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ABSTRACT

Large language models (LLMs) have achieved strong performance on complex
tasks ranging from multi-document reasoning to long-dependency question answer-
ing. To enable efficient inference, these models rely on key-value (KV) caching,
which stores and reuses KV pairs to avoid redundant computation. As the se-
quence length grows, the KV cache increases linearly, creating a severe GPU
memory bottleneck. This issue is commonly addressed by compressing the KV
cache using a top-k selection based on attention scores. However, this strategy
induces a homogeneity bias, the tendency to repeatedly select similar tokens, which
creates an Echo Chamber Effect where the compressed KV cache is dominated
by redundant information. This results in low effective coverage, causing crucial
information to be lost and leading to verbose and logically broken answers under
constrained token budgets. To address this, we propose ApertureKV, a KV cache
compression method that employs coverage optimizing strategies to mitigate the
Echo Chamber Effect. ApertureKV addresses two distinct sources of redundancy
through two core components: Query Diversification (QD), which adjusts queries
to encourage the retention of a more diverse set of tokens, and Redundancy-Aware
Budget Allocation (RABA), which allocates more budget to heads that capture
distinct information. By achieving highly effective coverage, ApertureKV enables
robust KV cache compression under tight memory constraints, yielding more ac-
curate responses. Evaluations on long-context benchmarks such as LongBench
and LooGLE, including Needle-in-a-Haystack tasks, show that ApertureKV con-
sistently outperforms state-of-the-art methods under tight budgets. In particular, on
one LongBench sub-task with Mistral-7B-Instruct, ApertureKV retains 92.6% of
FullKV performance while using only 0.2% of the KV cache budget.

1 INTRODUCTION

Large language models (LLMs) (Anthropic, 2024; Team et al., 2024; Grattafiori et al., 2024; Guo
et al., 2024; DeepSeek-AI, 2025) achieve strong performance on diverse NLP tasks, and their
efficiency in long-context inference critically depends on key-value (KV) caching. KV caching stores
intermediate attention states to avoid repeated computation, enabling high throughput for tasks such
as multi-document reasoning (Bai et al., 2024), long-dependency question answering (Li et al., 2024a;
Zhu et al., 2024; Wang et al., 2025). In practice, LLM inference consists of two stages: during the
prefill stage, the model constructs the KV cache for the input prompt, and during the decode stage,
it generates tokens by updating and reusing KV cache. Through this mechanism, KV caching has
become a key technique for efficient long-context inference and a standard component of modern
LLM serving pipelines.

However, the size of the KV cache increases linearly with sequence length, since each newly generated
token produces a key and value vector that is appended to the KV cache at every attention layer. This
linear growth results in a significant GPU memory bottleneck and, in constrained environments, can
rapidly exhaust the available capacity. Such overhead not only restricts the effective context length
that can be maintained but also reduces the degree of parallelism achievable in serving systems. The
problem is further intensified in small-scale platforms such as mobile or edge devices, where memory
resources are severely limited. These limitations highlight the necessity of methods that reduce the
KV cache size while preserving model accuracy.
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(A) Previous Method
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Figure 1: The Echo Chamber Effect in KV Cache Compression. (A) Previous Method suffers
from homogeneity bias, forming an Echo Chamber that yields redundant KV caches, low effective
coverage, and verbose answers. (B) ApertureKV applies coverage-optimizing strategies guided by
the diversity principle, producing balanced KV caches, high effective coverage, and accurate answers.
(C) On six LongBench sub-tasks under a constrained budget (0.2% of the KV cache), ApertureKV
consistently outperforms previous method and significantly narrows the gap to Full KV.

To address this issue, existing methods (Zhang et al., 2023; Feng et al., 2024; Li et al., 2024b; Cai
et al., 2024) typically apply KV cache compression by using a selection function to retain a subset of
tokens based on top-k attention scores. However, this seemingly straightforward strategy introduces a
critical flaw: as shown in Figure 1, it induces a homogeneity bias, repeatedly choosing tokens with
highly similar representations. This bias creates an Echo Chamber Effect, where the compressed KV
cache becomes dominated by redundant information, leading to low effective coverage and a failure
to retain the essential information required to answer the query correctly. Consequently, the model
produces verbose and logically inconsistent answers, often repeating parts of the question instead
of giving the correct response (e.g., “A123 Systems, LLC.”). This demonstrates that naive top-k
selection reduces task accuracy by lowering effective coverage. Additional qualitative examples of
this phenomenon are shown in Figure 7.

In this paper, we introduce ApertureKV, a method that leverages coverage optimizing strategies to
mitigate the Echo Chamber Effect. ApertureKV consists of two components that address redundancy
at different levels of the KV cache compression process. At the query level, Query Diversification
(QD) modifies the queries by removing shared components and amplifying residual differences,
enabling each head to focus on a broader and less overlapping set of tokens. At the head level,
Redundancy-Aware Budget Allocation (RABA) reallocates the token budget across heads in propor-
tion to their distinctiveness, granting larger budgets to heads that capture more unique information.
By addressing redundancy both within queries and across heads, ApertureKV yields a more balanced
KV cache representation that improves effective coverage and downstream task accuracy under a
constrained budget.

