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ABSTRACT
Training large neural networks on large-scale datasets requires substantial compu-
tational resources, particularly for dense prediction tasks such as object detection.
Although dataset distillation (DD) has been proposed to alleviate these demands
by synthesizing compact datasets from larger ones, most existing work focuses
solely on image classification, leaving the more complex detection setting largely
unexplored. In this paper, we introduce OD3, a novel optimization-free data distil-
lation framework specifically designed for object detection. Our approach involves
two stages: first, a candidate selection process in which object instances are itera-
tively placed in synthesized images based on their suitable locations, and second,
a candidate screening process using a pre-trained observer model to remove low-
confidence objects. We perform our data synthesis framework on MS COCO
and PASCAL VOC, two popular detection datasets, with compression ratios rang-
ing from 0.25% to 5%. Compared to the prior solely existing dataset distillation
method on detection and conventional core set selection methods, OD3 delivers
superior accuracy, establishes new state-of-the-art results, surpassing prior best
method by more than 14% on COCO mAP50 at a compression ratio of 1.0%. The
code is in the supplementary material.

1 INTRODUCTION

Our smallest dataset 
surpasses all SoTA

5.7%

7.3%

10.1%

Figure 1: Performance Comparison of OD3 on
COCO. We compare the mAP performance of our
method to others with different compression rates.
The upper bound is 39.8% on the full dataset.

Deep neural networks have achieved remarkable
performance across a wide range of computer
vision tasks (He et al., 2016; Ren, 2015; Doso-
vitskiy, 2020; Kirillov et al., 2023), but train-
ing these models generally requires substantial
computational and data resources. Conventional
strategies often involve collecting increasingly
large datasets (Deng et al., 2009) and training
ever larger networks (Dehghani et al., 2023) to
capture data complexity. This paradigm is par-
ticularly evident in object detection (Shao et al.,
2019), where the need for rich annotations, such
as bounding boxes or even instance masks, can
greatly increase dataset sizes and labeling over-
head. As a result, there is a growing interest in
techniques that enable the creation of smaller,
more manageable datasets capable of approximating the performance achieved by training on the orig-
inal data. One promising direction in this area is dataset distillation (DD), which aims to synthesize
condensed datasets that are significantly smaller yet still effective for training.
The majority of DD approaches have focused on image classification, where each image contains
an object or a dominant label. This narrow scope overlooks the complexity and diversity of more
demanding tasks, specifically object detection. In contrast to classification, detection requires
localizing and identifying multiple instances of potentially different classes in a single image. This
jump in task complexity involves learning a mapping from image to label and predicting boxes and
class labels for multiple regions within the same image. Consequently, methods that successfully
distill datasets for classification often struggle to adapt to the richer problem space of detection.

Another critical distinction lies in the type of supervision and evaluation metrics used in object
detection tasks. While classification tasks use labels that can be applied at the image level, detection

1
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Figure 2: Illustration of the OD3 framework. In initial stage ①, each object in xi ∈ T is assigned a
random location in the synthesized image x̂j ∈ S for j = 1, ...,IPD, and its overlap with existing
candidates is checked to decide placement. After IPD synthesized images are initially constructed, a
pre-trained observer model produces predictions for screening. The observer iteratively evaluates
the current canvas to identify and remove objects that do not meet expectations to align with the
post-evaluation process. For final reconstruction, the objects are inserted using their bounding boxes
into x̂j ∈ S. Post-evaluation of S is carried out by fast distilling knowledge (Shen & Xing, 2022)
from the observer model to a target network using PKD (Cao et al., 2022) loss on the respective
feature pyramid networks.

tasks rely on spatial annotations that align individual objects to bounding boxes, complete with class
labels. This requirement introduces additional challenges when creating distilled datasets, as both
the geometry (location) and identity (class) of objects must be preserved or effectively synthesized.
Approaches that merely compress high-level category information may fail to capture the crucial
spatial relationships and visual diversity that define detection tasks.
In light of these complexities, we propose Optimization-free Dataset Distillation for Object Detection
(OD3), a novel framework explicitly tailored to address the unique challenges of synthesizing small,
high-fidelity datasets for object detection. The framework leverages instance-level labels with scale-
aware dynamic context extension (SA-DCE) to reconstruct diverse training images guided by an
observer model, which is grounded in two core ideas: (1) an iterative candidate selection process that
strategically places object instances in synthesized images, and (2) a candidate screening process
powered by a pre-trained observer model, which discards low-confidence objects. By removing the
need for complex optimization procedures in constructing these synthetic images, OD3 provides a
more streamlined and adaptable approach to DD for dense prediction tasks. The main contributions
of this work are as follows:

• We propose a novel DD framework specifically designed for object detection, named OD3.
It involves a two-stage process: candidate selection, where masked objects are localized and
selected based on minimal overlap, and candidate screening, where a pre-trained observer
filters unreliable candidates.

• OD3 bridges a crucial gap by extending the concept of dataset distillation beyond the
relatively well-explored territory of image classification to the more challenging domain
of object detection in a training-free scheme. Through a carefully designed process that
handles both the spatial and semantic requirements of detection, our framework enables
significant reductions in dataset size without sacrificing performance significantly.

• We evaluate our framework on MS COCO with compression ratios ranging 0.25% to 5%
and on PASCAL VOC from 0.5% to 2.0%. The results demonstrate that our framework
effectively reduces dataset size while maintaining model accuracy, providing an efficient
solution for training object detectors.
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2 RELATED WORK
Coreset selection has emerged as one solution for reducing dataset size, primarily in image clas-
sification (Guo et al., 2022; Braverman et al., 2019; Huang et al., 2019). It shows challenges in
object detection, where multiple objects may appear in a single image. Recently, CSOD (Lee et al.,
2024) introduces Coreset Selection for Object Detection, which selects image-wise and class-wise
representative features for multiple objects of the same class using submodular optimization. Sim-
ilarly, Training-Free Dataset Pruning (Anonymous, 2024) addresses dataset pruning for instance
segmentation, tackling pixel-level annotations and class imbalances without training. However, these
methods often achieve low compression ratios, typically above 20%. In contrast, our proposed
distillation method compresses the original dataset to 0.5% or less.

