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ABSTRACT

A change in the input data stream of a machine-learning model is referred to as a
data drift and may impact the model’s accuracy. This paper proposes a framework
to detect data drifts, identify the type of drift, and estimate the drift magnitude
that occur in the input data stream of image classification neural networks due to
various effects. It applies to any type of drift that occurs in images due to various
factors such as noise, weather, etc. A novel statistical method is proposed for drift
magnitude estimation. The method relies on the change in the prediction proba-
bility distributions of the predicted classes in the classification network caused by
the data drift. The drift magnitude is estimated by applying a set of thresholds to
the prediction probabilities. The drift type is identified using a classification neu-
ral network. Experimental results obtained using various datasets, drift types, and
neural network architectures show that the proposed framework can accurately de-
tect data drifts, accurately identify the drift type, and estimate the drift magnitude
with a very low quantization error.

1 INTRODUCTION

As a result of the rapid advancement in artificial intelligence and computing power, the adoption of
machine intelligence in modern applications is continually growing. Computer vision stands out as
one of the prominent areas where machine intelligence is widely applied. Image classification is a
fundamental computer vision task accomplished through machine learning techniques. There are
advanced Deep Neural Network (DNN) models for image classification that have achieved remark-
able success, such as AlexNet (Krizhevsky et al. (2012)), VGG (Simonyan & Zisserman (2014)),
GoogleNet (Szegedy et al. (2015)), and ResNet (He et al. (2016)). Utilization of image classification
DNNs has become more prevalent across a broad range of applications. For instance, self-driving
cars (Ni et al. (2020)), mobile computing devices (Zhang et al. (2018)), medical imaging (Sarva-
mangala & Kulkarni (2022)), surveillance (Kaljahi et al. (2019)), defect detection (Czimmermann
et al. (2020)), etc.

Machine learning models such as DNNs are trained using data-driven statistical learning schemes.
During the operation time, a model is expected to exhibit similar accuracy as in the training phase
assuming a static distribution of the input data. However, the real-world application environments
are profoundly dynamic and continuously changing. The assumption of a static distribution of the
data is not valid in many of the applications, making it challenging for the models to maintain a
high accuracy during their operation. A change in the distribution of the input data that impacts the
accuracy of a machine learning model is referred to as data drift. Such data drifts occur over time
due to various reasons and the model accuracy may drop below the safety margin.

Image data streams are highly susceptible to data drifts due to noise effects (such as Gaussian,
Poisson, Salt & Pepper, Speckle), weather effects (such as Snow, Fog, Rain, Shadow), degradation
of the camera, change in lighting, etc. Such data drifts impact the accuracy and may compromise the
system reliability. The accuracy degradation of the image classification neural networks due to data
drifts is discussed by Hashmani et al. (2019). Diagnosing data drifts occur in image classification
neural networks is an essential aspect of maintaining the system reliability.

Detection and magnitude estimation are two main aspects of the drift diagnosis process (Webb et al.
(2016), Webb et al. (2017)). There exist many approaches for the detection of data drifts in various
application domains (Yang et al. (2020), Suprem et al. (2020), Dube & Farchi (2020), Ackerman
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et al. (2021), Senarathna et al. (2023)). It is important to know the drift magnitude for tasks such
as determining the detection threshold, appropriate resource allocation, model performance assess-
ment, model adaptation, risk management, etc. The detection and magnitude estimation of drifts in
one-dimensional data can be done by computing the distance between the distribution of the training
data and the production data (Goldenberg & Webb (2019)). Various distance matrices are used to
identify data drifts in one-dimensional data. For instance, Kullback-Leibler Divergence (Kullback
& Leibler (1951)) and Hellinger Distance (Hoens et al. (2011)) are used by Webb et al. (2016), To-
tal Variation Distance (Levin & Peres (2017)) is used by Webb et al. (2017), and Energy Distance
(Rizzo & Székely (2016)) is used by Yang et al. (2020). However, these matrices cannot be directly
applied to higher dimensional data with spatial correlations, such as images.

There are methods in the literature for the detection of data drifts in image data streams (Suprem
et al. (2020), Dube & Farchi (2020), Ackerman et al. (2021)). Some methods use a low-dimensional
feature vector extracted from the image to address the challenge of processing the high-dimensional
image data (Suprem et al. (2020)). The method by Suprem et al. (2020) maps the images into a low-
dimensional feature vector using a Generative Adversarial Network (GAN) and detects data drifts
by applying clustering on the low-dimensional feature vector. The method by Dube & Farchi (2020)
uses the divergence score between the average feature vectors of the training dataset and the pro-
duction dataset to detect data drifts in image classification neural networks. Ackerman et al. (2021)
proposed a method in to detect data drifts using the prediction probability i.e. the maximum class
probability. The change in the prediction probability distribution resulting from the data drift was
employed to detect a data drift by Ackerman et al. (2021). However, the methods by Suprem et al.
(2020), Dube & Farchi (2020), Ackerman et al. (2021) do not estimate the drift magnitude, and they
only consider the drifts due to the appearance of unseen classes in classification neural networks.
There exist methods that estimate the magnitude of various noise effects in images (Pyatykh et al.
(2012), Chuah et al. (2017), Wang et al. (2021)). However, those methods rely on the statistical
properties of the noise model, and therefore they only apply to a particular noise type.

The method proposed by Senarathna et al. (2023) also relies on the change in the prediction prob-
ability distribution due to the data drift and estimates the drift magnitude by applying thresholds
to the prediction probabilities. However, Senarathna et al. (2023) assumed that the distribution of
the images among the classes, referred to as the class distribution, remains unchanged in training
and production data. This assumption often does not hold in real-world application environments.
In this paper, we address this limitation and propose a method that can cope with varying class
distributions.

