0.047 | 0.089 0.085 0.087
Spann3R @20 [50] N/A | 0.069  0.047 0.058
Spann3R @2 [50] N/A | 0.124 0.043 0.084
CUT3R [52] 0.477 | 0.276  0.303 0.290
SLAM3R [27] 0.098 | 0.053  0.059 0.056
MASt3R-SLAM [36] 0.066 | 0.059 0.056 0.057
VGGT-SLAM [28] 0.070 | 0.052  0.060 0.056
2-view VGGT w/ PGO | 0.065 | 0.039  0.077 0.058
ViSTA-SLAM 0.055 | 0.045  0.056 0.051
Table 3. Tracking and Reconstruction Evaluation on 7-

Scenes [43]. @n indicates a keyframe every n images. 2-view
VGGT w/ PGO uses the 2-view VGGT frontend with the same
pose graph optimization as ours. ViSTA-SLAM achieves the best
trajectory estimation and reconstruction performance on 7-Scenes.

CUT3R SLAM3R MASt3R VGGT  2-view VGGT ViSTA

[52] [27] SLAM [36] SLAM [28] w/ PGO SLAM
Size | 0.79 0.76 0.69 1.26 1.26 0.44
FPS1 342 45.8 30.3 93.3 12.6 78.0

Table 4. Model Size and Running Time Evaluation on 7-
Scenes [43] redkitchen. Model sizes are reported in billions
of parameters. FPS indicates the average number of frames pro-
cessed per second over three runs. ViSTA-SLAM shows highly
competitive real-time speed with the smallest model size among
baselines.

correctly due to forgetting issues, while SLAM3R [27]
struggles in scenes with large camera perspective changes.
MASt3R-SLAM [36] and VGGT-SLAM [28] produce arti-
facts on object boundaries, failing to clearly separate fore-
ground from background, and show misalignment across
views. In contrast, VISTA-SLAM overcomes these chal-
lenges through geometric consistency constraints during
training. Notably, VGGT-SLAM fails midway through the
apt1 scene as backend optimization diverges, which stems
from the unstable RANSAC-based 3D homography estima-
tion, which can sample planar regions and cause ambiguity
in their proposed SL(4) pose graph optimization.
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are projected onto the z—y plane, with ground-truth shown as dashed lines. The trajectory color encodes ATE RMSE: higher errors in red,
lower in blue. For MASt3R-SLAM [36] and VGGT-SLAM [28], only the poses of their selected keyframes are estimated.

load encoder decoder detect construct optimize

data loop graph graph
time (s)  1.88 0.89 3.38 0.41 2.93 3.31
% 147%  7.0% 264% 3.18%  22.9% 25.9%

Table 5. Time Spent on Each Component of ViSTA-SLAM for
7-Scenes [43] redkitchen (in seconds and percentage).

Settings ATE |  Chamfer |
W/0 Lgc 0.056 0.057
STAModel /o L 0.058 0.059
w/o pose graph opt. 0.105 0.070
Pose Graph ~ w/o loop closure 0.103 0.072
w/o two edge types 0.057 0.051
ViSTA-SLAM with full features 0.055 0.051

Table 6. Ablation Study on 7-Scenes [43]. w/o pose graph opt.
simply accumulates relative poses for absolute poses. w/o two
edge types uses the classical pose graph in which each view is
represented by a single node.

3.3. Model Size and Speed

We compare the frontend model size and processing speed
across methods in Tab. 4. Owing to our symmetric design,
the decoder and regression heads use only half the parame-
ters of existing feedforward models [23, 27, 50, 53]. Conse-
quently, our model is far more compact: only 64% the size
of MASt3R [23] (used in MASt3R-SLAM [36]) and 35%
the size of VGGT [51] (used in VGGT-SLAM [28]).

The speed evaluation further confirms that ViSTA-
SLAM achieves real-time performance. Benefiting from
both the compact frontend and the sparse pose graph,
our approach is highly competitive in runtime—faster
than the pure regression-based methods CUT3R [52] and
SLAM3R [27], and comparable to VGGT-SLAM [28]. It
is worth noting that VGGT-SLAM performs inference only

once every 32 keyframes, reducing the total number of in-
ference steps. When replacing our STA model with a two-
view VGGT that takes two views as input at a time like STA,
the running speed is significantly slower, further demon-
strating the effectiveness of our lightweight frontend.

Tab. 5 shows the percentage of runtime spent on major
pipeline components. Decoding two-view information and
pose graph optimization dominate the processing time.

3.4. Ablation Study

In Tab. 6, we present ablations by selectively disabling com-
ponents of ViSTA-SLAM. Incorporating all proposed fea-
tures yields the best performance on both camera trajectory
estimation and 3D reconstruction.

Both Ly and Lig contribute substantially to reconstruc-
tion quality. L¢. improves consistency between the recon-
structed local pointmaps of the two-view input pair, while
Ly further refines the estimated relative camera poses by
enforcing a cycle consistency constraint on the model.

Pose graph optimization with loop closure is also highly
effective, bringing 48% improvement in the trajectory ac-
curacy (0.105 — 0.055), as it introduces simple yet pow-
erful constraints through the edges of the pose graph, pre-
venting error accumulation from two-view estimations as
the trajectory grows longer. These findings further support
the symmetric formulation of our frontend to regress local
pointclouds and relative poses, which maximizes the effec-
tiveness of pose graph optimization since the pointmaps of
each view are tightly coupled with their corresponding cam-
era poses in the graph. On the contrary, if pointmaps were
regressed in a shared coordinate system inside a submap,
as in previous works [5, 23, 27, 50, 52, 53], pose updates
would not be able to fix misalignments inside submaps.

Our two-edge-type pose graph design improves camera
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SLAM [28] SLAM [36] SLAM3R [27] CUT3R [52]

VGGT-
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4 ! .
Figure 6. Reconstruction results on 7-Scenes redkitchen (left), TUM-RGBD room (middle), and BundleFusion apt1 (right).
Purple boxes highlight reconstruction artifacts near the edges (background points wrongly mapped to the edge of the foreground). Red
boxes indicate misalignments. Green boxes highlights ViSTA-SLAM’s competitive results. VGGT-SLAM fails to complete reconstruction
on apt1 due to divergence in pose graph optimization.

trajectory estimation by representing each view with multi-
ple nodes connected by scale and pose edges, rather than a
single node with standard edges. This structure better av-
erages out uncertainty, particularly relative scale variations
in pointmaps from different forward passes, improving the
robustness of pose graph optimization and the accuracy of
trajectory estimation.

4. Conclusion

We propose a novel monocular intrinsics-free SLAM
pipeline, ViSTA-SLAM, which features a lightweight fron-
tend (Symmetric Two-View Association) and a Sim(3) pose
graph optimization with loop closure as the backend. Ex-
perimental results demonstrate the superior camera tracking
accuracy and 3D reconstruction quality of ViSTA-SLAM.

2N

Meanwhile, it is significantly more lightweight and operates
at a faster or comparable speed comparing current state-of-
the-art methods.

Limitation and Future Work Our method omits opti-
mization of point clouds in the backend for efficiency con-
sideration. Therefore, it can suffer from misalignments
caused by imperfect pointmap prediction by the frontend
model. Future work could explore incorporating implicit
camera information from previous estimates or aligning
latent features across views to enhance local consistency
across forward passes.
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the ExperTeam4KI funding program for UDance (Grant
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