Currently, efforts in dataset distillation for object detection remain limited, unlike in image classifica-
tion (Wang et al., 2018; Cazenavette et al., 2022a; Sun et al., 2024; Cazenavette et al., 2022b). The
first framework DCOD (Qi et al., 2024) was proposed for this purpose. DCOD employs a two-stage
process: Fetch and Forge. During the Fetch stage, an object detection model is trained on the original
dataset to extract essential features for localization and recognition tasks, similar to the squeezing
process in SRe2L (Yin et al., 2024). In the Forge stage, synthetic images are generated via model
inversion, embedding required information into the images through uni-level optimization.

3 METHOD
Preliminaries: Dataset Distillation for Object Detection. The goal of OD3 is to compress a
large object detection dataset T = {(xi, {<bi1, ci1, . . .>})} (i = 1, . . . , |T |) into a much smaller
synthesized dataset S = {(x̂j , {< b̂j1, ĉj1, . . .>})} (j = 1, . . . , |IPD|) that maintains the significant
characteristics of T in terms of overall performance, where b = {xc,yc,w,h} represents the center
of the bounding box and the width and height of the image. Here, |S| ≪ |T | and IPD is the notion of
images per dataset which reflects the compression ratio1. The performance of a model with weights
θS trained on S should be similar to that of a model with weights θT trained on T , within a small
margin ϵDD. This can be expressed as:

sup{|LθT − LθS |}(xv,yv)∈T ′ ≤ ϵDD (1)

with L representing the loss function, and (xv,yv)∈ T ′ is some test or val set associated with T .

Definition 1 (Optimization-free dataset distillation for object detection). Our objective is to collect
as much effective information as possible on a “blank canvas”, interpreted as an initially empty image.
The information is considered “effective” if it contains sufficient high-quality (high-confidence,
well-sized) objects.

Original Dataset 𝓣

.... ....

𝓣𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝟏

......

𝓣𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝟐

....

𝓣𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝑰𝑷𝑫

OD3
sampling

....

Synthesized Dataset 𝓢

......

Figure 3: Illustration of our sampling controller.
It ensures that the same object is not placed in
different distilled images. The original dataset is
divided into IPD segments. Each segment is dis-
tilled into a single image, resulting in a compact
dataset S.

Information Density. To quantify how thor-
oughly a canvas is occupied by valuable ob-
jects, we define an Information Density function
Φ(x):

Φ(x) =
g (fθ(x))

a(x)
, (2)

where x is the current canvas (image) under con-
sideration. fθ(·) is a well-trained object detector
parameterized by θ. g(·) is a function that ag-
gregates detection confidence scores across all
detected objects. a(x) denotes the combined
area of all detected objects on x.

Concretely, we instantiate g(·) and a(·) as fol-
lows:

Φ(x) =

∑K
r=0 a

(
or

)
q
(
or

)∑K
r=0 a

(
or

) , (3)

1We define IPD (images per dataset) instead of conventional IPC (images per class) used in classification
task as in object detection each image can contain multi-object with different classes.
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where K is the total number of objects placed on the canvas x, or is the r-th object, a
(
or

)
represents

the area of object or, q
(
or

)
is the detector-derived confidence score for or

2. Thus, Φ(x) measures
how confidently and extensively the canvas is occupied by objects.

Information Diversity. In addition to confidence and size, we also encourage diversity of objects on
the canvas. We define a simple Information Diversity N (x) by:

N (x) = N. (4)

where N is the number of distinct objects on the canvas x. Even when a few objects exhibit high
confidence, having more distinct objects can yield richer training signals, making the distilled data
more robust.

3.1 OD3 FRAMEWORK

Overview. Unlike prior dataset distillation methods, our approach begins with a blank canvas as
the starting point for generating each new synthetic data sample. As shown in Fig. 2, the data
distillation process first proceeds with a candidate selection stage (orange box, bottom-left), where
object instances are extracted from an existing large-scale dataset T . For each image xi ∈ T ,
bounding boxes {bi1, bi2, . . . , biK} (K is the number of bounding boxes) capture potentially useful
object patches. These patches are fed into a localization operation, a random yet controlled placement
mechanism that carries out M attempts of inserting each candidate onto a reconstructed canvas
without exceeding the overlap threshold. Fig. 3 shows the sampling strategy that ensures that
|S| = IPD and that objects in S are all unique. This yields a large pool of candidate patches (bi, l)
on the canvas, where l is the bounding box label or class. Our illustration also highlights how some
patches that fail overlap constraints are discarded.

Candidate Screening via Iterative Transfer and Filtering Process. Once a preliminary recon-
structed image is assembled, the process proceeds to the candidate screening / filtering stage. Here,
an observer model (a pre-trained detector) performs inference on the partially reconstructed canvas.
Its predictions are matched with ground-truth boxes that originated from the bounding boxes inserted
into the image. Objects that fail to meet confidence or consistency criteria are removed, refining the
canvas into a high-quality, diversified arrangement of objects. As a result, the final reconstructed
image x̂j ∈ S now contains only those patches that pass the screening process. Also, the bounding
box and class annotations associated with these patches are transformed into soft labels, enabling
more nuanced supervision in subsequent stages.

Soft Label Generation. Logit-based soft labels play a critical role in improving the performance of
validation models trained on condensed datasets in image classification (Yin et al., 2024) through KD
framework (Hinton, 2015). However, when applied to object detection tasks, logit-based soft labels
fail to deliver competitive accuracy. This raises the necessity of developing a specialized soft label
design tailored explicitly for dataset distillation in object detection. The most typical kind of soft
label used in object detection is the output of the feature pyramid network (FPN). This output yfeat

can be defined as RC×H×W , where C, H and W represent the number of channels, the height of
the canvas and the width of canvas, respectively. Once the (feature-based) soft label {yfeat

i } has been
obtained, it is employed during the post-evaluation phase and supervised using the following loss
function (Shu et al., 2021):

Lmse = E(xi,yfeat
i )∥yfeat

i − f fpn(f backbone(xi))∥22, (5)

where {(xi,y
feat
i )}, f fpn and f backbone refer to the condensed dataset, the FPN in the model and the

backbone of the model, respectively. However, we observe that this form of soft label is hard to
provide sufficient information for detection.

