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ABSTRACT

Based on the framework of Conformal Prediction (CP), we study the online con-
struction of valid confidence sets given a black-box machine learning model. By
converting the target confidence levels into quantile levels, the problem can be
reduced to predicting the quantiles (in hindsight) of a sequentially revealed data
sequence. Two very different approaches have been studied previously:
• Direct approach: Assuming the data sequence is iid or exchangeable, one could

maintain the empirical distribution of the observed data as an algorithmic belief,
and directly predict its quantiles.

• Indirect approach: As statistical assumptions often do not hold in practice, a
recent trend is to consider the adversarial setting and apply first-order online
optimization to moving quantile losses (Gibbs & Candès, 2021). It requires
knowing the target quantile level beforehand, and suffers from a monotonicity
issue on the obtained confidence sets, due to the associated loss linearization.

This paper presents a novel Bayesian CP framework that combines their strengths.
Without any statistical assumption, it is able to both
• answer multiple arbitrary confidence level queries online, with provably low

regret; and
• overcome the monotonicity issue suffered by first-order optimization baselines,

due to being “data-centric” rather than “iterate-centric”.
In addition, it can adapt to an iid environment with the correct coverage probability
guarantee.
From a technical perspective, our key idea is to regularize the algorithmic belief of
the above direct approach by a Bayesian prior, which “robustifies” it by simulating
a non-linearized Follow the Regularized Leader (FTRL) algorithm on the output.
For statisticians, this can be regarded as an online adversarial view of Bayesian
inference. Importantly, the proposed belief update backbone is shared by prediction
heads targeting different confidence levels, bringing practical benefits analogous to
the recently proposed concept of U-calibration (Kleinberg et al., 2023).

1 INTRODUCTION

CP algorithm

Nature Base model

Downstream users

Confidence level 

queries 𝛼
Confidence set

𝐶𝑡(𝑥𝑡, 𝛼)

Covariate 𝑥𝑡, 
label 𝑦𝑡 (end of round)

Online

Update

Score function 𝑠𝑡

Figure 1: The CP interaction protocol.

Modern machine learning (ML) models are better at
point prediction compared to probabilistic prediction.
For example, when given an image classification task,
they are better at responding “this image is most likely a
white cat”, rather than “I’m 90% sure this image is an an-
imal, 60% sure it’s a cat, and 30% sure it’s a white cat”.
For downstream users, the more nuanced probabilistic
predictions are often important for risk assessment. The
challenge, however, lies in aligning the model’s own
uncertainty evaluation with its actual performance in the
real world.

Conformal prediction (CP) (Vovk et al., 2005) has recently emerged as a premier framework to address
this challenge, as it blends the empirical strength of modern ML with the theoretical soundness
of traditional statistical methods. As illustrated in Figure 1, CP algorithms make confidence set
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predictions on the label space, by sequentially interacting with three other parties: the nature (i.e., the
data stream), a black-box ML model, and downstream users. In each (the t-th) round,

1. We, as the CP algorithm, observe a target covariate xt ∈ X from the nature, and a score function
st : X × Y → [0, R] generated by a black-box ML model BASE.

2. The downstream users select a finite set of confidence level queries, At ⊂ [0, 1].
3. Given each α ∈ At, we predict a score threshold rt(xt, α) based on existing observations, which

leads to a confidence set1

Ct(xt, α) = {y ∈ Y : st(xt, y) ≤ rt(xt, α)} . (1)

4. Nature reveals the ground truth label yt ∈ Y and the true score r∗t := st(xt, yt) to us.
5. The (xt, yt) pair is passed to BASE, which it optionally uses to generate the score function st+1.

By sequentially evaluating BASE on the target data, we generate better score thresholds that “correct”
the uncertainty evaluation from BASE itself. As a concrete example, one could imagine BASE being
a trained image classifier, and the user being a wildlife conservation organization that uses BASE to
monitor endangered species. Generating a plethora of informative confidence sets would enable the
user to have a more accurate understanding of the species at risk.

Our goal is thus clear in a very broad sense – predicting confidence sets with guaranteed validity.
Say if a user queries the confidence level α = 90%, then our CP algorithm needs to provide certain
quantitative evidence that incentivizes the user to treat Ct(xt, α) as the 90% confidence set about the
true label yt. While solutions are well-known in various statistical settings, the present work is about
designing better CP algorithms without any statistical assumption at all.

1.1 BACKGROUND

To introduce the necessary background, we start from the simplest case: within a time horizon T , the
true scores r∗1:T are iid samples of a random variable X with strictly positive density. This can happen
if the target data (xt, yt) for different t are iid, and BASE is fixed (i.e., Step 5 is skipped). Further
suppose the α-quantile of X ,2 denoted by qα(X), is known, then a natural strategy is to predict
rt(xt, α) = qα(X). This ensures that the coverage condition yt ∈ Ct(xt, α) holds with probability
exactly α. That is, the confidence set prediction is valid in a strong probabilistic sense.

Although the assumptions are clearly unrealistic, this example illustrates a central principle of CP: the
predicted score threshold rt(xt, α) should ideally be the α-quantile of some distribution of r∗1:T . A
key challenge of CP is thus generalizing this principle to more realistic settings, as described below.

• Direct approach: Still assuming the sequence r∗1:T is iid but the population quantile qα(X) is
unknown, we could instead estimate qα(X) on the fly. Specifically, our algorithm maintains the
empirical distribution of r∗1:t−1, denoted by Pt = P̄ (r∗1:t−1), as an algorithmic belief about the
unknown distribution of X . Then, when queried with any confidence level α, it “post-processes”
the belief by setting rt(xt, α) = qα(Pt). This is equivalent to Empirical Risk Minimization (ERM)
with the quantile loss lα(r, r∗) := (1[r ≥ r∗]− α)(r − r∗), i.e.,

rt(xt, α) = qα(Pt) ∈ argmin
r∈[0,R]

t−1∑
i=1

lα(r, r
∗
i ). (2)

A standard improvement called Split Conformal (Papadopoulos et al., 2002) sets rt(xt, α) =
qα+o(1)(Pt), where the o(1) offset (wrt t→ ∞) ensures that even under a relaxation of iid called
exchangeability, a suitable notion of coverage probability is lower bounded by α (Roth, 2022).

• Indirect approach: Since statistical assumptions often do not hold in practice, a recent trend (Gibbs
& Candès, 2021) is to remove all statistical assumptions, and instead estimate the empirical quantile
of r∗1:T using first-order optimization algorithms from adversarial online learning (Hazan, 2023;

1Without loss of generality, we assume the score function st(xt, y) is negatively oriented: smaller means the
ML model is more certain that the candidate label y is the true one. See Appendix A for an example.

2For the readers’ reference, the α-quantile of a real random variable X is defined as qα(X) := min{x :
P(X ≤ x) ≥ α}.
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Orabona, 2023). Taking gradient descent for example, such an approach amounts to picking an
initialization r1(x1, α) ∈ [0, R] and following with the incremental update

rt+1(xt+1, α) = rt(xt, α)− ηt∂lα(rt(xt, α), r
∗
t ), (3)

where ηt > 0 is the learning rate, and ∂lα(r, r∗) can be any subgradient of the quantile loss lα with
respect to the first argument. Due to the absence of probability, alternative performance metrics
have to be considered, such as the post-hoc coverage frequency and the regret.

How do these two approaches compare? Although first-order optimization does not need statistical
assumptions, it requires being “iterate-centric” rather than “data-centric”: one needs to fix a single
confidence level α beforehand, and the predicted threshold rt(xt, α) depends on how previous
predictions compare to the true scores r∗1:t−1, rather than just r∗1:t−1 itself. This leads to a critical
monotonicity issue regarding the obtained confidence sets:

• As demonstrated in Section 2, two copies of an algorithm with α1 < α2 can output Ct(xt, α2) ⊊
Ct(xt, α1), even if the initializations are the same. That is, the higher-confidence set is strictly
smaller, violating the monotonicity of probability measures.