To address the problem of varying class distribution of the images in the input data stream, we com-
bine the thresholding criterion proposed by Senarathna et al. (2023) with an approach that estimates
the number of images from each class in the input data stream. The process of estimating the num-
ber of samples from each class in an input data stream of a machine learning model is referred to as
Quantification (Forman (2005)). With that, we derive a generalized method to estimate the magni-
tude of data drifts due to any type of effect under varying class distributions. The proposed method
relies on the change in the prediction probabilities of the neural network caused by the data drift.
It is a statistical method that operates on a batch of images and estimates a discrete magnitude for
the batch. Using the proposed drift magnitude estimation method, we developed a comprehensive
drift detection framework that detect data drifts, identify the type of drift, and estimate the drift
magnitude in the input data stream of image classification neural networks due to various effects.
Drift type is identified using a secondary classification neural network that runs in parallel with the
primary classification network. The drift type is detected from a set of potential drift types and the
drift magnitude is estimated from a set of potential drift magnitudes.

The rest of the paper is organized as follows. Section 2 presents preliminaries and Section 3 de-
scribes the proposed method. Section 4 discusses the experimental results and conclusions are pre-
sented in Section 5.

2 PRELIMINARIES

Changes in the input data distribution of a machine learning model are called concept drifts. A con-
cept drift is a change that occurs in the relationship between the input features and the target variable
of a machine learning model over time in an unforeseen manner. Concept drifts are categorized as
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real concept drifts, covariate drifts, and novel class appearance (Hoens et al. (2012), Gama et al.
(2014), Webb et al. (2016), Webb et al. (2017)). A real concept drift, which is also referred to as
class drift or prior probability shift, is a change in the relation between the input and output. A co-
variate drift, which is also referred to as virtual drift, is a change in the input data distribution. The
novel class appearance is a previously unseen new class appears in the input. This paper specifically
focuses on covariate drifts that occur in image classification neural networks due to various effects
such as noise effects and weather effects among others. Furthermore, we consider “full concept
drifts” where every input in the input data stream is equally affected with the same drift magnitude
(Webb et al. (2016)).

To understand the impact of data drifts on image classification neural networks, let us consider the
impact of Gaussian noise on a classification network trained on the MNIST handwritten digit image
dataset, detailed in Section 4, under the effect of Gaussian noise. Drift magnitude is represented by
the variance σ2 of the Gaussian noise. The network had an accuracy of 99.10% on clean images
i.e. σ2 = 0. Accuracy gradually declined as the drift magnitude increased and dropped below 80%
when the images were affected by the Gaussian noise of σ2 = 0.20. See also Figure A.1 in the
Appendix.

Softmax is the activation function used in the output layer of classification neural networks. The
softmax activation provides a normalized distribution of probabilities among the output classes and
the predicted class for a given input is the class that has the maximum softmax probability. The
maximum softmax class probability is referred to as the prediction probability and it is an indication
of the confidence of the prediction made by the classifier. The distribution of the prediction prob-
abilities changes when a data drift occurs. Hendrycks & Gimpel (2016) showed that the average
prediction probability decreases when out-of-distribution data is fed into a neural network classifier.

Let us consider the above mentioned MNIST classifier. Figure 1 shows the Cumulative Distribution
Functions (CDFs) of the prediction probability of the images predicted as class 1 and class 2 by
the MNIST classifier under six different magnitudes of Gaussian noise. The distribution of the pre-
diction probability changes at different magnitudes of Gaussian noise. Furthermore, the prediction
probability distributions of different predicted classes change differently with the drift magnitude.
For instance, the change in the prediction probability distribution of class 0 in Figure 1a and class 1
in Figure 1b are different. The thresholding-based criterion proposed by Senarathna et al. (2023) to
estimate the magnitude of data drifts in image classification neural networks relies on this change in
the prediction probability distribution.

(a) predicted as class 1 (b) predicted as class 2

Figure 1: Cumulative Distribution Functions (CDFs) of the prediction probability of the images
predicted as class 0 and class 1 in the MNIST classifier under different magnitudes of Gaussian
noise.

However, the distribution of the prediction probability of a given predicted class depends on the
class distribution of the input data stream. Because, given that the predicted class by the classifi-
cation network of an input is C, the actual class Ĉ of the input can be any class due to the model
imperfections. Therefore, the number of images predicted as class C, and subsequently the distribu-
tion of the prediction probabilities of images predicted as class C depends on the class distribution
of the input data stream.
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The relation between the prediction probability distribution and the class distribution is as follows.
Let Pi denote the prediction probability distribution of the images predicted as class i, Pi,j denote
the prediction probability distribution of the images belonging to the class j predicted as class i, and
xj denote the number of images from class j for 1 ≤ j ≤ n in the input data stream where n denotes
the number of classes. Then,

Pi =

∑n
J=1 P (C = i|Ĉ = j)xjPi,j∑n

J=1 P (C = i|Ĉ = j)xj

, (1)

where P (C = i|Ĉ = j) denotes the conditional probability of being predicted as class i given
that the actual class is j. In other words, P (C = i|Ĉ = j) indicates the probability of the images
belonging to the class j being predicted as class i where 1 ≤ i, j ≤ n. To address the challenge
of varying class distributions, we combine the thresholding criterion proposed by Senarathna et al.
(2023) with a quantification method to estimate the drift magnitude under varying class distributions
in the input data stream. There exist numerous quantification methods in the literature to estimate the
number of samples from each class in multiclass classification networks (Schumacher et al. (2021)).
The quantification method proposed in this paper is motivated by the readme method by Hopkins &
King (2010).

3 THE PROPOSED METHOD

The proposed drift detection approach considers a batch of images at a time. A set of potential
drift types and a set of potential discrete drift magnitudes per each drift type are considered. The
approach detects the presence of a data drift, identifies the drift type (i.e. effect type) and estimates
the drift magnitude for a batch of images. First, a drift magnitude is estimated for each potential
drift type. Based on the estimated magnitudes for each type, it is determined whether a data drift has
occurred or not. If a data drift has occurred, then the drift type is identified using the type detection
criterion. The drift magnitude corresponds to the estimated magnitude of the detected drift type.

