# MITIGATING THE ECHO CHAMBER EFFECT IN KV CACHE COMPRESSION VIA COVERAGE OPTIMIZATION

**Anonymous authors** 

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

033

036

040

041

042

043

044

046 047

048

051

052

Paper under double-blind review

## **ABSTRACT**

Large language models (LLMs) have achieved strong performance on complex tasks ranging from multi-document reasoning to long-dependency question answering. To enable efficient inference, these models rely on key-value (KV) caching, which stores and reuses KV pairs to avoid redundant computation. As the sequence length grows, the KV cache increases linearly, creating a severe GPU memory bottleneck. This issue is commonly addressed by compressing the KV cache using a top-k selection based on attention scores. However, this strategy induces a homogeneity bias, the tendency to repeatedly select similar tokens, which creates an Echo Chamber Effect where the compressed KV cache is dominated by redundant information. This results in low effective coverage, causing crucial information to be lost and leading to verbose and logically broken answers under constrained token budgets. To address this, we propose Aperture KV, a KV cache compression method that employs coverage optimizing strategies to mitigate the Echo Chamber Effect. Aperture KV addresses two distinct sources of redundancy through two core components: Query Diversification (QD), which adjusts queries to encourage the retention of a more diverse set of tokens, and Redundancy-Aware Budget Allocation (RABA), which allocates more budget to heads that capture distinct information. By achieving highly effective coverage, Aperture KV enables robust KV cache compression under tight memory constraints, yielding more accurate responses. Evaluations on long-context benchmarks such as LongBench and LooGLE, including Needle-in-a-Haystack tasks, show that ApertureKV consistently outperforms state-of-the-art methods under tight budgets. In particular, on one LongBench sub-task with Mistral-7B-Instruct, ApertureKV retains 92.6% of FullKV performance while using only 0.2% of the KV cache budget.

## 1 Introduction

Large language models (LLMs) (Anthropic, 2024; Team et al., 2024; Grattafiori et al., 2024; Guo et al., 2024; DeepSeek-AI, 2025) achieve strong performance on diverse NLP tasks, and their efficiency in long-context inference critically depends on key-value (KV) caching. KV caching stores intermediate attention states to avoid repeated computation, enabling high throughput for tasks such as multi-document reasoning (Bai et al., 2024), long-dependency question answering (Li et al., 2024a; Zhu et al., 2024; Wang et al., 2025). In practice, LLM inference consists of two stages: during the prefill stage, the model constructs the KV cache for the input prompt, and during the decode stage, it generates tokens by updating and reusing KV cache. Through this mechanism, KV caching has become a key technique for efficient long-context inference and a standard component of modern LLM serving pipelines.

However, the size of the KV cache increases linearly with sequence length, since each newly generated token produces a key and value vector that is appended to the KV cache at every attention layer. This linear growth results in a significant GPU memory bottleneck and, in constrained environments, can rapidly exhaust the available capacity. Such overhead not only restricts the effective context length that can be maintained but also reduces the degree of parallelism achievable in serving systems. The problem is further intensified in small-scale platforms such as mobile or edge devices, where memory resources are severely limited. These limitations highlight the necessity of methods that reduce the KV cache size while preserving model accuracy.

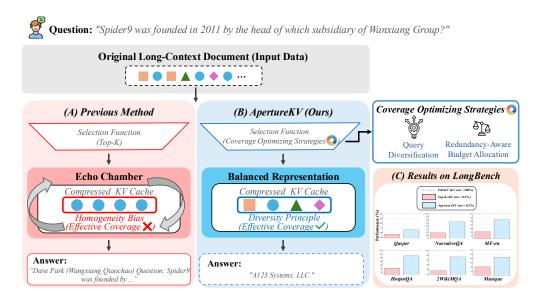


Figure 1: **The Echo Chamber Effect in KV Cache Compression.** (A) Previous Method suffers from homogeneity bias, forming an Echo Chamber that yields redundant KV caches, low effective coverage, and verbose answers. (B) ApertureKV applies coverage-optimizing strategies guided by the diversity principle, producing balanced KV caches, high effective coverage, and accurate answers. (C) On six LongBench sub-tasks under a constrained budget (0.2% of the KV cache), ApertureKV consistently outperforms previous method and significantly narrows the gap to Full KV.

To address this issue, existing methods (Zhang et al., 2023; Feng et al., 2024; Li et al., 2024b; Cai et al., 2024) typically apply KV cache compression by using a selection function to retain a subset of tokens based on top-k attention scores. However, this seemingly straightforward strategy introduces a critical flaw: as shown in Figure 1, it induces a homogeneity bias, repeatedly choosing tokens with highly similar representations. This bias creates an Echo Chamber Effect, where the compressed KV cache becomes dominated by redundant information, leading to low effective coverage and a failure to retain the essential information required to answer the query correctly. Consequently, the model produces verbose and logically inconsistent answers, often repeating parts of the question instead of giving the correct response (e.g., "A123 Systems, LLC."). This demonstrates that naive top-k selection reduces task accuracy by lowering effective coverage. Additional qualitative examples of this phenomenon are shown in Figure 7.

In this paper, we introduce ApertureKV, a method that leverages coverage optimizing strategies to mitigate the Echo Chamber Effect. ApertureKV consists of two components that address redundancy at different levels of the KV cache compression process. At the query level, Query Diversification (QD) modifies the queries by removing shared components and amplifying residual differences, enabling each head to focus on a broader and less overlapping set of tokens. At the head level, Redundancy-Aware Budget Allocation (RABA) reallocates the token budget across heads in proportion to their distinctiveness, granting larger budgets to heads that capture more unique information. By addressing redundancy both within queries and across heads, ApertureKV yields a more balanced KV cache representation that improves effective coverage and downstream task accuracy under a constrained budget.

We evaluate ApertureKV on LLMs such as Llama-3-8B-Instruct (Grattafiori et al., 2024) and Mistral-7B-Instruct (Jiang et al., 2023) using long-context tasks from the LongBench (Bai et al., 2024) and LooGLE (Li et al., 2024a) benchmarks, including needle-in-a-haystack tests (Kamradt, 2023). The results consistently validate our hypothesis: by applying coverage optimizing strategies to mitigate the Echo Chamber Effect, ApertureKV achieves higher effective coverage. As illustrated by the trade-off in Figure 1, this yields reduced generation repetition and improved task accuracy under identical memory constraints. Consequently, our method significantly narrows the performance gap to full attention, especially in highly constrained settings.

Our main contributions are as follows:

- We identify the Echo Chamber Effect, a homogeneity bias in top-k KV cache compression
  that selects similar tokens across queries and heads, resulting in redundant KV caches, low
  effective coverage, and degraded task performance.
- We propose ApertureKV, a KV cache compression framework that mitigates the Echo Chamber Effect through coverage optimizing strategies. ApertureKV introduces two novel components: Query Diversification (QD), which reduces query-level overlap by modifying queries to encourage a broader set of tokens to be retained, and Redundancy-Aware Budget Allocation (RABA), which reallocates budgets toward heads whose token score distributions are more distinct from others.
- We demonstrate on long-context benchmarks such as LongBench, LooGLE, and Needle-ina-Haystack that ApertureKV consistently outperforms state-of-the-art methods under tight memory budgets. In particular, on one LongBench sub-task with Mistral-7B-Instruct, it achieves 92.6% of FullKV performance while using only 0.2% of the KV cache budget.

## 2 Preliminaries

In this section, we describe the inference process of LLM and formalize the notion of KV cache compression.