In contrast, the direct ERM approach does not suffer from this issue. The problem is that being
equivalent to Follow the Leader (FTL) in online learning, it is well-known that ERM can suffer the
vacuous Ω(T ) regret on adversarial quantile losses. This motivates an important question:

Can we design an adaptive CP algorithm that enjoys the best of both worlds?

1.2 OUR RESULT

This paper presents a novel Bayesian approach that combines several strengths of previous attempts.

• Just like the ERM approach, it can answer multiple arbitrary confidence level queries online.
• Without any statistical assumption, and with just the uniform prior, it guarantees the optimal

“frequentist” regret bound

RegretT (α) :=

T∑
t=1

lα(rt(xt, α), r
∗
t )−

T∑
t=1

lα(qα(r
∗
1:T ), r

∗
t ) = O(R

√
T ),

simultaneously for all time horizon T , true score sequence r∗1:T , and confidence level α ∈ [0, 1].
Notice that the comparator qα(r∗1:T ) would be a natural fixed prediction had one known the
empirical distribution of the true score sequence r∗1:T beforehand.

• Unlike first-order optimization baselines, it does not suffer from the aforementioned monotonicity
issue, due to being “data-centric” rather than “iterate-centric”.

• Under the iid assumption, it achieves almost the same guarantees, including the dataset-conditional
coverage probability and the excess quantile risk, as the ERM baseline.

A particular benefit of these strengths can be viewed from the perspective of adaptivity, as it is
important to have an algorithm with performance guarantees in both iid and adversarial environments.
Think about this: in many practical applications of CP one has to apply the algorithm without knowing
the nature of environment in advance. In such cases it is impossible to say something like “we’ll
apply Split CP if the data sequence is exchangeable, and ACI otherwise”; instead, an ideal algorithm
needs to work well under all data-generation mechanisms. Our algorithm is equipped with adaptivity
of this type, alongside its ability to support multiple confidence level queries “coreherently”.

From a technical perspective, our algorithm is a simple Bayesian modification of the ERM approach:
instead of setting the algorithmic belief as the empirical distribution of the past, Pt = P̄ (r∗1:t−1), we
set it as the convex combination

Pt = λtP0 + (1− λt)P̄ (r
∗
1:t−1),

where P0 is a prior, and λt ∈ [0, 1] is a hyperparameter. The key observation is that this Bayesian
distribution estimator leads to downstream regularization: the associated score threshold prediction
rt(xt, α) = qα(Pt) is equivalent to the output of a non-linearized Follow the Regularized Leader
(FTRL) algorithm, from which the regret bound naturally follows.
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1.3 RELATED WORK

Online CP Adversarial online CP was first studied by Gibbs & Candès (2021). It was shown that
gradient descent with constant learning rate can guarantee low coverage frequency error, i.e.,∣∣∣∣∣α− T−1

T∑
t=1

1[r∗t ≤ rt(xt, α)]

∣∣∣∣∣ = o(1), (4)

as well as its sliding-window analogues. Later, Bastani et al. (2022) demonstrated a weakness of
this performance metric: one could trivially satisfy this coverage frequency bound by predicting a
data-independent alternation between the empty set and the entire label space. To rule out such cases,
the typical solution is to consider an additional performance metric, such as the regret (Bhatnagar
et al., 2023; Gibbs & Candès, 2024; Zhang et al., 2024) and the multi-calibrated coverage frequency
(Bastani et al., 2022). Under the additional iid assumption, Angelopoulos et al. (2024) studied the
asymptotic coverage probability achieved by gradient descent.

The present work focuses on regret minimization, as we believe such a perspective offers advan-
tages even over simultaneously bounding the regret and the coverage frequency error (since loss
linearization is not necessary anymore). See Section 3 for a thorough discussion.

Adversarial Bayes Making sequential Bayesian methods “adversarially robust” is closely related
to the classical Follow the Perturbed Leader (FTPL) algorithm in online learning (Kalai & Vempala,
2005). Notable examples of FTPL include Thompson sampling, a prevalent Bayesian approach for
bandits and reinforcement learning (Thompson, 1933; Lattimore & Szepesvári, 2020; Xu & Zeevi,
2023), and U-calibration (Kleinberg et al., 2023; Luo et al., 2024), a recently proposed framework
for loss-agnostic decision making. Despite being deterministic, our approach resembles the high level
idea of U-calibration and a related concept called omniprediction (Gopalan et al., 2022; Garg et al.,
2024). The connections and differences are discussed in Section 5.

Additional discussion of related works is deferred to Appendix A, including an independent topic
called Bayesian uncertainty quantification which motivated CP in the first place.

1.4 NOTATION

This paper studies the marginal setting of CP, which means the threshold prediction rt(xt, α) will
be independent of xt; therefore we write it as rt(α) for conciseness. For any symbol x, x1:t (e.g.,
r∗1:t) represents the tuple [x1, . . . , xt]. P̄ (·) denotes the empirical distribution of its input, and
qα(·) denotes the α-quantile. Our regret bound concerns the quantile (or pinball) loss defined as
lα(r, r

∗) := (1[r ≥ r∗]− α)(r − r∗). log denotes the natural logarithm.

2 THE NEED FOR MONOTONICITY

To begin with, we use a numerical experiment to elaborate a validity issue suffered by existing
adversarial online CP algorithms: the predicted confidence sets can violate the monotonicity of
probability measures. This has been overlooked in the literature, as all the existing approaches we are
aware of require fixing a single target confidence level α at the beginning of the CP game.

Specifically, we consider two baselines, Online Gradient Descent (OGD) from (Gibbs & Candès,
2021), and MultiValid Prediction (MVP) from (Bastani et al., 2022). To enable multiple confidence
level queries, we adopt the following nearest-neighbor routing on top of their independent copies.

1. Evenly discretize the [0, 1] interval of possible confidence levels using a grid Ã.
2. For each α̃ ∈ Ã, maintain a “base” online CP algorithm targeting α̃.
3. Given any queried α, follow the base algorithm corresponding to its nearest neighbor in Ã.

The resulting algorithms are named as MultiOGD and MultiMVP respectively.

In the experiment, we fix R = 1. The true score sequence r∗1:T is sampled iid from the uniform
distribution on [0, 1], and we evaluate the thresholds r1:T (α) predicted by different CP algorithms,
under different α values. For each base OGD targeting α̃, we use the standard learning rate ηt = t−1/2,
and initialize it with r1(α̃) = α̃. The base MVP algorithms are all initialized at 0 following (Bastani
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Figure 2: Evaluating the monotonicity of threshold predictions. Ideally the orange line should be
always above the blue line, since the associated target confidence level is higher. Columns correspond
to different algorithms; rows correspond to different confidence level pairs.

et al., 2022). The point is that the initialization of MultiOGD and MultiMVP cannot be the reason of
any monotonicity violation. For comparison, we also test ERM as well as our Bayesian algorithm to
be introduced in Section 3.

Our results are visualized in Figure 2. Ideally, in all the figures the orange line should be always above
the blue line (i.e., the predicted confidence set due to Eq.(1) is larger), since the associated confidence
level α is higher. Unlike ERM and our Bayesian algorithm, both MultiOGD and MultiMVP violate
this property, which somewhat harms their trustworthiness to downstream users. We remark that
although the data generation mechanism and the MultiMVP baseline are both randomized, a single
random seed is used in this experiment to demonstrate the existence of the problem.

