
Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling:
A Perspective of Probability Theory

Anonymous ACL submission

Abstract

Recently, scaling test-time compute on Large001
Language Models (LLM) has garnered wide002
attention. However, there has been limited in-003
vestigation of how various reasoning prompting004
strategies perform as scaling. In this paper, we005
focus on a standard and realistic scaling set-006
ting: majority voting. We systematically con-007
duct experiments on 6 LLMs × 8 prompting008
strategies × 6 benchmarks. Experiment results009
consistently show that as the sampling time010
and computational overhead increase, compli-011
cated prompting strategies with superior ini-012
tial performance gradually fall behind by sim-013
ple Chain-of-Thought. We analyze this phe-014
nomenon and provide theoretical proofs. Ad-015
ditionally, we propose a method according to016
probability theory to quickly and accurately017
predict the scaling performance and select the018
best strategy under large sampling times with-019
out extra resource-intensive inference in prac-020
tice. It can serve as the test-time scaling law021
for majority voting. Furthermore, we introduce022
two ways derived from our theoretical analy-023
sis to significantly improve the scaling perfor-024
mance. We hope that our research can promote025
to re-examine the role of complicated prompt-026
ing, unleash the potential of simple prompting027
strategies, and provide new insights for enhanc-028
ing test-time scaling performance.029

1 Introduction030

Over the past few years, how to enhance the reason-031

ing abilities of large language models (LLMs) has032

been a topic of widespread interest (Dubey et al.,033

2024; Anil et al., 2023; Touvron et al., 2023; Open034

AI, 2024a; Team et al., 2024). Researchers have035

introduced various prompting strategies to improve036

the reasoning capacity of LLMs, such as Chain of037

Thought (CoT) (Wei et al., 2022) and so on (Zheng038

et al., 2024; Yasunaga et al., 2024; Madaan et al.,039

2023). Recently, many studies have shown that040

scaling LLM test-time compute can also effectively041

improve reasoning (Snell et al., 2024; Open AI, 042

2024b; Ji et al., 2025; Bi et al., 2024). 043

However, it is less explored how different 044

prompting strategies behave when scaling test-time 045

compute. In this paper, we focus on a standard 046

and effective scaling setting: majority voting.We 047

comprehensively evaluate the performances of 8 048

mainstream prompting strategies under equivalent 049

sampling time or computation overhead. We test 050

4 open-sourced and 2 close-sourced LLMs on 6 051

reasoning benchmarks, finding that simple CoT 052

consistently reaches the best performance on all 053

LLMs across benchmarks with given budgets as 054

scaling, even if it falls behind at the beginning. 055

We systematically analyze this phenomenon and 056

provide theoretical and experimental proofs. We 057

conclude that this is caused by two reasons. One is 058

that there are more easy questions and fewer hard 059

questions for CoT compared to other strategies. 060

Easy questions are more likely to get right solu- 061

tions, and the error possibility decreases until 0% 062

as scaling. In comparison, hard questions are the 063

opposite. The other is that CoT is less likely to be 064

affected by wrong answers. Although CoT some- 065

times has lower pass@1 accuracy, its probability of 066

obtaining the correct answer is more prominent in 067

the result distribution. In contrast, other strategies 068

have higher disturbed peaks in the distribution of 069

incorrect answers. These two reasons enable CoT 070

to improve reasoning performance more rapidly 071

and gradually dominate as scaling. 072

What’s more, we propose a method with the 073

complexity O(1) according to probability theory 074

to quickly predict the scaling performance, which 075

can serve as the test-time scaling law for major- 076

ity voting. Experiments show that our method can 077

accurately estimate the scaling performance and se- 078

lect the best strategy with arbitrary sampling time. 079

Furthermore, we explore two ways to signifi- 080

cantly improve scaling performance according to 081

our theories. (1) Adaptively scaling according to 082

1

the question difficulty. (2) Dynamically selecting083

the optimal prompting strategy. Extensive experi-084

ments verify their general effectiveness and superi-085

ority, e.g., improving Majority@10 accuracy from086

86.0% to 97.4% and 15.2% to 61.0% for LLaMA-087

3-8B-Instruct (Dubey et al., 2024) on GSM8K088

(Cobbe et al., 2021) and MATH-500 (Hendrycks089

et al., 2021b) by combining (1) and (2), respec-090

tively.091

Our contributions can be summarized as follows:092

• We comprehensively study the test-time scal-093

ing performance on 6 LLMs × 8 prompting094

strategies × 6 benchmarks. (Section 2)095

• We find that CoT consistently performs best096

under the equivalent sampling time and com-097

putation overhead. (Section 3)098

• We analyze this phenomenon and provide the-099

oretical and experimental proofs. (Section 4)100

101 • We propose a method to quickly predict the102

scaling performance and the best strategy un-103

der given sampling times. (Section 5)104

• Based on the above analysis, we introduce105

two ways to significantly improve the scaling106

performance. (Section 6)107

2 Scaling System Designs108

We focus on a straight and effective setting of test-109

time scaling, majority voting, i.e., Self-Consistency110

(Wang et al., 2023b). Our goal is to study what111

prompting strategy performs best under the equiv-112

alent scaling overhead, particularly when largely113

increasing the scaling extent.114

2.1 Models115

We conduct experiments on 4 open-sourced116

LLMs including Qwen2.5-7B-Instruct (Yang et al.,117

2024a), LLaMA-3-8B-Instruct (Dubey et al., 2024),118

GLM-4-9B-Chat (GLM et al., 2024) and Phi-3.5-119

mini-Instruct, and 2 close-sourced LLMs including120

Gemini-1.5-Flash (Team et al., 2024) and GPT-4o-121

mini (Open AI, 2024a).122

2.2 Prompting Strategies123

We mainly focus on generalizable reasoning124

prompting strategies, excluding those individually125

designed for specific tasks or involving fine-tuning,126

training auxiliary models, or incorporating other127

models, tools, or human assistance. In this setting,128

the model’s performance is only related to the input129

prompt, thus making it fairly compare the scaling130

performance of those prompting strategies. The 131

prompting strategies we test are listed as follows. 132

Direct Prompting (DiP): Directly input the ques- 133

tion to the model, without any additional instruc- 134

tion or restrictions to the output. 135

Chain-of-Thought (CoT) (Wei et al., 2022; Ko- 136

jima et al., 2022): Use the prompt “Let’s think 137

step by step.” to solve the problem step by step. 138

Least-to-Most (L2M) (Zhou et al., 2023): 139

Break down the question into progressive sub- 140

questions. Answer the sub-questions and get the 141

final result according to them and their answers. 142

Tree-of-Thoughts (ToT) (Yao et al., 2023): Ex- 143

plore multiple reasoning paths to get several solu- 144

tions, then analyze each solution and decide which 145

one is the most promising. 146

Self-Refine (S-RF) (Madaan et al., 2023): First, 147

answer the question to get an initial answer. Next, 148

evaluate the previous answer and get feedback. Fi- 149

nally, refine the previous answer according to feed- 150

back. This will last for several rounds. 151

Step-Back Prompting (SBP) (Zheng et al., 2024): 152

First, extract the discipline concepts and principles 153

involved in solving the problem. Then, solve the 154

problem step by step by following the principles. 155

Analogous Prompting (AnP) (Yasunaga et al., 156

2024): Recall relevant problems as examples. Af- 157

terward, solve the analogous problems and proceed 158

to solve the initial problem according to them. 159

Multi-Agent Debate (MAD) (Du et al., 2024): 160

Set three model instances as different agents to 161

debate for several rounds, and select the most con- 162

sistent result among them. 163

2.3 Benchmarks 164

We evaluate across 6 reasoning benchmarks used 165

in the original papers of the above prompting strate- 166

gies, including GSM8K (Cobbe et al., 2021), GSM- 167

Hard (Gao et al., 2023), MATH-500 (Hendrycks 168

et al., 2021b; Lightman et al., 2024), MMLU-high- 169

school-biology, chemistry and physics (Hendrycks 170

et al., 2021a). 171

2.4 Formal Expression 172

We divided the prompting strategies into two 173

groups: iterative methods (S-RF, MAD, and ToT) 174

and the other non-iterative methods. For S-RF 175

and MAD, we run them N rounds and get the 176

final result in the N th round. For ToT, we set 177

2

Figure 1: Average performances of distinct prompting strategies and the best one P∗
N across benchmarks on each

LLM under constrained sampling time N . As increasing the sample time N , the accuracy of CoT grows rapidly and
it dominates on all models when N is large enough.