For a given drift type, the magnitude is estimated based on the percentage of images in each predicted
class with a prediction probability above a predetermined threshold. The thresholds are computed
using the method proposed by Senarathna et al. (2023). We first describe the threshold computation
criterion and the application of the thresholds assuming a static class distribution in the image data
stream.

The percentage of images with prediction probability higher than an appropriately selected thresh-
old differs at different drift magnitudes. Consider the CDFs shown in Figure 1a of the prediction
probabilities of the images predicted as class 1 in the MNIST classifier. The noticeable difference in
the cumulative sum at different drift magnitudes indicates the possibility to distinguish among the
different drift magnitudes by choosing an appropriate threshold. For instance, let us consider the
number of class 1 predictions with prediction probability ≥ 0.9 at different Gaussian noise magni-
tudes in Figure 1a. The corresponding percentage for σ2 = 0, σ2 = 0.04, σ2 = 0.08, and σ2 = 0.12
were 99.3%, 95.4%, 86.0%, and 71.1% respectively. The drift level is recognized based on these
differences in the percentages above some threshold probability.

Let T denote the drift type and M denote the drift magnitude. Let m be the number of non-zero
drift magnitudes. For a potential drift type T , multiple threshold probability values are computed.
In particular, a different threshold is computed for each predicted class C, for each drift magnitude
M of the drift type T . Let us consider the CDFs shown in Figure 1. It can be observed that the
probability that has the highest contrast among the CDFs of consecutive drift levels varies based on
the drift magnitude and the predicted class. Therefore, a different threshold is computed per each
predicted class C and per each drift magnitude M such that the difference among the percentages
above the thresholds of consecutive drift levels is maximized. Hence, a better distinguishability
among the adjacent drift levels is achieved.

Let τC,M denote the threshold probability for the predicted class C, drift magnitude M where 1 ≤
C ≤ n and 0 ≤ M ≤ m. For some drift type T , the thresholds τC,M for each predicted class C
and each drift magnitude M are computed as follows. First, the CDFs of the prediction probability
are obtained for each predicted class C considering each drift magnitude M . Let FC,M denote the
CDF of the predicted class C for drift magnitude M . FC,M is a discrete function of the prediction
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probability p and it indicates the percentage of predictions with prediction probability below p. Let
GC,M denote the gradient of the FC,M at each prediction probability p with respect to the magnitude
M . For a predicted class C and drift magnitude M , GC,M is computed using the standard second-
order approximation as,

GC,M = (FC,M+1 − FC,M−1)/2. (2)

For boundary magnitudes, FC,M and either the FC,M−1 or the FC,M+1 are used to compute the
GC,M . The threshold τC,M corresponds to the probability where the GC,M is maximum. For some
drift type T , the set of thresholds τC,M for 1 ≤ C ≤ n and 0 ≤ M ≤ m is referred to as the
threshold dictionary. The same procedure is followed to construct the dictionary of threshold for
every potential drift type.

After the thresholds are computed, the next step is the application of the thresholds to estimate the
magnitude. When a static class distribution is assumed, the drift magnitude for some drift type T
is estimated by comparing the observed percentage of predictions with the expected percentage of
predictions above each threshold τC,M , as described in the following. Let PC,M denote the expected
percentage of predictions above τC,M and P̂C,M denote the observed percentage of predictions
above τC,M for the predicted class C at drift magnitude M . A collection of expected percentages
PC,M for 1 ≤ C ≤ n and 0 ≤ M ≤ m, referred to as the percentage dictionary, is computed a
priori. During the operation time, the observed percentages P̂C,M are computed for 1 ≤ C ≤ n
and 0 ≤ M ≤ m for a given batch of images. Thereafter, the absolute sum of the percentage errors
eM =

∑C
i=1∥PC,M − P̂C,M∥ is computed for each magnitude M . The estimated magnitude Me,

corresponds to the magnitude that has the minimum eM .

As was mentioned in Section 2, the number of images predicted as a particular class and the pre-
diction probability distribution of a class depends on the class distribution in the input data stream.
Equation (1) indicates that the expected percentage Pi,M above the threshold τi,M for the predicted
class C = i also depends on the number of images from each class i.e. the class distribution. When
the class distribution changes, the expected percentage PC,M and the observed percentage P̂C,M

are not comparable. To address this challenge, we apply quantification to estimate the number of
images from each class.

The proposed quantification method is a modified version of the readme method by Hopkins &
King (2010). The readme method estimates the class distribution using the number of samples
observed in each predicted class. In contrast, the proposed quantification method estimates the class
distribution using the number of samples observed in each predicted class before and after applying
the thresholds. The method considers the relation between the number of images predicted as a
particular class and the number of images from each class, before and after thresholds are applied.
The drift magnitude is estimated based on the quantification output.

The relation between the number of images predicted as class C and the number of images from
each class Ĉ is as follows. Let yi denote the number of images predicted as class i, 1 ≤ i ≤ n.
The quantity yi depends on the probability P (C = i|Ĉ = j) and the number of images from each
class xj , 1 ≤ i, j ≤ n. The relation between the yi, and the probability P (C = i|Ĉ = j), and xj is
shown in Equation (3) below.

yi =

n∑
j=1

P (C = i|Ĉ = j)xj . (3)

The conditional probability P (C = i|Ĉ = j) depends on the model behavior and the dataset.
P (C = i|Ĉ = j) is calculated by obtaining the confusion matrix of the classifier and normalizing
the confusion matrix with the number of images from each class. The matrix of P (C = i|Ĉ = j)
for 1 ≤ i, j ≤ n is referred to as the coefficient matrix and is denoted as A1, which is of order n×n.