3 BAYESIAN ONLINE CONFORMAL PREDICTION

Given a sneak peek into our algorithm, now let us take a deeper dive. Our core algorithm (Algorithm 1)
is perhaps the simplest one could think of. Setting the Bayesian prior as an arbitrary distribution P0

on [0, R] with strictly positive density function p0, we update the algorithmic belief Pt by mixing
P0 with the empirical distribution of the previous true scores, P̄ (r∗1:t−1). This can be seen as
regularizing the frequentist belief update Pt = P̄ (r∗1:t−1), and the readers are referred to Section 5
for an interpretation of this procedure as Bayesian distribution estimation. Then, given each queried
confidence level α, the algorithm picks rt(α) = qα(Pt) just like the ERM approach.

Note that the algorithmic belief Pt does not depend on any specific α, and different downstream users
can select different α values online. By construction, it is clear that for any α1 < α2 we always have
rt(α1) ≤ rt(α2).

Algorithm 1 Online conformal prediction with regularized belief.
Require: Step sizes {λt}t∈N+

, where λ1 = 1, and 0 < λt < 1 for all t ≥ 2. Bayesian prior P0 with
strictly positive density function p0.

1: for t = 1, 2, . . . do
2: Compute the empirical distribution P̄ (r∗1:t−1), and set the algorithmic belief Pt to

Pt = λtP0 + (1− λt)P̄ (r
∗
1:t−1). (5)

3: for α ∈ At do
4: Output the score threshold rt(α) = qα(Pt).
5: end for
6: Observe the true score r∗t .
7: end for

The most important idea of this paper is the following observation.
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The Bayesian regularization on the algorithmic belief Pt induces downstream
regularizations on the predicted threshold rt(α), which best-responds to Pt.

Concretely, with a base regularizer defined as ψ(r) := Er∗∼P0 [lα(r, r
∗)], we characterize this

observation by the following equivalence theorem.
Theorem 1. For all α ∈ [0, 1], the output rt(α) of Algorithm 1 satisfies r1(α) = argminr∈R ψ(r),

rt(α) = argmin
r∈R

[
λt(t− 1)

1− λt
ψ(r) +

t−1∑
i=1

lα(r, r
∗
i )

]
, ∀t ≥ 2. (6)

Specifically,

• ψ is strongly convex with coefficient infr∈[0,R] p0(r), if the latter is positive.

• If P0 is the uniform distribution on [0, R], then ψ is a quadratic function centered at αR,

ψ(r) =
1

2R
r2 − αr +

1

2
αR.

Theorem 1 shows that despite not knowing α at the beginning of the CP game, Algorithm 1 generates
the same output rt(α) as a non-linearized Follow the Regularized Leader (FTRL) algorithm on
the quantile loss lα. Specifically, Eq.(6) can be compared to the FTL-equivalence of the iid-based
approach, Eq.(2). The important difference is the additional regularizer ψ(r).

To provide more context here: FTRL is a standard improvement of ERM / FTL in adversarial online
learning, with better stability and worst-case performance on “difficult loss functions”. Our analysis
involves the non-linearized version of FTRL, which has previously received less attention than its
linearized counterpart. This is largely due to computational reasons, since non-linearized FTRL has to
solve a convex optimization subroutine in each round, whereas linearized FTRL admits closed-form
solutions (Orabona, 2023, Chapter 7.3). From this perspective, a novelty of our result is showing
that for a class of benign regularizers, non-linearized FTRL on quantile losses can be simulated by a
simple and efficient Bayesian procedure.

From Theorem 1, we can then obtain the regret bound of Algorithm 1 using the standard FTRL
analysis. In order to demonstrate the role of good priors, the strong convexity of the regularizer ψ
will be measured locally.

Theorem 2. Let µt,α := inf{p0(r) : rt(α) ∧ r∗t ≤ r ≤ rt(α) ∨ r∗t }. With the step size λt = 1/
√
t,

Algorithm 1 guarantees

RegretT (α) :=

T∑
t=1

lα(rt(α), r
∗
t )−

T∑
t=1

lα(qα(r
∗
1:T ), r

∗
t ) = O

(
ψ(qα(r

∗
1:T ))

√
T +

T∑
t=1

1

µt,α

√
t

)
,

(7)
for all time horizon T , true score sequence r∗1:T , and confidence level α ∈ [0, 1]. Here,O(·) subsumes
an absolute constant. Furthermore, if P0 is the uniform distribution on [0, R], then

RegretT (α) = O(R
√
T ).

Let us interpret this regret bound. Suppose the time horizon T and the empirical true score distribution
P̄ (r∗1:T ) are known beforehand (but the exact r∗1:T sequence is unknown), then for all α, a very natural
strategy is to predict rt(α) = qα(r

∗
1:T ). Theorem 2 shows that without any statistical assumption,

Algorithm 1 with the uniform prior asymptotically performs as well as this oracle in terms of the
total quantile loss, and importantly, the O(R

√
T ) regret bound is known to be tight (Hazan, 2023;

Orabona, 2023). Existing first-order optimization baselines are equipped with regret bounds of a
similar type (Bhatnagar et al., 2023; Gibbs & Candès, 2024; Zhang et al., 2024), but the difference
is that they require knowing the confidence level α beforehand, whereas Algorithm 1 achieves low
regret simultaneously for all α ∈ [0, 1].

The role of good prior A particular strength of Theorem 2 is that the O(R
√
T ) regret bound only

requires the simplest uniform prior. Nonetheless, if one has extra prior knowledge on the environment,
picking a more sophisticated prior can indeed bring advantages. To see this, notice that the function

6
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ψ in Eq.(7) is minimized at qα(P0), therefore ideally we would aim for P0 ≈ P̄ (r∗1:T ), which means
qα(P0) ≈ qα(r

∗
1:T ) for all α. But unlike the discrete distribution P̄ (r∗1:T ), P0 also needs to have a

“positive enough” density function, as otherwise the second term in Eq.(7) would blow up.

Coverage frequency error We also note that existing first-order optimization baselines (Bhatnagar
et al., 2023; Gibbs & Candès, 2024; Zhang et al., 2024) are equipped with both a regret bound and a
coverage frequency error bound, Eq.(4). Hoping to challenge this convention, here we discuss the
advantages of only considering the regret.

First, the coverage frequency error is fundamentally “iterate-centric”, whereas an ideal performance
metric needs to be “data-centric”. To be more specific, consider the CP interaction protocol displayed
in Figure 1. Achieving low coverage frequency error requires the CP algorithm’s output to depend
not only on the top level (the nature and the base model), but also on the users’ previous confidence
level queries. This is in contrast with our regret minimization algorithm, whose output is independent
of the users’ query history.

Furthermore, just like the pathological example given by Bastani et al. (2022), first-order optimization
baselines essentially achieve the desirable coverage frequency due to the “overshooting” provided by
the loss linearization. This is perhaps clear from the first online CP algorithm (ACI) proposed by
Gibbs & Candès (2021): regarding the update Eq.(3) with the constant learning rate ηt = η, it is shown
that the coverage frequency error monotonically decreases as η → ∞. Such a peculiar behavior
results precisely from overshooting: if α = 90%, then a failed coverage needs nine successful
coverages to compensate, and ensuring this does not have much to do with the observed data. This
casts some natural doubt on the coverage frequency error that the algorithm is designed to optimize.

To reduce the clutter, more discussion on Algorithm 1 is deferred to Section 5. Below we present a
few extensions of this core result.

3.1 REDUCING MEMORY USAGE VIA QUANTIZATION

Recall our construction of MultiOGD from Section 2. Although not studied by existing works, it
is not hard to see that with the size of the grid Ã being O(

√
T ), MultiOGD also satisfies the same

α-agnostic O(R
√
T ) regret bound as in Theorem 2, since the quantile loss lα(r, r∗) is R-Lipschitz

with respect to α. This raises a natural question: Algorithm 1 requires O(T ) memory due to storing
the empirical distribution of previous true scores – can we reduce it to O(

√
T )?