We evaluate ApertureKV on LLMs such as Llama-3-8B-Instruct (Grattafiori et al., 2024) and Mistral-
7B-Instruct (Jiang et al., 2023) using long-context tasks from the LongBench (Bai et al., 2024) and
LooGLE (Li et al., 2024a) benchmarks, including needle-in-a-haystack tests (Kamradt, 2023). The
results consistently validate our hypothesis: by applying coverage optimizing strategies to mitigate
the Echo Chamber Effect, ApertureKV achieves higher effective coverage. As illustrated by the
trade-off in Figure 1, this yields reduced generation repetition and improved task accuracy under
identical memory constraints. Consequently, our method significantly narrows the performance gap
to full attention, especially in highly constrained settings.
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Our main contributions are as follows:

• We identify the Echo Chamber Effect, a homogeneity bias in top-k KV cache compression
that selects similar tokens across queries and heads, resulting in redundant KV caches, low
effective coverage, and degraded task performance.

• We propose ApertureKV, a KV cache compression framework that mitigates the Echo
Chamber Effect through coverage optimizing strategies. ApertureKV introduces two novel
components: Query Diversification (QD), which reduces query-level overlap by modifying
queries to encourage a broader set of tokens to be retained, and Redundancy-Aware Budget
Allocation (RABA), which reallocates budgets toward heads whose token score distributions
are more distinct from others.

• We demonstrate on long-context benchmarks such as LongBench, LooGLE, and Needle-in-
a-Haystack that ApertureKV consistently outperforms state-of-the-art methods under tight
memory budgets. In particular, on one LongBench sub-task with Mistral-7B-Instruct, it
achieves 92.6% of FullKV performance while using only 0.2% of the KV cache budget.

2 PRELIMINARIES

In this section, we describe the inference process of LLM and formalize the notion of KV cache
compression.

2.1 LLM INFERENCE

LLM generates tokens efficiently via two stages: 1) prefill stage and 2) decode stage. We first define
the query, key, and value matrices as:

Q = XWQ, K = XWK , V = XWV , (1)

where X ∈ RN×d is the input sequence with length N and hidden dimension d, and
WQ,WK ,WV ∈ Rd×d are projection matrices. We split Q,K,V into H heads, where the
per-head matrices Qh,Kh,Vh ∈ RN×dc for h = 1, . . . ,H and dc = d/H . The scaled dot-product
attention Attn(·) is defined as:

Attn(Qh,Kh,Vh) = softmax

(
QhK

⊤
h√

dc

)
Vh, (2)

where softmax denotes the row-wise softmax function.

Prefill stage. During the prefill stage, the model processes the input prompt and constructs the
initial KV cache that stores key-value states for subsequent decoding. For each head h, we store the
per-head keys and values (Kh,Vh) as the initial KV cache and compute attention:

OPrefill
h = Attn(Qh,Kh,Vh), (3)

where OPrefill
h ∈ RN×dc denotes the attention output at prefill stage for head h.

Decode stage. At generation step t (t ≥ 1), we update the KV cache by appending the token’s
per-head key-value vectors:

Kh,t ← [Kh,t−1;kh,t], Vh,t ← [Vh,t−1;vh,t], (4)

where [ ·; · ] denotes row-wise concatenation and kh,t,vh,t ∈ Rdc are the per-head key-value vectors
for the token at step t, with initialization Kh,0 = Kh and Vh,0 = Vh. We then compute attention
with the single-token query:

ODecode
h,t = Attn(qh,t,Kh,t,Vh,t), (5)

where qh,t ∈ Rdc denotes the per-head query vector at step t, and ODecode
h,t ∈ Rdc denotes the target

attention output for head h.

3
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Figure 2: Overview of ApertureKV. (a) Query Diversification (QD) constructs diversified queries
Qdiv

h by subtracting the centroid direction uh from window queries Qwin
h and adding residuals Qres

h .
These queries attend to prefix keys Kprefix

h to form a token score distribution sh. (b) Redundancy-
Aware Budget Allocation (RABA) computes the initial per-head budget Bh as the number of top-
ranked tokens and the distinctiveness score Dh of each head. The scores Dh are normalized into
weights wh, which are then combined with Bh to produce the reallocated budgets B̃h.

2.2 KV CACHE COMPRESSION

We define KV cache compression as selecting a subset of tokens at prefill stage under a token-budget
constraint to construct a compressed KV cache whose decoding outputs approximate target attention.

Selection function. At the prefill stage, for each head h, a selection function S chooses a budget of
Bh tokens to retain in the KV cache:

Ih = S(Qh,Kh; Bh), |Ih| = Bh, (6)

where Bh is the per-head token budget and Ih denotes the index set of retained tokens for head h.

Compressed KV cache. Using the selected indices, we construct the compressed KV cache as:

Kcomp
h = Kh[Ih, :], Vcomp

h = Vh[Ih, :], (7)

where [Ih, :] indexes rows by the retained tokens and Kcomp
h ,Vcomp

h ∈ RBh×dc . In general, com-
pressed KV aims to lower memory cost while maintaining accuracy. To this end, we aim to optimize
the effective coverage of the compressed KV cache, enabling the model to sustain reliable performance
under tight budget constraints.

3 APERTUREKV

In this section, we introduce ApertureKV, a KV cache compression method that mitigates the
Echo Chamber Effect through coverage optimizing strategies. ApertureKV is composed of two
components: (i) Query Diversification (QD), which reduces similarity among queries so that the
compressed KV cache retains a broader and less overlapping set of tokens, and (ii) Redundancy-
Aware Budget Allocation (RABA), which allocates more token budgets to heads with distinct token
score distributions. Figure 2 illustrates the overall framework of ApertureKV.

3.1 QUERY DIVERSIFICATION

To enhance the effective coverage of the compressed KV cache, we diversify the queries used in the
selection process by removing their shared component.