Thus, we consider a channel-wise soft label for enhancing the performance of the evaluated detector.
We leverage the simple pearson knowledge distillation (PKD) (Cao et al., 2022) as a basis for
designing the soft label generation mechanism on object detection. Given this, we can give the form
of soft label as { f

fpn(f backbone(xi))−mean(f fpn(f backbone(xi)))
std(f fpn(f backbone(xi)))+ϵ }, where mean(·), std(·) and ϵ denote the mean

operator in the height and width dimensions, the standard deviation operator in the height and width
2In our paper, i, j and r are the image index of original dataset, index of distilled image, and object index,

respectively.
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dimensions, and very small amounts, respectively. Finally, the condensed dataset and its associated
soft labels are used to train a new detector initialized randomly to test how well this small synthetic
dataset supports the downstream detection task. As shown in the post-evaluation stage, the condensed
dataset supervises the target detector training, and PKD used in post-evaluation can be formulated as:

Lmse = E(xi,yfeat
i )

∥∥∥yfeat
i −

f fpn(f backbone(xi))−mean(f fpn(f backbone(xi)))

std(f fpn(f backbone(xi))) + ϵ

∥∥∥2
2
, (6)

Scale-aware Dynamic Context Extension. We also propose a simple scale-aware dynamic context
extension (SA-DCE) for varying sizes of objects in detection-based dataset distillation as a crucial
enhancement that directly addresses the challenges posed by small objects with limited contextual
information. Unlike the optimization-based method (Qi et al., 2024), which struggles to preserve or
amplify contextual cues due to their reliance on fixed gradients and pixel-specific updates, context
extension involves intentionally expanding the bounding region around objects. It can be formulated
as a function of the object’s size:

ℓextension = F (oir , r) =

(
1− a(oir )− amin

amax − amin

)
× r, (7)

Reconstructed Image
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Figure 4: Extended bounding box for more ob-
ject context. The figure shows a reconstructed
image along with an extended object using the SA-
DCE function to better capture the object’s context.

where F is the SA-DCE function, r ∈ R is a
scalar representing a small pre-determined num-
ber of pixels, a(oir ) is the area of r-th object
in i-th image, and amax and amin represent the
maximum and minimum areas of objects in T .
An example of SA-DCE can be seen in Fig. 4.

This subtle yet impactful modification adds pe-
ripheral context that is often missing, especially
in small object representations, providing the
model with additional spatial cues to help in ac-
curate detection. By extending the context, our
model can better differentiate objects from the
background, leading to improved performance,
particularly in complex scenes. Optimization-
based methods inherently lack the flexibility to incorporate such targeted context adjustments, as they
are confined to the synthetic data representation derived from iterative pixel tuning.

Objective. We combine the two metrics in Eq. 3 and Eq. 4 into a single objective for data distillation:

Sx̂ = argmax
xT

Φ
(
xT ) +N

(
xT ), (8)

where xT denotes the final condensed canvas (i.e., synthesized image) after T synthesis iterations.
In practice, we do not explicitly find their optimal values separately, as they are mutually restrictive
and entangled. Once the size of the canvas is predefined, we can simply perform an ablation study on
the overlap of objects on canvas for the optimal value that maximizes Sx̂, as detailed in the following
section.

During the iterative data-synthesis process, we update xi for i = 0, 1, . . . , T − 1 using:

xi+1 = fremove

(
fadd(xi)

)
, i ∈ 0, 1, 2, . . . , T − 1. (9)

Here, fadd(·) adds new candidate objects to the current canvas, fremove(·) filters out low-confidence
or redundant objects, thereby refining the composition of xi.

Iterative Synthesis Methods. We consider two iterative processes for building the final canvas xT .

1. First Form: Add-Only. The process of this startegy is:

xi+1 = fadd
(
xi

)
, i = 0, 1, . . . , T − 1 (10)

In this scenario, newly added objects remain on the canvas even if their confidence is low and if they
overlap other objects smaller than τ . The final objective value is

G1 = Φ
(
xa
T

)
+N

(
xa
T

)
(11)
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2. Second Form: Add-Then-Remove. The Add-Then-Remove is a loop to construct then refine
distilled images:

xi+1=fremove

(
fadd(xi)

)
, i = 0, 1, . . . , T − 1 (12)

Here, each iteration first adds new objects, then filters out objects whose confidence q(oj) is below a
threshold η, or that fail other criteria (e.g., excessive overlap). The final objective value is

G2 = Φ
(
xar
T

)
+N

(
xar
T

)
(13)

The following theorem states that incorporating the remove step will positively increases the
objective, under enough iterations and a well-chosen confidence threshold.
Theorem 1. (the proof in Appendix E) Under the above definitions, we have

G2 ≥ G1. (14)

Intuition. Because adding a removal step fremove(·) after every object-addition fadd(·) enables a
more refined composition of the canvas, the second form is guaranteed to achieve at least as high an
objective value as the simpler first form (which lacks a removal step). That is, the second iterative
scheme (add-then-remove) achieves an objective value at least as large as the add-only approach,
under typical assumptions on how objects are added or removed.

Sketch Proof. Setup: fremove is an operator that detects objects in the canvas xi and removes those
with confidence below a threshold η. Concretely:

Step-1: Detection step. Compute fθ (xi), i.e., run a pre-trained detector on the current canvas xi.

Step-2: Scoring each object. For each object oir in xi (where r = 1, . . . ,K, K is the number of
objects), obtain a confidence score q (oir ).