## 2.1 LLM Inference

LLM generates tokens efficiently via two stages: 1) prefill stage and 2) decode stage. We first define the query, key, and value matrices as:

$$\mathbf{Q} = \mathbf{X}\mathbf{W}_{O}, \qquad \mathbf{K} = \mathbf{X}\mathbf{W}_{K}, \qquad \mathbf{V} = \mathbf{X}\mathbf{W}_{V}, \tag{1}$$

where  $\mathbf{X} \in \mathbb{R}^{N \times d}$  is the input sequence with length N and hidden dimension d, and  $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$  are projection matrices. We split  $\mathbf{Q}, \mathbf{K}, \mathbf{V}$  into H heads, where the per-head matrices  $\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h \in \mathbb{R}^{N \times d_c}$  for  $h = 1, \ldots, H$  and  $d_c = d/H$ . The scaled dot-product attention  $\operatorname{Attn}(\cdot)$  is defined as:

$$Attn(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h) = softmax\left(\frac{\mathbf{Q}_h \mathbf{K}_h^{\top}}{\sqrt{d_c}}\right) \mathbf{V}_h, \tag{2}$$

where softmax denotes the row-wise softmax function.

**Prefill stage.** During the prefill stage, the model processes the input prompt and constructs the initial KV cache that stores key-value states for subsequent decoding. For each head h, we store the per-head keys and values  $(\mathbf{K}_h, \mathbf{V}_h)$  as the initial KV cache and compute attention:

$$\mathbf{O}_{h}^{\text{Prefill}} = \text{Attn}(\mathbf{Q}_{h}, \mathbf{K}_{h}, \mathbf{V}_{h}), \tag{3}$$

where  $\mathbf{O}_{b}^{\text{Prefill}} \in \mathbb{R}^{N \times d_c}$  denotes the attention output at prefill stage for head h.

**Decode stage.** At generation step t ( $t \ge 1$ ), we update the KV cache by appending the token's per-head key-value vectors:

$$\mathbf{K}_{h,t} \leftarrow [\mathbf{K}_{h,t-1}; \mathbf{k}_{h,t}], \qquad \mathbf{V}_{h,t} \leftarrow [\mathbf{V}_{h,t-1}; \mathbf{v}_{h,t}], \tag{4}$$

where  $[\cdot;\cdot]$  denotes row-wise concatenation and  $\mathbf{k}_{h,t}, \mathbf{v}_{h,t} \in \mathbb{R}^{d_c}$  are the per-head key-value vectors for the token at step t, with initialization  $\mathbf{K}_{h,0} = \mathbf{K}_h$  and  $\mathbf{V}_{h,0} = \mathbf{V}_h$ . We then compute attention with the single-token query:

$$\mathbf{O}_{h,t}^{\text{Decode}} = \text{Attn}(\mathbf{q}_{h,t}, \mathbf{K}_{h,t}, \mathbf{V}_{h,t}), \tag{5}$$

where  $\mathbf{q}_{h,t} \in \mathbb{R}^{d_c}$  denotes the per-head query vector at step t, and  $\mathbf{O}_{h,t}^{\text{Decode}} \in \mathbb{R}^{d_c}$  denotes the target attention output for head h.

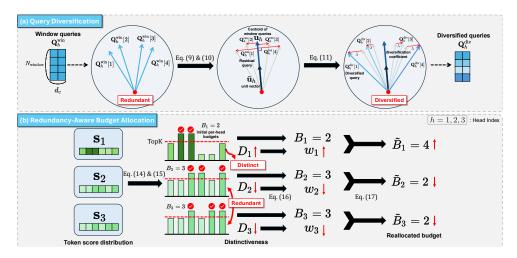


Figure 2: **Overview of ApertureKV.** (a) Query Diversification (QD) constructs diversified queries  $\mathbf{Q}_h^{\mathrm{div}}$  by subtracting the centroid direction  $\mathbf{u}_h$  from window queries  $\mathbf{Q}_h^{\mathrm{win}}$  and adding residuals  $\mathbf{Q}_h^{\mathrm{res}}$ . These queries attend to prefix keys  $\mathbf{K}_h^{\mathrm{prefix}}$  to form a token score distribution  $\mathbf{s}_h$ . (b) Redundancy-Aware Budget Allocation (RABA) computes the initial per-head budget  $B_h$  as the number of topranked tokens and the distinctiveness score  $D_h$  of each head. The scores  $D_h$  are normalized into weights  $w_h$ , which are then combined with  $B_h$  to produce the reallocated budgets  $\tilde{B}_h$ .

## 2.2 KV CACHE COMPRESSION

We define KV cache compression as selecting a subset of tokens at prefill stage under a token-budget constraint to construct a compressed KV cache whose decoding outputs approximate target attention.

**Selection function.** At the prefill stage, for each head h, a selection function S chooses a budget of  $B_h$  tokens to retain in the KV cache:

$$\mathbf{I}_h = \mathbf{S}(\mathbf{Q}_h, \mathbf{K}_h; B_h), \qquad |\mathbf{I}_h| = B_h, \tag{6}$$

where  $B_h$  is the per-head token budget and  $I_h$  denotes the index set of retained tokens for head h.

Compressed KV cache. Using the selected indices, we construct the compressed KV cache as:

$$\mathbf{K}_{h}^{\text{comp}} = \mathbf{K}_{h}[\mathbf{I}_{h},:], \qquad \mathbf{V}_{h}^{\text{comp}} = \mathbf{V}_{h}[\mathbf{I}_{h},:], \tag{7}$$

where  $[\mathbf{I}_h,:]$  indexes rows by the retained tokens and  $\mathbf{K}_h^{\text{comp}}, \mathbf{V}_h^{\text{comp}} \in \mathbb{R}^{B_h \times d_c}$ . In general, compressed KV aims to lower memory cost while maintaining accuracy. To this end, we aim to optimize the effective coverage of the compressed KV cache, enabling the model to sustain reliable performance under tight budget constraints.

## 3 APERTUREKV

In this section, we introduce ApertureKV, a KV cache compression method that mitigates the Echo Chamber Effect through coverage optimizing strategies. ApertureKV is composed of two components: (i) Query Diversification (QD), which reduces similarity among queries so that the compressed KV cache retains a broader and less overlapping set of tokens, and (ii) Redundancy-Aware Budget Allocation (RABA), which allocates more token budgets to heads with distinct token score distributions. Figure 2 illustrates the overall framework of ApertureKV.

## 3.1 QUERY DIVERSIFICATION

To enhance the effective coverage of the compressed KV cache, we diversify the queries used in the selection process by removing their shared component.

**Query slicing.** To approximate attention efficiently during the prefill stage, we adopt query slicing (Li et al., 2024b), which splits the sequence into window queries and prefix keys:

$$\mathbf{Q}_{h}^{\text{win}} = \mathbf{Q}_{h}[-N_{\text{window}}:,:], \qquad \mathbf{K}_{h}^{\text{prefix}} = \mathbf{K}_{h}[:N_{\text{prefix}},:], \tag{8}$$

where  $\mathbf{Q}_h^{\text{win}}$  and  $\mathbf{K}_h^{\text{prefix}}$  denote the window queries and prefix keys for head h, with sequence length  $N=N_{\text{window}}+N_{\text{prefix}}$ .