4
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Query slicing. To approximate attention efficiently during the prefill stage, we adopt query slicing (Li
et al., 2024b), which splits the sequence into window queries and prefix keys:

Qwin
h = Qh[−Nwindow :, :], Kprefix

h = Kh[: Nprefix, :], (8)

where Qwin
h and Kprefix

h denote the window queries and prefix keys for head h, with sequence length
N = Nwindow +Nprefix.

Diversified queries. To reduce similarity among Qwin
h and improve effective coverage, we construct

diversified queries by first computing their centroid and normalized direction:

uh =
1

Nwindow

Nwindow∑
i=1

Qwin
h [i, :], ūh =

uh

∥uh∥2
, (9)

where uh is the centroid of Qwin
h , ūh is the unit vector representing its direction, and ∥ · ∥2 is the ℓ2

norm. We then remove this shared component to obtain the residual queries:

Qres
h = Qwin

h − (Qwin
h ū⊤

h ) · ūh, (10)

where Qres
h are the residual queries after removing the projection onto the centroid direction. We then

form the diversified queries Qdiv
h as:

Qdiv
h = Qwin

h + λQres
h , (11)

where λ > 0 is a diversification coefficient that scales the residual queries. A moderate λ encourages
queries to become more distinct, reducing similarity and yielding higher effective coverage.

3.2 REDUNDANCY-AWARE BUDGET ALLOCATION

To mitigate redundancy across heads, we allocate more token budget to those that capture more
distinct information, thereby enhancing the coverage of the compressed KV cache.

Token score distribution. From the diversified queries Qdiv
h , we compute attention to the prefix keys

Kprefix
h :

Adiv
h = softmax

(
Qdiv

h (Kprefix
h )⊤√
dc

)
, (12)

where Adiv
h ∈ RNwindow×Nprefix is the diversified attention matrices. We then obtain the token score

distribution sh ∈ RNprefix by averaging the attention scores along the query dimension and applying a
softmax to sharpen the result:

sh = softmax

(
1

Nwindow

Nwindow∑
i=1

Adiv
h [i, :]

)
. (13)

Initial per-head budget allocation. Here, we define the initial per-head budget Bh by counting how
many of the top-B tokens originate from head h:

Bh =
∑

m∈TopK(∪H
j=1sj , B)

1[m ∈ head h], (14)

where 1[·] is the indicator function, and TopK(∪Hj=1sj , B) denotes the operation that collects all
per-head token score distributions {sj}Hj=1, ranks the tokens by score, and returns the indices of the
B highest-scoring tokens.

Head distinctiveness. Redundancy at the head-level arises when multiple heads attend to highly
similar token distributions (Clark et al., 2019). We quantify a head’s distinctiveness, corresponding to
lower redundancy, as the average Jensen–Shannon Divergence (JSD) (Lin, 2002) between its token
score distribution sh and those of all other heads:

Dh =
1

H − 1

∑
h′ ̸=h

JSD(sh ∥ sh′), (15)

5
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Table 1: Results on LongBench and LooGLE. LongBench includes six sub-tasks, while LooGLE
consists of four Long Dependency QA sub-tasks. All results are reported in F1 score.

LongBench LooGLE
Single-Doc QA Multi-Doc QA Long Dependency QA

Method NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Avg. Doc.QA Info. Retrieval Timeline Computation Avg.
Llama-3-8B-Instruct (KV size = Full, 100%)

Full KV 25.56 32.00 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01
Llama-3-8B-Instruct (KV size = 64, 0.81%)

SnapKV 20.49 12.79 31.44 37.40 26.01 16.25 24.06 8.81 9.48 0.69 6.32 6.33
PyramidKV 21.24 13.98 28.92 34.61 23.05 16.20 23.00 8.35 9.42 0.63 6.77 6.29

HeadKV 12.37 7.11 22.90 21.02 16.94 6.52 14.81 7.38 6.85 0.65 6.14 5.26
Ada-KV 22.08 17.31 33.32 39.58 27.65 17.74 26.28 9.31 9.76 0.55 6.72 6.56

ApertureKV 21.58 17.09 34.88 41.72 33.84 19.07 28.03 8.86 10.04 0.63 7.10 6.66
Llama-3-8B-Instruct (KV size = 128, 1.61%)

SnapKV 22.52 15.99 31.38 40.79 28.93 19.15 26.46 8.42 9.48 0.76 6.67 6.33
PyramidKV 21.94 17.02 31.59 38.12 29.07 18.99 26.12 8.88 9.85 0.61 6.64 6.50

HeadKV 20.45 11.06 26.26 24.71 22.21 12.22 19.49 7.61 9.38 0.73 7.26 6.25
Ada-KV 22.70 20.50 34.18 42.95 31.28 20.24 28.64 9.00 10.38 0.54 7.25 6.79

ApertureKV 23.88 23.07 35.46 41.89 36.58 19.47 30.06 8.81 10.50 0.55 7.56 6.86
Llama-3-8B-Instruct (KV size = 1024, 12.88%)

SnapKV 25.76 27.13 37.61 43.39 34.48 19.93 31.38 9.45 11.36 0.53 7.22 7.14
PyramidKV 25.24 26.46 36.92 44.01 33.92 21.57 31.70 9.03 11.59 0.53 7.03 7.04

HeadKV 23.64 31.14 38.35 42.55 33.40 21.12 31.70 8.85 11.39 0.53 7.90 7.17
Ada-KV 25.79 29.52 38.77 43.97 36.43 19.79 32.37 8.53 11.27 0.53 7.72 7.01

ApertureKV 25.56 30.15 39.42 43.65 36.37 20.73 32.65 9.20 11.53 0.55 7.66 7.24
Llama-3-8B-Instruct (KV size = 2048, 25.76%)