Step-3: Threshold partition (no overlaps assumed). Divide the objects into two groups O1 and O2,
one with a confidence level greater than the threshold η, and the other with a confidence level less
than or equal to the threshold η:

O1 := {oi0 , oi1 , . . . , oiM } , where q (oi0) ≤ · · · ≤ q (oiM ) < η

O2 :=
{
oiM+1 , oiM+2 , . . . , oiK

}
,

where η ≤ q
(
oiM+1

)
≤ q(oiM+2) ≤ · · · ≤ q (oiK )

(15)

Step-4: Removing low-confidence objects. All objects whose confidence < η are discarded. Thus the

information density on the canvas changes as follows:
∑K

r=0 a
(
oir

)
q
(
oir

)
∑K

r=0 a
(
oir

) −→
∑K

r=M+1 a
(
oir

)
q
(
oir

)
∑K

r=M+1 a
(
oir

) .

Comparison of Densities. To see why the new density (after removal) is generally higher or equal, we
can interpret oik∑K

r=0 a
(
oir

) as a probability weight, letting oik denote the area × score contribution of

object k. Removing those objects whose confidence is below η essentially removes low-quality (score
or area) contributions from the numerator, thereby increasing the average or expected confidence. If
K is sufficiently large, we can consider: Er [q (oir )] and Er≥M+1 [q (oir )], a standard probabilistic
argument shows that the expected confidence of the surviving set

{
oiM+1

, . . . , oiK
}

is at least as
high as that of the entire original set. Formally,

Er≥M+1

[
q(oir )

]
≥ Er

[
q(oir )

]
, (16)

which implies Φ (xT ) ≥ Φ(xT−1) ≥ · · · ≥ Φ (x0) in the add-then-remove scheme.

By similar reasoning (via a probabilistic bound on whether the leftover portion remains undetected),
one can show that the presence of overlaps does not harm the objective in the add-then-remove
scheme. Hence, G2 ≥ G1 even when overlaps are considered. More details are in our Appendix.

4 EXPERIMENTS

Experimental Setup. We evaluate OD3 with compression ratios ranging from 0.25% to 5% for
MS COCO (Lin et al., 2014) and from 0.5% to 2% for PASCAL VOC (Everingham et al., 2010).
We set the overlap threshold τ to 0.6 in the candidate selection stage, the confidence threshold η
to 0.2 in the candidate screening stage, and M to 40. The foreground objects are inserted into the

6
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Table 1: Performance Comparison on MS COCO. The compression ratios range from 0.25% to
1.0%. The observer model and the student model are Faster R-CNN-101 and Faster R-CNN-50.

IPD Method ↓ mAP (%) mAP50 (%) mAP75 (%)

0.25%

Random 3.50 9.70 1.60
Uniform 3.60 9.80 1.60
K-Center 1.70 6.30 0.40
Herding 1.70 5.80 0.50
DCOD (Qi et al., 2024) 7.20 17.20 4.80
OD3 (Ours) 12.90±0.1(+5.7) 24.30±0.2(+7.1) 12.10±0.3(+7.3)

0.5%

Random 5.50 14.20 2.90
Uniform 5.60 14.30 2.90
K-Center 2.80 8.90 0.70
Herding 2.60 8.80 0.80
DCOD (Qi et al., 2024) 10.00 21.50 9.00
OD3 (Ours) 17.20±0.1(+7.2) 31.90±0.2(+10.4) 16.90±0.1(+7.9)

1.0%

Random 8.30 19.70 5.30
Uniform 8.40 19.70 5.40
K-Center 4.00 12.90 1.20
Herding 4.10 12.50 1.30
DCOD (Qi et al., 2024) 12.10 24.70 10.40
OD3 (Ours) 22.40±0.1(+10.3) 39.50±0.2(+14.8) 22.90±0.1(+12.5)

Table 2: Performance Comparison on Pascal VOC (mAP50%). The compression ratios (IPD)
range from 0.5% to 2.0%. The observer and target model are both Faster R-CNN50.

IPD Random Herding K-center Uniform DCOD (Qi et al., 2024) OD3 (Ours)
0.5% 15.80 12.60 14.50 15.80 37.90 38.50±0.1(+0.6)
1.0% 25.50 19.30 21.90 25.70 46.40 51.10±0.2(+4.7)
2.0% 40.50 28.10 31.30 40.60 50.70 58.70±0.1(+8.0)

reconstructed images using their ground truth bounding boxes with extended context using SA-DCE.
The backgrounds of the reconstructed images are randomly sampled from the respective datasets.
Synthesis experiments are conducted on a single 4090 GPU. The canvas sizes used are 484× 578
for MS COCO and 375 × 500 for PASCAL VOC, which are the average width and height of the
respective full training sets. For the post-evaluation stage, we use VOC2007 and VOC2012 train/val
splits combined for synthesis and VOC2007 test set for evaluation. We use standard COCO metrics
(mAP , mAP50, and mAP75) along with size metrics (mAPs, mAPm, and mAPl) for the COCO
dataset. We use Pascal VOC style mAP and mAP50 with the area method that uses all points in the
precision-recall curve instead of only 11, which provides a more precise evaluation (Everingham et al.,
2010). Each experiment in Tables 1 and 2 was run 4 times with different random seeds. We report
the mean and standard error of the mean (± SEM) across these runs. Faster R-CNN-50 models are
trained for 96 epochs and the RetinaNet-50 models for 256 epochs. All post-evaluation experiments
are conducted on 2× 4090 GPUs, which is highly resource-efficient. Our implementation is based on
the mmdetection (Chen et al., 2019) and mmrazor (Contributors, 2021) frameworks.

Image Generation Time and Efficiency. Our synthesis process is highly efficient compared to
optimization-based approaches like DCOD (which did not report generation time). Our primary

Table 3: Ablation Study on Label Type. The impact of using mask labels, bounding box (BBox)
labels, or Ex-BBox in the data synthesis process across various compression ratios. Ex-Bbox
represents the BBox with the extended context using SA-DCE.