Figure 2: Average performances of distinct prompting strategies and the best one P∗
O across benchmarks on each

LLM under constrained cost O. Under the equal cost O, CoT performs best most of the time. When O grows larger,
CoT gradually becomes the best prompt strategy P∗

O on all models.

the model to explore and evaluate N different178

reasoning paths to get the best one. For oth-179

ers, we parallel sample N generations and get180

their most consistent answer with majority vot-181

ing. For convenience, we refer to all of the above182

processes as sampling N times. Therefore, we183

can categorize those iterative strategies that re-184

quire multiple rounds or reasoning paths as P2 =185

{S-RF, MAD, ToT}, and other non-iterative ones186

as P1 = {DiP, CoT, L2M, SBP, AnP}.187

Formally, assuming that we have n prompting188

strategies {Pi | i = 1, 2, ..., n}, when using the189

prompt strategy Pi to answer a text question x on190

a model M, we can get the answered result of one191

sample with an answer extractor ϕ, which extracts192

the answer in the output sentence using regular193

expressions. Then we can formalize the process of194

getting the final answer when sampling N times as 195

ϕ[M(x |Pi);N] = 196{
mode{ϕ[M(x |Pi)]}N1 ,Pi ∈ P1

ϕ[M(x |Pi;N)], Pi ∈ P2

}
(1) 197

With a fixed sampling time N , the best prompt- 198

ing strategy P∗
N on the dataset D is 199

P∗
N = argmax

Pi

Ex∈D 1{ϕ[M (x |Pi);N] = y},

(2) 200

where y is the ground truth answer for x. However, 201

sampling with distinct Pi may cause different com- 202

putation overhead. It would be fairer to compare 203

them with a fixed overhead O. To calculate the 204

overhead of using a model M to answer a ques- 205

tion x by sampling N times with the prompting 206

strategy Pi, we can consider it as a function of 207

3

x,M,Pi, N , noted as C(x |M;Pi;N). Under a208

fixed overhead O, the best prompting strategy P∗
O209

on the dataset D is210

P∗
O=argmax

Pi

max
N

Ex∈D1{ϕ[M (x |Pi);N] = y},211

212 s.t.
∑
x∈D

C(x |M;Pi;N) ≤ O. (3)213

Given that completion tokens are more computa-214

tionally expensive than prompt tokens, we define215

the overhead as the weighted sum of prompt to-216

kens and completion tokens (Cost). For the mod-217

els Gemini-1.5-Flash and GPT-4o-mini, we utilize218

their respective pricing metrics.1 For other open-219

sourced models, we adopt the pricing of GPT-4o-220

mini as a proxy.221

3 CoT Dominates as Test-Time Scaling222

Under each sampling time N , we test five times to223

obtain the average performance of majority voting.224

We evaluate under two kinds of budget constraints:225

(1) a fixed sampling time budget N , and (2) a fixed226

inference cost budget O. Figure 1 and 2 summa-227

rize the average performances across benchmarks228

of different Pi under constrained sampling time229

N and cost O on each model, and display the best230

prompting strategy P∗
N under different values of N231

and P∗
O under different values of O, respectively.2232

We can see that when scaling test-time compute,233

CoT performs best among all prompting strategies234

under a constrained N and O most of the time.235

Although some complicated prompting strategies236

perform best under lower N and O, CoT dominates237

without exception on all models when largely scal-238

ing. We theoretically and experimentally analyze239

this phenomenon, whose reasons come from two240

aspects. We explain these in detail in Section 4.241

What’s more, we find that about 80% of the re-242

sults conform to this trend on each model and each243

benchmark. On certain datasets and LLMs, DiP244

also performs best as largely scaling. This is partic-245

ularly evident on powerful models, such as Gemini-246

1.5-Flash and GPT-4o-mini. More detailed results247

can be found in Appendix C. These indicate that248

1The price of Gemini-1.5-Flash: $0.075/1M prompt to-
kens, $0.3/1M completion tokens. The price of GPT-4o-mini:
$0.15/1M prompt tokens, $0.6/1M completion tokens.

2We don’t test the performance with very large N for Pi ∈
P2, as this will lead to extremely long context, large cost and
computation time, and marginally increased or even decreased
performance, which is no better than Self-Consistency (Smit
et al., 2024). S-RF performs poorly even with multiple rounds.
This is consistent with the results of (Huang et al., 2024),
which points out the limitations of S-RF.

simple CoT is more efficient and has the potential 249

to surpass other complicated prompting strategies 250

under the same scaling setting. Current LLMs can 251

achieve remarkable reasoning capabilities by only 252

relying on simple prompting strategies. 253

4 Why CoT Performs worse with Lower 254

N while better with Larger N? 255

Let us consider a specific input question x, note 256

the answer space A = {a1, a2, . . . , am} as the set 257

of all probable values of ϕ[M(x |Pi)] for all Pi, 258

i.e., ϕ[M(x |Pi)] ∈ A for ∀ Pi. We omit N = 1 259

in ϕ[M(x |Pi)] for brevity. {pi,1, pi,2, . . . , pi,m} 260

denotes the corresponding probabilities, i.e., pi,j = 261

Pr (ϕ[M(x |Pi)] = aj). Note a∗i as the final 262

result of Pi by scaling sampling N times, i.e., 263

a∗i = ϕ[M(x |Pi);N]. Then the occurrence num- 264

ber Xi = (xi,1, . . . ,xi,m) of each probable an- 265

swer for Pi follows a multinomial distribution, i.e., 266

Xi ∼ Mult(N, pi,1, pi,2, . . . , pi,m). The process 267

of getting the final result a∗i of Pi by sampling N 268

times can be formalized as: 269

Xir = {xi,j |xi,j = max{Xi}}
k ∼ Uniform(Xir), a∗i = ak

(4) 270

Next, we will introduce several lemmas and the- 271

orems to explain the two reasons why CoT some- 272

times performs worse with lower N while bet- 273

ter with larger N . In the following proof, we 274

omit the input x, assume a1 is the correct answer, 275

and note the probability of getting a1 when sam- 276

pling N times with Pi as Pr(a1|Pi;N), which 277

can be regarded as the expectation of the accuracy 278

1{ϕ[M (x |Pi);N] = y}. Details about the proof 279

process can be found in Appendix B. 280

Definition 1. Note pmax = max{pi,1, ..., pi,m}, 281

S = {aj | pi,j = pmax}, we can define the dif- 282

ficulty of the input question x for Pi. If a1 ∈ 283

S and |S| = 1, we call x an easy question for 284

Pi. If a1 ∈ S and |S| > 1, we call x a moder- 285

ate question for Pi. If a1 /∈ S, we call x a hard 286

question for Pi. 287

Theorem 1. If x is an easy question for 288

Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N , 289

lim
N→+∞

Pr(a1|Pi;N) = 1. 290

Theorem 2. If x is a moderate question for 291

Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N , 292

lim
N→+∞

Pr(a1|Pi;N) = 1/|S|. 293

4

N=1

𝐏𝑵
∗=SBP

N=3

𝐏𝑵
∗=SBP

N=5

𝐏𝑵
∗=CoT

Moderate:

0.2%

Hard:

11.6%

Easy:

88.1%

CoT

Moderate:

0.3%

Hard:

12.3%

Easy:

87.4%

L2M

Moderate:

0.1%

Hard:

12.8%

Easy:

87.1%

SBP SBP

SBP

SBP

CoT

CoT

CoT

0.64

0.35

0.01

0.6

0.2 0.2

0.709

0.2862

0.0048

0.696

0.152 0.152

0.7568 0.76896

0.2428

0.0004

0.11552 0.11552

Figure 3: Illustration of two reasons for why CoT
sometimes performs worse with lower N while bet-
ter with larger N . Left: CoT has more easy questions
and fewer hard questions. For example, the probabil-
ity distribution of L2M is {0.4, 0.5, 0.1, 0.0, 0.0} (hard
question), and {0.3, 0.2, 0.2, 0.2, 0.1} (easy question)
for CoT. Although L2M has higher pass@1 accuracy,
its accuracy reduces until 0% as scaling while CoT in-
creases until 100%. Right: CoT is less likely to be
affected by wrong answers due to their relatively uni-
form distribution. The probability of obtaining the right
answer a1 grows more rapidly as increasing N .