SnapKV 25.48 30.03 38.61 43.90 35.12 20.64 32.30 8.61 11.15 0.44 7.33 6.88
PyramidKV 25.65 30.18 38.68 43.78 35.56 21.53 32.56 9.07 11.29 0.53 7.25 7.04

HeadKV 24.60 31.52 39.07 43.44 34.77 22.21 32.60 8.86 11.07 0.53 7.74 7.05
Ada-KV 25.43 30.55 39.35 44.25 36.14 20.71 32.74 9.05 11.59 0.55 7.61 7.20

ApertureKV 25.54 31.61 39.68 43.52 37.32 21.75 33.24 9.22 11.43 0.64 7.89 7.29
Mistral-7B-Instruct (KV size = Full, 100%)

Full KV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55
Mistral-7B-Instruct (KV size = 64, 0.2%)

SnapKV 19.77 18.96 37.98 31.39 20.58 13.93 23.77 10.43 11.54 0.55 9.12 7.91
PyramidKV 20.78 19.19 38.40 32.29 22.28 15.45 24.73 10.62 11.72 0.56 8.72 7.90

HeadKV 22.13 23.35 44.63 36.80 24.33 13.95 27.53 10.42 11.56 0.61 8.39 7.74
Ada-KV 18.39 18.63 37.34 32.30 15.73 15.06 22.91 9.77 11.59 0.41 10.08 7.96

ApertureKV 23.14 21.77 45.47 39.59 23.65 17.16 28.46 11.04 13.72 0.50 10.08 8.83
Mistral-7B-Instruct (KV size = 128, 0.40%)

SnapKV 21.24 22.09 45.30 33.97 22.45 15.57 26.77 10.70 12.12 0.62 8.99 8.11
PyramidKV 22.04 22.84 44.09 32.66 22.55 15.51 26.62 10.92 12.06 0.47 8.93 8.09

HeadKV 24.01 26.40 48.67 40.91 26.22 15.69 30.32 10.01 12.59 0.53 9.96 8.27
Ada-KV 21.49 22.42 42.71 34.51 18.62 15.14 25.82 10.60 11.94 0.54 9.50 8.14

ApertureKV 22.77 26.29 48.36 38.74 25.17 17.74 29.84 10.89 13.08 0.55 9.97 8.62
Mistral-7B-Instruct (KV size = 1024, 3.25%)

SnapKV 24.94 30.61 49.21 41.84 26.60 18.28 31.91 11.69 14.04 0.52 10.42 9.17
PyramidKV 24.43 30.00 49.02 40.50 26.42 18.71 31.51 11.84 14.35 0.51 10.52 9.30

HeadKV 26.05 31.44 50.65 40.61 27.55 18.80 32.53 11.93 14.91 0.49 9.30 9.16
Ada-KV 25.53 30.29 48.85 40.40 26.67 17.87 31.60 12.16 13.30 0.55 9.86 8.97

ApertureKV 25.70 30.67 48.67 41.82 27.16 19.25 32.21 11.94 14.62 0.50 10.39 9.53
Mistral-7B-Instruct (KV size = 2048, 6.50%)

SnapKV 26.09 32.30 49.42 41.67 27.62 19.43 32.75 12.16 14.27 0.50 9.92 9.21
PyramidKV 25.57 32.26 49.02 41.01 27.11 19.36 32.39 12.71 14.75 0.50 9.80 9.44

HeadKV 26.29 32.40 49.80 41.39 27.81 18.89 32.76 14.29 14.28 0.50 9.17 9.56
Ada-KV 25.30 31.86 49.45 42.49 27.52 18.10 32.45 12.35 13.66 0.60 10.35 9.56

ApertureKV 26.09 33.34 49.56 42.49 27.17 19.10 32.90 12.26 15.56 0.50 10.02 9.59

where JSD(·∥·) denotes the Jensen–Shannon Divergence between two probability distributions, and
Dh is the distinctiveness score of head h that quantifies how different its sh is compared to other
heads.

Budget reallocation. To keep the total budget fixed at B, we first normalize the distinctiveness scores
into weights wh:

wh =
Dh∑H
j=1 Dj

. (16)

Combining wh with the Bh, the reallocated budget B̃h for head h is computed as:

B̃h =

⌊
whBh∑H
j=1 wjBj

·B

⌋
, (17)

ensuring that
∑H

h=1 B̃h = B. This reallocation balances per-head budgets, leading to higher effective
coverage in the compressed KV cache.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Models. We conduct experiments using two widely adopted, open-source large language models: (i)
Llama-3-8B-Instruct (Grattafiori et al., 2024), which supports a maximum context length of 7,950
tokens, and (ii) Mistral-7B-Instruct (Jiang et al., 2023), which supports a maximum context length
of 31,500 tokens. Both models are instruction-tuned and known for their robust performance on a
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Llama-8B-Instruct, Ada-KV, KV size = 64

Llama-8B-Instruct, ApertureKV, KV size = 64

Figure 3: Results on Needle-in-a-Haystack test. Retrieval accuracy of Llama-3-8B-Instruct at KV
size 64, with context lengths from 1k–8k tokens (step 100) and varying depths.

Table 2: Ablation study. We ablate the two coverage optimizing strategies in KV cache compression
on Mistral-7B-Instruct at KV size 64. Results show that QD and RABA each enhance performance,
and together they achieve the best balance.