IPD Label mAP mAP50 mAP75 mAPs mAPm mAPl

0.25%
Mask 10.90 20.80 10.30 3.50 15.10 15.90
Bbox 12.40 23.90 11.60 4.90 16.10 18.10
Ex-Bbox 12.90(+0.5) 24.30(+0.4) 12.10(+0.7) 5.60(+0.7) 16.80(+0.7) 17.70(-0.4)

0.5%
Mask 15.10 28.00 14.80 5.60 20.30 22.30
Bbox 16.60 30.30 16.30 6.80 21.70 23.30
Ex-Bbox 17.20(+0.6) 31.90(+1.6) 16.90(+0.6) 8.40(+1.6) 23.00(+1.3) 22.80(-0.5)

1.0%
Mask 21.20 37.40 21.30 8.90 26.40 29.90
Bbox 22.00 38.70 22.30 9.70 27.40 30.10
Ex-Bbox 22.40(+0.4) 39.50(+0.8) 22.90(+0.6) 10.60(+0.9) 28.00(+0.6) 29.80(-0.3)

5.0%
Mask 30.00 49.50 31.70 15.10 34.80 39.10
Bbox 29.90 49.40 31.50 15.00 34.70 38.50
Ex-Bbox 30.10(+0.2) 49.70(+0.3) 31.80(+0.3) 16.20(+1.2) 34.90(+0.2) 38.40(-0.1)
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Table 4: Cross-Architecture Performance Comparison for OD3 on MS COCO. Observer models
use ResNet101 and target models use ResNet50.

IPD Observer Target mAP (%) mAP50 (%) mAP75 (%)

0.25%

RetinaNet RetinaNet 13.90 25.30 13.50
Faster R-CNN RetinaNet 14.50 25.70 14.30

Deformable DETR Faster R-CNN 11.90 22.60 11.10
ViTDet Faster R-CNN 11.00 21.30 10.10

0.5%

RetinaNet RetinaNet 18.40 32.50 18.20
Faster R-CNN RetinaNet 17.40 30.20 17.60

Deformable DETR Faster R-CNN 16.20 29.50 16.00
ViTDet Faster R-CNN 15.90 29.20 15.60

1.0%

RetinaNet RetinaNet 22.20 37.90 22.60
Faster R-CNN RetinaNet 22.20 37.40 23.00

Deformable DETR Faster R-CNN 22.00 38.00 22.90
ViTDet Faster R-CNN 21.70 38.30 21.80

Table 5: Ablation Study on Method Components. We highlight the impact of candidate selection
and screening on MS COCO performance across varying compression rates.

IPD
Candidate
Selection

Candidate
Screening mAP mAP50 mAP75 mAPs mAPm mAPl

0.25%
✗ ✗ 0.90 2.40 0.40 0.00 1.10 1.20
✓ ✗ 9.70 19.10 8.90 3.70 13.10 13.60
✓ ✓ 12.90 24.30 12.10 5.60 16.80 17.70

0.5%
✗ ✗ 2.00 4.00 1.90 0.10 2.60 3.10
✓ ✗ 14.50 27.30 13.80 5.90 19.30 20.30
✓ ✓ 17.20 31.90 16.90 8.40 23.00 22.80

1.0%
✗ ✗ 7.50 14.10 7.30 0.9 8.90 13.30
✓ ✗ 19.00 33.90 19.10 8.70 24.40 25.70
✓ ✓ 22.40 39.50 22.90 10.60 28.00 29.80

5.0%
✗ ✗ 8.60 17.80 7.30 1.10 10.40 16.40
✓ ✗ 28.10 46.70 29.60 14.00 34.00 37.00
✓ ✓ 30.10 49.70 31.80 16.20 34.90 38.40

time overhead comes from observer screening. Specifically, generating the condensed dataset takes
approximately 4.7 hours on MS COCO and 0.74 hours on PASCAL VOC using a single 4090 GPU.

4.1 EXPERIMENTAL RESULTS

Table 1 presents the comparative results of our method on MS COCO (Lin et al., 2014) with core-set
selection methods and with DCOD (Qi et al., 2024). The core-set selection methods include: random
initialization (Rebuffi et al., 2017), Uniform (Lee et al., 2024), K-center (Sener & Savarese, 2017),
and Herding (Castro et al., 2018; Chen et al., 2012). Our method, OD3, outperforms all other methods
across various compression ratios (IPD) ranging from 0.25% to 1.0%. Notably, at 1.0%, we achieve
a substantial 14.8% improvement in mAP50 over DCOD. Furthermore, our method consistently
outperforms other core-set selection methods, with mAP50 improvements of up to 27.0% at 1.0%
IPD. Our method also achieves the highest performance in mAP , mAP50 and mAP75 at each
compression ratio. Since the authors of DCOD did not report its performance on the size metrics of
MS COCO, we are unable to compare the methods in that regard. Nonetheless, these results underline
the effectiveness of OD3 in achieving superior performance across a range of compression ratios. We

Figure 5: Qualitative results of the synthesis process of OD3 on MS COCO. Initial backgrounds of
the canvas are randomly selected from the training set, and objects are inserted using their bounding-
box level labels. Those images are generated at 0.5% IPD.
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also report results on PASCAL VOC in Table 2 with different IPDs, where the method achieves
58.70% mAP at 2.0% compression, surpassing DCOD by 8.0%.

4.2 ABLATION STUDIES

Label type. The type of label used when inserting the candidate objects into the synthesized image
is studied in Table 3. We consider three types of labels: mask-level label, BBox-level label, and
Ex-Bbox, which refers to a BBox with extended context using SA-DCE (refer to Sec. 3.1). Using
BBox labels outperforms the mask labels across all IPDs except for 5.0%, where their performance
converges to a similar level. This is because Bbox labels preserves local context and surrounding
environment of individual objects, providing models with additional cues for recognizing objects.
Using Ex-Bbox further improves performance across all IPDs, where an improvement of 1.8% in
mAP50 can be seen at 0.5% compression. When specifically analyzing the size metrics, the extended
context benefits small objects the most on the account of large objects, which bridges the substantial
gap between their detection performance.