Quantized algorithm Here is a variant of Algorithm 1, denoted as QUANTIZED, achieving this goal.
The idea is to discretize the domain [0, R] rather than the α-space: we maintain an evenly-spaced grid
of size

√
T over [0, R], round each observed r∗t to its nearest neighbor r̃∗t on the grid, and replace the

belief update Eq.(5) by
Pt = λtP0 + (1− λt)P̄ (r̃

∗
1:t−1).

The associated regret bound follows from the Lipschitzness of lα(r, r∗) with respect to r∗.

Theorem 3. With λt = 1/
√
t and the uniform P0, QUANTIZED achieves RegretT (α) = O(R

√
T ).

Compared to MultiOGD, QUANTIZED achieves the same O(R
√
T ) regret bound with O(

√
T )

memory, while avoiding its monotonicity issue. There is another practical advantage: after observing
each r∗t , MultiOGD needs to update all

√
T base algorithms, whereas QUANTIZED performs only

one update on the algorithmic belief P̄t, and then makes |At| inferences using the prediction head.

3.2 ADAPTIVITY TO IID

In practice, a CP algorithm is often applied without knowing the characteristics of the nature.
Previously we have been focusing on the adversarial setting, but what if the true scores r∗1:T turn out
to be iid? We now demonstrate the adaptivity of Algorithm 1: it automatically achieves almost the
same guarantees as ERM under the additional iid assumption.

First, as the coverage probability becomes the default performance metric in the iid setting, we
present the following bound on the dataset-conditional coverage probability. Notice that the event
of successful coverage can be expressed as r∗t ≤ rt(α), where rt(α) is determined by the past true
scores r∗1:t−1 and the queried α.

7
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Theorem 4. Assume the true score sequence r∗1 , r
∗
2 , . . . is drawn iid from an unknown continuous

distribution D. With the step size λt = 1/
√
t and an arbitrary prior P0, Algorithm 1 guarantees that

for any fixed t ≥ 2, with probability at least 1 − δ over the randomness of r∗1:t−1, we have for all
α ∈ [0, 1],

α−

√
log(2/δ)

2(t− 1)
− 1√

t− 1
≤ Pr∗t ∼D [r∗t ≤ rt(α)] ≤ α+

√
log(2/δ)

2(t− 1)
+

1√
t− 1

+
1

t− 1
.

Compared to the analogous result for ERM (Roth, 2022, Theorem 34), the difference here due to the
Bayesian regularization is the (

√
t−1)−1 factor, which is dominated by the existingO(

√
t−1 log δ−1)

term resulting from the randomness. It shows that under the iid assumption, Algorithm 1 achieves
almost the same coverage probability error as Split Conformal, despite being designed for the
adversarial setting. This is significant as discussed in Section 1.2.

Besides the coverage probability, we can also analyze the excess quantile risk of Algorithm 1, which
matches the standard oracle inequality one would obtain using ERM.
Theorem 5. Assume the true score sequence r∗1 , r

∗
2 , . . . is drawn iid from an unknown distribution D.

With the step size λt = 1/
√
t and an arbitrary prior P0, Algorithm 1 guarantees that for any fixed

t ≥ 2, with probability at least 1− δ over the randomness of r∗1:t−1, we have for all α ∈ [0, 1],

Er∗t ∼D[lα(rt(α), r
∗
t )] ≤ min

r∈[0,R]
Er∗t ∼D[lα(r, r

∗
t )] +O

(
R

√
log(1/δ)

t

)
.

3.3 CONTINUAL DISTRIBUTION SHIFT

Starting from (Gibbs & Candès, 2021), the study of adversarial online CP has been largely motivated
by the prevalence of continual distribution shifts in practice. Tackling this challenge requires non-
converging algorithms characterized by sliding-window performance guarantees. We now present a
discounted variant of Algorithm 1, denoted by DISCOUNTED, along this direction.

Discounted algorithm Let β ∈ (0, 1) be a discount factor, which is a bandwidth hyperparameter
required by DISCOUNTED. Then, we define a regularized and discounted empirical distribution of
r∗1:t recursively by

P̄β(r
∗
1) = βP0 + (1− β)δ(r∗1),

P̄β(r
∗
1:t) = βP̄β(r

∗
1:t−1) + (1− β)δ(r∗t ) = βtP0 + (1− β)

t∑
i=1

βt−iδ(r∗i ),

where δ(r∗t ) is the distribution with point mass at r∗t . This is used to replace the undiscounted
empirical distribution in the belief update, i.e., Eq.(5) is replaced by

Pt = λtP0 + (1− λt)P̄β(r
∗
1:t−1).

After that, the prediction head remains unchanged, i.e., rt(α) = qα(Pt).

Similar to Theorem 1 and 2, we can show that DISCOUNTED simulates the β-discounted non-
linearized FTRL, which is equipped with a β-discounted regret bound. Importantly, reasonable step
sizes λt become constant (rather than decreasing), which emphasizes the crucial role of the prior
P0: instead of only using P0 to regularize the beginning of the CP game, DISCOUNTED continually
mix P0 into its algorithm belief with constant weight, such that it does not “overfit the current
environment”.
Theorem 6. With λt = λ =

√
1−β

β+
√
1−β

and the uniform P0, the output rt(α) of DISCOUNTED satisfies

rt(α) = argmin
r∈R

[
(1− β)−1

(
λ

1− λ
+ βt−1

)
ψ(r) +

t−1∑
i=1

βt−1−ilα(r, r
∗
i )

]
,

for all α and t. In addition, for all α ∈ [0, 1], it guarantees the discounted regret bound

RegretT,β(α) :=

T∑
t=1

βT−tlα(rt(α), r
∗
t )− min

r∈[0,R]

T∑
t=1

βT−tlα(r, r
∗
t ) ≤

R√
1− β

+ o(R),

where o(·) is with respect to T → ∞.
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We remark that (Zhang et al., 2024, Theorem 7) presents a discounted regret lower bound on linear
losses, which can be converted to Ω(min{α, 1− α}R/

√
1− β2) on the quantile losses we consider.

Since (1− β)−1/2 ≤ 2(1− β2)−1/2 for all β ∈ (0, 1), Theorem 6 matches this lower bound in the
minimax sense (with respect to α, i.e., when α = 1/2).

4 EXPERIMENT

Complementing our theoretical results, we now evaluate the performance of our Bayesian approach
using more experiments. We focus on an actual CP problem: predicting the time-varying volatility of
the stock price, with the base model being a standard time series forecasting method called GARCH
(Bollerslev, 1986). This experiment was designed by Gibbs & Candès (2021) and further studied by
Bastani et al. (2022). See (Bastani et al., 2022, Appendix B.3.1) for the specifics of its context.

Two baselines are considered: a specialization of OGD (ACI) for time series forecasting, and MVP.
Besides requiring a fixed learning rate, the former operates on a sliding time window whose length is
also a hyperparameter. Similarly, MVP requires picking the size of discretization. For both baselines,
we follow the exact implementation from (Bastani et al., 2022), including the hyperparameters.
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Figure 3: Quantile loss on AMD stock data.

As for our Bayesian approach, we adopt
the discounted version to handle the con-
tinual distribution shift, together with
quantization. The discretization grid Ã
has the same size as the MVP baseline,
and we pick the discount factor β such
that the effective length (1−β2)−1 of the
discounted time window exactly matches
the length of the ACI baseline’s sliding
window. Given this β, λt is selected ac-
cording to Theorem 6. It means that com-
pared to the baselines, our algorithm cannot benefit from any extra hyperparameter tuning.
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Figure 4: Predicted score threshold on AMD stock data.