**Diversified queries.** To reduce similarity among  $\mathbf{Q}_h^{\text{win}}$  and improve effective coverage, we construct diversified queries by first computing their centroid and normalized direction:

$$\mathbf{u}_h = \frac{1}{N_{\text{window}}} \sum_{i=1}^{N_{\text{window}}} \mathbf{Q}_h^{\text{win}}[i,:], \qquad \bar{\mathbf{u}}_h = \frac{\mathbf{u}_h}{\|\mathbf{u}_h\|_2}, \tag{9}$$

where  $\mathbf{u}_h$  is the centroid of  $\mathbf{Q}_h^{\text{win}}$ ,  $\bar{\mathbf{u}}_h$  is the unit vector representing its direction, and  $\|\cdot\|_2$  is the  $\ell_2$  norm. We then remove this shared component to obtain the residual queries:

$$\mathbf{Q}_{h}^{\text{res}} = \mathbf{Q}_{h}^{\text{win}} - (\mathbf{Q}_{h}^{\text{win}} \bar{\mathbf{u}}_{h}^{\top}) \cdot \bar{\mathbf{u}}_{h}, \tag{10}$$

where  $\mathbf{Q}_h^{\mathrm{res}}$  are the residual queries after removing the projection onto the centroid direction. We then form the diversified queries  $\mathbf{Q}_h^{\mathrm{div}}$  as:

$$\mathbf{Q}_{h}^{\text{div}} = \mathbf{Q}_{h}^{\text{win}} + \lambda \mathbf{Q}_{h}^{\text{res}},\tag{11}$$

where  $\lambda > 0$  is a diversification coefficient that scales the residual queries. A moderate  $\lambda$  encourages queries to become more distinct, reducing similarity and yielding higher effective coverage.

#### 3.2 REDUNDANCY-AWARE BUDGET ALLOCATION

To mitigate redundancy across heads, we allocate more token budget to those that capture more distinct information, thereby enhancing the coverage of the compressed KV cache.

**Token score distribution.** From the diversified queries  $\mathbf{Q}_h^{\text{div}}$ , we compute attention to the prefix keys  $\mathbf{K}_h^{\text{prefix}}$ :

$$\mathbf{A}_{h}^{\text{div}} = \text{softmax} \left( \frac{\mathbf{Q}_{h}^{\text{div}} (\mathbf{K}_{h}^{\text{prefix}})^{\top}}{\sqrt{d_{c}}} \right), \tag{12}$$

where  $\mathbf{A}_h^{\mathrm{div}} \in \mathbb{R}^{N_{\mathrm{window}} \times N_{\mathrm{prefix}}}$  is the diversified attention matrices. We then obtain the token score distribution  $\mathbf{s}_h \in \mathbb{R}^{N_{\mathrm{prefix}}}$  by averaging the attention scores along the query dimension and applying a softmax to sharpen the result:

$$\mathbf{s}_{h} = \operatorname{softmax}\left(\frac{1}{N_{\text{window}}} \sum_{i=1}^{N_{\text{window}}} \mathbf{A}_{h}^{\text{div}}[i,:]\right). \tag{13}$$

**Initial per-head budget allocation.** Here, we define the initial per-head budget  $B_h$  by counting how many of the top-B tokens originate from head h:

$$B_h = \sum_{m \in \text{TopK}\left(\bigcup_{j=1}^H \mathbf{s}_j, B\right)} \mathbf{1}[m \in \text{head } h], \tag{14}$$

where  $\mathbf{1}[\cdot]$  is the indicator function, and  $\mathrm{TopK}(\cup_{j=1}^H \mathbf{s}_j, B)$  denotes the operation that collects all per-head token score distributions  $\{\mathbf{s}_j\}_{j=1}^H$ , ranks the tokens by score, and returns the indices of the B highest-scoring tokens.

**Head distinctiveness.** Redundancy at the head-level arises when multiple heads attend to highly similar token distributions (Clark et al., 2019). We quantify a head's distinctiveness, corresponding to lower redundancy, as the average Jensen–Shannon Divergence (JSD) (Lin, 2002) between its token score distribution  $\mathbf{s}_h$  and those of all other heads:

$$D_h = \frac{1}{H - 1} \sum_{h' \neq h} \text{JSD}(\mathbf{s}_h \parallel \mathbf{s}_{h'}), \tag{15}$$

Table 1: **Results on LongBench and LooGLE.** LongBench includes six sub-tasks, while LooGLE consists of four Long Dependency QA sub-tasks. All results are reported in F1 score.