Overlap threshold. Fig. 6 shows how different values of overlap thresholds τ in candidate selection
affect the performance of our method across various compression ratios. It can be seen that 0.6
consistently optimizes mAP50 and mAP . This value can be thought of as an optimal trade-off
between Φ(x) and N (x).
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Figure 6: Ablation study of overlap threshold τ . mAP and
mAP50 are evaluated at different thresholds used in candidate
selection with compression ratios ranging from 0.25% to 5%.

Cross-architecture generalization.
To assess the generalization capabil-
ity of our condensed datasets, we con-
duct experiments with Faster R-CNN
(Ren, 2015), a two-stage detector and
RetinaNet (Lin, 2017), a one-stage
detector. Table 4 shows that the dis-
tilled datasets can generalize in hetero-
geneous settings, where the observer
model is a two-stage detector, and
the target model is a one-stage de-
tector, across varying compression ra-
tios from 0.25% to 5.0%. The results
demonstrate that performance on RetinaNet is comparable to that on Faster R-CNN across all IPDs.
Specifically, at 0.25% IPD, mAP50 for the Faster R-CNN observer and RetinaNet target configura-
tion reaches 25.70%, surpassing the 24.30% obtained in the Faster R-CNN observer and target setup.
At higher compression ratios, such as 1.0% and 5.0%, RetinaNet continues to yield competitive re-
sults, achieving mAP50 scores of 37.40% and 48.60%, respectively. In addition, we evaluate ViTDet
(Li et al., 2022), a ViT-based detector, as a target model. Despite its architectural differences, ViTDet
achieves strong performance with our distilled data, reaching mAP50 scores of 21.30%, 29.20%,
and 38.30% at 0.25%, 0.5%, and 1.0% IPD, respectively. The results demonstrate that our method
maintains transferability across fundamentally different model paradigms, further highlighting the
robustness of the distilled datasets and their effective applicability across diverse architectures.

Method Components. Table 5 presents an ablation study evaluating the impact of candidate selection
and candidate screening on the MS COCO performance across varying compression ratios (IPD).
The table entries where both are not used correspond to when all objects from the training set are
randomly assigned a location and inserted into the distilled images without any filtration. The results
demonstrate the effectiveness of both components in improving the quality of the synthesized dataset.
The addition of candidate screening further improves the results across all compression ratios. For
example, there is 3.4% and a 5.6% increase in mAP and mAP50 for the 1.0% distilled dataset.

5 CONCLUSION

In this work, we introduced a new OD3 framework for optimization-free dataset distillation in object
detection, achieving significant improvements over existing methods. Using a novel two-stage process
of candidate selection and candidate screening driven by a pre-trained observer model, our framework
strategically synthesizes compact yet highly effective datasets tailored for object detection. Our
method consistently demonstrated superior performance across multiple evaluation metrics. For
instance, OD3 achieved more than 14.0% improvement in mAP50 compared to the state-of-the-art
method DCOD on MS COCO.
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ETHICS STATEMENT

This work uses only publicly available, appropriately licensed detection datasets (e.g., COCO,
Objects365) and does not involve new data collection or identity inference. Distilled data can inherit
and potentially amplify biases present in the sources, we therefore report detailed metrics and provide
extensive distilled visualizations to monitor this. The method is not intended for surveillance or
biometric identification. To reduce environmental impact, our optimization-free distillation aims to
lower compute and storage costs.

REPRODUCIBILITY STATEMENT

We will release: (i) code with exact scripts and command lines for generating distilled sets and
training/evaluating detectors, (ii) pinned dependencies and a conda environment file, (iii) random
seeds and deterministic flags, (iv) the distilled datasets themselves, and (v) details reproducing
all tables/figures. We detail data splits, preprocessing, evaluation and report mean, ±, std over
multiple runs. Ablation scripts cover distilled size and cross-architecture transfer (e.g., Faster R-CNN,
RetinaNet, etc.).
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APPENDIX

A LIMITATIONS AND SOCIETAL IMPACTS

There are many potential societal impacts of our work, such as improving the accessibility of effi-
cient datasets for academia with limited computational resources, and fostering the development of
sustainable AI. While our method does not introduce direct negative consequences, it is important to
acknowledge that object detection technology can be misused - particularly in surveillance applica-
tions that infringe on individual privacy. The increased efficiency and scalability enabled by dataset
distillation may unintentionally lower barriers for deploying such systems at scale. One limitation
of our approach is the reliance on ground-truth bounding boxes during synthesis, which assumes
access to labeled data. This restricts the method’s applicability in fully unsupervised or label-scarce
scenarios.

B ALGORITHM

Our detailed procedure is shown in Algorithm 1. First, each object candidate is added to the partially
formed “blank canvas” via random copy-paste. Multiple objects may be overlaid, so that visual
variety is preserved. Next, the observer model runs on this synthesized image and assesses the
confidence of each placed object. Low-confidence objects that are not matched to the ground truth
objects are removed, refining the canvas into a more coherent scene. This cycle of add-and-remove
iterates multiple times, driving the canvas toward a final state containing only high-confidence,
mid-overlapping objects. Fig. 2 green boxes in screening stage indicate an inserted object is deemed
infeasible, applying removal process to maintain quality and coherence.

Algorithm 1: Optimization-free Dataset Distillation for Object Detection (OD3)
Input: Original dataset T ; Synthetic dataset S; Observer model θobs; Overlap threshold τ ;

Screening threshold η; Images per dataset IPD; Canvas C (initially ∅ and updated
constantly with x̂); Extension ℓ in Eq. 7; Random placement candidate positions
⟨mt,nt⟩ for t = 1, . . . ,M.

for x̂j ∈ S where |S| = IPD do
while C is not full do

▷ Candidate Selection & Placement
for (xi,yi) ∈ T do

for <bir, cir>∈ yi do
b′ir ← bir + ℓir ▷ ℓir ← F (r);

while IoU(b′ir, ⟨mt,nt⟩, C) < τ and attempts < M do
Place <b′ir, cir>→ C; Exit;

▷ Candidate Screening
Filter objects from C for x̂;
ŷobs = θobs(C);
for <bk, ck>∈ C do

if Conf(ŷobs, bk) < η then
Remove <bk, ck> from C;

x̂j ← C;
Append x̂j to S;

Output: Synthesized dataset S
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Figure 7: Percentage of images in the distilled
datasets relative to the full dataset.