Theorem 3. If x is a hard question for Pi,294

Pr(a1|Pi;N) exhibits a general declining trend295

w.r.t. N , lim
N→+∞

Pr(a1|Pi;N) = 0.296

Lemma 1. Consider a specific condition with297

answer space |A| = 3. For N = 3,298

Pr(a1|Pi;N) = 3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3. For299

N = 5, Pr(a1|Pi;N) = 6p5i,1 − 15p4i,1 + 10p3i,1 +300

15p2i,1pi,2pi,3(pi,2 + pi,3).301

Theorem 4. For two prompting strategies Pi and302

Pi′ , note pi,q = max{pi,2, . . . , pi,m}, pi′,q′ =303

max{pi′,2, . . . , pi′,m}, if pi,1 − pi,q < pi′,1 − pi′,q′304

and pi,1+pi,q−p2i,1−p2i,q > pi′,1+pi′,q′ −p2i′,1−305

p2i′,q′ , there exits a sufficiently large N0 such that306

for N > N0, Pr(a1|Pi;N) < Pr(a1|Pi′ ;N).307

4.1 CoT Has More Easy Questions and Fewer308

Hard Questions309

We identify two primary reasons why CoT some-310

times performs worse with lower sample sizes311

(N) but achieves better performance among these312

prompting approaches with larger N . The first313

reason relates to the distribution of question diffi-314

culty for CoT. CoT has more easy questions and315

fewer hard questions. When sampling with lower 316

N , Pi still has a small probability of obtaining the 317

right answer for hard questions, while the prob- 318

ability diminishes to zero as increasing N . This 319

is the opposite of easy questions. The prompting 320

strategy with fewer hard questions and more easy 321

questions will improve performance more rapidly 322

when scaling. According to Theorem 1 to 3, we 323

can calculate the extreme performance of Pi ac- 324

cording to the difficulty proportion of questions, 325

i.e.,
∑
x∈D

lim
N→+∞

Pr(a1|Pi;N). Table 1 summarizes 326

the difficulty proportion of the questions and ex- 327

treme performance for each Pi on each model. It 328

can be observed that CoT has more easy questions 329

and fewer hard questions, and can reach the best 330

extreme performance on all models, thus making 331

CoT gradually dominate as increasing N even if it 332

has a lower pass@1 accuracy. 333

4.2 CoT is Less Likely to be Affected by 334

Wrong Answers 335

The second reason for this phenomenon is that 336

CoT is less likely to be affected by wrong answers. 337

Pr(a1|Pi;N) is not a function of only the proba- 338

bility pi,1 of the right answer a1, but also related to 339

the probability distribution of other wrong answers. 340

According to Theorem 4, even if pi,1 > pi′,1, i.e., 341

Pr(a1|Pi;N = 1) > Pr(a1|Pi′ ;N = 1), there 342

still may exist an N0 that Pr(a1|Pi;N = N0) > 343

Pr(a1|Pi′ ;N = N0). Considering a question x in 344

GSM8K as an example and a1 is the correct an- 345

swer, the result probability distribution of Pi = 346

SBP is {0.64, 0.35, 0.01}, and {0.6, 0.2, 0.2} for 347

Pi′ = CoT, which satisfies the condition in Theo- 348

rem 4. According to Lemma 1, Pr(a1|Pi;N = 349

1) = 0.640 > Pr(a1|Pi′ ;N = 1) = 0.600, 350

Pr(a1|Pi;N = 3) = 0.709 > Pr(a1|Pi′ ;N = 351

3) = 0.696, while Pr(a1|Pi;N = 5) = 0.757 < 352

Pr(a1|Pi′ ;N = 5) = 0.769. This means, although 353

complicated prompting strategies may have higher 354

pass@1 accuracy, they are easier to be affected 355

by wrong answers. In contrast, simple CoT has a 356

relatively flat distribution on wrong answers, thus 357

making it focus more on the correct answer, which 358

makes it more rapidly improve performance in easy 359

questions and more slowly reduce accuracy in hard 360

questions as increasing N , as shown in Figure 3. 361

We record the quantity of such questions for each 362

two prompting strategies and display the results of 363

Qwen2.5-7B-Instruct and LLaMA-3-8B-Instruct in 364

Table 2. If CoT is Pi′ , there are the most data that 365

5

Table 1: Difficulty proportion of questions and extreme peformance (denote by “Acc”) for each Pi and LLM
across benchmarks. CoT has more easy questions and fewer hard questions, and can reach the best extreme
performance on all LLMs. More results on other models are shown in Table 4.

Pi Easy Moderate Hard Acc Easy Moderate Hard Acc Easy Moderate Hard Acc

Qwen2.5-7B-Instruct LLaMA-3-8B-Instruct GLM-4-9B-Chat
DiP 86.3% 0.3% 13.4% 86.4 69.7% 1.0% 29.3% 70.2 79.8% 0.6% 19.6% 80.1
CoT 88.1% 0.2% 11.6% 88.2 70.9% 0.9% 28.2% 71.3 82.8% 0.8% 16.5% 83.1
L2M 87.4% 0.3% 12.3% 87.6 70.3% 1.6% 28.1% 71.0 81.9% 0.4% 17.7% 82.1
SBP 87.1% 0.1% 12.8% 87.2 67.3% 1.3% 31.3% 68.0 81.4% 0.9% 17.6% 81.9
AnP 81.1% 0.5% 18.4% 81.3 67.5% 1.4% 31.1% 68.2 76.4% 1.2% 22.4% 77.0

Table 2: Quantity of questions described in Section
4.2. Results are displayed as “x/y”, where x is for Qwen
and y for LLaMA. The value vij in the ith row and
jth column represents the quantity of data that satisfies
Theorem 4. Results prove that CoT has greater potential
to significantly increase performance as scaling.

Pi

Pi′ DiP↓ CoT↓ L2M↓ SBP↓ AnP↓ Sum ↓

DiP ↑ - 447/816 414/794 457/459 393/513 1711/2582
CoT ↑ 423/620 - 374/646 416/382 361/408 1574/2046
L2M ↑ 505/639 510/677 - 494/432 403/393 1912/2141
SBP ↑ 599/1316 601/1433 564/1398 - 429/923 2193/5070
AnP ↑ 800/1243 817/1381 799/1380 776/871 - 3192/4875

Sum ↑ 2327/3818 2375/4307 2151/4218 2143/2144 1586/2237 -

satisfies Theorem 4. If CoT is Pi, there are the least366

such questions. These demonstrate that CoT has367

greater potential to significantly increase scaling368

performance compared with other strategies.369

5 Predicting Scaling Performance and P∗
N370

In practice, evaluating the test-time scaling per-371

formance requires significantly intensive resource372

consumption, especially with very large sampling373

time N . For pretraining, it is feasible to predict the374

train-time scaling performance based on the scal-375

ing law (Kaplan et al., 2020) through a series of376

low-cost experiments, while maintaining the model377

architecture largely unchanged and minimizing the378

risks associated with large-scale training. Simi-379

larly, we can also use the sample results of Pi380

with fewer N to approximately get the distribu-381

tion {pi,1, pi,2, . . . , pi,m} to predict the test-time382

scaling performance with larger N . Directly, one383

can utilize the multinomial distribution probabil-384

ity calculation formula (Equation 13 and 14) to385

calculate Pr(a1|Pi;N) with enumeration or lever-386

age numerical simulation to estimate. However,387

their computational complexities are both O(N),388

and the former needs to traverse all situations and389

is difficult to operate. Therefore, we propose a390

method with the computational complexity O(1) 391

to quickly predict the scaling performance of ma- 392

jority voting for arbitrary Pi, which can serve as 393

the test-time scaling law. It can also select the best 394

prompting strategy P∗
N according to the predicted 395

performances of each Pi. 396

Here we omit the prompting index i and input 397

question x, and assume a1 is the correct answer 398

in the following. According to Khinchin’s Law 399

of Large Numbers and Lindeberg-Levy Central 400

Limit Theorem, when N is large enough, each 401

xj can be approximated by a normal distribution. 402

Specifically, for x1, we have 403

x1 ∼ N (Np1, Np1(1− p1)), (5) 404

i.e., a normal distribution with mean Np1 and vari- 405

ance Np1(1 − p1). Considering the maximum 406

value among all other xj (j ̸= 1), denoted as 407

M = max(x2, ...,xm), when N is large enough, 408

the distribution of M can be approximated by 409

M ∼ N (Npmax, Npmax(1− pmax)), (6) 410

where pmax is the second highest probability ex- 411

cluding p1. We now need to calculate P (x1 > M), 412

which can be approximated by comparing two nor- 413

mal distributions. Let Z = x1 − M , then the 414

distribution of Z is 415

Z∼N (N(p1−pmax), N(p1(1−p1)+pmax(1−pmax)).
(7) 416

Therefore, 417

Pr(a∗ = a1) ≈ Pr(Z > 0), (8) 418

where a∗ is the final sample result. Using properties 419

of the standard normal distribution, we can write 420

Pr(Z > 0) = Pr

(
Z − E[Z]√

Var[Z]
>

−E[Z]√
Var[Z]

)

= 1− Φ

(
−E[Z]√

Var[Z]

)
,

(9) 421

E[Z] = N(p1 − pmax), 422
423

V ar[Z] = N(p1(1− p1) + pmax(1− pmax)), 424

6

100 101 102 103

Sampling Time

74
76
78
80
82
84
86
88

Pe
rf

or
m

an
ce

 (
%

)
DiP

Real
Predicted

100 101 102 103

Sampling Time

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

CoT

Real
Predicted

100 101 102 103

Sampling Time

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

L2M

Real
Predicted

100 101 102 103

Sampling Time

70

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Real
Predicted

100 101 102 103

Sampling Time

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Pe
rf

or
m

an
ce

 (
%

)

AnP

Real
Predicted

Figure 4: Real and predicted performance using our method of different Pi under various sampling time constraints.
Our method can accurately estimate the scaling performance of arbitrary Pi, especially with large N .

Table 3: The true best prompting strategy P∗
N and the

predicted P∗
N using our method under various sampling

time constraints. Our method can correctly predict the
best prompting strategy under any constraints evaluated.