|                  | LongBench                  |                |                |                |                           |                | I              | Loo            | GLE             |              | <del></del>   |              |
|------------------|----------------------------|----------------|----------------|----------------|---------------------------|----------------|----------------|----------------|-----------------|--------------|---------------|--------------|
|                  | Single-Doc QA Multi-Doc QA |                |                |                | l                         | i ———          | Long Depe      | ndency QA      |                 | ĺ            |               |              |
| Method           | NartvQA                    | Qasper         | MF-en          | HotpotQA       | 2WikiMQA                  | Musique        | Avg.           | Doc.QA         | Info. Retrieval | Timeline     | Computation   | Avg.         |
|                  |                            |                |                | 1              | Jama-3-8B-Instr           | uct (KV size   | = Full,        | 100%)          |                 |              |               |              |
| Full KV          | 25.56                      | 32.00          | 39.71          | 43.57          | 35.28                     | 21.18          | 32.90          | 8.73           | 11.21           | 0.67         | 7.43          | 7.01         |
|                  |                            |                |                |                | Llama-3-8B-Insti          |                |                |                |                 |              |               |              |
| SnapKV           | 20.49                      | 12.79          | 31.44          | 37.40          | 26.01                     | 16.25          | 24.06          | 8.81           | 9.48            | 0.69         | 6.32          | 6.33         |
| PyramidKV        | 21.24                      | 13.98          | 28.92          | 34.61          | 23.05                     | 16.20          | 23.00          | 8.35           | 9.42            | 0.63         | 6.77          | 6.29         |
| HeadKV           | 12.37                      | 7.11<br>17.31  | 22.90<br>33.32 | 21.02<br>39.58 | 16.94                     | 6.52           | 14.81          | 7.38<br>9.31   | 6.85<br>9.76    | 0.65         | 6.14          | 5.26         |
| Ada-KV           | 22.08<br>21.58             | 17.09          | 34.88          | 39.58<br>41.72 | 27.65<br>33.84            | 17.74<br>19.07 | 26.28<br>28.03 | 8.86           | 9.76<br>10.04   | 0.55<br>0.63 | 6.72<br>7.10  | 6.56         |
| ApertureKV       | 21.58                      | 17.09          | 34.88          |                | 33.84<br>Jama-3-8B-Instr  | 19.07          |                |                | 10.04           | 0.03         | 7.10          | 6.66         |
| SnapKV           | 22.52                      | 15.99          | 31.38          | 40.79          | 28.93                     | 19.15          | 26.46          | 8.42           | 9.48            | 0.76         | 6.67          | 6.33         |
| PyramidKV        | 21.94                      | 17.02          | 31.59          | 38.12          | 29.07                     | 18.99          | 26.12          | 8.88           | 9.85            | 0.61         | 6.64          | 6.50         |
| HeadKV           | 20.45                      | 11.06          | 26.26          | 24.71          | 22.21                     | 12.22          | 19.49          | 7.61           | 9.38            | 0.73         | 7.26          | 6.25         |
| Ada-KV           | 22.70                      | 20.50          | 34.18          | 42.95          | 31.28                     | 20.24          | 28.64          | 9.00           | 10.38           | 0.54         | 7.25          | 6.79         |
| ApertureKV       | 23.88                      | 23.07          | 35.46          | 41.89          | 36.58                     | 19.47          | 30.06          | 8.81           | 10.50           | 0.55         | 7.56          | 6.86         |
|                  |                            |                |                |                | ama-3-8B-Instru           |                |                |                |                 |              |               |              |
| SnapKV           | 25.76                      | 27.13          | 37.61          | 43.39          | 34.48                     | 19.93          | 31.38          | 9.45           | 11.36           | 0.53         | 7.22          | 7.14         |
| PyramidKV        | 25.24                      | 26.46          | 36.92          | 44.01          | 33.92                     | 21.57          | 31.70          | 9.03           | 11.59           | 0.53         | 7.03          | 7.04         |
| HeadKV           | 23.64                      | 31.14          | 38.35          | 42.55          | 33.40                     | 21.12          | 31.70          | 8.85           | 11.39           | 0.53         | 7.90          | 7.17         |
| Ada-KV           | 25.79                      | 29.52          | 38.77          | 43.97          | 36.43                     | 19.79          | 32.37          | 8.53           | 11.27           | 0.53         | 7.72          | 7.01         |
| ApertureKV       | 25.56                      | 30.15          | 39.42          | 43.65          | 36.37                     | 20.73          | 32.65          | 9.20           | 11.53           | 0.55         | 7.66          | 7.24         |
|                  |                            |                |                |                | ama-3-8B-Instru           |                |                |                |                 |              |               |              |
| SnapKV           | 25.48                      | 30.03          | 38.61          | 43.90          | 35.12                     | 20.64          | 32.30          | 8.61           | 11.15           | 0.44         | 7.33          | 6.88         |
| PyramidKV        | 25.65                      | 30.18          | 38.68          | 43.78          | 35.56                     | 21.53          | 32.56          | 9.07           | 11.29           | 0.53         | 7.25          | 7.04         |
| HeadKV           | 24.60                      | 31.52          | 39.07          | 43.44          | 34.77                     | 22.21          | 32.60          | 8.86           | 11.07           | 0.53         | 7.74          | 7.05         |
| Ada-KV           | 25.43                      | 30.55          | 39.35          | 44.25          | 36.14                     | 20.71          | 32.74          | 9.05           | 11.59           | 0.55         | 7.61          | 7.20         |
| ApertureKV       | 25.54                      | 31.61          | 39.68          | 43.52          | 37.32                     | 21.75          | 33.24          | 9.22           | 11.43           | 0.64         | 7.89          | 7.29         |
| E 11 1737        | 26.62                      | 22.00          | 40.24          |                | Mistral-7B-Instru         |                |                |                | 15.50           | 0.40         | 10.02         | 1 0 55       |
| Full KV          | 26.63                      | 32.99          | 49.34          | 42.77          | 27.35<br>Mistral-7B-Instr | 18.78          | 32.98          | 12.17          | 15.52           | 0.49         | 10.03         | 9.55         |
| SnapKV           | 19.77                      | 18.96          | 37.98          | 31.39          | 20.58                     | 13.93          | 23.77          | 10.43          | 11.54           | 0.55         | 9.12          | 7.91         |
| PyramidKV        | 20.78                      | 19.19          | 38.40          | 32.29          | 22.28                     | 15.45          | 24.73          | 10.43          | 11.72           | 0.56         | 8.72          | 7.90         |
| HeadKV           | 22.13                      | 23.35          | 44.63          | 36.80          | 24.33                     | 13.95          | 27.53          | 10.42          | 11.56           | 0.61         | 8.39          | 7.74         |
| Ada-KV           | 18.39                      | 18.63          | 37.34          | 32.30          | 15.73                     | 15.06          | 22.91          | 9.77           | 11.59           | 0.41         | 10.08         | 7.96         |
| ApertureKV       | 23.14                      | 21.77          | 45.47          | 39.59          | 23.65                     | 17.16          | 28.46          | 11.04          | 13.72           | 0.50         | 10.08         | 8.83         |
| riperturere      | 23.11                      | 21.77          | 15.17          |                | Mistral-7B-Instru         |                |                |                | 13.72           | 0.50         | 10.00         | Oloc         |
| SnapKV           | 21.24                      | 22.09          | 45.30          | 33,97          | 22.45                     | 15.57          | 26.77          | 10.70          | 12.12           | 0.62         | 8.99          | 8.11         |
| PyramidKV        | 22.04                      | 22.84          | 44.09          | 32.66          | 22.55                     | 15.51          | 26.62          | 10.92          | 12.06           | 0.47         | 8.93          | 8.09         |
| HeadKV           | 24.01                      | 26.40          | 48.67          | 40.91          | 26.22                     | 15.69          | 30.32          | 10.01          | 12.59           | 0.53         | 9.96          | 8.27         |
| Ada-KV           | 21.49                      | 22.42          | 42.71          | 34.51          | 18.62                     | 15.14          | 25.82          | 10.60          | 11.94           | 0.54         | 9.50          | 8.14         |
| ApertureKV       | 22.77                      | 26.29          | 48.36          | 38.74          | 25.17                     | 17.74          | 29.84          | 10.89          | 13.08           | 0.55         | 9.97          | 8.62         |
| •                |                            |                |                | 1              | Aistral-7B-Instru         |                |                |                |                 |              |               |              |
| SnapKV           | 24.94                      | 30.61          | 49.21          | 41.84          | 26.60                     | 18.28          | 31.91          | 11.69          | 14.04           | 0.52         | 10.42         | 9.17         |
| PyramidKV        | 24.43                      | 30.00          | 49.02          | 40.50          | 26.42                     | 18.71          | 31.51          | 11.84          | 14.35           | 0.51         | 10.52         | 9.30         |
| HeadKV           | 26.05                      | 31.44          | 50.65          | 40.61          | 27.55                     | 18.80          | 32.53          | 11.93          | 14.91           | 0.49         | 9.30          | 9.16         |
| Ada-KV           | 25.53                      | 30.29          | 48.85          | 40.40          | 26.67                     | 17.87          | 31.60          | 12.16          | 13.30           | 0.55         | 9.86          | 8.97         |
| ApertureKV       | 25.70                      | 30.67          | 48.67          | 41.82          | 27.16                     | 19.25          | 32.21          | 11.94          | 14.62           | 0.50         | 10.39         | 9.53         |
| C YZYZ           | 26.00                      | 22.20          | 40.42          |                | Aistral-7B-Instru         |                |                |                | 14.07           | 0.50         | 0.02          | . 0.21       |
| SnapKV           | 26.09                      | 32.30<br>32.26 | 49.42<br>49.02 | 41.67<br>41.01 | 27.62                     | 19.43          | 32.75<br>32.39 | 12.16          | 14.27<br>14.75  | 0.50         | 9.92          | 9.21         |
| PyramidKV        | 25.57<br>26.29             | 32.40          | 49.02          | 41.01          | 27.11<br>27.81            | 19.36<br>18.89 | 32.39          | 12.71<br>14.29 | 14.75           | 0.50<br>0.50 | 9.80          | 9.44<br>9.56 |
| HeadKV<br>Ada-KV | 25.30                      | 31.86          | 49.80          | 41.39          | 27.52                     | 18.89          | 32.76          | 12.35          | 13.66           | 0.50         | 9.17<br>10.35 | 9.56         |
|                  |                            |                |                |                |                           |                |                |                |                 |              |               |              |
| ApertureKV       | 26.09                      | 33.34          | 49.56          | 42.49          | 27.17                     | 19.10          | 32.90          | 12.26          | 15.56           | 0.50         | 10.02         | 9.59         |

where  $JSD(\cdot||\cdot)$  denotes the Jensen–Shannon Divergence between two probability distributions, and  $D_h$  is the distinctiveness score of head h that quantifies how different its  $s_h$  is compared to other heads

**Budget reallocation.** To keep the total budget fixed at B, we first normalize the distinctiveness scores into weights  $w_h$ :

$$w_h = \frac{D_h}{\sum_{j=1}^H D_j}. (16)$$

Combining  $w_h$  with the  $B_h$ , the reallocated budget  $\tilde{B}_h$  for head h is computed as:

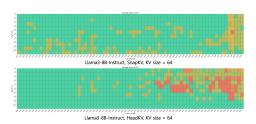
$$\tilde{B}_h = \left| \frac{w_h B_h}{\sum_{j=1}^H w_j B_j} \cdot B \right|,\tag{17}$$

ensuring that  $\sum_{h=1}^{H} \tilde{B}_h = B$ . This reallocation balances per-head budgets, leading to higher effective coverage in the compressed KV cache.