Table 6 presents the distribution of images and
objects across 12 supercategories in MS COCO
under different IPD settings as well as in the
original dataset. The full dataset (100%) con-
tains 64,115 images and 262,465 person-related
objects, while the most compressed version
(0.25%) retains only 295 images and 5,313 ob-
jects of this supercategory. Similar reductions
are observed across all supercategories, demon-
strating the significant compression effect of
the OD3 distillation process. We also present
the ratio of the number of images in a particu-
lar supercategory at a certain compression ratio
compared to the number of images of the cor-
responding supercategory in the original MS
COCO dataset in Fig. 7.

Fig. 8 further illustrates the relative probabil-
ity distribution of supercategories across dataset
versions. Despite significant compression that can be seen in Table 6, the distribution remains
statistically consistent with the original dataset. This shows that OD3 does not introduce any inherent
bias toward any specific category.

Table 6: Supercategory distribution across different IPD settings. The number of images and
objects per supercategory is presented for the MS COCO (Lin et al., 2014) dataset and the OD3
distilled versions. Note that the data in the table is the same as in Fig. 7, but Fig. 7 displays the values
as percentages. It can be seen that both the number of images and objects per supercategory are
drastically compressed. Supercategory-level data is provided instead of fine-grained categories to
maintain clarity and simplify comparisons.

IPD Type Supercategory in MS COCO
person indoor food kitchen appliance furniture vehicle animal electronic accessory outdoor sports

100%
(Full Dataset)

Images 64115 15847 16255 20792 7880 29481 27358 23989 12944 17691 12880 23218
Objects 262465 46088 63512 86677 13479 76985 96212 62566 28029 45193 27855 50940

1.0% Images 1183 733 660 948 260 1012 694 596 615 882 464 423
Objects 20158 2876 5956 5922 831 5489 6035 4138 2047 3083 1407 1308

0.5% Images 585 366 313 463 120 496 351 279 270 433 219 212
Objects 10257 1570 2963 2996 335 2486 3032 2142 848 1374 752 595

0.25% Images 295 187 155 221 50 242 189 142 137 220 115 94
Objects 5313 712 1393 1636 113 1228 1513 985 479 773 360 245

D MORE ABLATIONS

Table 7 further illustrates the impact of SA-DCE on object detection performance. Our SA-DCE
method consistently outperforms both our no-extension and static extension baseline methods.
Notably, it improves mAP scores while striking a balance between small and medium object detection.
The no-extension setting suffers from reduced performance on small objects due to limited contextual
information, whereas static extension provides slight improvements but lacks adaptability to object
scale. In contrast, SA-DCE dynamically adjusts the context extension based on object size, leading
to significant gains, particularly in small-object detection. These results demonstrate that SA-DCE
effectively enhances detection robustness while preserving overall performance across different object
scales.

Table 8 highlights the effect of varying the confidence threshold (η) on detection performance. Setting
η = 0.2 consistently yields the best overall results across different IPD values, improving mAP
and balancing small, medium, and large object detection. Lower thresholds (η = 0.1) allow more
candidates but introduce noise, while higher thresholds (η ≥ 0.3) remove potentially useful detections,
leading to a drop in performance. These findings demonstrate that careful tuning of η is crucial for
optimizing detection accuracy.
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Figure 8: Probability distribution of supercategories across datasets. The figure highlights
the relative distribution of each supercategory in the original MS COCO dataset (100%) and its
synthesized counterparts at different compression ratios (0.25%, 0.5%, and 1.0%). This analysis
provides shows that the synthesis process successfully mirrors the distribution of supercategories,
N (x), in the original dataset.

Table 7: Ablation Study of SA-DCE. The table evaluates the influence of extending statically and
dynamically (using SA-DCE) the bounding boxes (in pixels) of the objects in the distilled dataset
across varying compression ratios on the MS COCO performance. Static extension refers to applying
constant extension r̄ to all inserted objects regardless of their size. We set r̄ as 10 pixels.

IPD
Extension

(pixels) mAP mAP50 mAP75 mAPs mAPm mAPl

0.5%
No extension 16.60 30.30 16.30 6.80 21.70 23.30

Static extension 16.80 30.70 16.60 7.40 22.10 22.90
SA-DCE 17.20 31.90 16.90 8.40 23.00 22.80

1.0%
No extension 22.00 38.70 22.30 9.70 27.40 30.10

Static extension 22.30 38.80 22.90 9.90 27.40 30.40
SA-DCE 22.40 39.50 22.90 10.60 28.00 29.80

Table 8: Ablation Study of Confidence Threshold (η). Objects with confidence lower than η
(determined by observer model) are removed in the candidate screening stage.

IPD
Confidence

Threshold (η) mAP mAP50 mAP75 mAPs mAPm mAPl

0.25%

0.1 11.10 21.70 10.50 5.30 15.50 14.50
0.2 12.90 24.30 12.10 5.60 16.80 17.70
0.3 10.50 21.00 9.40 4.90 14.80 13.40
0.4 10.00 19.80 9.00 5.40 13.80 12.90
0.5 10.20 20.30 9.30 5.00 14.50 12.90

0.5%

0.1 17.00 31.50 16.60 8.10 22.80 22.60
0.2 17.20 31.90 16.90 8.40 32.00 22.80
0.3 16.20 30.10 15.90 7.30 21.60 21.60
0.4 16.40 30.60 16.10 8.40 22.50 21.90
0.5 15.70 29.50 15.20 7.20 21.30 20.50

1.0%

0.1 21.70 38.30 22.20 10.80 27.80 28.90
0.2 22.40 39.50 22.90 10.60 28.00 29.80
0.3 22.00 39.00 22.30 10.60 27.60 29.30
0.4 22.00 38.80 22.40 10.20 27.80 28.90
0.5 21.80 38.50 22.20 10.30 27.70 29.00

Table 9 analyzes the effect of canvas size on detection performance across different IPD values. The
canvas size was selected based on the average width and height of all training images in the MS
COCO dataset, with additional smaller and larger canvas sizes included for comparison and evaluation.
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Results indicate that while an optimal canvas size (484 × 578) achieves the highest mAP scores,
further reduction in canvas dimensions leads to a drop in performance. This suggests that excessively
small canvases limit the available contextual information, negatively impacting detection accuracy.
Conversely, overly large canvases introduce unnecessary background noise, reducing effectiveness.
These findings highlight the importance of selecting a balanced canvas size to maximize object
representation while maintaining relevant contextual cues for dataset distillation.