P∗
N

Sampling Time N

1 3 5 10 20 50 100 1000

Real L2M CoT CoT CoT SBP SBP SBP SBP
Predicted L2M CoT CoT CoT SBP SBP SBP SBP

Correct ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

where Φ is the standard normal cumulative distri-425

bution function. Thus, we can quickly predict the426

scaling performance and select the best prompting427

strategy P∗
N with given N by428

Pr(a1|Pi;N) ≈ 1−Φ

 −(p1 − pmax)√
p1(1−p1)+pmax(1−pmax)

N

,
(10)429430

Accuracy(Pi, N) = Ex∈D Pr(a1|Pi, N), (11)431
432

P∗
N = argmax

Pi

Accuracy(Pi, N). (12)433

Experiment. We verify our method on LLaMA-434

3-8B-Instruct on GSM8K, only using 40 samples435

to estimate pi,j . Results are shown in Figure 4. We436

can see that our method can accurately estimate the437

scaling performance, and the error decreases until438

0% as scaling sampling time. When N ≥ 10, the439

error is already less than 1%. This makes sense440

as our method is based on the assumption that441

N is large enough. Although the prediction ac-442

curacy is not very high when N is small, the differ-443

ences in predicted performances between distinct444

Pi are similar to those in true performances, so445

our method can correctly select the best prompting446

strategy P∗
N with arbitrary N , as shown in Table 3.447

6 Improving Scaling Peformance448

According to the analysis in Section 4, we can449

further improve the scaling performance in two450

ways. Extensive experiments confirm their effec-451

tiveness, leading to significant improvements. We452

will further explore them in the future. All follow- 453

ing results are conducted on Qwen-2.5-7B-Instruct 454

on GSM8K. Please refer to Appendix D for more 455

results on other LLMs and benchmarks. 456

6.1 Adaptively Scaling Based on the Difficulty 457

According to Theorem 1 to 4, it will lead to de- 458

creased performance when scaling sampling time 459

on hard questions. Performances only continuously 460

improve on easy questions. Therefore, when fac- 461

ing a hard question, we can force LLMs to only 462

answer it once without scaling more. If the ques- 463

tion is a moderate or easy question, LLMs scale 464

sampling time as usual. We evaluate the perfor- 465

mance both when forcing the LLM to determine 466

the question difficulty itself (noted as “Adaptive”) 467

and providing the difficulty oracle to the LLM as 468

an upper bound reference (noted as “Oracle”), as 469

shown in Figure 5. “Adaptive” performance is al- 470

most equal to the usual scaling performance (noted 471

as “Vanilla”), which is because the LLM is more 472

inclined to believe a question is easy, especially 473

on more complicated Pi such as SBP and AnP. 474

Nevertheless, all Pi can significantly improve their 475

scaling performances with question difficulty ora- 476

cles, proving the potential of this method. 477

6.2 Dynamically Choosing the Optimal Pi 478

For a question x, it may be a hard question for a 479

prompting strategy Pi with higher accuracy, while 480

an easy question for another strategy Pi′ with lower 481

accuracy. So if we can choose the optimal prompt- 482

ing strategy for each question, it will largely im- 483

prove the performance. We test the scaling perfor- 484

mance both when forcing the LLM to choose the 485

most suitable Pi (noted as “Dynamic”) and provid- 486

ing the oracles as an upper bound (noted as “Or- 487

acle”), i.e., telling the LLM which Pi maximizes 488

Pr(a1|Pi;N), as shown in Figure 6. “Dynamic” 489

performance is almost equal to CoT. This is be- 490

cause Qwen believes CoT is the best Pi among 491

8 prompting strategies in 99.7% of the questions. 492

7

0 20 40 60 80 100
Sampling Time

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)
DiP

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

91

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 5: Results of adaptively scaling for each Pi ∈ P1 based on oracle and predicted question difficulty.

Figure 6: Results of dynamically choosing the optimal Pi.

Figure 7: Results of combining adaptively scaling and
dynamically choosing the optimal Pi with oracles.