# 4 EXPERIMENTS

## 4.1 EXPERIMENT SETTINGS

**Models.** We conduct experiments using two widely adopted, open-source large language models: (i) Llama-3-8B-Instruct (Grattafiori et al., 2024), which supports a maximum context length of 7,950 tokens, and (ii) Mistral-7B-Instruct (Jiang et al., 2023), which supports a maximum context length of 31,500 tokens. Both models are instruction-tuned and known for their robust performance on a



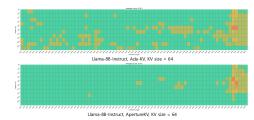


Figure 3: **Results on Needle-in-a-Haystack test.** Retrieval accuracy of Llama-3-8B-Instruct at KV size 64, with context lengths from 1k–8k tokens (step 100) and varying depths.

Table 2: **Ablation study.** We ablate the two coverage optimizing strategies in KV cache compression on Mistral-7B-Instruct at KV size 64. Results show that QD and RABA each enhance performance, and together they achieve the best balance.

| Method                     | NartvQA                 | Qasper                         | MF-en                   | HotpotQA                | 2WikiMQA                | Musique                 | Avg.                    |
|----------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Baseline<br>+ QD<br>+ RABA | 18.39<br>22.09<br>19.94 | 18.63<br><b>22.23</b><br>21.60 | 37.34<br>42.59<br>40.01 | 32.30<br>34.47<br>34.82 | 15.73<br>23.33<br>22.01 | 15.06<br>15.42<br>16.29 | 22.91<br>26.69<br>25.78 |
| ApertureKV                 | 23.14                   | 21.77                          | 45.47                   | 39.59                   | 23.65                   | 17.16                   | 28.46                   |

variety of language understanding tasks. We follow the official templates provided by the model developers to ensure consistency in evaluation.

**Datasets.** To evaluate long-context comprehension and reasoning, we consider three benchmark datasets. (i) LongBench (Bai et al., 2024), which covers six tasks including Single-Document QA and Multi-Document QA, designed to assess contextual reasoning across diverse document structures. (ii) LooGLE (Li et al., 2024a), which consists of four Long Dependency QA tasks that test the ability to capture and utilize extended dependencies in long sequences. (iii) Needle-in-a-Haystack (Kamradt, 2023), which evaluates whether a model can accurately retrieve a specific target phrase embedded at varying depths within long contexts under constrained memory. We report performance using the F1 score, following the official evaluation protocol for all benchmarks.

**Baselines.** We compare ApertureKV against four state-of-the-art KV cache compression methods: SnapKV (Li et al., 2024b), PyramidKV (Cai et al., 2024), HeadKV (Fu et al., 2025), and Ada-KV (Feng et al., 2024). Among them, Ada-KV serves as our main top-k baseline. For a fair comparison, all methods, including ours, retain the same number of KV cache entries, and we fix the window size to 8 for all methods.

## 4.2 MAIN RESULTS

**Results on LongBench.** We evaluate ApertureKV on LongBench to assess long-context understanding across Single- and Multi-Document QA tasks. As shown in Table 1, ApertureKV achieves the highest or near-highest average scores across all KV cache token budgets, and consistently outperforms Ada-KV, the strongest top-k baseline. With Llama-3-8B at KV size 128, it reaches 30.06 compared to 28.64 by Ada-KV, and with Mistral-7B at KV size 64, it obtains 28.46 versus 22.91 by Ada-KV. The advantage is especially clear in 2WikiMQA, where combining dispersed evidence is essential, while performance on HotpotQA remains competitive. These results demonstrate that ApertureKV maintains effective coverage under constrained memory, producing more accurate and balanced answers.

**Results on LooGLE.** We evaluate ApertureKV on the LooGLE benchmark to examine long-range dependency reasoning. As shown in Table 1, ApertureKV achieves the best or near-best average scores across both model families and cache sizes. For instance, with Mistral-7B at KV size 64, it records 8.83 compared to 7.96 by Ada-KV. These results indicate that ApertureKV maintains reliable coverage of long sequences under constrained token budgets, leading to stronger overall performance on dependency-oriented tasks.

378

379

384

387 388

390 391 392

395 396

399 400

403 404 405

409

412

415 416 417

423 424

425 426

428 429

380

385 386

389

393 394

397

401 402

406 407 408

411

413 414

418 419

420 421 422

427

430

431

Table 3: Efficiency analysis.

| Method     | VRAM Total (GB) ↓ | <b>KV</b> Cache Usage (%)↓  | Throughput (token/s) ↑ | Performance ↑       |
|------------|-------------------|-----------------------------|------------------------|---------------------|
| Full KV    | 25.93             | 100% (KV Size = 31,500)     | 14.25                  | <b>32.98</b> (100%) |
| Baseline   | 19.90             | 0.2% (KV Size = 64)         | 19.37                  | 22.91 (69.5%)       |
| ApertureKV | 19.90             | <b>0.2</b> % (KV Size = 64) | 19.42                  | 28.46 (86.3%)       |

Table 4: Effect of the diversification coefficient  $\lambda$  in QD.

| Method | $\lambda = 0$ | 0.10  | 0.20  | 0.30  | 0.40  | 0.45  | 0.50  |
|--------|---------------|-------|-------|-------|-------|-------|-------|
| + QD   | 22.91         | 24.84 | 26.48 | 25.68 | 26.32 | 26.69 | 25.96 |

**Results on Needle-in-a-Haystack.** We evaluate retrieval in extreme long-context settings using the Needle-in-a-Haystack test with Llama-3-8B-Instruct. At a KV size of 64, ApertureKV achieves an average score of 0.971, surpassing SnapKV with 0.917, Ada-KV with 0.915, and HeadKV with 0.875. As shown in Figure 3, Aperture KV more effectively preserves critical information under tight memory, thereby increasing the likelihood of retrieving the target token. These results highlight that effective coverage, rather than sheer token count, is the key to reliable retrieval in long contexts.

# 4.3 ABLATION STUDY

To assess the contribution of each coverage optimizing strategy in Aperture KV, we conduct ablation studies on Query Diversification (QD) and Redundancy-Aware Budget Allocation (RABA). QD refines token selection by reducing redundancy in query representations, while RABA reallocates token budgets across attention heads based on the distinctiveness of their token score distributions. Together, these analyses highlight how each component contributes to enhancing the effective coverage of the compressed KV cache.

Query Diversification (QD). QD reduces redundancy in query representations by subtracting the centroid direction and reinforcing residual components. As shown in Table 2, it improves the average score from 22.91 to 26.69 on Mistral-7B at KV size 64, suggesting that refining queries enhances the effective coverage of the compressed KV cache.

Redundancy-Aware Budget Allocation (RABA). RABA reallocates token budgets across attention heads according to their distinctiveness, measured by Jensen-Shannon divergence. It raises the average score to 25.78, indicating that accounting for head-level redundancy supports a more balanced representation under constrained token budgets.