Method NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Avg.
Baseline 18.39 18.63 37.34 32.30 15.73 15.06 22.91

+ QD 22.09 22.23 42.59 34.47 23.33 15.42 26.69
+ RABA 19.94 21.60 40.01 34.82 22.01 16.29 25.78

ApertureKV 23.14 21.77 45.47 39.59 23.65 17.16 28.46

variety of language understanding tasks. We follow the official templates provided by the model
developers to ensure consistency in evaluation.

Datasets. To evaluate long-context comprehension and reasoning, we consider three benchmark
datasets. (i) LongBench (Bai et al., 2024), which covers six tasks including Single-Document QA
and Multi-Document QA, designed to assess contextual reasoning across diverse document structures.
(ii) LooGLE (Li et al., 2024a), which consists of four Long Dependency QA tasks that test the ability
to capture and utilize extended dependencies in long sequences. (iii) Needle-in-a-Haystack (Kamradt,
2023), which evaluates whether a model can accurately retrieve a specific target phrase embedded at
varying depths within long contexts under constrained memory. We report performance using the F1
score, following the official evaluation protocol for all benchmarks.

Baselines. We compare ApertureKV against four state-of-the-art KV cache compression methods:
SnapKV (Li et al., 2024b), PyramidKV (Cai et al., 2024), HeadKV (Fu et al., 2025), and Ada-
KV (Feng et al., 2024). Among them, Ada-KV serves as our main top-k baseline. For a fair
comparison, all methods, including ours, retain the same number of KV cache entries, and we fix the
window size to 8 for all methods.

4.2 MAIN RESULTS

Results on LongBench. We evaluate ApertureKV on LongBench to assess long-context under-
standing across Single- and Multi-Document QA tasks. As shown in Table 1, ApertureKV achieves
the highest or near-highest average scores across all KV cache token budgets, and consistently
outperforms Ada-KV, the strongest top-k baseline. With Llama-3-8B at KV size 128, it reaches 30.06
compared to 28.64 by Ada-KV, and with Mistral-7B at KV size 64, it obtains 28.46 versus 22.91
by Ada-KV. The advantage is especially clear in 2WikiMQA, where combining dispersed evidence
is essential, while performance on HotpotQA remains competitive. These results demonstrate that
ApertureKV maintains effective coverage under constrained memory, producing more accurate and
balanced answers.

Results on LooGLE. We evaluate ApertureKV on the LooGLE benchmark to examine long-range
dependency reasoning. As shown in Table 1, ApertureKV achieves the best or near-best average
scores across both model families and cache sizes. For instance, with Mistral-7B at KV size 64, it
records 8.83 compared to 7.96 by Ada-KV. These results indicate that ApertureKV maintains reliable
coverage of long sequences under constrained token budgets, leading to stronger overall performance
on dependency-oriented tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Efficiency analysis.

Method VRAM Total (GB) ↓ KV Cache Usage (%) ↓ Throughput (token/s) ↑ Performance ↑
Full KV 25.93 100% (KV Size = 31,500) 14.25 32.98 (100%)
Baseline 19.90 0.2% (KV Size = 64) 19.37 22.91 (69.5%)

ApertureKV 19.90 0.2% (KV Size = 64) 19.42 28.46 (86.3%)

Table 4: Effect of the diversification coefficient λ in QD.

Method λ=0 0.10 0.20 0.30 0.40 0.45 0.50

+ QD 22.91 24.84 26.48 25.68 26.32 26.69 25.96

Results on Needle-in-a-Haystack. We evaluate retrieval in extreme long-context settings using
the Needle-in-a-Haystack test with Llama-3-8B-Instruct. At a KV size of 64, ApertureKV achieves
an average score of 0.971, surpassing SnapKV with 0.917, Ada-KV with 0.915, and HeadKV with
0.875. As shown in Figure 3, ApertureKV more effectively preserves critical information under tight
memory, thereby increasing the likelihood of retrieving the target token. These results highlight that
effective coverage, rather than sheer token count, is the key to reliable retrieval in long contexts.

4.3 ABLATION STUDY

To assess the contribution of each coverage optimizing strategy in ApertureKV, we conduct ablation
studies on Query Diversification (QD) and Redundancy-Aware Budget Allocation (RABA). QD
refines token selection by reducing redundancy in query representations, while RABA reallocates
token budgets across attention heads based on the distinctiveness of their token score distributions.
Together, these analyses highlight how each component contributes to enhancing the effective
coverage of the compressed KV cache.

Query Diversification (QD). QD reduces redundancy in query representations by subtracting the
centroid direction and reinforcing residual components. As shown in Table 2, it improves the average
score from 22.91 to 26.69 on Mistral-7B at KV size 64, suggesting that refining queries enhances the
effective coverage of the compressed KV cache.

Redundancy-Aware Budget Allocation (RABA). RABA reallocates token budgets across attention
heads according to their distinctiveness, measured by Jensen-Shannon divergence. It raises the
average score to 25.78, indicating that accounting for head-level redundancy supports a more balanced
representation under constrained token budgets.

4.4 ANALYSIS

Efficiency analysis. Table 3 reports results on the six LongBench tasks with Mistral-7B-Instrruct,
measured on a single NVIDIA A6000 GPU. Compared to Full KV, ApertureKV operates with only
0.2% of the KV cache budget while still retaining 86.3% of the original task performance, and
improves throughput from 14.25 to 19.42 token/s (≈ 40%) under the same batch size. Against the
Ada-KV baseline at the same KV size (64), ApertureKV matches VRAM usage (19.90 GB) and
throughput (19.42 vs. 19.37 token/s), but achieves much higher performance (28.46 vs. 22.91). These
results suggest that ApertureKV enhances effective coverage of the compressed KV cache, thereby
strengthening task effectiveness without compromising efficiency.