However, it can achieve significant improvement493

with oracles. This means that selecting the best Pi494

for each question is more effective than majority495

voting, as “Oracle” performance with only N = 1496

is much higher than ∀Pi with even N → +∞.497

However, “Oracle” performance does not increase498

as scaling. This is because there are questions that499

are hard for all Pi. Even if we select the best Pi on500

a question, its accuracy still reduces as scaling. So501

if we can combine the two methods in Section 6.1502

and 6.2, it would lead to much more improvement.503

6.3 Combining Adaptively Scaling and504

Dynamically Choosing the Optimal Pi505

Figure 7 reports the peformance upper bounds of506

each Pi ∈ P1 + “Adaptive”, “Dynamic”, and com-507

bining “Adaptive” and “Dynamic”. Experiment508

results demonstrate the powerful potential of the509

combined method. We will explore more feasible510

methods to reach this upper bound in future work.511

7 Related Work 512

Reasoning Prompting Strategies. CoT series 513

carefully design exemplars or 0-shot prompts to 514

unleash the potential of step-by-step solving (Wei 515

et al., 2022; Kojima et al., 2022; Zhang et al., 2023; 516

Fu et al., 2023). (Zhou et al., 2023; Dua et al., 2022; 517

Khot et al., 2023) break down the question into 518

smaller, more manageable subproblems. (Madaan 519

et al., 2023; Kim et al., 2023) force LLMs to self- 520

evaluate and correct. (Du et al., 2024; Liang et al., 521

2024; Chan et al., 2024) utilize multi-agent debate 522

to collaborate reasoning. (Yasunaga et al., 2024; 523

Yu et al., 2024) guide LLMs to draw experience 524

from analogous problems. (Zheng et al., 2024; Gao 525

et al., 2024) promote LLMs on abstract reasoning. 526

Scaling Test-Time Compute. Self-Consistency 527

is a simple but effective scaling method (Wang 528

et al., 2023b). (Li et al., 2023; Hosseini et al., 529

2024) train a verifier to evaluate samples and select 530

the best solution. Some use iterative refinement 531

(Madaan et al., 2023) or multiple rounds of de- 532

bate(Du et al., 2024). Others leverage the theory 533

of tree search (Yao et al., 2023; Ding et al., 2024; 534

Zhang et al., 2024a) and graph search (Besta et al., 535

2024a; Jin et al., 2024a) to expand and aggregate 536

reasoning paths (Besta et al., 2024b). 537

8 Conclusion 538

We comprehensively study the behavior of various 539

prompting strategies when scaling majority vot- 540

ing. Our experiments on 6 LLMs × 8 prompting 541

strategies × 6 benchmarks consistently show that 542

CoT has the potential to perform best as scaling. 543

Theoretical analyses reveal that CoT benefits from 544

fewer hard questions, more easy questions, and 545

less susceptibility to incorrect answers. Addition- 546

ally, our proposed method for predicting scaling 547

performance offers a practical tool to select the 548

optimal prompting strategy under given budgets. 549

What’s more, we introduce two effective methods 550

to further improve scaling performance. 551

8

Limitations552

In this paper, we mainly focus on majority voting,553

which is a simple but effective scaling approach.554

However, we don’t test on other more complex scal-555

ing approaches such as Monte Carlo Tree Search.556

Our finding that CoT dominates as scaling most of557

the time does not always hold for every LLM on558

every dataset, e.g., Table 3. Nevertheless, 80% of559

the results conform to this rule. In fact, it depends560

on the composition of the dataset. If we specifically561

collect hard questions for Pi as a dataset, it will562

lead to a continuous decline performance of Pi.563

Our experiments and analysis indicate that, even564

though some Pi may perform poorly with lower565

sampling time, they hold the potential to exhibit566

superior performance than other prompting strate-567

gies as test-time scaling. We propose two superior568

methods according to rigorous theories, which can569

significantly improve scaling performance on each570

model and each benchmark we test, and we are con-571

fident in the universality of our methods. However,572

our experiment results indicate that LLMs alone573

cannot readily achieve the intended effects, push-574

ing us to explore more practicable and effective575

methods in our future work.576

Ethical Considerations577

There are many potential societal consequences578

of our work, none which we feel must be specifi-579

cally highlighted here. The sole potential risk we580

acknowledge is that scaling compute may result581

in substantial electricity consumption and carbon582

dioxide emissions.583

Checklist584

A1. Did you describe the limitations of your585

work? Yes, we provide a “Limitations” section586

to describe the limitations.587

A2. Did you discuss any potential risks of your588

work? Yes, we provide a “Ethical Considera-589

tions ” section to discuss the potential risks.590

B1. Did you cite the creators of artifacts you591

used? Yes.592

B2. Did you discuss the license or terms for use593

and / or distribution of any artifacts? Yes. We594

discuss the license of benchmarks in Section 2.595

B3. Did you discuss if your use of existing arti-596

fact(s) was consistent with their intended use,597

provided that it was specified? For the arti- 598

facts you create, do you specify intended use 599

and whether that is compatible with the original 600

access conditions (in particular, derivatives of 601

data accessed for research purposes should not 602

be used outside of research contexts)? Yes. We 603

ensure our use of existing artifacts is aligned with 604

their intended purposes. We discuss it in Appendix 605

E. 606

B4. Did you discuss the steps taken to check 607

whether the data that was collected / used con- 608

tains any information that names or uniquely 609

identifies individual people or offensive content, 610

and the steps taken to protect / anonymize it? 611

N/A. We don’t create artifacts. None of the datasets 612

we use contain information that names or uniquely 613

identifies individual people or offensive content. 614

B5. Did you provide documentation of the arti- 615

facts, e.g., coverage of domains, languages, and 616

linguistic phenomena, demographic groups rep- 617

resented, etc.? Yes, we state them in Section 2 618

and Appendix E. 619

B6. Did you report relevant statistics like the 620

number of examples, details of train / test / dev 621

splits, etc. for the data that you used / created? 622

Yes, we state them in Appendix E. 623

C1. Did you report the number of parameters in 624

the models used, the total computational budget 625

(e.g., GPU hours), and computing infrastructure 626

used? Yes, we discuss the computational budget 627

from two aspects, constrained sampling time and 628

cost, in Section 2 and 3. 629

C2. Did you discuss the experimental setup, in- 630

cluding hyperparameter search and best-found 631

hyperparameter values? Yes, we discuss the 632

experimental setup in Appendix E. 633

C3. Did you report descriptive statistics about 634

your results (e.g., error bars around results, sum- 635

mary statistics from sets of experiments), and 636

is it transparent whether you are reporting the 637

max, mean, etc. or just a single run? Yes, we 638

report the average performance of majority voting 639

by testing 5 times, in Section 3. 640

C4. If you used existing packages (e.g., for pre- 641

processing, for normalization, or for evaluation, 642

such as NLTK, Spacy, ROUGE, etc.), did you 643

report the implementation, model, and param- 644

9

eter settings used? Yes, we discuss them in645

Appendix E.646

D1. Did you report the full text of instructions647

given to participants, including e.g., screenshots,648

disclaimers of any risks to participants or an-649

notators, etc.? N/A. Our work does not involve650

crowdsourcing.651

D2. Did you report information about how652

you recruited (e.g., crowdsourcing platform, stu-653

dents) and paid participants, and discuss if such654

payment is adequate given the participants’ de-655

mographic (e.g., country of residence)? N/A.656

Our work does not involve crowdsourcing.657

D3. Did you discuss whether and how consent658

was obtained from people whose data you’re659

using/curating? N/A. Our work does not involve660

crowdsourcing.661

D4. Was the data collection protocol approved662

(or determined exempt) by an ethics review663

board? N/A. We do not create any dataset.664

D5. Did you report the basic demographic and665

geographic characteristics of the annotator pop-666

ulation that is the source of the data? N/A.667

E. Did you use AI assistants (e.g., ChatGPT,668

Copilot) in your research, coding, or writing?669

Yes, we use AI assistants to assist in searching for670

information and debugging.671

References672

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al.673
2023. Let’s sample step by step: Adaptive-674
consistency for efficient reasoning and coding with675
llms. In Proceedings of the 2023 Conference on676
Empirical Methods in Natural Language Processing,677
pages 12375–12396.678

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-679
son, Dmitry Lepikhin, Alexandre Passos, Siamak680
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng681
Chen, et al. 2023. Palm 2 technical report. arXiv682
preprint arXiv:2305.10403.683

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-684
berger, Michal Podstawski, Lukas Gianinazzi, Joanna685
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-686
otr Nyczyk, et al. 2024a. Graph of thoughts: Solving687
elaborate problems with large language models. In688
Proceedings of the AAAI Conference on Artificial689
Intelligence, volume 38, pages 17682–17690.690

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert691
Gerstenberger, Nils Blach, Piotr Nyczyk, Marcin692

Copik, Grzegorz Kwaśniewski, Jürgen Müller, Lukas 693
Gianinazzi, et al. 2024b. Topologies of reasoning: 694
Demystifying chains, trees, and graphs of thoughts. 695
arXiv preprint arXiv:2401.14295. 696

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and 697
Yunhe Wang. 2024. Forest-of-thought: Scaling test- 698
time compute for enhancing llm reasoning. arXiv 699
preprint arXiv:2412.09078. 700

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, 701
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu. 702
2024. Chateval: Towards better llm-based evaluators 703
through multi-agent debate. In The Twelfth Interna- 704
tional Conference on Learning Representations. 705

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter 706
Bailis, Ion Stoica, Matei Zaharia, and James Zou. 707
2024a. Are more llm calls all you need? towards the 708
scaling properties of compound ai systems. In The 709
Thirty-eighth Annual Conference on Neural Informa- 710
tion Processing Systems. 711

Lingjiao Chen, Matei Zaharia, and James Zou. 2023. 712
Frugalgpt: How to use large language models while 713
reducing cost and improving performance. arXiv 714
preprint arXiv:2305.05176. 715

Qiguang Chen, Libo Qin, WANG Jiaqi, Jingxuan Zhou, 716
and Wanxiang Che. 2024b. Unlocking the capabil- 717
ities of thought: A reasoning boundary framework 718
to quantify and optimize chain-of-thought. In The 719
Thirty-eighth Annual Conference on Neural Informa- 720
tion Processing Systems. 721

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and 722
Jingren Zhou. 2024c. A simple and provable scal- 723
ing law for the test-time compute of large language 724
models. arXiv preprint arXiv:2411.19477. 725

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 726
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 727
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 728
Nakano, et al. 2021. Training verifiers to solve math 729
word problems. arXiv preprint arXiv:2110.14168. 730

Yingqian Cui, Pengfei He, Xianfeng Tang, Qi He, Chen 731
Luo, Jiliang Tang, and Yue Xing. 2024. A theoretical 732
understanding of chain-of-thought: Coherent reason- 733
ing and error-aware demonstration. In The 28th In- 734
ternational Conference on Artificial Intelligence and 735
Statistics. 736

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea 737
Bobu, and Jacob Andreas. 2024. Learning how hard 738
to think: Input-adaptive allocation of lm computation. 739
arXiv preprint arXiv:2410.04707. 740

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, 741
Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan, 742
Qingwei Lin, and Dongmei Zhang. 2024. Everything 743
of thoughts: Defying the law of penrose triangle for 744
thought generation. In Findings of the Association 745
for Computational Linguistics: ACL 2024, pages 746
1638–1662. Association for Computational Linguis- 747
tics. 748

10

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-749
baum, and Igor Mordatch. 2024. Improving factual-750
ity and reasoning in language models through multia-751
gent debate. In Forty-first International Conference752
on Machine Learning.753

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt754
Gardner. 2022. Successive prompting for decom-755
posing complex questions. In Proceedings of the756
2022 Conference on Empirical Methods in Natural757
Language Processing, pages 1251–1265.758

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,759
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,760
Akhil Mathur, Alan Schelten, Amy Yang, Angela761
Fan, et al. 2024. The llama 3 herd of models. arXiv762
preprint arXiv:2407.21783.763

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,764
Di He, and Liwei Wang. 2024. Towards revealing the765
mystery behind chain of thought: a theoretical per-766
spective. Advances in Neural Information Processing767
Systems, 36.768

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and769
Tushar Khot. 2023. Complexity-based prompting for770
multi-step reasoning. In The Eleventh International771
Conference on Learning Representations.772

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,773
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-774
ham Neubig. 2023. Pal: program-aided language775
models. In Proceedings of the 40th International776
Conference on Machine Learning, pages 10764–777
10799.778

Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen779
Tan, Ramakanth Pasunuru, Olga Golovneva, Kous-780
tuv Sinha, Asli Celikyilmaz, Antoine Bosselut,781
and Tianlu Wang. 2024. Efficient tool use with782
chain-of-abstraction reasoning. arXiv preprint783
arXiv:2401.17464.784

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-785
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu786
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family787
of large language models from glm-130b to glm-4 all788
tools. arXiv preprint arXiv:2406.12793.789

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,790
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.791
2021a. Measuring massive multitask language under-792
standing. In International Conference on Learning793
Representations.794

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul795
Arora, Steven Basart, Eric Tang, Dawn Song, and796
Jacob Steinhardt. 2021b. Measuring mathematical797
problem solving with the math dataset. In Thirty-798
fifth Conference on Neural Information Processing799
Systems Datasets and Benchmarks Track (Round 2).800

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron801
Courville, Alessandro Sordoni, and Rishabh Agar-802
wal. 2024. V-star: Training verifiers for self-taught803
reasoners. In Conference On Language Modeling.804

Jie Huang, Xinyun Chen, Swaroop Mishra, 805
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 806
ing Song, and Denny Zhou. 2024. Large language 807
models cannot self-correct reasoning yet. In The 808
Twelfth International Conference on Learning 809
Representations. 810