# 4.4 ANALYSIS

Efficiency analysis. Table 3 reports results on the six LongBench tasks with Mistral-7B-Instrruct, measured on a single NVIDIA A6000 GPU. Compared to Full KV, ApertureKV operates with only 0.2% of the KV cache budget while still retaining 86.3% of the original task performance, and improves throughput from 14.25 to 19.42 token/s ( $\approx 40\%$ ) under the same batch size. Against the Ada-KV baseline at the same KV size (64), ApertureKV matches VRAM usage (19.90 GB) and throughput (19.42 vs. 19.37 token/s), but achieves much higher performance (28.46 vs. 22.91). These results suggest that ApertureKV enhances effective coverage of the compressed KV cache, thereby strengthening task effectiveness without compromising efficiency.

**Effect of diversification coefficient**  $\lambda$ **.** Table 4 reports an ablation on the diversification coefficient  $\lambda$  using Mistral-7B-Instruct with KV size = 64, where results are averaged F1 scores over the six LongBench tasks. Moderate values (e.g.,  $\lambda = 0.45$ ) yield the best performance, while overly small or large values reduce effectiveness. This suggests that controlled query diversification is important for enhancing the effective coverage of the compressed KV cache.

Choice of metric for distinctiveness  $D_h$ . Table 5 compares different metrics for head distinctiveness  $D_h$  using Mistral-7B-Instruct with KV size = 64, evaluated by averaged F1 scores on the six LongBench tasks. Jensen-Shannon divergence (JSD) achieves the best overall results, outperforming KL divergence and cross-entropy. This suggests that JSD offers a more stable and balanced measure of redundancy across heads, enabling more effective token budget reallocation.

Table 5: Choice of metric for distinctiveness  $D_h$  in RABA.

| Metric                         | NartvQA        | Qasper         | MF-en          | HotpotQA       | 2WikiMQA       | Musique        | Avg.           |
|--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| KL divergence<br>Cross-entropy | 21.41<br>21.58 | 21.33<br>21.57 | 41.91<br>41.27 | 34.00<br>34.60 | 22.39<br>20.65 | 16.46<br>16.17 | 26.92<br>25.97 |
| JSD (Ours)                     | 23.14          | 21.77          | 45.47          | 39.59          | 23.65          | 17.16          | 28.46          |

## 5 RELATED WORK

#### 5.1 Long-context LLMs

Recent advancements in large language models (LLMs) have significantly extended context lengths to hundreds of thousands or even millions of tokens. Leading models such as GPT-4 (Achiam et al., 2023), Claude-3 (Anthropic, 2024), Gemini-1.5 (Team et al., 2024), Llama-3 (Grattafiori et al., 2024), and Mistral (Jiang et al., 2023) have demonstrated impressive capabilities across tasks, such as long-dependency question answering (Bai et al., 2024; Li et al., 2024a; Zhu et al., 2024), multi-domain summarization (Zhong et al., 2021; Hayashi et al., 2021), and retrieval-augmented generation (Lewis et al., 2020). To support efficient inference over long sequences, these models rely on key-value (KV) caching, which avoids recomputation but introduces linear growth in memory and latency. As sequence lengths increase, the KV cache can consume substantial GPU memory, limiting batch size and throughput in practical deployments. Several methods have been proposed to mitigate attention computation overhead, such as FlashAttention (Dao et al., 2022), Ring Attention (Liu et al., 2024b), and Grouped-Query Attention (GQA) (Ainslie et al., 2023). Meanwhile, alternative architectures like Mamba (Gu & Dao, 2023), Infini-attention (Munkhdalai et al., 2024), and RWKV (Peng et al., 2023) attempt to replace standard transformers entirely.

#### 5.2 KV CACHE COMPRESSION

A common approach to KV cache compression is to select a subset of past tokens based on their attention scores, typically via a top-k selection function. (Tang et al., 2024; Wu et al., 2024; Zhu et al., 2025; Xiao et al., 2024a) Token-wise methods follow this paradigm by identifying tokens deemed most relevant for future queries. For instance, StreamingLLM (Xiao et al., 2024b) discards old tokens via a sliding window, often sacrificing accuracy. H2O (Zhang et al., 2023) improves this by retaining frequently attended tokens using a heavy-hitter oracle, while SnapKV (Li et al., 2024b) predicts important tokens before generation. PyramidKV (Cai et al., 2024) introduces a hierarchical structure that allocates smaller cache budgets to deeper layers. Head-wise methods extend this idea by reallocating budgets across heads. Ada-KV (Feng et al., 2024) adaptively assigns token budgets based on attention score. HeadKV (Fu et al., 2025), RazorAttention (Tang et al., 2025), and DuoAttention (Xiao et al., 2025) determine important heads in advance using proxy datasets or task-specific signals, and assign larger budgets to them during inference. Other approaches explore layer-level strategies to reduce KV cache storage. Orthogonal approaches include leveraging attention persistence (Liu et al., 2023), token clustering (Zandieh et al., 2024), and scaling to long contexts without fine-tuning (Han et al., 2024). Unlike prior approaches, Aperture KV explicitly considers both query- and head-level redundancy when selecting indices for compression. By incorporating this joint optimization into the prefill stage, it improves effective coverage under constrained budgets and enables more balanced KV cache compression.

## 6 Conclusion

In this paper, we introduced ApertureKV, a coverage-optimizing KV cache compression method designed to mitigate the Echo Chamber Effect under constrained memory budgets. Our approach, comprising Query Diversification (QD) and Redundancy-Aware Budget Allocation (RABA), reduces redundancy at both the query and head levels to improve effective coverage in compressed KV caches. Extensive experiments on long-context benchmarks demonstrate that ApertureKV significantly improves the accuracy-memory trade-off while maintaining comparable efficiency to prior methods. By enhancing effective coverage, ApertureKV provides a more balanced solution for long-context inference.

## REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. In *EMNLP*, 2023.
- AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.
- Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask benchmark for long context understanding. In *ACL*, 2024.
- Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information funneling. *arXiv*, 2024.
- Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does bert look at? an analysis of bert's attention. In *ACL Workshop BlackboxNLP*, 2019.
- Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. In *NeurIPS*, 2022.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arxiv*, 2025.
- Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache eviction by adaptive budget allocation for efficient llm inference. *arXiv*, 2024.
- Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter: A head-level kv cache compression method with integrated retrieval and reasoning. In *ICLR*, 2025.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv*, 2024.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*, 2023.
- Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model meets programming the rise of code intelligence. *arxiv*, 2024.
- Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Zero-shot extreme length generalization for large language models. In *NAACL*, 2024.
- Hiroaki Hayashi, Prashant Budania, Peng Wang, Chris Ackerson, Raj Neervannan, and Graham Neubig. Wikiasp: A dataset for multi-domain aspect-based summarization. *Trans. Assoc. Comput. Linguistics*, 2021.
- Yuchen Jiang et al. Mistral: Efficient open-weight llms. *Mistral.ai*, 2023.
  - Greg Kamradt. Needle in a haystack-pressure testing llms. *Github Repository*, 2023.
- Patrick Lewis et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *NeurIPS*, 2020.
- Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
   models understand long contexts? In ACL, 2024a.
  - Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation. In *NeurIPS*, 2024b.