With α = 0.9, Figure 4 plots the r1:T (α) sequence predicted by different algorithms. As a visual
sanity check, our algorithm generates a reasonable prediction sequence with slightly less fluctuation
than the baselines. To make a more concrete comparison, Figure 3 plots the total quantile loss suffered
by all three algorithms, as well as the difference compared to ACI. It shows that our algorithm achieves
almost the same total loss as ACI, and it is faster to warm up than MVP.

Finally, we also evaluate the empirical coverage rate of the tested algorithms. Although our algorithm
is not designed for this metric, it performs competitively compared to the baselines. The target is
1− α = 0.9, and closer to this target is better. ACI achieves 0.901, MVP achieves 0.893, and our
Bayesian algorithm achieves 0.899.

Appendix C includes results on a different stock dataset. It also includes a synthetic experiment
where the true sequence switches between 0 and 1; this demonstrates the benefit of our Bayesian
algorithm over ERM. Appendix D demonstrates that the monotonicity issue suffered by ACI and
MVP also shows up in the stock price experiment (i.e., on real data).
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5 DISCUSSION

Loss-agnostic decision making The downstream simulation of FTRL (Theorem 1) deviates from
the common scope of online learning, which requires specifying a single loss function in each round.
Instead, it has a similar flavor as the recently proposed concept of U-calibration (Kleinberg et al.,
2023; Luo et al., 2024): forecasting for an unknown downstream agent. Prior works on U-calibration
considered the setting of finite-class distributional prediction with generic proper losses, while
our paper focuses on the continuous domain [0, R] (i.e., “infinitely many classes”) with the more
specific quantile losses. The extra problem structure allows our algorithm to be deterministic (rather
than being randomized like FTPL), thus establishing a closer connection to typical deterministic
algorithms in online convex optimization.

Omniprediction (Gopalan et al., 2022; Garg et al., 2024) is another iconic framework for loss-agnostic
decision making, whose main idea is to maintain a multi-calibrated algorithmic belief in the sense of
(Hébert-Johnson et al., 2018). Our approach does not require calibration as an underlying mechanism.

Bayesian interpretation We have been calling our framework “Bayesian”, as the belief update
Eq.(5) can be viewed by statisticians as a Bayesian distribution estimator from iid samples. Following
(Gelman et al., 2021, Chapter 23), we now make this very concrete.

Consider the following distribution estimation problem: given x1, . . . , xn ∈ X sampled iid from
an unknown distribution X , what is a good estimate of X? As opposed to the frequentist estimate
P̄ (x1:n), a Bayesian estimator would place a prior F0 over all distributions supported on the domain
X , compute the posterior Fn from the samples, and output the mean E[Fn].

For analytical convenience, one would typically choose F0 as a conjugate prior: it refers to a family
of priors such that if F0 belongs to this family, then Fn also belongs to this family. The most notable
conjugate prior for distribution estimation is the Dirichlet process (DP), denoted as DP(α, P0). Here
α and P0 are hyperparameters: P0 equals the mean E[DP(α, P0)], while α controls the variance of
DP(α, P0). Due to the conjugacy, if F0 = DP(α, P0), then

Fn = DP

(
α+ n,

α

α+ n
P0 +

n

α+ n
P̄ (x1:n)

)
.

Consequently, the Bayesian estimator of the distribution X is

E[Fn] =
α

α+ n
P0 +

n

α+ n
P̄ (x1:n).

This is the same as the belief update Eq.(5) in our algorithm, with the hyperparameter λt = α/(α+n).
Our results can therefore be regarded as an online adversarial treatment of Bayesian inference,
embedded in the CP protocol, and without the iid assumption.

6 CONCLUSION

Focusing on the online adversarial formulation of conformal prediction, this paper demonstrates
various benefits of being Bayesian. Specifically, we propose a novel Bayesian algorithm with a
number of strengths – it supports multiple arbitrary confidence level queries, achieves probably low
regret, avoids the monotonicity issue on the obtained confidence sets, and adapts to iid environments.
We further develop quantized and discounted extensions of this algorithm, and our theoretical
arguments are supported by experiments.
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A ADDITIONAL RELATED WORK

This section covers the related work omitted from the main paper. For additional background of CP
and its applications, the readers are referred to several excellent resources (Vovk et al., 2005; Roth,
2022; Angelopoulos & Bates, 2023; Tibshirani, 2023).

Score function Following (Romano et al., 2020), we first survey a score function for classification,
in order to make our setting concrete. Here, given the covariate xt, a ML model would generate a
softmax score πt(y) for each candidate label y, satisfying

∑
y∈Y πt(y) = 1. Romano et al. (2020)

proposed the score function st(xt, y) =
∑

ỹ:πt(ỹ)≥πt(y)
πt(ỹ). Consistent with our setting, it is

negatively oriented, with the range R = 1.

Bayesian uncertainty quantification The traditional view of Bayesian methods is statistical: there
is a statistical model on which we provide a prior, observe the data, and compute the posterior via
the Bayes’ theorem. The obtained posterior can then be used to construct confidence sets (called
Bayesian UQ; Neal 2012), as long as the prior is good enough and the computational procedure
is scalable. The key novelty of our work is showing the effectiveness of the Bayesian idea in an
adversarial online CP problem. Importantly, no statistical assumptions are imposed on the data, good
theoretical performance does not require an unrealistically good prior, and the algorithm also enjoys
the computational efficiency of the CP framework. Related but different from our focus, Fong &
Holmes (2021) studied a statistical CP problem where the base ML model itself is Bayesian.

B OMITTED PROOFS

Theorem 1. For all α ∈ [0, 1], the output rt(α) of Algorithm 1 satisfies r1(α) = argminr∈R ψ(r),

rt(α) = argmin
r∈R

[
λt(t− 1)

1− λt
ψ(r) +

t−1∑
i=1

lα(r, r
∗
i )

]
, ∀t ≥ 2. (6)

Specifically,

• ψ is strongly convex with coefficient infr∈[0,R] p0(r), if the latter is positive.

• If P0 is the uniform distribution on [0, R], then ψ is a quadratic function centered at αR,

ψ(r) =
1

2R
r2 − αr +

1

2
αR.

Proof of Theorem 1. We first rewrite the base regularizer ψ as

ψ(r) =

∫ R

0

lα(r, r
∗)p0(r

∗)dr∗

= (1− α)

∫ r

0

(r − r∗)p0(r
∗)dr∗ + α

∫ R

r

(r∗ − r)p0(r
∗)dr∗.

It is twice-differentiable, with

ψ′(r) = (1− α)

∫ r

0

p0(r
∗)dr∗ − α

∫ R

r

p0(r
∗)dr∗ =

∫ r

0

p0(r
∗)dr∗ − α,

and ψ′′(r) = p0(r). The strong convexity statement on ψ is thus clear. If P0 is uniform, we have

ψ(r) = R−1

[
(1− α)

∫ r

0

(r − r∗)dr∗ + α

∫ R

r

(r∗ − r)dr∗

]

=
1

2R

[
(1− α)r2 + α(R− r)2

]
=

1

2R
r2 − αr +

1

2
αR.
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Next, consider the first part of the theorem. The case of t = 1 is straightforward to verify. For any
t ≥ 2, Algorithm 1 outputs

rt(α) = qα
[
λtP0 + (1− λt)P̄ (r

∗
1:t−1)

]
= min

{
r : λt

∫ r

0

p0(r
∗)dr∗ +

1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ r] ≥ α

}
. (8)

On the other hand, consider the optimization objective in Eq.(6), which we write as

Ft(r) :=
λt(t− 1)

1− λt
ψ(r) +

t−1∑
i=1

lα(r, r
∗
i ). (9)

Notice that the function Ft(r) is continuous and right-differentiable. Taking its right-derivative, we
have

F ′
t,+(r) =

λt(t− 1)

1− λt

[∫ r

0

p0(r
∗)dr∗ − α

]
+

(
−α

t−1∑
i=1

1[r < r∗i ] + (1− α)

t−1∑
i=1

1[r ≥ r∗i ]

)

=
λt(t− 1)

1− λt

∫ r

0

p0(r
∗)dr∗ − αλt(t− 1)

1− λt
− α(t− 1) +

t−1∑
i=1

1[r ≥ r∗i ]

=
t− 1

1− λt

(
λt

∫ r

0

p0(r
∗)dr∗ +

1− λt
t− 1

t−1∑
i=1

1[r ≥ r∗i ]− α

)
.