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian 811
Mo, and Min Zhang. 2025. Test-time computing: 812
from system-1 thinking to system-2 thinking. arXiv 813
preprint arXiv:2501.02497. 814

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar 815
Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang, 816
Suhang Wang, Yu Meng, and Jiawei Han. 2024a. 817
Graph chain-of-thought: Augmenting large language 818
models by reasoning on graphs. In Findings of the As- 819
sociation for Computational Linguistics: ACL 2024, 820
pages 163–184. 821

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, 822
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and 823
Mengnan Du. 2024b. The impact of reasoning step 824
length on large language models. In Findings of 825
the Association for Computational Linguistics: ACL 826
2024, pages 1830–1842. 827

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 828
Brown, Benjamin Chess, Rewon Child, Scott Gray, 829
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 830
Scaling laws for neural language models. arXiv 831
preprint arXiv:2001.08361. 832

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 833
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 834
harwal. 2023. Decomposed prompting: A modular 835
approach for solving complex tasks. In The Eleventh 836
International Conference on Learning Representa- 837
tions. 838

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 839
2023. Language models can solve computer tasks. In 840
Advances in Neural Information Processing Systems, 841
volume 36, pages 39648–39677. 842

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 843
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 844
guage models are zero-shot reasoners. In Advances 845
in neural information processing systems, volume 35, 846
pages 22199–22213. 847

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 848
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 849
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 850
memory management for large language model serv- 851
ing with pagedattention. In Proceedings of the 29th 852
Symposium on Operating Systems Principles, pages 853
611–626. 854

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, 855
Jian-Guang Lou, and Weizhu Chen. 2023. Making 856
language models better reasoners with step-aware 857
verifier. In Proceedings of the 61st Annual Meet- 858
ing of the Association for Computational Linguistics 859
(Volume 1: Long Papers), pages 5315–5333. 860

11

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,861
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.862
2024. Escape sky-high cost: Early-stopping self-863
consistency for multi-step reasoning. In The Twelfth864
International Conference on Learning Representa-865
tions.866

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,867
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and868
Zhaopeng Tu. 2024. Encouraging divergent thinking869
in large language models through multi-agent debate.870
In Proceedings of the 2024 Conference on Empirical871
Methods in Natural Language Processing.872

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-873
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,874
John Schulman, Ilya Sutskever, and Karl Cobbe.875
2024. Let’s verify step by step. In The Twelfth Inter-876
national Conference on Learning Representations.877

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler878
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,879
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,880
et al. 2023. Self-refine: iterative refinement with881
self-feedback. In Proceedings of the 37th Interna-882
tional Conference on Neural Information Processing883
Systems, pages 46534–46594.884

Open AI. 2024a. GPT-4o-mini.885
https://openai.com/ja-JP/index/886
gpt-4o-mini-advancing-cost-efficient-intelligence.887

Open AI. 2024b. Introducing openai o1. https://888
openai.com/o1/.889

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,890
Fan Yang, and Mao Yang. 2024. Mutual reasoning891
makes smaller llms stronger problem-solvers. arXiv892
preprint arXiv:2408.06195.893

Marija Šakota, Maxime Peyrard, and Robert West. 2024.894
Fly-swat or cannon? cost-effective language model895
choice via meta-modeling. In Proceedings of the896
17th ACM International Conference on Web Search897
and Data Mining, pages 606–615.898

Andries Petrus Smit, Nathan Grinsztajn, Paul Duck-899
worth, Thomas D Barrett, and Arnu Pretorius. 2024.900
Should we be going mad? a look at multi-agent de-901
bate strategies for llms. In Forty-first International902
Conference on Machine Learning.903

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-904
mar. 2024. Scaling llm test-time compute optimally905
can be more effective than scaling model parameters.906
arXiv preprint arXiv:2408.03314.907

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,908
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,909
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-910
rett. 2024. To cot or not to cot? chain-of-thought911
helps mainly on math and symbolic reasoning. arXiv912
preprint arXiv:2409.12183.913

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 914
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 915
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 916
2024. Gemini 1.5: Unlocking multimodal under- 917
standing across millions of tokens of context. arXiv 918
preprint arXiv:2403.05530. 919

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 920
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 921
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 922
Bhosale, et al. 2023. Llama 2: Open founda- 923
tion and fine-tuned chat models. arXiv preprint 924
arXiv:2307.09288. 925

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, 926
You Wu, Luke Zettlemoyer, and Huan Sun. 2023a. 927
Towards understanding chain-of-thought prompting: 928
An empirical study of what matters. In The 61st An- 929
nual Meeting Of The Association For Computational 930
Linguistics. 931

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai 932
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 933
2024. Math-shepherd: Verify and reinforce llms step- 934
by-step without human annotations. In Proceedings 935
of the 62nd Annual Meeting of the Association for 936
Computational Linguistics (Volume 1: Long Papers), 937
pages 9426–9439. 938

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 939
Ed H Chi, Sharan Narang, Aakanksha Chowdhery, 940
and Denny Zhou. 2023b. Self-consistency improves 941
chain of thought reasoning in language models. In 942
The Eleventh International Conference on Learning 943
Representations. 944

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 945
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 946
et al. 2022. Chain-of-thought prompting elicits rea- 947
soning in large language models. In Advances in 948
neural information processing systems, volume 35, 949
pages 24824–24837. 950

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 951
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 952
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5 953
technical report. arXiv preprint arXiv:2412.15115. 954

Chenxiao Yang, Zhiyuan Li, and David Wipf. 2024b. 955
An in-context learning theoretic analysis of chain- 956
of-thought. In ICML 2024 Workshop on In-Context 957
Learning. 958

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 959
Thomas L Griffiths, Yuan Cao, and Karthik 960
Narasimhan. 2023. Tree of thoughts: deliberate 961
problem solving with large language models. In 962
Proceedings of the 37th International Conference 963
on Neural Information Processing Systems, pages 964
11809–11822. 965

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong 966
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and 967
Denny Zhou. 2024. Large language models as ana- 968
logical reasoners. In The Twelfth International Con- 969
ference on Learning Representations. 970

12

https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/o1/

Junchi Yu, Ran He, and Zhitao Ying. 2024. Thought971
propagation: An analogical approach to complex rea-972
soning with large language models. In The Twelfth973
International Conference on Learning Representa-974
tions.975

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu976
Yao. 2024. Large language model cascades with977
mixture of thought representations for cost-efficient978
reasoning. In The Twelfth International Conference979
on Learning Representations.980

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang981
Li, and Wanli Ouyang. 2024a. Accessing gpt-4982
level mathematical olympiad solutions via monte983
carlo tree self-refine with llama-3 8b. arXiv preprint984
arXiv:2406.07394.985

Kexun Zhang, Shang Zhou, Danqing Wang,986
William Yang Wang, and Lei Li. 2024b. Scal-987
ing llm inference with optimized sample compute988
allocation. arXiv preprint arXiv:2410.22480.989

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex990
Smola. 2023. Automatic chain of thought prompting991
in large language models. In The Eleventh Interna-992
tional Conference on Learning Representations.993

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,994
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny995
Zhou. 2024. Take a step back: Evoking reasoning via996
abstraction in large language models. In The Twelfth997
International Conference on Learning Representa-998
tions.999

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,1000
Nathan Scales, Xuezhi Wang, Dale Schuurmans,1001
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2023.1002
Least-to-most prompting enables complex reasoning1003
in large language models. In The Eleventh Interna-1004
tional Conference on Learning Representations.1005

A Broader Related Work1006

Efficient Reasoning. Several studies have shown1007

that scaling test-time compute can be more effec-1008

tive than scaling model parameters (Snell et al.,1009

2024; Open AI, 2024b). (Aggarwal et al., 2023; Li1010

et al., 2024; Chen et al., 2024a) improve the reason-1011

ing efficiency with majority voting by adjusting the1012

sampling time. (Damani et al., 2024; Zhang et al.,1013

2024b) learn to dynamically allocate resources un-1014

der limited sampling time budgets. (Chen et al.,1015

2023; Yue et al., 2024; Šakota et al., 2024) leverage1016

multiple models with different prices to reduce cost1017

while maintaining performance.1018

Role and Mechanism of CoT and Test-Time Scal-1019

ing. (Jin et al., 2024b) studies the impact of rea-1020

soning step length of CoT. (Wang et al., 2023a)1021

studies what makes CoT prompting effective, in- 1022

dicating that being relevant to the query and cor- 1023

rectly ordering the reasoning steps is more impor- 1024

tant. (Feng et al., 2024; Cui et al., 2024) analyze 1025

the mechanism of CoT from a theoretical perspec- 1026

tive. (Sprague et al., 2024) points out that CoT 1027

helps mainly on math and symbolic reasoning by 1028

sorting and analyzing a large number of experi- 1029

mental results. (Chen et al., 2024b) proposes a 1030

framework to quantify the reasoning boundary of 1031

CoT. (Yang et al., 2024b) provides an in-context 1032

learning analysis of CoT. (Chen et al., 2024a) inves- 1033

tigates and analyzes the performance changes with 1034

more LLM calls. (Chen et al., 2024c) proves that 1035

the failure probability of test-time scaling decays 1036

to zero exponentially or by a power law. 1037

B Proofs 1038

Theorem 1. If x is an easy question for 1039

Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N , 1040

lim
N→+∞

Pr(a1|Pi;N) = 1. 1041

Theorem 2. If x is a moderate question for 1042

Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N , 1043

lim
N→+∞

Pr(a1|Pi;N) = 1/|S|. 1044

Theorem 3. If x is a hard question for Pi, 1045

Pr(a1|Pi;N) exhibits a general declining trend 1046

w.r.t. N , lim
N→+∞

Pr(a1|Pi;N) = 0. 1047

Proof. The occurrence number Xi = 1048

(xi,1, . . . ,xi,m) of each probable answer for Pi 1049

follows a multinomial distribution, i.e., Xi ∼ 1050

Mult(N, pi,1, pi,2, . . . , pi,m). When sampling N 1051

times, the specific probability of a certain occur- 1052

rence number can be calculated with Equation 13. 1053

For brevity, we omit the input x, sampling time N , 1054

and the prompting index i in xi,j and pi,j in the 1055

following equations. 1056

Pr (x1 = k1,x2 = k2, . . . ,xm = km)