Table 9: Ablation Study of Canvas Size. The table evaluates the influence of canvas size on the MS
COCO performance of the distilled dataset across varying compression ratios.

IPD
Canvas

Size (pixels) mAP mAP50 mAP75 mAPs mAPm mAPl

0.25%

363× 433 10.30 20.80 9.10 4.80 13.60 14.20
484× 578 12.90 24.30 12.10 5.60 16.80 17.70
726× 867 10.50 20.50 9.50 4.70 16.30 12.50
968× 1156 8.80 17.50 7.80 3.60 14.90 10.20

0.5%

363× 433 15.40 29.10 14.70 7.20 19.90 21.50
484× 578 17.20 31.90 16.90 8.40 23.00 22.80
726× 867 15.70 29.10 15.20 7.30 22.60 19.90
968× 1156 13.70 26.00 12.90 7.00 20.00 16.60

1.0%

363× 433 20.90 37.20 21.10 9.80 25.70 28.30
484× 578 22.40 39.50 22.90 10.60 28.00 29.80
726× 867 21.00 37.30 21.40 10.80 27.60 26.40
968× 1156 16.80 30.40 16.90 8.40 24.10 20.40

E PROOF OF THEOREM 1

Proof. Let t ∈ N be the current iteration index with 0 ≤ t < T . We assume for this iteration that
objects placed on the canvas xt do not overlap. Let the canvas xt contain K objects {or}Kr=0. We
sort these objects according to their confidence scores q(or) and partition them into two sets based
on a threshold η:{

oi0 , oi1 , . . . , oiM
}

where q(oi0) ≤ q(oi1) ≤ · · · ≤ q(oiM ) < η,{
oiM+1

, oiM+2
, . . . , oiK

}
where η ≤ q(oiM+1

) ≤ · · · ≤ q(oiK ).
(17)

The first set satisfy Er [p (q (oir ) < η)] = M+1
K . Applying the removal operator fremove(xt) discards

every object whose confidence is below η, i.e.,
{
oi0 , oi1 , . . . , oiM

}
.

Hence, the updated canvas xt+1 preserves only those objects whose scores exceed η, and it may then
be “refilled” by fadd(·) with new (randomly synthesized) objects from the same distribution as in
previous iterations.

Then, we can compare the Φ(x) of xt and xt+1.Φ(x) can be described as

Φ(x) =

∑M
j=0 s

(
oij

)
q
(
oij

)
+

∑K
j=M+1 s

(
oij

)
q
(
oij

)∑M
j=0 s (oij) +

∑K
j=M+1 s

(
oij

) (18)

where
∑K

j=M+1 s
(
oij

)
and

∑K
j=M+1 s

(
oij

)
q
(
oij

)
are same for xt and xt+1. In general, we

will fill the canvas at each iteration, so
∑M

j=0 s
(
oij

)
can also be considered constant. And the

difference between xt and xi+1 is
∑M

j=0 s(oij )q(oij )
S , where S is the areas of the canvas. Due to

E0≤j≤M

[
p
(
q
(
oij

)
< η

)]
= 1 for xt, we can get p

(
E0≤j≤M

[
q
(
oij

)]
− E[η] ≥ 0

)
= 0, and

E0≤j≤M

[
p
(
q
(
oij

)
< η

)]
= M+1

K for xt+1. Then, we can get

p
(
E0≤j≤M

[
q
(
oij

)]
− E[η] ≥ 0

)
=

K −M − 1

K
(19)

Since object is uniformly distributed, so p and E are able to swap places. Because
p
(
E0≤j≤M

[
q
(
oij

)]
≥ η

)
= K−M−1

K for xi+1, we can prove that
Φ (xT ) ≥ Φ(xT−1) ≥ Φ(xT−2) ≥ · · · ≥ Φ (x0) (20)
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Consistency of N (x) and overlaps. As T →∞, the canvas becomes fully populated in both the
add-only and add-then-remove strategies, so the number of objects N (xT ) is generally similar (i.e.,
both can fill the canvas to full capacity).

Overlap handling.

When T is sufficiently large, the canvas will necessarily be filled, so it can be assumed that the first
form and the second form of N (xT ) are consistent. So G2 remains greater than G1. When there are
some overlaps of objects in the iteration, the conclusion still holds. For example, object oa and ob
overlap, and their overlap region is od. The score of od is between q (oa) and q (ob). If both q (oa)
and q (ob) are larger or smaller than η, then both of them will not be considered. If one is larger and
one smaller than η (assuming that q (oa) ≤ η and q (ob) ≥ η), then oa is removed and oc will also be
removed in the process of screening, and the portion left behind (i.e., possibly the mutilated ob → ôb
) may not be detectable by the detector, or it may be successfully detected. Even assuming that this is
undetectable for ôb (i.e., the confidence score is low), then in the next iteration it will still be removed.

Assume that the probability of having no overlap with another object is p1. The probability that
q (ôb) ≤ τ is detected will be p2. This probability of it being removed or not having an overlap
in the next iteration is p1 + (1− p1) p2, which is consistently greater than (1− p1) (1− p2) when
p2 ≥ 0.5. If p2 < 0.5, this means that ôb is a qualified sample (detectable by detector or observer)
and therefore does not need to be removed.

Thus, in the presence of overlap, G2 remains greater than G1.

F USE OF LARGE LANGUAGE MODELS

An LLM was used only to refine the writing of the paper. All ideas, methods, experimental designs,
and results were conducted by the authors.
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