Comparing it to Eq.(8), we see that the output rt(α) of Algorithm 1, given by Eq.(8), satisfies

rt(α) = min{r : F ′
t,+(r) ≥ 0}.

Since the function Ft(r) is strictly convex, we have rt(α) = argminr Ft(r), which is equivalent to
Eq.(6).

Theorem 2. Let µt,α := inf{p0(r) : rt(α) ∧ r∗t ≤ r ≤ rt(α) ∨ r∗t }. With the step size λt = 1/
√
t,

Algorithm 1 guarantees

RegretT (α) :=

T∑
t=1

lα(rt(α), r
∗
t )−

T∑
t=1

lα(qα(r
∗
1:T ), r

∗
t ) = O

(
ψ(qα(r

∗
1:T ))

√
T +

T∑
t=1

1

µt,α

√
t

)
,

(7)
for all time horizon T , true score sequence r∗1:T , and confidence level α ∈ [0, 1]. Here,O(·) subsumes
an absolute constant. Furthermore, if P0 is the uniform distribution on [0, R], then

RegretT (α) = O(R
√
T ).

Proof of Theorem 2. The proof can be decomposed into the following steps.

Step 1 Starting from the FTRL formulation Eq.(6), we first verify that the regularizer weight
λt(t−1)
1−λt

is increasing with respect to t (when t > 1), which is required by the FTRL analysis. To this
end, define

ht :=
λt(t− 1)

1− λt
=

t− 1√
t− 1

.

Taking the derivative with respect to t, for all t > 1,

dht
dt

=

√
t− 1− t−1

2
√
t

(
√
t− 1)2

=
t− 2

√
t+ 1

2
√
t(
√
t+ 1− 1)2

=
(
√
t− 1)2

2
√
t(
√
t+ 1− 1)2

≥ 0.

For completeness, we also define h1 = 1.

Besides, we have the order estimate ht = O(
√
t), 1/ht = O(1/

√
t), where O(·) only hides an

absolute constant.
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Step 2 Next, due to Theorem 1, we can apply the standard FTRL analysis. Recall our notation from
Eq.(9): we write the optimization objective in Eq.(6) as

Ft(r) := htψ(r) +

t−1∑
i=1

lα(r, r
∗
i ), ∀t ≥ 2.

Similarly, we also write F1(r) := h1ψ(r). Notice that rt(α) = argminr∈R Ft(r) for all t.

The classical FTRL equality lemma (Orabona, 2023, Lemma 7.1) states that

RegretT (α) = hT+1ψ(qα(r
∗
1:T ))−min

r∈R
ψ(r) +

T∑
t=1

[Ft(rt(α))− Ft+1(rt+1(α)) + lα(rt(α), r
∗
t )]

+ FT+1(rT+1(α))− FT+1(qα(r
∗
1:T ))

≤ hT+1ψ(qα(r
∗
1:T )) +

T∑
t=1

[Ft(rt(α))− Ft+1(rt+1(α)) + lα(rt(α), r
∗
t )] ,

where the second line is due to minr ψ(r) ≥ 0, and rT+1(α) = argminr∈R FT+1(r).

Consider the sum on the RHS, where for conciseness we omit (α) in the notation. This is the typical
one-step quantity involved in the FTRL analysis. Following a similar procedure as (Orabona, 2023,
Lemma 7.8), we have

Ft(rt)− Ft+1(rt+1) + lα(rt, r
∗
t )

= Ft(rt) + lα(rt, r
∗
t )− Ft(rt+1)− lα(rt+1, r

∗
t ) + (ht − ht+1)ψ(rt+1)

≤ Ft(rt) + lα(rt, r
∗
t )− Ft(rt+1)− lα(rt+1, r

∗
t ) (ht+1 ≥ ht, ψ(rt+1) ≥ 0)

≤ Ft(rt) + lα(rt, r
∗
t )−min

r∈R
[Ft(r) + lα(r, r

∗
t )] .

Observe that since Ft(·) and lα(·, r∗t ) are both convex, the minimizing argument of their sum lies
between their respective unique minimizers, rt and r∗t . On this segment, the function Ft is htµt,α-
strongly-convex, where µt,α is defined in the assumption of the theorem. We now proceed using the
property of strong convexity (Orabona, 2023, Lemma 7.6), which we restate as Lemma B.1.

Concretely, if gt is a subgradient of lα(·, r∗t ) at rt, then it is also a subgradient of Ft(·) + lα(·, r∗t )
at rt, since rt = argminr Ft(r). Moreover, such a subgradient gt satisfies |gt| ≤ 1 due to lα(·, r∗t )
being 1-Lipschitz. Combining these with the strong convexity, Lemma B.1 yields

Ft(rt) + lα(rt, r
∗
t )−min

r∈R
[Ft(r) + lα(r, r

∗
t )] ≤

1

2htµt,α
.

Plugging this all the way back into the regret bound, we have

RegretT (α) ≤ hT+1ψ(qα(r
∗
1:T )) +

1

2

T∑
t=1

1

htµt,α

= O

(
ψ(qα(r

∗
1:T ))

√
T +

T∑
t=1

1

µt,α

√
t

)
.

Step 3 Finally we analyze the special case of uniform prior. From Theorem 1,

ψ(qα(r
∗
1:T )) ≤ max

r∈[0,R]
ψ(r) ≤ max

r∈[0,R]

(
1

2R
r2 − αr +

1

2
αR

)
≤ R

2
.

Furthermore, µt,α = 1/R. Plugging in
∑T

t=1 t
−1/2 = O(

√
T ) completes the proof.

Theorem 3. With λt = 1/
√
t and the uniform P0, QUANTIZED achieves RegretT (α) = O(R

√
T ).

Proof of Theorem 3. Recall from Section 3.1 that the quantized true score is denoted by r̃∗t . From
Theorem 2, we have

T∑
t=1

lα(rt(α), r̃
∗
t )−

T∑
t=1

lα(qα(r
∗
1:T ), r̃

∗
t ) ≤

T∑
t=1

lα(rt(α), r̃
∗
t )−

T∑
t=1

lα(qα(r̃
∗
1:T ), r̃

∗
t )

= O(R
√
T ).
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As |r̃∗t − r∗t | ≤ R/
√
T and the quantile loss function lα(r, r∗) is 1-Lipschitz with respect to r∗, we

have ∣∣∣∣∣
T∑

t=1

lα(rt(α), r̃
∗
t )−

T∑
t=1

lα(rt(α), r
∗
t )

∣∣∣∣∣ ≤
T∑

t=1

|lα(rt(α), r̃∗t )− lα(rt(α), r
∗
t )|

≤
T∑

t=1

|r̃∗t − r∗t | ≤ R
√
T .

The comparator term
∑T

t=1 lα(qα(r
∗
1:T ), r̃

∗
t ) can be related similarly to

∑T
t=1 lα(qα(r

∗
1:T ), r

∗
t ), and

combining the above completes the proof.