=
N !

k1!k2! · · · km!︸ ︷︷ ︸
coefficient

pk11 pk22 · · · pkmm︸ ︷︷ ︸
probability term︸ ︷︷ ︸

a term in Pr(a1|Pi;N)

s.t.
∑m

j=1 kj = N,
∑m

j=1 pj = 1

(13) 1057

Assuming the correct answer is a1, M = 1058

max(k2, . . . , km), the probability of obtaining the 1059

13

right answer by sampling N times with Pi is1060

Pr (a1|Pi) = Pr (x1 > M) +
∑m−1

|J |=1

Pr (x1 = xj > xq for all j ∈ J , q /∈ {1} ∪ J)

|J |+ 1
,

(14)1061

where J is the set of all indexes j (j ̸= 1) of xj1062

that satisfies xj = x1.1063

Pr1 = Pr (x1 > M) =∑
m∑

j=1
kj=N

N !

k1! · · · km!
pk11
∏m

j=2 pj1(kj < k1),

(15)10641065

Pr2=Pr(x1=xj>xq for all j ∈ J , q /∈ {1}∪J))

=
∑

m∑
j=1

kj=N

N !

k1!
|J |∏
q /∈{1}∪J

kk!
p1
∏
j∈J

pj
∏

q /∈{1}∪J
pk1(kk < k1),

(16)1066

Pr1 represents the probability that x1 is the only1067

maximum number in Xi. Pr2 denotes the probabil-1068

ity that there exists more than one maximum num-1069

ber and correctly obtains a1 by randomly choosing1070

from them.1071

Here we present a generalized representation. As1072

shown in Equation 14, Pr (a1|Pi) only includes the1073

cases where Xi,1 is the maximum value (maybe1074

not the only one). Therefore, for a certain oc-1075

currence number Xi = (x1, . . . ,xm) of each1076

probable answer {a1, . . . , am}, we can reorder1077

a2, . . . , am to obtain x1 = x2 = · · · = xl >1078

xl+1, xl+2, . . . ,xm, where 1 ≤ l ≤ m. When1079

l = 1, x1 is the only maximum value. So each1080

term in Pr(a1|Pi;N) can be written as1081

1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm ,

(17)1082

where k1 = k2 = · · · = kl = k > kj , j =1083

l + 1, ...,m and lk +
∑m

j=l+1 kj = N .1084

Now we prove Theorem 1 and 2. We1085

aim to prove that given the set of answers1086

{a1, a2, . . . , am} with associated probabilities1087

{p1, p2, . . . , pm} from Pi, we have Pr(a1|Pi;N +1088

1) ≥ Pr(a1|Pi;N) for any N ∈ N+. Due to1089 ∑m
j=1 pj = 1, the given proposition can be restated1090

as1091

Pr(a1|Pi;N + 1)− (
m∑
j=1

pj) · Pr(a1|Pi;N) ≥ 0.

(18)1092

We consider the probability term 1093

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm in each term in 1094

Pr(a1|Pi;N), i.e, Equation 17. When it times 1095∑m
j=1 pj , there will be three cases. 1096

Case 1: When it times p1, x1 is the only maxi- 1097

mum value. The probability term becomes 1098

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm , 1099

Case 2: When it times ps, where s ∈ {2, ..., l}, 1100

xs become the only maximum value. In this situa- 1101

tion, its final result would be an incorrect answer. 1102

If l = 1, case 2 will not exist. The probability term 1103

becomes 1104

pk1p
k
2 · · · pks−1p

k+1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm 1105

Case 3: When it times pt, where t ∈ {l + 1106

1, ...,m}, the value of xt changes from kt to kt+1. 1107

If kt = k − 1, xt becomes a new maximum value. 1108

If l = m, case 3 will not exist. The probability 1109

term becomes 1110

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm . 1111

It can be seen that case 1 and case 3 are also 1112

present in Pr(a1|Pi;N + 1), whereas case 2 does 1113

not. We begin by considering case 1 and case 1114

2. The terms in Pr(a1|Pi;N + 1) correspond- 1115

ing to case 1 pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm 1116

are shown in Equation 19, and no term in 1117

Pr(a1|Pi;N + 1) involves case 2. The terms 1118

in (
∑m

j=1 pj) · Pr(a1|Pi;N) involving case 1119

1 are shown in Equation 20. The terms in 1120

(
∑m

j=1 pj) · Pr(a1|Pi;N) involving case 2 1121

pk1p
k
2 · · · pks−1p

k+1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm 1122

are shown in Equation 21. Based on the fact 1123

of Equation 22, we can establish the inequality 1124

Equation 23, i.e., the terms corresponding to case 1 1125

and case 2 in Pr(a1|Pi;N + 1) are greater than or 1126

equal to those in (
∑m

j=1 pj) · Pr(a1|Pi;N). 1127

Now we consider case 3 1128

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm , 1129

which can be analyzed by splitting it into two 1130

distinct scenarios: kt + 1 < k and kt + 1 = k. 1131

For scenario kt + 1 < k, the terms in 1132

Pr(a1|Pi;N + 1) corresponding to case 3 are 1133

shown in Equation 24. The terms in (
∑m

j=1 pj) · 1134

Pr(a1|Pi;N) corresponding to case 3 are shown in 1135

Equation 25. Evidently, we can obtain Equation 26 1136

similar to Equation 22, and then we can get Equa- 1137

tion 27, which proves the terms corresponding to 1138

the scenario kt + 1 < k in Pr(a1|Pi;N + 1) are 1139

equal to those in (
∑m

j=1 pj) · Pr(a1|Pi;N). 1140

For scenario kt + 1 = k, in a similar man- 1141

ner, according to the Equation 28, we obtain the 1142

same result as the above scenario, i.e., the terms 1143

14

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·
∏m

j=l+1 (kj !)
pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm (19)

p1 ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

+
l∑

s=2

ps ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·

∏m
j=l+1(kj !)

pk+1
1 pk2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

+

m∑
t=l+1

pt ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·
∏m

j=l+1(kj !)
pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt−1
t p

kt+1

t+1 · · · pkmm

(20)

l∑
s=2

ps ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm (21)

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·
∏m

j=l+1 (kj !)
=

[
(k + 1) + (l − 1)k +

∑m
t=l+1 kt](lk +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·
∏m

j=l+1 (kj !)

=
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
+ (l − 1) ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·

∏m
j=l+1(kj !)