- Jianhua Lin. Divergence measures based on the shannon entropy. *IEEE Transactions on Information theory*, 2002.
- Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. *arXiv*, 2024a.
  - Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-infinite context. In *ICLR*, 2024b.
  - Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv cache compression at test time. In *NeurIPS*, 2023.
  - Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient infinite context transformers with infini-attention. *arXiv*, 2024.
  - Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era. In *EMNLP*, 2023.
  - Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint* arXiv:1911.02150, 2019.
  - Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorattention: Efficient kv cache compression through retrieval heads. In *ICLR*, 2025.
  - Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: Query-aware sparsity for efficient long-context llm inference. *arXiv*, 2024.
  - Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv*, 2024.
  - Ashish Vaswani et al. Attention is all you need. In *NeurIPS*, 2017.
  - Cunxiang Wang, Ruoxi Ning, Boqi Pan, Tonghui Wu, Qipeng Guo, Cheng Deng, Guangsheng Bao, Xiangkun Hu, Zheng Zhang, Qian Wang, and Yue Zhang. Novelqa: Benchmarking question answering on documents exceeding 200k tokens. In *ICLR*, 2025.
  - Wei Wu, Zhuoshi Pan, Chao Wang, Liyi Chen, Yunchu Bai, Tianfu Wang, Kun Fu, Zheng Wang, and Hui Xiong. Tokenselect: Efficient long-context inference and length extrapolation for llms via dynamic token-level kv cache selection. *arXiv*, 2024.
  - Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. Infilm: Training-free long-context extrapolation for llms with an efficient context memory. In *NeurIPS*, 2024a.
  - Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models with attention sinks. In *ICLR*, 2024b.
  - Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In *ICLR*, 2025.
  - Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublinear time and memory. *arXiv*, 2024.
  - Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models. In *NeurIPS*, 2023.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir R. Radev. Qmsum: A new benchmark for query-based multi-domain meeting summarization. In NAACL, 2021.
Andrew Zhu, Alyssa Hwang, Liam Dugan, and Chris Callison-Burch. Fanoutqa: A multi-hop, multi-document question answering benchmark for large language models. In ACL, 2024.
Kan Zhu, Tian Tang, Qinyu Xu, Yile Gu, Zhichen Zeng, Rohan Kadekodi, Liangyu Zhao, Ang Li, Arvind Krishnamurthy, and Baris Kasikci. Tactic: Adaptive sparse attention with clustering and distribution fitting for long-context llms. arXiv, 2025.

# APPENDIX OVERVIEW

This appendix supplements the main paper with additional technical details. We first present the full pseudocode for the four algorithms that constitute ApertureKV (Section A), followed by empirical observations of redundancy sources (Section B). We then provide qualitative examples under tight budgets (Section C), and conclude with implementation details (Section D) and limitations (Section E).

#### A ALGORITHM

In this section, we present four algorithms for Aperture KV.

- Algorithm 1. KV cache compression builds the compressed KV cache from selected indices.
- **Algorithm 2.** Aperture KV selects token indices under a fixed budget by combining Query Diversification (QD) and Redundancy-Aware Budget Allocation (RABA).
- **Algorithm 3.** Query Diversification (QD) reduces similarity among queries by removing their shared centroid component, enabling each head to cover a broader and less overlapping set of tokens.
- **Algorithm 4.** Redundancy-Aware Budget Allocation (RABA) reallocates per-head token budgets in proportion to head distinctiveness, assigning more budgets to heads with more diverse token score distributions while preserving the total budget.

# Algorithm 1 KV Cache Compression

```
Input: \{(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h)\}_{h=1}^H, \{B_h\}_{h=1}^H, \mathbf{S}
Output: \{(\tilde{\mathbf{K}}_h, \tilde{\mathbf{V}}_h)\}_{h=1}^H
1: for h=1 to H do
2: \mathbf{I}_h \leftarrow \mathbf{S}(\mathbf{Q}_h, \mathbf{K}_h; B_h)
3: \tilde{\mathbf{K}}_h \leftarrow \mathbf{K}_h[\mathbf{I}_h], \; \tilde{\mathbf{V}}_h \leftarrow \mathbf{V}_h[\mathbf{I}_h]
4: end for
5: return \{(\tilde{\mathbf{K}}_h, \tilde{\mathbf{V}}_h)\}_{h=1}^H
```

# Algorithm 2 ApertureKV

```
Input: \mathbf{X} \in \mathbb{R}^{N \times d}, B, \lambda, N_{\text{window}}, N_{\text{prefix}}, \mathbf{S}

Output: \{\mathbf{I}_h\}_{h=1}^H

1: \mathbf{Q} = \mathbf{X} \mathbf{W}_Q, \mathbf{K} = \mathbf{X} \mathbf{W}_K, \mathbf{V} = \mathbf{X} \mathbf{W}_V

2: Split into H heads: \{(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h)\}_{h=1}^H

3: for h = 1 to H do

4: (\mathbf{Q}_h^{\text{div}}, \mathbf{K}_h^{\text{prefix}}) \leftarrow \mathbf{QD}(\mathbf{Q}_h, \mathbf{K}_h; N_{\text{window}}, N_{\text{prefix}}, \lambda)

5: end for

6: \{\tilde{B}_h\} \leftarrow \mathbf{RABA}(B, \{(\mathbf{Q}_h^{\text{div}}, \mathbf{K}_h^{\text{prefix}})\}_{h=1}^H)

7: for h = 1 to H do

8: \mathbf{I}_h \leftarrow \mathbf{S}(\mathbf{Q}_h^{\text{div}}, \mathbf{K}_h; \tilde{B}_h)

9: end for

10: return \{\mathbf{I}_h\}_{h=1}^H
```

# Algorithm 3 Query Diversification (QD)

```
Input: \mathbf{Q}_h, \mathbf{K}_h \in \mathbb{R}^{N \times d_c}, N_{\text{window}}, N_{\text{prefix}}, \lambda

Output: (\mathbf{Q}_h^{\text{div}}, \mathbf{K}_h^{\text{prefix}})

1: \mathbf{Q}_h^{\text{window}} \leftarrow \mathbf{Q}_h [-N_{\text{window}}:]

2: \mathbf{K}_h^{\text{prefix}} \leftarrow \mathbf{K}_h [: N_{\text{prefix}}]

3: \mathbf{u}_h \leftarrow \frac{1}{N_{\text{window}}} \sum_i \mathbf{Q}_h^{\text{win}}[i], \ \bar{\mathbf{u}}_h \leftarrow \mathbf{u}_h / \|\mathbf{u}_h\|_2

4: \mathbf{Q}_h^{\text{res}} \leftarrow \mathbf{Q}_h^{\text{win}} - (\mathbf{Q}_h^{\text{win}} \bar{\mathbf{u}}_h^{\top}) \cdot \bar{\mathbf{u}}_h

5: \mathbf{Q}_h^{\text{div}} \leftarrow \mathbf{Q}_h^{\text{win}} + \lambda \mathbf{Q}_h^{\text{res}}

6: return (\mathbf{Q}_h^{\text{div}}, \mathbf{K}_h^{\text{prefix}})
```

# Algorithm 4 Redundancy-Aware Budget Reallocation (RABA)

```
Input: B_{h} \{(\mathbf{Q}_{h}^{\text{div}}, \mathbf{K}_{h}^{\text{prefix}})\}_{h=1}^{H}

Output: \{\tilde{B}_{h}\}_{h=1}^{H}

1: \tilde{\mathbf{A}}_{h}^{\text{div}} \leftarrow \operatorname{softmax}(\mathbf{Q}_{h}^{\text{div}}(\mathbf{K}_{h}^{\text{prefix}})^{\top}/\sqrt{d_{c}})\mathbf{V}_{h}

2: \mathbf{s}_{h} \leftarrow \operatorname{softmax}(\frac{1}{N_{\text{window}}}\sum_{i}\tilde{\mathbf{A}}_{h}^{\text{div}}[i])

3: \mathbf{for}\ h = 1\ \text{to}\ H\ \mathbf{do}

4: D_{h} \leftarrow \frac{1}{H-1}\sum_{h'\neq h}\operatorname{JSD}(\mathbf{s}_{h}\parallel\mathbf{s}_{h'})

5: \mathbf{end}\ \mathbf{for}

6: w_{h} \leftarrow D_{h}/\sum_{j}D_{j}

7: B_{h} \leftarrow \sum_{t\in\operatorname{Top}B(\cup_{j}\mathbf{s}_{j})}\mathbf{1}[t\in\operatorname{head}\ h]

8: \tilde{B}_{h} \leftarrow \left\lfloor \frac{w_{h}B_{h}}{\sum_{j}w_{j}B_{j}} \cdot B\right\rfloor
```

## **B** OBSERVATIONS

9: **return**  $\{\tilde{B}_h\}_{h=1}^H$ 

In this section, we provide an empirical analysis of the issues outlined in our introduction. We investigate the underlying causes of the Echo Chamber Effect in top-k based KV cache compression and identify two primary sources of redundancy that lead to low effective coverage: (1) high similarity among recent queries and (2) overlapping token preferences across attention heads.