Equation (3) is modified as below to obtain the relation between the number of images above the
threshold τC,M in each predicted class C and the number of images from each class xj . Let ỹi
denote the number of images predicted as class i with prediction probability p ≥ τi,M . Let P ((C =

i ∩ p ≥ τi,M )|Ĉ = j) denote the probability of being predicted as class i such that the prediction
probability p is greater than or equal to the threshold τi,M given that the actual class is j. The ỹi and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

xj for 1 ≤ i, j ≤ n are related as in Equation (4).

ỹi =

n∑
j=1

P ((C = i ∩ p ≥ τi,M )|Ĉ = j)xj . (4)

To compute the probability P ((C = i ∩ pi ≥ τi,M )|Ĉ = j) for 1 ≤ i, j ≤ n for a given drift
magnitude M , first, the confusion matrix is obtained after applying the thresholds τi,M for each
predicted class C. Thereafter, the thresholded confusion matrix is normalized by the number of
images from each class Ĉ. The matrix of P ((C = i∩p ≥ τi,M )|Ĉ = j) for 1 ≤ i, j ≤ n is referred
to as the thresholded-coefficient matrix and is denoted as A2, which is of order n× n.

A system of linear equations is derived by considering yi and ỹi, 1 ≤ i ≤ n and xj , 1 ≤ j ≤ n. Let

Y = {y1, y2, . . . , yn, ỹ1, ỹ2, . . . , ỹn}T , X = {x1, x2, . . . , xn}T , and A =

[
A1

A2

]
. Then,

Y = AX. (5)

The number of images from each class X is estimated by solving the linear equation system in Equa-
tion (5) using the least-squares method. Let X̂ be the least-squares solution of the linear equation
system in Equation (5). The residual of the solution is obtained by computing the Euclidean norm
of the difference between Y and AX̂ . The residual is an indication of how well the solution satisfies
the linear equation system. Let rM denote the residual of the solution for magnitude M , i.e.,

rM = Y −AX̂. (6)

For each drift magnitude, X is estimated by substituting the A in Equation (5) with the matrix
corresponding to the magnitude M . The residual rM is computed for 0 ≤ M ≤ m. The estimated
drift magnitude Me is the magnitude with the minimum residual value,

Me = argmin(r0, r1, . . . , rm). (7)

For an accurate estimation of the drift magnitude, the drift type needs to be correctly identified when
there is more than one potential drift type. First, we apply the magnitude estimation considering
every potential drift type. If a majority of the drift types indicate a non-zero magnitude, we use a
structured approach to detect the drift type. The approach relies on a classification neural network
trained to detect the drift type, referred to as the type detection network, and the minimum residual
value of the magnitude estimation in each drift type. The type detection network classifies every
image in the input stream into one of the N potential drift types. It is trained to identify the drift
type present in an image, regardless of the drift magnitude. For better accuracy, it is trained using
only the drifted images without including the clean images. Therefore, the type detection network
output is used only when the magnitude estimation indicates a non-zero drift magnitude.

The complete flow of the proposed drift detection framework is as follows. The first step is to
determine if a data drift has occurred in the input image stream. For a given batch of images, it is
determined as a data drift has occurred if more than α types indicate a non-zero magnitude after
applying the magnitude estimation. If a data drift is present, a scoring criterion is used to identify
the drift type, and the drift type with the highest score is selected. The score is computed based
the output of the type detection network and the minimum residual of each type. The percentage
of the images detected as a particular drift type by the type detection network is used as one score
value. Let st,T denote the type detection network percentage for type T . The minimum residual
value of each drift type is normalized with respect to the lowest residual value among all drift types.
The percentage above the lowest residual is added as a negative score. sr,T denote the residual
score for type T . The total score sT of the drift type T is the summation of st,T and sr,T , i.e.,
sT = st,T + sr,T . The drift type corresponds to the type with the highest score and the magnitude
corresponds to the magnitude with the minimum residual value of the detected drift type. See also
Algorithm 1 in the Appendix.

4 EXPERIMENTAL RESULTS

The proposed drift detection framework was validated by considering the data drifts that commonly
occur in image data streams due to various types of effects. We experimented with three noise
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effects, namely Gaussian, Poisson, and Salt & Pepper, and three weather effects, namely Snow,
Fog, and Rain. Experimental results are presented considering the six drift types on the MNIST,
CIFAR10, and CIFAR100 datasets. Clean images without any data drift and images of different
drift magnitudes were considered for each type.

For the MNIST dataset, we used a lightweight CNN that resembles the VGG architecture by (Si-
monyan & Zisserman (2014)). The network consisted of two convolutional layers, followed by a
maxpooling layer, followed by a fully connected layer, followed by the output layer. It was trained
using 60,000 images. For the CIFAR10 dataset, we use the ResNet18 architecture (He et al. (2016)).
For the CIFAR100 dataset, we use the network was trained using 50,000 images. The ResNet50
architecture (He et al. (2016)). The network was trained using 60,000 images. CIFAR100 vali-
dation dataset only has 100 images per-class. Such a small number of samples does not provide
sufficient statistical confidence, resulting in instability in the linear equation system. Therefore, a
shadow network of the primary classifier was trained on the twenty super-classes of the CIFAR100
dataset, and drift detection was performed using the shadow network output. The accuracy of the
MNIST, CIFAR10, and CIFAR100 (shadow network) classifiers were 99.1%, 86.7%, and 90.4%
respectively.

The validation datasets consisting of 10,000 images in each were used in the drift magnitude estima-
tions. 60% of the validation dataset was used to compute the thresholds (τC,M ), expected percent-
ages above the thresholds (PC,M ), and the coefficient matrices (A1 and A2). Magnitude estimations
were done using the remaining 40%. The architecture of the type detection network was the same as
the architecture of the image classification network of each dataset. They were trained with transfer
learning using the weights of the primary classification network.

The Drift magnitude of each noise effect was represented by the corresponding model parameter
of the noise type as follows. In Gaussian with σ2, in Poisson with 1/λ, and in Salt & Pepper with
σ2. Figure A.4 shows an example MNIST image affected by the noise effects compared with the
original clean image.