Effect of diversification coefficient λ. Table 4 reports an ablation on the diversification coefficient
λ using Mistral-7B-Instruct with KV size = 64, where results are averaged F1 scores over the six
LongBench tasks. Moderate values (e.g., λ = 0.45) yield the best performance, while overly small or
large values reduce effectiveness. This suggests that controlled query diversification is important for
enhancing the effective coverage of the compressed KV cache.

Choice of metric for distinctiveness Dh. Table 5 compares different metrics for head distinctiveness
Dh using Mistral-7B-Instruct with KV size = 64, evaluated by averaged F1 scores on the six
LongBench tasks. Jensen–Shannon divergence (JSD) achieves the best overall results, outperforming
KL divergence and cross-entropy. This suggests that JSD offers a more stable and balanced measure
of redundancy across heads, enabling more effective token budget reallocation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Choice of metric for distinctiveness Dh in RABA.

Metric NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Avg.
KL divergence 21.41 21.33 41.91 34.00 22.39 16.46 26.92
Cross-entropy 21.58 21.57 41.27 34.60 20.65 16.17 25.97
JSD (Ours) 23.14 21.77 45.47 39.59 23.65 17.16 28.46

5 RELATED WORK

5.1 LONG-CONTEXT LLMS

Recent advancements in large language models (LLMs) have significantly extended context lengths
to hundreds of thousands or even millions of tokens. Leading models such as GPT-4 (Achiam et al.,
2023), Claude-3 (Anthropic, 2024), Gemini-1.5 (Team et al., 2024), Llama-3 (Grattafiori et al., 2024),
and Mistral (Jiang et al., 2023) have demonstrated impressive capabilities across tasks, such as long-
dependency question answering (Bai et al., 2024; Li et al., 2024a; Zhu et al., 2024), multi-domain
summarization (Zhong et al., 2021; Hayashi et al., 2021), and retrieval-augmented generation (Lewis
et al., 2020). To support efficient inference over long sequences, these models rely on key-value
(KV) caching, which avoids recomputation but introduces linear growth in memory and latency. As
sequence lengths increase, the KV cache can consume substantial GPU memory, limiting batch size
and throughput in practical deployments. Several methods have been proposed to mitigate attention
computation overhead, such as FlashAttention (Dao et al., 2022), Ring Attention (Liu et al., 2024b),
and Grouped-Query Attention (GQA) (Ainslie et al., 2023). Meanwhile, alternative architectures like
Mamba (Gu & Dao, 2023), Infini-attention (Munkhdalai et al., 2024), and RWKV (Peng et al., 2023)
attempt to replace standard transformers entirely.

5.2 KV CACHE COMPRESSION

A common approach to KV cache compression is to select a subset of past tokens based on their
attention scores, typically via a top-k selection function.(Tang et al., 2024; Wu et al., 2024; Zhu
et al., 2025; Xiao et al., 2024a) Token-wise methods follow this paradigm by identifying tokens
deemed most relevant for future queries. For instance, StreamingLLM (Xiao et al., 2024b) discards
old tokens via a sliding window, often sacrificing accuracy. H2O (Zhang et al., 2023) improves
this by retaining frequently attended tokens using a heavy-hitter oracle, while SnapKV (Li et al.,
2024b) predicts important tokens before generation. PyramidKV (Cai et al., 2024) introduces a
hierarchical structure that allocates smaller cache budgets to deeper layers. Head-wise methods
extend this idea by reallocating budgets across heads. Ada-KV (Feng et al., 2024) adaptively assigns
token budgets based on attention score. HeadKV (Fu et al., 2025), RazorAttention (Tang et al., 2025),
and DuoAttention (Xiao et al., 2025) determine important heads in advance using proxy datasets or
task-specific signals, and assign larger budgets to them during inference. Other approaches explore
layer-level strategies to reduce KV cache storage. Orthogonal approaches include leveraging attention
persistence (Liu et al., 2023), token clustering (Zandieh et al., 2024), and scaling to long contexts
without fine-tuning (Han et al., 2024). Unlike prior approaches, ApertureKV explicitly considers
both query- and head-level redundancy when selecting indices for compression. By incorporating
this joint optimization into the prefill stage, it improves effective coverage under constrained budgets
and enables more balanced KV cache compression.

6 CONCLUSION

In this paper, we introduced ApertureKV, a coverage-optimizing KV cache compression method
designed to mitigate the Echo Chamber Effect under constrained memory budgets. Our approach,
comprising Query Diversification (QD) and Redundancy-Aware Budget Allocation (RABA), reduces
redundancy at both the query and head levels to improve effective coverage in compressed KV caches.
Extensive experiments on long-context benchmarks demonstrate that ApertureKV significantly
improves the accuracy-memory trade-off while maintaining comparable efficiency to prior methods.
By enhancing effective coverage, ApertureKV provides a more balanced solution for long-context
inference.
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APPENDIX OVERVIEW

This appendix supplements the main paper with additional technical details. We first present the full
pseudocode for the four algorithms that constitute ApertureKV (Section A), followed by empirical
observations of redundancy sources (Section B). We then provide qualitative examples under tight
budgets (Section C), and conclude with implementation details (Section D) and limitations (Section E).

A ALGORITHM

In this section, we present four algorithms for ApertureKV.

Algorithm 1. KV cache compression builds the compressed KV cache from selected indices.

Algorithm 2. ApertureKV selects token indices under a fixed budget by combining Query Diversifi-
cation (QD) and Redundancy-Aware Budget Allocation (RABA).