Theorem 4. Assume the true score sequence r∗1 , r
∗
2 , . . . is drawn iid from an unknown continuous

distribution D. With the step size λt = 1/
√
t and an arbitrary prior P0, Algorithm 1 guarantees that

for any fixed t ≥ 2, with probability at least 1 − δ over the randomness of r∗1:t−1, we have for all
α ∈ [0, 1],

α−

√
log(2/δ)

2(t− 1)
− 1√

t− 1
≤ Pr∗t ∼D [r∗t ≤ rt(α)] ≤ α+

√
log(2/δ)

2(t− 1)
+

1√
t− 1

+
1

t− 1
.

Proof of Theorem 4. The proof follows a similar strategy as (Roth, 2022, Theorem 34). First, for
any fixed t ≥ 2, the samples r∗1:t−1 have no ties almost surely, since the underlying distribution D is
continuous. We will condition the rest of the analysis on this event.

Next, recall Algorithm 1’s prediction rule, Eq.(8). On one hand, we have

λt

∫ rt(α)

0

p0(r
∗)dr∗ +

1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)] ≥ α,

which means
1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)] ≥ α− λt,

1

t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)] ≥ α+
λt

1− λt
(α− 1) ≥ α− 1√

t− 1
.

On the other hand, if we define m =
∑t−1

i=1 1[r
∗
i ≤ rt(α)] and let r∗−1 be the (m − 1)-th smallest

element of r∗1:t−1, then it is also clear from Eq.(8) that

λt

∫ r∗−1

0

p0(r
∗)dr∗ +

1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ r∗−1] ≤ α,

which means
1− λt
t− 1

t−1∑
i=1

1[r∗i ≤ r∗−1] ≤ α− λt

∫ r∗−1

0

p0(r
∗)dr∗ ≤ α,

1

t− 1

t−1∑
i=1

1[r∗i ≤ r∗−1] ≤
α

1− λt
≤ α+

1√
t− 1

,

1

t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)] ≤
1

t− 1

t−1∑
i=1

1[r∗i ≤ r∗−1] +
1

t− 1
≤ α+

1√
t− 1

+
1

t− 1
.

In summary,

α− 1√
t− 1

≤ 1

t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)] ≤ α+
1√
t− 1

+
1

t− 1
. (10)
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Finally we apply the DKW inequality (Lemma B.3). For all ε > 0, we have

Pr∗1:t−1

[
sup

α∈[0,1]

∣∣∣∣∣
(

1

t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)]

)
− Pr∗t

[r∗t ≤ rt(α)]

∣∣∣∣∣ > ε

]
≤ 2 exp

[
−2(t− 1)ε2

]
.

Therefore, with probability at least 1− δ over the randomness of r∗1:t−1, we have∣∣∣∣∣
(

1

t− 1

t−1∑
i=1

1[r∗i ≤ rt(α)]

)
− Pr∗t

[r∗t ≤ rt(α)]

∣∣∣∣∣ ≤
√

log(2/δ)

2(t− 1)
, ∀α ∈ [0, 1].

Combining it with Eq.(10) above completes the proof.

Theorem 5. Assume the true score sequence r∗1 , r
∗
2 , . . . is drawn iid from an unknown distribution D.

With the step size λt = 1/
√
t and an arbitrary prior P0, Algorithm 1 guarantees that for any fixed

t ≥ 2, with probability at least 1− δ over the randomness of r∗1:t−1, we have for all α ∈ [0, 1],

Er∗t ∼D[lα(rt(α), r
∗
t )] ≤ min

r∈[0,R]
Er∗t ∼D[lα(r, r

∗
t )] +O

(
R

√
log(1/δ)

t

)
.

Proof of Theorem 5. The proof follows from a standard uniform convergence argument (Zhang,
2023) combined with the Lipschitzness of the quantile loss.

First, notice that with any combination of α, r and r∗, the quantile loss lα(r, r∗) ∈ [0, R]. Therefore,
fixing any α ∈ [0, 1] and r ∈ [0, R], we apply the Hoeffding’s inequality (Lemma B.2) to obtain

Pr∗1:t−1

[∣∣∣∣∣ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i )− Er∗t

[lα(r, r
∗
t )]

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−2(t− 1)ε2

R2

)
.

Next, we evenly discretize [0, 1] by a grid of size
√
t, and also [0, R] by a grid of size

√
t, and

denote their combination as a set S. |S| = t. For all α and r, there exists (α̃, r̃) ∈ S satisfying
|α− α̃| ≤ 1/

√
t and |r − r̃| ≤ R/

√
t. Applying the union bound on S yields

Pr∗1:t−1

[
max

(α,r)∈S

∣∣∣∣∣ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i )− Er∗t

[lα(r, r
∗
t )]

∣∣∣∣∣ ≥ ε

]
≤ 2t exp

(
−2(t− 1)ε2

R2

)
,

which means with probability at least 1− δ,

max
(α,r)∈S

∣∣∣∣∣ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i )− Er∗t

[lα(r, r
∗
t )]

∣∣∣∣∣ ≤ R

√
log(2t/δ)

2(t− 1)
.

Since lα(r, r∗) is R-Lipschitz with respect to α, and 1-Lipschitz with respect to r, we have

max
0≤α≤1,0≤r≤R

∣∣∣∣∣ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i )− Er∗t

[lα(r, r
∗
t )]

∣∣∣∣∣ ≤ R

√
log(2t/δ)

2(t− 1)
+

2R√
t
.

Finally, due to Theorem 1 we have for all α and r,

1

t− 1

t−1∑
i=1

lα(rt(α), r
∗
i ) ≤

1

t− 1

t−1∑
i=1

lα(r, r
∗
i ) +

λt
1− λt

[ψ(r)− ψ(rt(α))]

≤ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i ) +

1√
t− 1

max {ψ(0), ψ(R)}

≤ 1

t− 1

t−1∑
i=1

lα(r, r
∗
i ) +

R√
t− 1

.

Combining it with the generalization error bound above, with high probability we have for all α and
r,

Er∗t
[lα(rt(α), r

∗
t )] ≤ Er∗t

[lα(r, r
∗
t )] +

R√
t− 1

+ 2

(
R

√
log(2t/δ)

2(t− 1)
+

2R√
t

)
.

Taking minr on the RHS completes the proof.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Theorem 6. With λt = λ =
√
1−β

β+
√
1−β

and the uniform P0, the output rt(α) of DISCOUNTED satisfies

rt(α) = argmin
r∈R

[
(1− β)−1

(
λ

1− λ
+ βt−1

)
ψ(r) +

t−1∑
i=1

βt−1−ilα(r, r
∗
i )

]
,

for all α and t. In addition, for all α ∈ [0, 1], it guarantees the discounted regret bound

RegretT,β(α) :=

T∑
t=1

βT−tlα(rt(α), r
∗
t )− min

r∈[0,R]

T∑
t=1

βT−tlα(r, r
∗
t ) ≤

R√
1− β

+ o(R),

where o(·) is with respect to T → ∞.

Proof of Theorem 6. Analogous to Eq.(8), we can write the output of DISCOUNTED as

rt(α) = qα
[
λP0 + (1− λ)P̄β(r

∗
1:t−1)

]
= min

{
r :

r

R

[
λ+ βt−1(1− λ)

]
+ (1− λ)(1− β)

t−1∑
i=1

βt−1−i1[r∗i ≤ r] ≥ α

}
.

Similar to Eq.(9), this can be verified as a minimizer of the objective

Ht(r) := (1− β)−1

(
λβ1−t

1− λ
+ 1

)
ψ(r) +

t−1∑
i=1

β−ilα(r, r
∗
i ).

For the convenience of notation, we will write the regularizer weight as zt := (1−β)−1
(

λβ1−t

1−λ + 1
)

.