The drift magnitude of each weather effect was represented using the values within the range [0, 1].
Weather effects were added to the images using the Albumentations library Buslaev et al. (2020).
Figure A.5 shows an example CIFAR10 image affected by the weather effects compared with the
original clean image.

In the first experiment, a higher number of drift magnitudes were considered for each drift type
within a selected range. In the second experiment, a lesser number of drift magnitudes compared to
the first experiment were considered for each drift type within the same range.

The magnitude estimation method was evaluated considering twenty different random class distri-
butions for each drift magnitude. A random class distribution was created as follows for a given
magnitude. A total of 400 images from each class was considered, and a random percentage of the
total images in each class was chosen to create a batch of images with a random class distribution.
twenty such random distributions were considered for each magnitude. The class distribution of
a single batch of images was skewed, with respect to the class distribution of the dataset used to
compute the thresholds. The method was tested with a low-skew in the class distribution and with a
high-skew in the class distribution. The skewness of the class distribution was changed by varying
the percentage of images selected from each class. Note that the magnitude estimation results are
presented considering the estimated magnitude by the method correspond to the correct drift type.

First we present the results pertaining to the drift detection and type detection by the proposed
framework. Type detection depends on the accuracy of the type detection network and the residual
of the solution of the linear equation system. We observed a high accuracy in the type detection
network for all magnitudes of all drift types in all three datasets. The accuracy decreased slightly
at lower magnitudes, the drift type of a batch of images was determined accurately. See also Figure
A.8 in the Appendix. Furthermore, in order to accurately detect the drift type, the minimum residual
value of the correct drift type should be lower than that of all the other types, and this was satisfied
in majority of the cases.

Table 1 shows the drift detection accuracy and the type detection accuracy of the proposed frame-
work observed in the first experiment in which a higher number of drift magnitudes were considered.
100% drift detection accuracy was observed in many drift types. In some drift types, drift detection
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accuracy decreased because some of the lowest non-zero magnitudes were estimated as magnitude
zero. The drift type was also detected accurately in most of the types. The type detection accuracy
was slightly reduced for certain drift types because, on some occasions, the minimum residual of
the actual type was higher than the minimum residual of some other drift type. Therefore, the score
sT of the actual type was reduced.

Dataset Drift Type Drift Detection Accuracy Type Detection Accuracy

MNIST
Gaussian 93.33% 100%
Poisson 88.81% 100%

Salt & Pepper 91.19% 100%

CIFAR10

Gaussian 100% 94.52%
Poisson 100% 99.52%

Salt & Pepper 100% 97.86%
Snow 100% 100%
Fog 90.91% 99.09%
Rain 100% 100%

CIFAR100

Gaussian 100% 100%
Poisson 100% 100%

Salt & Pepper 100% 100%
Snow 93.18% 100%
Fog 90.00% 100%
Rain 100% 100%

Table 1: Drift detection accuracy and the drift type detection accuracy of the proposed method.

(a) Gaussian, MNIST (b) Poisson, CIFAR10 (c) Snow, CIFAR100

Figure 2: Drift magnitude estimations of different drift types under low-skew class distributions.

Next, we present the drift magnitude estimation results of the first experiment. 2 shows magnitude
estimations of the first experiment under low-skew class distributions. For each drift magnitude, the
estimated magnitudes of the twenty different class distributions are shown in the form of a violin
plot. The violin plot shows the distribution of the twenty estimations for a particular magnitude.
Due to space limitations, figures are included only for one drift type in each dataset. It was observed
that the quantization error of the estimations was within an acceptable range for all the drift types.
Even though the estimated magnitude was not exact in some trials, the estimated magnitudes mono-
tonically increased as the drift magnitude increased which prevented significant underestimations.
Large underestimations are not desirable since they can compromise the reliability of the method.
Furthermore, the small quantization error and monotonicity of the estimations allow the user to take
appropriate remedial actions at a desired drift level even if the estimation is not exact.

Another observation was that, in some drift types, several lowest non-zero drift magnitudes were es-
timated as zero. This indicated the lowest drift magnitude of a drift type that the method can detect.
For instance, in Figure 2, the three lowest magnitudes of Gaussian noise in the MNIST classifier,
i.e., 0, 0.01, and 0.02, were estimated as zero. The lowest detected magnitude in the MNIST clas-
sifier of Gaussian, Poisson, and Salt & Pepper were 0.03, 0.3, and 0.06 respectively. Even though,
some magnitudes were incorrectly estimated as zero, the impact of the data drift on the primary
classification network was minimal at those magnitudes, and such imperfections were acceptable.
Furthermore, the method always estimated a non-zero magnitude for every drift magnitude beyond
a certain magnitude in all the drift types. For instance, in the magnitude estimations shown in Figure
2, the threshold magnitudes of Gaussian, Poisson, and Snow, beyond which the estimations were
always non-zero, were 0.02, 0, and 0.1, respectively. This indicates that the proposed method has
the ability to detect data drifts due to any type of effects that occur in images. It was observed that
the method underestimated the drift magnitude for some drift types. For instance, drift magnitudes
of Gaussian noise between 0.01-0.03 were always underestimated in Figure 2. Underestimations
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were observed in several other drift types, but the quantization error was always within a acceptable
range. See also the maximum quantization errors in Table 2.

A relatively higher quantization error and a variance in the magnitude estimations were observed
under high-skew class distributions. Nevertheless, the quantization error was within an acceptable
range. See also the maximum quantization errors in Table 2. The method was able to accurately
distinguish among the magnitudes that were quite apart even under high-skew class distributions.
See also Figure A.11 in the Appendix.