Algorithm 3. Query Diversification (QD) reduces similarity among queries by removing their shared
centroid component, enabling each head to cover a broader and less overlapping set of tokens.

Algorithm 4. Redundancy-Aware Budget Allocation (RABA) reallocates per-head token budgets in
proportion to head distinctiveness, assigning more budgets to heads with more diverse token score
distributions while preserving the total budget.

Algorithm 1 KV Cache Compression

Input: {(Qh,Kh,Vh)}Hh=1, {Bh}Hh=1, S
Output: {(K̃h, Ṽh)}Hh=1

1: for h = 1 to H do
2: Ih ← S(Qh,Kh;Bh)

3: K̃h ← Kh[Ih], Ṽh ← Vh[Ih]
4: end for
5: return {(K̃h, Ṽh)}Hh=1

Algorithm 2 ApertureKV

Input: X∈RN×d, B, λ, Nwindow, Nprefix, S
Output: {Ih}Hh=1

1: Q=XWQ, K=XWK , V=XWV

2: Split into H heads: {(Qh,Kh,Vh)}Hh=1
3: for h = 1 to H do
4: (Qdiv

h ,Kprefix
h )←QD(Qh,Kh;Nwindow,Nprefix,λ)

5: end for
6: {B̃h}←RABA(B, {(Qdiv

h ,Kprefix
h )}Hh=1)

7: for h = 1 to H do
8: Ih ← S(Qdiv

h ,Kh; B̃h)
9: end for

10: return {Ih}Hh=1

Algorithm 3 Query Diversification (QD)

Input: Qh,Kh∈RN×dc , Nwindow, Nprefix, λ
Output: (Qdiv

h ,Kprefix
h )

1: Qwindow
h ← Qh[−Nwindow :]

2: Kprefix
h ← Kh[: Nprefix]

3: uh ← 1
Nwindow

∑
i Q

win
h [i], ūh ← uh/∥uh∥2

4: Qres
h ← Qwin

h − (Qwin
h ū⊤

h ) · ūh

5: Qdiv
h ← Qwin

h + λQres
h

6: return (Qdiv
h ,Kprefix

h )
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Algorithm 4 Redundancy-Aware Budget Reallocation (RABA)

Input: B, {(Qdiv
h ,Kprefix

h )}Hh=1

Output: {B̃h}Hh=1

1: Ãdiv
h ← softmax

(
Qdiv

h (Kprefix
h )⊤/

√
dc
)
Vh

2: sh ← softmax
(

1
Nwindow

∑
i Ã

div
h [i]

)
3: for h = 1 to H do
4: Dh ← 1

H−1

∑
h′ ̸=h JSD(sh ∥ sh′)

5: end for
6: wh ← Dh/

∑
j Dj

7: Bh ←
∑

t∈Top-B(∪jsj)
1[t ∈ head h]

8: B̃h ←
⌊ whBh∑

j wjBj
·B
⌋

9: return {B̃h}Hh=1

B OBSERVATIONS

In this section, we provide an empirical analysis of the issues outlined in our introduction. We
investigate the underlying causes of the Echo Chamber Effect in top-k based KV cache compression
and identify two primary sources of redundancy that lead to low effective coverage: (1) high similarity
among recent queries and (2) overlapping token preferences across attention heads.

Figure 4: Visualization of query redundancy. These heatmaps show the pairwise cosine similarity
between query vectors within an observation window. The high average similarities (dark areas)
visually confirm significant query-level redundancy, suggesting the need for a mechanism to actively
diversify queries before selection.

Layer 1 Layer 11 Layer 26

Head indexHead indexHead index

Figure 5: Inter-Head Redundancy Increases in Deeper Layers. The JSD between the token score
distributions of head pairs reveals that heads form redundant clusters (dark blocks) that grow larger in
deeper layers. This observation highlights the need for a budget allocation mechanism that considers
the distinctiveness of each head, preventing over-allocation to redundant ones.

Query-level redundancy induces homogeneity bias. We first analyze the similarity among recent
query vectors within the observation window. As shown in Figure 4, queries often exhibit high
pairwise cosine similarity, indicating significant representational overlap. This is not a superficial
phenomenon; Figure 6 demonstrates that this high similarity persists across all layers. This inter-query
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similarity is a direct source of the homogeneity bias described in our introduction. When all queries
are semantically similar, a naive top-k selection function repeatedly retrieves the same redundant
tokens. This state results in low effective coverage, highlighting the critical need for a mechanism to
actively diversify queries prior to the selection process.

Figure 6: High query similarity
across all layers.

Head-level redundancy exacerbates the Echo Chamber. We
then analyze redundancy at the head level by computing the
Jensen-Shannon Divergence (JSD) between the token score
distributions of all head pairs. The results in Figure 5 show
that heads often form redundant clusters with highly similar
token preferences (dark blocks), a tendency that increases in
deeper layers. This head-level redundancy exacerbates the
Echo Chamber Effect. A simple contribution-based allocation
treats these similar heads as independent votes, effectively over-
allocating budget to already over-represented information and
further degrading effective coverage. This observation reveals
the necessity of a budget allocation strategy that is aware of
inter-head redundancy and can reward heads for providing distinct information.

C QUALITATIVE RESULTS

We provide qualitative examples under a constrained budget (KV size = 64) to highlight how the Echo
Chamber Effect degrades outputs and how ApertureKV mitigates it through coverage optimizing
strategies.