Notice that with the uniform P0, the base regularizer ψ is R−1-strongly-convex due to Theorem 1,
therefore we can apply the strong-convexity-based FTRL analysis (Orabona, 2023, Corollary 7.9) on
the scaled loss functions,

ht(r) := β−tlα(r, r
∗
t ).

This yields

T∑
t=1

ht(rt(α))− min
r∈[0,R]

T∑
t=1

ht(r) ≤ zT

[
max

r∈[0,R]
ψ(r)− min

r∈[0,R]
ψ(r)

]
+
R

2

T∑
t=1

g2t
z2t
,

where gt can be any subgradient of ht(r) at r = rt(α). Scaling both sides by βT , we recover the
discounted regret definition on the LHS:

RegretT,β(α) ≤ βT zT

[
max

r∈[0,R]
ψ(r)− min

r∈[0,R]
ψ(r)

]
+
RβT

2

T∑
t=1

g2t
zt
.

Next we simplify the obtained expression. The range of ϕ is contained in [0, R/2]. In addition,
|gt| ≤ β−t since the quantile loss lα(r, r∗) is 1-Lipschitz with respect to r. Therefore,

T∑
t=1

g2t
zt

≤
T∑

t=1

β−2t

(1− β)−1
(

λβ1−t

1−λ + 1
) ≤ 1− β

β

1− λ

λ

T∑
t=1

β−t ≤ 1− λ

λ
β−T−1,

RegretT,β(α) ≤
R

2

(
βT

1− β
+

λ

1− λ

β

1− β
+

1− λ

λ

1

β

)
.

Notice that our choice of λ satisfies λ
1−λ = β−1

√
1− β, therefore

RegretT,β(α) ≤
R

2

(
βT

1− β
+

2√
1− β

)
=

R√
1− β

+ o(R),

where o(·) is with respect to T → ∞.
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B.1 AUXILIARY LEMMA

Lemma B.1 (Lemma 7.6 of (Orabona, 2023)). Let f be a µ-strongly convex function with respect to
a norm ∥·∥, over a convex set V . For all x, y ∈ V and subgradients g ∈ ∂f(y), g′ ∈ ∂f(x), we have

f(x)− f(y) ≤ ⟨g, x− y⟩+ 1

2µ
∥g − g′∥2∗ .

Here ⟨·, ·⟩ denotes the inner product, and ∥·∥∗ denotes the dual norm of ∥·∥.

The following lemma is a standard tool in ML due to (Hoeffding, 1963).
Lemma B.2 (Hoeffding’s inequality). Let x1, . . . , xn be iid samples of a real-valued random variable
on [a, b]. Let x̄ be the mean of the distribution. Then, for all ε > 0, we have

P

[∣∣∣∣∣ 1n
n∑

i=1

xi − x̄

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

The next lemma is the celebrated Dvoretzky–Kiefer–Wolfowitz inequality, due to (Dvoretzky et al.,
1956; Massart, 1990).
Lemma B.3 (DKW inequality). Let x1, . . . , xn be iid samples of a real-valued random variable
with cumulative distribution function F , and let P̄ (x1:n) be the empirical distribution of x1:n, with
cumulative distribution function F̂n. For all ε > 0, we have

P
[
sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ > ε

]
≤ 2 exp(−2nε2).

C ADDITIONAL EXPERIMENT

Extending Section 4, this section presents the result of our stock price experiment using a different
dataset (NVDA instead of AMD). The same procedure from Section 4 is followed. Figure 5 plots
the predicted thresholds, and Figure 6 plots the total quantile loss. Overall they exhibit the similar
behavior as the result from Section 4.
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Figure 5: Predicted score threshold on NVDA stock data.
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Figure 6: Quantile loss on NVDA stock data.

As for the coverage frequency, ACI
achieves 0.899, MVP achieves 0.891,
and our Bayesian algorithm achieves
0.897. Again, closer to the target 0.9 is
better. The conclusion is that in the fixed-
α setting our algorithm performs compet-
itively compared to the baselines, while
in the multi-α setting it demonstrates the
advantage from Section 2.

Switching sequence Besides, to
demonstrate the failure of ERM without
the iid assumption, we consider a synthetic r∗1:T sequence which switches in every round between 0
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and 1. Similar to Section 2, four algorithms are tested: OGD (Gibbs & Candès, 2021), MVP (Bastani
et al., 2022),3 ERM and our Bayesian algorithm QUANTIZED. Figure 7 plots their regret measured
by the quantile loss, under two different α values.
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Figure 7: Regret on switching data.

Consistent with the classical online learn-
ing theory, ERM becomes brittle when
α matches the long run average of r∗1:T
(i.e, 0.5), suffering linear regret with
respect to T . In contrast, both OGD
(with ηt = t−1/2; α is known) and our
Bayesian algorithm achieve sublinear re-
gret under both α values. Quite differ-
ent from the conventional online learn-
ing framework, MVP is designed to min-
imize the conditional empirical coverage
error, but nonetheless, it achieves low regret when α = 0.5. The limitation is that MVP requires a
relatively long period to warm up: when α = 0.7, the regret of MVP grows linearly at the beginning,
before hitting a plateau at T ≈ 800.

3Similar to Section 2, we use a single random seed for the MVP baseline throughout this section, since we
find the results to be generally insensitive to the seed.
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D ADDITIONAL RESULT FOR REBUTTAL

In this section we present more results to address the reviewers’ comments.

First, we extend our previous experiment on stock data to show that the monotonicity issue demon-
strated in Section 2 actually also shows up in this concrete application. We adopt the same hyperpa-
rameters as the other stock experiments, which means that our algorithm does not benefit from any
extra hyperparameter tuning. The AMD dataset is considered.

For all three algorithm (ACI, MVP, DISCOUNTED), we run two copies with different α values:
α1 = 0.9 and α2 = 0.905. For MVP which is randomized, this also means that the two copies
are given exactly the same random number sequence. In principle, the predicted score threshold
corresponding to α2 is larger than the threshold corresponding to α1. We plot their difference
sequences in Figure 8; if there is a negative value, then it means the monotonicity in the sense of
Section 2 is violated. The result shows that our Bayesian algorithm satisfies such monotonicity while
ACI and MVP do not, which demonstrates its practical advantage when multiple confidence levels
are of interest.
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Figure 8: The difference between the two predicted threshold sequences corresponding to α1 = 0.9
and α2 = 0.905. The monotonicity property is violated if the plotted sequence has negative value.
The results show that our Bayesian algorithm satisfies such monotonicity whereas ACI and MVP do
not.

Next, responding to Reviewer e4ek, we would like to show that our discounted algorithm can indeed
handle distribution shifts (which is consistent with the discounted regret bound, Theorem 6). From
the latest reply by Reviewer e4ek, it appears that such a concern has been dismissed. But since we
have already performed the experiment, we thought it would still be helpful to include the results for
the readers’ information.

To this end, we consider the experimental setting suggested by Reviewer e4ek, which is also consid-
ered in (Bastani et al., 2022): let the true score sequence be monotonically increasing. We use exactly
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the same setting as (Bastani et al., 2022), which means that all three algorithms we test (ACI, MVP
and DISCOUNTED) as well as their hyperparameters are still the same as our stock price experiments.
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Figure 9: Predicted score thresholds on a synthetic sequence of linearly increasing true scores.

The results are shown in Figure 9. The orange dashed line shows a synthetic, linearly growing
sequence, which is used as the true score sequence r∗1:T . The blue solid line plots the predicted
score thresholds of each algorithm. It can be seen that the predictions of both ACI and our algorithm
(DISCOUNTED) can faithfully track the growing trend, whereas ACI suffers from an undesirable
oscillatory behavior which is also discussed in (Bastani et al., 2022) (essentially, the predicted
threshold sequence of ACI alternates between just below the true score and the maximum value
which is 1).
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