Next, we analyzed the quantization error of the proposed magnitude estimation method. For com-
parison purposes, we implemented the method by Senarathna et al. (2023) which we used as the
baseline. Table 2 shows the quantization error summary of the magnitude estimations in the first
experiment. The quantization error was analyzed considering low-skew class distributions and high-
skew class distributions, and compared with the method by Senarathna et al. (2023). Quantization
error was normalized by the quantization resolution for better interpretability. Quantization resolu-
tion is denoted by ∆ and shown in the third column. The number of drift magnitudes m is shown
in the fourth column. For each drift type, the average, maximum, and standard deviation of the
quantization error are shown in the table.

Dataset Drift Type m ∆

Quantization Error (normalized)
Low-Skew Class Distribution High-Skew Class Distribution

Proposed Senarathna et al. (2023) Proposed Senarathna et al. (2023)
Avg Max Std Avg Max Std Avg Max Std Avg Max Std

MNIST
Gaussian 20 0.01 0.77 2 0.35 0.89 3 0.40 0.96 5 0.77 1.26 7 1.64
Poisson 20 0.1 1.64 3 0.42 1.50 3 0.40 1.52 4 0.56 1.19 8 1.30

Salt & Pepper 20 0.02 0.48 3 0.37 0.86 3 0.52 0.64 5 0.86 1.08 6 1.41

CIFAR10

Gaussian 20 0.001 0.45 3 0.39 1.43 7 2.51 0.62 5 0.65 2.32 14 5.89
Poisson 20 0.002 0.32 2 0.35 1.30 9 2.75 0.54 3 0.57 2.40 15 6.88

Salt & Pepper 20 0.002 0.33 2 0.25 0.59 3 0.56 0.47 3 0.38 2.25 14 4.04
Snow 10 0.1 0.50 2 0.49 0.55 3 0.63 0.60 3 0.67 1.65 8 2.69
Fog 10 0.1 0.20 2 0.18 0.22 3 0.23 0.37 3 0.39 1.00 4 1.05
Rain 10 0.1 0.40 2 0.32 0.43 2 0.35 0.59 3 0.46 1.40 8 2.69

CIFAR100

Gaussian 20 0.001 1.01 5 1.88 2.18 8 4.70 1.30 10 1.72 3.38 13 2.90
Poisson 20 0.002 0.76 9 1.00 1.90 10 4.41 1.33 10 1.63 3.6 13 3.24

Salt & Pepper 20 0.002 0.20 3 0.23 1.27 8 1.98 0.38 3 0.69 3.00 14 2.73
Snow 10 0.1 0.06 1 0.06 0.47 2 0.29 0.60 3 0.61 1.17 6 2.05
Fog 10 0.1 0.20 1 0.16 0.25 1 0.19 0.22 3 0.25 0.86 4 0.97
Rain 8 0.1 0.49 2 0.45 0.57 2 0.44 0.50 2 0.32 0.76 4 0.58

Table 2: Quantization error summary of the drift magnitude estimations method compared with the
method by Senarathna et al. (2023). A higher number of quantization levels are considered in this
experiment. Error metrics are normalized by quantization resolution.

The average normalized quantization error was less than 1 for a majority of the drift types. This
indicates that the method estimates the magnitude accurately most of the time. The average was be-
tween 1-2 in some drift types due to under-estimations happening at every magnitude. Even though
there were under estimations in some drift types, the quantization error was within an acceptable
range as reflected by the maximum and the standard deviation of those types. When compared to
the method proposed by Senarathna et al. (2023), the proposed method always had equal or less
average, maximum, and standard deviation except for the Poisson type in the MNIST dataset under
low-skew class distributions. Especially, when the class distribution skew was high, the proposed
method achieved a significant improvement over the method by Senarathna et al. (2023). This em-
phasizes the significance of the proposed quantification-based magnitude estimation criterion, which
has the ability to cope with varying class distributions.

(a) Gaussian, MNIST (b) Poisson, CIFAR10 (c) Snow, CIFAR100

Figure 3: Drift magnitude estimations of different drift types under low-skew class distributions.
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In the second experiment, the method was evaluated with a lesser number of quantization levels.
This experiment illustrates the accuracy of the method when the number of drift magnitudes is less
and consecutive drift magnitudes are further apart from each other. Only five drift magnitudes within
the same magnitude range as in the first experiment were considered and twenty different random
class distributions were considered for each magnitude.

Estimation results of three drift types are shown in Figure 3 under low-skew class distributions.
See also Figure A.12 in the Appendix. It was observed that the method was able to estimate the
magnitudes with higher accuracy when the number of quantization levels was less.

Table 3 shows the quantization error summary of the second experiment. The average normalized
quantization error was less than 1 for every drift types when a lesser number of quantization levels
was considered. For most of the drift types the average was zero i.e. all the magnitudes were exactly
estimated by the proposed method. The maximum normalized quantization error was 2 for any drift
type. In comparison to the quantization errors of the first experiment, a significantly lesser average,
maximum, and variance were observed in all the drift types.

Dataset Drift Type m ∆
Quantization Error (normalized)

Low-Skew Class Distribution High-Skew Class Distribution
Avg Max Std Avg Max Std

MNIST
Gaussian 5 0.04 0 0 0 0.03 1 0.18
Poisson 5 0.4 0.59 1 0.49 0.44 1 0.5

Salt & Pepper 5 0.08 0 0 0 0.08 1 0.26

CIFAR10

Gaussian 5 0.004 0 0 0 0.02 1 0.13
Poisson 5 0.008 0 0 0 0 0 0

Salt & Pepper 5 0.008 0 0 0 0 0 0
Snow 5 0.2 0.18 2 0.58 0.35 2 0.76
Fog 5 0.2 0 0 0 0 0 0
Rain 5 0.2 0 0 0 0 0 0

CIFAR100

Gaussian 5 0.004 0.07 1 0.25 0.14 2 0.37
Poisson 5 0.008 0.15 1 0.36 0.21 2 0.43

Salt & Pepper 5 0.004 0 0 0 0 0 0
Snow 5 0.2 0 0 0 0 0 0
Fog 5 0.2 0 0 0 0.02 1 0.13
Rain 4 0.2 0 0 0 0 0 0

Table 3: Quantization error summary of the proposed drift magnitude estimations method with a
lesser number of quantization levels. Error metrics are normalized by quantization resolution.