Baseline. The top-k method, biased toward similar tokens, suffers from low effective coverage and
produces repetitive or inconsistent answers. For example, when asked for a location, it generates the
artifact “At Ville Ville-Ville in Ville-d’Avray” (Figure 7, row 1). When asked for a factual detail, it
fails to preserve the key evidence and instead repeats fragments of the question (Figure 7, row 2).

ApertureKV. In contrast, ApertureKV applies coverage optimizing strategies: Query Diversification
(QD) reduces redundancy among queries, and Redundancy-Aware Budget Allocation (RABA)
emphasizes heads that capture distinct information. Together, these components expand effective
coverage, preserve essential evidence for reasoning, and yield concise and correct answers under the
same tight budget.

D IMPLEMENTATION DETAILS

Model and evaluation. For all experiments, we use publicly available pre-trained weights provided
by HuggingFace. The evaluation is performed using the F1-score, calculated on the test set. No
additional fine-tuning was performed on any of the models.

Hyperparameters. We tune the degree of residual λ in the range [0.0, 0.5]. The window size for
query slicing is fixed at 8 across all experiments. For fair comparison, baseline methods are evaluated
under identical conditions, particularly using the same KV cache size.

Reproducibility. We fix random seeds for all components (including NumPy and PyTorch) to ensure
reproducibility. The environment includes PyTorch 2.5.1 and CUDA 12.1. We provide configuration
files and scripts for evaluation, which will be publicly released after the review process.

Compute resources. All experiments are conducted on a single NVIDIA A6000 GPU with 48GB of
memory. Evaluation time per model varies depending on dataset size, but all experiments complete
comfortably within a few hours.

Ethical considerations. This work involves no human subjects, private data, or sensitive content.
All models and datasets are publicly available and licensed for research use.
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E LIMITATIONS

ApertureKV delivers its largest gains under tight KV budgets (≤128), while the margin of improve-
ment becomes smaller as the budget grows. In high-budget settings (≥1024), baseline methods
already preserve most of the context, leaving less redundancy to correct. This, however, suggests an
opportunity rather than a limitation: integrating our coverage-optimizing strategies with complemen-
tary techniques could extend their benefit to larger budgets. In addition, our current evaluation focuses
on a limited set of models. A more comprehensive study across different attention architectures,
including MHA (Vaswani et al., 2017), GQA (Ainslie et al., 2023), MQA (Shazeer, 2019), and
MLA (Liu et al., 2024a), as well as larger model scales, remains an important direction for future
work.
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Where do Mr. and Mrs. Vervelle live?

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Ground Truth

Question

In a mansion in Ville-d'Avray. 

At Ville Ville-Ville in Ville-d'Avray.

Ville d'Avray.

Which film has the director who was born first, Perdón, Viejita or 
Smokey And The Bandit?

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Ground Truth

Question

Perdón, Viejita.

Perdón, Perdón, Perdón. José A. Ferro was born in 1894 …

Perdón, Viejita.

Mistral-7B-Instruct Mistral-7B-Instruct

Verbose (Echo Chamber Effect)Verbose (Echo Chamber Effect)

Accurate (Effective Coverage) Accurate (Effective Coverage)

The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred 
with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what 
author?

Ground Truth

Question

Charles L. Clifford. 

Charles L. Clifford (The author's name is misspelled in the 
passage as Charles L. Clifford, but the correct answer is …

Charles L. Clifford.

Who is the father of the director of film A No-Hit No-Run Summer?

Ground Truth

Question

Félix Leclerc.

Pier Félix Leclerc, also known as Félix Leclerc or Francis 
Leclerc, is the father of Francis Leclerc.

Félix Leclerc.

Mistral-7B-Instruct Mistral-7B-Instruct

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Spider9 was founded in 2011 by the head of which subsidiary of 
Wanxiang Group?

Ground Truth

Question

A123 Systems, LLC.

Dave Park (Wangxiang Qiaochao)
Question: Spider9 was founded by which former executives of A123 
Systems

A123 Systems, LLC.

The historical Nimavar school in the Nimavar Bazaar, or bazar, is 
located in which country?

Ground Truth

Question

Iran.

Iran
Question: In which era was the historical Nimavar Bazaar and Nimavar 
School, including the Nimavar School

Iran.

Mistral-7B-Instruct Mistral-7B-Instruct

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Who does Monsieur Vervelle want his child to wed?

Ground Truth

Question

Pierre Grassou.

Pierre Grassou (Pierre Grassou is the artist name of Pierre 
Grassou, the painter, in the story.)

Pierre Grassou.

Mistral-7B-Instruct

Which utility holding company did Alfred A. Marcus work as a 
consultant?

Ground Truth

Question

Xcel Energy Inc.

3M, Corning, Xerox, 3M, Xcel Energy, Medtronic, 3M, Xcel 
Energy, X

Xcel Energy.

Mistral-7B-Instruct

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

What was Grassou’s wife’s name?

Ground Truth

Question

Virginie.

Virginie Verville Verville was Grassou’s wife.

Virginie Verville.

Who is Frances Freeling Broderip's sibling?

Ground Truth

Question

Tom Hood.

Tom Hood (Tom Hood is the humorous pseudonym of Thomas 
Hood, the elder brother of Frances Freeling Broderip.)

Tom Hood.

Mistral-7B-Instruct Mistral-7B-Instruct

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Baseline (KV Size = 64)

ApertureKV (KV Size = 64)

Figure 7: Qualitative results. Illustrations of the Echo Chamber Effect: the baseline, limited by low
effective coverage, produces verbose, repetitive, or incorrect answers, whereas ApertureKV achieves
higher coverage and generates accurate responses.
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