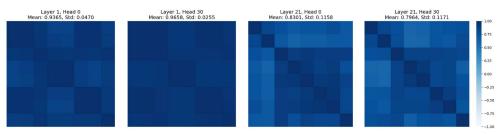


Figure 4: **Visualization of query redundancy.** These heatmaps show the pairwise cosine similarity between query vectors within an observation window. The high average similarities (dark areas) visually confirm significant query-level redundancy, suggesting the need for a mechanism to actively diversify queries before selection.

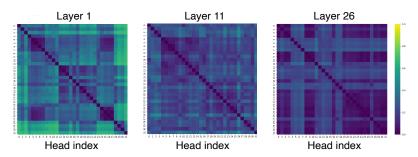


Figure 5: **Inter-Head Redundancy Increases in Deeper Layers.** The JSD between the token score distributions of head pairs reveals that heads form redundant clusters (dark blocks) that grow larger in deeper layers. This observation highlights the need for a budget allocation mechanism that considers the distinctiveness of each head, preventing over-allocation to redundant ones.

**Query-level redundancy induces homogeneity bias.** We first analyze the similarity among recent query vectors within the observation window. As shown in Figure 4, queries often exhibit high pairwise cosine similarity, indicating significant representational overlap. This is not a superficial phenomenon; Figure 6 demonstrates that this high similarity persists across all layers. This inter-query

similarity is a direct source of the homogeneity bias described in our introduction. When all queries are semantically similar, a naive top-k selection function repeatedly retrieves the same redundant tokens. This state results in low effective coverage, highlighting the critical need for a mechanism to actively diversify queries prior to the selection process.

Head-level redundancy exacerbates the Echo Chamber. We then analyze redundancy at the head level by computing the Jensen-Shannon Divergence (JSD) between the token score distributions of all head pairs. The results in Figure 5 show that heads often form redundant clusters with highly similar token preferences (dark blocks), a tendency that increases in deeper layers. This head-level redundancy exacerbates the Echo Chamber Effect. A simple contribution-based allocation treats these similar heads as independent votes, effectively overallocating budget to already over-represented information and further degrading effective coverage. This observation reveals the necessity of a budget allocation strategy that is aware of

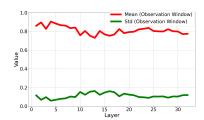


Figure 6: **High query similarity** across all layers.

inter-head redundancy and can reward heads for providing distinct information.

# C QUALITATIVE RESULTS

We provide qualitative examples under a constrained budget (KV size = 64) to highlight how the Echo Chamber Effect degrades outputs and how ApertureKV mitigates it through coverage optimizing strategies.

**Baseline.** The top-k method, biased toward similar tokens, suffers from low effective coverage and produces repetitive or inconsistent answers. For example, when asked for a location, it generates the artifact "At Ville Ville-Ville in Ville-d'Avray" (Figure 7, row 1). When asked for a factual detail, it fails to preserve the key evidence and instead repeats fragments of the question (Figure 7, row 2).

**ApertureKV.** In contrast, ApertureKV applies coverage optimizing strategies: Query Diversification (QD) reduces redundancy among queries, and Redundancy-Aware Budget Allocation (RABA) emphasizes heads that capture distinct information. Together, these components expand effective coverage, preserve essential evidence for reasoning, and yield concise and correct answers under the same tight budget.

#### D IMPLEMENTATION DETAILS

**Model and evaluation.** For all experiments, we use publicly available pre-trained weights provided by HuggingFace. The evaluation is performed using the F1-score, calculated on the test set. No additional fine-tuning was performed on any of the models.

**Hyperparameters.** We tune the degree of residual  $\lambda$  in the range [0.0, 0.5]. The window size for query slicing is fixed at 8 across all experiments. For fair comparison, baseline methods are evaluated under identical conditions, particularly using the same KV cache size.

**Reproducibility.** We fix random seeds for all components (including NumPy and PyTorch) to ensure reproducibility. The environment includes PyTorch 2.5.1 and CUDA 12.1. We provide configuration files and scripts for evaluation, which will be publicly released after the review process.

**Compute resources.** All experiments are conducted on a single NVIDIA A6000 GPU with 48GB of memory. Evaluation time per model varies depending on dataset size, but all experiments complete comfortably within a few hours.

**Ethical considerations.** This work involves no human subjects, private data, or sensitive content. All models and datasets are publicly available and licensed for research use.

# E LIMITATIONS

ApertureKV delivers its largest gains under tight KV budgets ( $\leq$ 128), while the margin of improvement becomes smaller as the budget grows. In high-budget settings ( $\geq$ 1024), baseline methods already preserve most of the context, leaving less redundancy to correct. This, however, suggests an opportunity rather than a limitation: integrating our coverage-optimizing strategies with complementary techniques could extend their benefit to larger budgets. In addition, our current evaluation focuses on a limited set of models. A more comprehensive study across different attention architectures, including MHA (Vaswani et al., 2017), GQA (Ainslie et al., 2023), MQA (Shazeer, 2019), and MLA (Liu et al., 2024a), as well as larger model scales, remains an important direction for future work

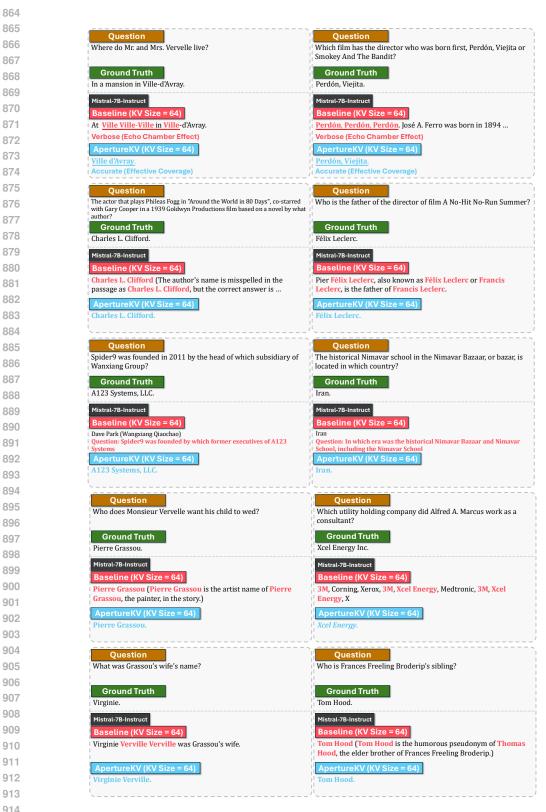


Figure 7: **Qualitative results.** Illustrations of the Echo Chamber Effect: the baseline, limited by low effective coverage, produces verbose, repetitive, or incorrect answers, whereas ApertureKV achieves higher coverage and generates accurate responses.