5 CONCLUSION

A novel framework is proposed in this paper for detecting data drifts occur in the input stream of
image classification neural networks due to various effects. The framework can detect data drifts,
identify the type of drift, and estimate the drift magnitude in occur in image data streams. It is
consisting of a classification network that detects the drift type and a novel statistical method that
estimates the drift magnitude. The magnitude estimation method relies on the change in the predic-
tion probability distribution caused by the data drift. The drift magnitude is estimated by applying
a set of thresholds to the prediction probabilities. Thresholds are applied based on the predicted
class, and the magnitude is estimated using the percentage of predictions above the threshold in
each class. Experimental evaluation was conducted considering three different classification neural
networks trained on MNIST, CIFAR10, and CIFAR100 datasets. Data drifts of different magnitudes
that occur in images caused by various types of noise effects and weather effects were considered
in the evaluation. Results indicated that the proposed framework can detect data drifts with a high
accuracy, while accurately identifying the drift type and estimating the drift magnitude with a very
low quantization error.
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A APPENDIX

A.1 IMPACT OF DATA DRIFT ON THE ACCURACY OF THE MNIST CLASSIFIER

Figure A.1: Impact of data drift due to Gaussian noise on the MNIST classifier.
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A.2 PREDICTION PROBABILITY DISTRIBUTION OF THE MNIST CLASSIFIER

(a) Actual 0, Predicted 2 (b) Actual 1, Predicted 2 (c) Actual 2, Predicted 2 (d) Actual 3, Predicted 2

Figure A.2: Prediction probability distribution of the images from different classes predicted as class
2 in the MNIST classifier with σ2 = 0.20 Gaussian noise.

Consider the images predicted as class 2 in the MNIST classifier under σ2 = 0.20 Gaussian noise.
Figure A.2 shows the distributions of the prediction probabilities of the images predicted as class 2,
belonging to four different classes 0, 1, 2, 3. It can be observed that the distribution of the prediction
probabilities of the images that are predicted as class 2 is different for the images belonging to
different classes. Similarly, the images from the other classes predicted as class 2 had different
distributions. Therefore, the prediction probability distribution of the images predicted as class 2
depends on the class distribution.

A.3 THRESHOLD DICTIONARY

An example threshold dictionary in shown in Table A.1 considering Gaussian noise in the MNIST
classifier. The classifier consists of classes 0 through 9 (the columns of the array), and six drift
magnitudes (the rows of the array) were considered. CDFs in Figure 1a correspond to F1,M and
CDFs in Figure 1b correspond to F(2,M) of six magnitudes where 0 ≤ M ≤ 0.20. The τ1,M
values in the third column of Table A.1 are calculated using the F1,M shown in Figure 1a, and the
τ2,M values in the fourth column of Table A.1 are calculated using the F2,M shown in Figure 1b.
Similarly, the thresholds for all the classes for 0 ≤ C ≤ 9 in Table A.1 are computed.

Magnitude Class
0 1 2 3 4 5 6 7 8 9

σ2 = 0 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
σ2 = 0.04 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
σ2 = 0.08 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
σ2 = 0.12 0.98 0.94 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.89
σ2 = 0.16 0.98 0.71 0.98 0.96 0.95 0.97 0.97 0.91 0.98 0.76
σ2 = 0.20 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table A.1: The threshold dictionary of the MNIST image classifier considering five different mag-
nitudes of Gaussian noise.

A.4 SAMPLE COEFFICIENT MATRICES

The matrix of P (C = i|Ĉ = j), for 1 ≤ i, j ≤ n, shown in Figure A.3a was obtained by normal-
izing each column in the confusion matrix with the total number of images from the corresponding
class Ĉ. Figure A.3b shows the matrix of P ((C = i∩p ≥ τi,M )|Ĉ = j)xj correspond to the matrix
in Figure A.3a under no data drift in the MNIST classifier.
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(a) A1: before applying the threshold (b) A2: after applying the thresholds

Figure A.3: The probability of being predicted as class C = i for the images from class Ĉ = j in
the MNIST classifier under no data drift.

A.5 PSEUDO CODE OF THE PROPOSED DRIFT DETECTION ALGORITHM

The complete flow of the proposed drift detection framework is shown in Algorithm 1. First, the
algorithm determines if a data drift has occurred in the input. For a given batch of images I, it is
determined that a data drift has occurred if more than α types indicate a non-zero magnitude after
applying the magnitude estimation. α is set to the half of the number drift types. If a data drift is
detected, the type and the magnitude is determined using the criterion explained in Section 3.
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Algorithm 1 Drift Detection(I)
1: Input: I
2: Output: type,Me

3: total← length(I)
4: min residual← {}
5: magnitude← {}
6: score← {}
7: count← 0
8: for each type N do
9: (rM,N ,Me,N )← estimate magnitude(I, N)

10: min residual← min residual ∪ {rM,N}
11: magnitude← magnitude ∪ {Me,N}
12: if Me,N > 0 then
13: count← count+ 1
14: end if
15: end for
16: if count ≥ α then
17: type array ← type detection(I)
18: rmin ← min(min residual)
19: for each type N do
20: c← count occurrence(type array,N)
21: st,T ← c×100

total

22: sr,T ← 100− min residual[N ]×100
rmin

23: sT ← st,T + sr,T
24: score← score ∪ {sT }
25: end for
26: type← argmin(score)
27: Me ← magnitude[type]
28: else
29: type← None
30: Me ← 0
31: end if
32: return (type,Me)

A.6 SAMPLE IMAGES IMPACTED BY NOISE AND WEATHER EFFECTS

Figure A.4 shows an example MNIST image affected by the noise effects compared with the orig-
inal clean image. Figure A.5 shows an example CIFAR10 image affected by the weather effects
compared with the original clean image.

(a) Original (b) Gaussian (c) Poisson (d) Salt & Pepper

Figure A.4: Noise effects on the MNIST data.
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(a) Original (b) Snow (c) Fog (d) Rain

Figure A.5: Weather effects on the CIFAR10 data.

A.7 DRIFT MAGNITUDE ESTIMATION UNDER STATIC CLASS DISTRIBUTION

We assessed the quality of the thresholds computed by the proposed method by applying the thresh-
olds to estimate the drift magnitude of a dataset with a static class distribution. In this experiment,
the class distribution of the dataset used to compute the thresholds and the dataset used to estimate
the drift magnitude were the same. Magnitude estimation was done using the criterion explained
in Section III for the static class distribution scenario. Figure A.6 shows the estimated magnitudes
of three drift types considering the three datasets. Blue dots show the estimated magnitude Me by
applying the thresholds and the dotted line shows the ideal M vs Me curve. Estimation results in-
dicated that the thresholds computed by the proposed method can distinguish among different drift
magnitudes with a high accuracy.

(a) Gaussian, MNIST (b) Poisson, CIFAR10 (c) Snow, CIFAR100

Figure A.6: Drift magnitude estimation results under a static class distribution in the dataset.

A.8 RESIDUAL PLOTS

The proposed magnitude estimation method relies on the residual of the linear equation system rM
of each magnitude M. For the method to be accurate, the minimum rM should ideally be at the
actual magnitude M. Figure A.7 shows several residual plots (M vs rM ) of the method for Gaussian
noise, considering four different drift magnitudes. Residual plots were obtained considering a single
trial for each magnitude of the two drift types. It was observed that the error graph always had a
convex region around the actual drift magnitude such that the minimum is equal or very close to
the actual magnitude. This observation supports the validity, consistency, and robustness of the
proposed method.
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(a) σ2 = 0 (b) σ2 = 0.05 (c) σ2 = 0.10 (d) σ2 = 0.15

Figure A.7: Residual (rM ) plot of Gaussian noise on the MNIST classifier for five different drift
magnitude estimations.

A.9 TYPE DETECTION ACCURACY

The type detection network accuracy of the CIFAR10 dataset at different drift magnitudes of Gaus-
sian noise is shown in Figure A.8. Figure A.9 shows the minimum residual value computed by
the method for each drift type during magnitude estimations. Results are shown for twenty magni-
tudes of Gaussian noise in the CIFAR10 classifier considering twenty different class distributions
for each magnitude. In most of the experiments, the minimum residual value of the Gaussian type
was smaller than that of the other types. In other experiments, although the minimum residual value
of Gaussian was not the lowest, it was close to being the lowest.

Figure A.8: Type detection network accuracy for the CIFAR10 dataset at different drift magnitudes
of Gaussian noise.

Figure A.9: Minimum residual value computed by the method for each drift type during magnitude
estimations. Results are shown considering twenty different class distributions for each magnitude
of Gaussian noise in the CIFAR10 classifier.
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A.10 CORRELATION BETWEEN THE QUANTIFICATION ERROR AND THE QUANTIZATION
ERROR

Figure A.10: The average quantization error for different ranges of the quantification error con-
sidering Gaussian noise in the CIFAR10 classifier. Percentages shown in the figure indicate the
probability of quantification error being within that range.

We analyzed the correlation between the quantification error and the quantization error. In all the
drift types, it was observed that the quantization error remained consistently low when the quan-
tification error was at its lowest. Specifically, in all drift types, the average quantization error was
minimal within the lowest quantification error range. This observation indicates the significance of
the quantification for the proposed method to accurately estimate the drift magnitude. Figure A.10
shows the average quantization for different ranges of the quantification error considering Gaussian
noise in the CIFAR10 classifier.

A.11 EXPERIMENT 1: DRIFT MAGNITUDE ESTIMATION WITH A HIGHER NUMBER OF
QUANTIZATION LEVELS UNDER VARYING CLASS DISTRIBUTION

Figure A.11 shows the magnitude estimation results of the first experiment under high-skew class
distributions corresponding to the same drift types as those shown in Figure 2.

(a) Gaussian, MNIST (b) Poisson, CIFAR10 (c) Snow, CIFAR100

Figure A.11: Drift magnitude estimations of different drift types under high-skew class distributions.

A.12 EXPERIMENT 2: DRIFT MAGNITUDE ESTIMATION WITH A FEWER NUMBER OF
QUANTIZATION LEVELS UNDER VARYING CLASS DISTRIBUTION

Figure A.12 shows the magnitude estimation results of the first experiment under high-skew class
distributions corresponding to the same drift types as those shown in Figure 3.
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(a) Gaussian, MNIST (b) Poisson, CIFAR10 (c) Snow, CIFAR100

Figure A.12: Drift magnitude estimations of different drift types under high-skew class distributions.

A.13 DRIFT MAGNITUDE ESTIMATION IN A REAL APPLICATION SIMULATION

At last, we present the results of an experiment that illustrates the behavior of the proposed method
in a real application environment. For this experiment, we created a dataset by stacking images
from different drift magnitudes in the ascending order of the magnitude. Thereafter, we applied the
magnitude estimation on a moving window of size 1000 with a step size of 200. An equal number of
images were included for every drift level and they were ordered randomly such that the distribution
among the classes varies as the window moves. Figure A.13 shows the magnitude estimation results
obtained using the proposed method for Gaussian noise and Snow effect. The red line shows the
estimated magnitude by the method and the dotted line shows the actual magnitude at the time. The
drift magnitude of the majority was considered as the actual when the moving window overlapped
with two magnitudes.

(a) Gaussian, MNIST (b) Snow, CIFAR100

Figure A.13: Drift magnitude estimations by the proposed method in a simulation of a real applica-
tion environment.
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