+

m∑
t=l+1

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·
∏m

j=l+1(kj !)
+ (l − 1) · 1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)

(22)

corresponding to the scenario kt + 1 = k in1144

Pr(a1|Pi;N +1) are equal to those in (
∑m

j=1 pj) ·1145

Pr(a1|Pi;N).1146

Thus far, let us revisit the proof steps. In the1147

first step, we expand the expression (
∑m

j=1 pj) ·1148

Pr(a1|Pi;N) and divide it into three cases, where1149

case 1 and case 3 are present in Pr(a1|Pi;N + 1)1150

whereas case 2 does not. It has been proven that1151

the coefficients of the terms in Pr(a1|Pi;N + 1),1152

where case 3 appears as the probability term part,1153

are identical to those in (
∑m

j=1 pj) · Pr(a1|Pi;N).1154

Consequently, these terms cancel out in the expres-1155

sion Pr(a1|Pi;N+1)− (
∑m

j=1 pj) ·Pr(a1|Pi;N).1156

However, case 2 is not present in Pr(a1|Pi;N +1157

1), which implies that the terms in (
∑m

j=1 pj) ·1158

Pr(a1|Pi;N), where case 2 appears as the proba-1159

bility term part, cannot be combined with any terms1160

in Pr(a1|Pi;N+1) by extracting the exponent and 1161

performing subtraction on the coefficients like the 1162

terms containing case 3. It is fortunate that the 1163

terms in Pr(a1|Pi;N + 1), where case 1 appears 1164

as the probability term part, cancel out with the 1165

corresponding terms in (
∑m

j=1 pj) · Pr(a1|Pi;N) 1166

which share the same probability terms and the re- 1167

maining terms have coefficients identical to those 1168

of the terms in (
∑m

j=1 pj) · Pr(a1|Pi;N), where 1169

case 2 appears as the probability terms. There- 1170

fore, these terms can be combined by factoring 1171

out the shared coefficients and partial probabil- 1172

ity terms. The remaining part after factoring 1173

out the common factor is
∑l

s=2(p1 − ps). It 1174

is undeniable that p1 ≥ ps when x is an easy 1175

question or moderate question for Pi, therefore 1176

Pr(a1|Pi;N +1)− (
∑m

j=1 pj) ·Pr(a1|Pi;N) ≥ 0. 1177

15

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·
∏m

j=l+1 (kj !)
pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−p1 ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−
l∑

s=2

ps ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·

∏m
j=l+1(kj !)

pk+1
1 pk2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−
m∑

t=l+1

pt ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·
∏m

j=l+1(kj !)
pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt−1
t p

kt+1

t+1 · · · pkmm

−
l∑

s=2

ps ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

=
l∑

s=2

1
l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

 · (p1 − ps) ≥ 0

(23)

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·
∏m

j=l+1 (kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm (24)

l∑
s=2

ps ·
1

l − 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k · (k!)l ·

∏m
j=l+1(kj !)

pk1p
k
2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

+

m∑
r=l+1,r ̸=t

pr ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkr−1

r−1 pkr−1
r p

kr+1

r+1 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

+pt ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

(25)

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·
∏m

j=l+1 (kj !)
=

l∑
s=2

1

l − 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k · (k!)l ·

∏m
j=l+1(kj !)

+
m∑

r=l+1,r ̸=t

pr ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·
∏m

j=l+1(kj !)

+
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)

(26)

16

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·
∏m

j=l+1 (kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

−
l∑

s=2

ps ·
1

l − 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k · (k!)l ·

∏m
j=l+1(kj !)

pk1p
k
2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

−
m∑

r=l+1,r ̸=t

pr ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkr−1

r−1 pkr−1
r p

kr+1

r+1 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

−pt ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm = 0

(27)

1

l + 1
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·
∏m

j=l+1 (kj !)
=

l∑
s=2

1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)

+
m∑

r=l+1,r ̸=t

pr ·
1

l + 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·
∏m

j=l+1(kj !)

+
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·
∏m

j=l+1(kj !)

(28)

Namely, Pr(a1|Pi;N) is strictly non-decreasing1178

w.r.t. N if x is an easy or moderate question.1179

For sufficiently large N , the strong law of large1180

numbers implies that Pr(lim
N→+∞

xj/N = pj) = 1.1181

When x is an easy question, p1 > pj ,x1/N >1182

xj/N for j = 2, 3, ...,m. As N is sufficiently1183

large, it is sure that x1 is the only maximum value,1184

making the final result must be the correct an-1185

swer a1. Therefore, if x is an easy question, N ,1186

lim
N→+∞

Pr(a1|Pi;N) = 1. If x is a moderate ques-1187

tion, there are |S| equivalent answers in the prob-1188

ability sense, whose probabilities are all the max-1189

imum value. Therefore, lim
N→+∞

Pr(a1|Pi;N) =1190

1/|S|. Similarly, if x is a hard question, the max-1191

imum probability is not p1, the final result must1192

be a wrong answer, so lim
N→+∞

Pr(a1|Pi;N) = 0.1193

Theorem 1 to 3 is proved.1194

Lemma 1. Consider a specific condition1195

with answer space |A| = 3. For N = 3,1196

Pr(a1|Pi;N) = 3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3. For1197

N = 5, Pr(a1|Pi;N) = 6p5i,1 − 15p4i,1 + 10p3i,1 +1198

15p2i,1pi,2pi,3(pi,2 + pi,3).1199

Proof. For N = 3, we can calculate 1200

Pr(a1|Pi;N) with Equation 14 as follows: 1201

Pr(a1|Pi;N = 3) =

(
3

3

)
p3i,1 +

(
3

2

)
p2i,1(1− pi,1)

+A(3, 1) pi,1pi,2pi,3

=3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3 ,

(29)

1202

where A(n, k) is the permutation number formula 1203

A(n, k) = n!
(n−k)! . For N = 5, we can get 1204

Pr(a1|Pi;N = 5) =

(
5

5

)
p5i,1 +

(
5

4

)
p4i,1(1− pi,1)+(

5

3

)
p3i,1(1− pi,1)

2 +

(
5

2

)
p2i,1

(
3

2

)
(p2i,2pi,3 + p2i,3pi,2)

= 6p5i,1 − 15p4i,1 + 10p3i,1 + 15p2i,1pi,2pi,3(pi,2 + pi,3).

(30)

1205

Lemma 1 is proved. 1206

Theorem 4. For two prompting strategies Pi 1207

and Pi′ , note pi,q = max{pi,2, . . . , pi,m}, pi′,q′ = 1208

max{pi′,2, . . . , pi′,m}, if pi,1 − pi,q < pi′,1 − pi′,q′ 1209

and pi,1+pi,q−p2i,1−p2i,q > pi′,1+pi′,q′ −p2i′,1− 1210

17

p2i′,q′ , there exits a sufficiently large N0 such that1211

for N > N0, Pr(a1|Pi;N) < Pr(a1|Pi′ ;N).1212

Proof. According to Khinchin’s Law of1213

Large Numbers and Lindeberg-Levy Central1214

Limit Theorem, when N is sufficiently large,1215

each Xi can be approximated by a nor-1216

mal distribution. Specifically, for each xi,j ,1217

we have xi,j ∼ N (Npi,j , Npi,j(1 − pi,j)).1218

Note Mi = max(xi,2, ...,xi,m) and pi,q =1219

max{pi,2, . . . , pi,m}, the distribution of Mi can1220

be approximated by Mi ∼ N (Npi,n, Npi,1(1 −1221

pi,1)). So xi,j −Mi obey the normal distribution1222

N (N(pi,1−pi,q), N(pi,1(1−pi,1)+pi,q(1−pi,q))).1223

Thus,1224

Pr(xi,1 > Mi)

= Pr(xi,1 −Mi > 0)

= 1− Φ(f(pi,1, pi,q, N)),

Φ(f(pi,1, pi,q, N)) =

Φ(

√
N

pi,1(1− pi,1) + pi,q(1− pi,q)
(pi,q − pi,1)),

(31)

1225

where Φ is the standard normal cumulative dis-1226

tribution function. This also holds for any1227

other Pr(xi′,1 > M ′
i). If pi,1 − pi,q <1228

pi′,1 − pi′,q′ and pi,1 + pi,q − p2i,1 − p2i,q >1229

pi′,1 + pi′,q′ − p2i′,1 − p2i′,q′ , we can get pi,q −1230

pi,1 > pi′,q − pi′,1 and pi,1(1 − pi,1) + pi,q(1 −1231

pi,q) < pi′,1(1 − pi′,1) + pi′,q′(1 − pi′,q′), and1232

Φ(f(pi,1, pi,q, N)) > Φ(f(pi′,1, pi′,q′ , N)). So1233

there exists a large N0 such that for N >1234

N0, Pr(xi′,1 > M ′
i) > Pr(xi,1 > Mi), i.e.,1235

Pr(a1|Pi;N) > Pr(a1|Pi′ ;N). Theorem 4 is1236

proved.1237

C Detailed Results1238

Here we display the scaling performance of differ-1239

ent prompting strategies on each LLM and bench-1240

mark under given sampling time N and cost O, as1241

shown in Figure 8 to 15. We find that, aside from1242

CoT, DiP also exhibits superior performance com-1243

pared to other complex prompting strategies on cer-1244

tain models and datasets, e.g., Gemini-1.5-Flash on1245

MATH. This also comes from the two reasons, i.e.,1246

DiP has more hard questions and easy questions1247

and a flat probability distribution of wrong answers1248

on the specific dataset. This phenomenon is particu-1249

larly prominent on powerful LLMs such as Gemini-1250

1.5-Flash on GSM8K and GSM-Hard, where DiP1251

and CoT exhibit comparable performance. Almost 1252

83% of results satisfy that CoT or DiP performs 1253

best as significantly scaling. Besides, this trend is 1254

also observed on other prompting strategies on few 1255

datasets and models. This encourages us to fully 1256

unleash the potential of simple prompting strate- 1257

gies, and indicates that the scaling performance 1258

does not only depend on the prompting strategies’ 1259

pass@1 accuracy. 1260

D More Discussions on Improving the 1261

Scaling Performance 1262

In this section, we will discuss more about our fur- 1263

ther exploration on the two ways to improve the 1264

scaling performance. We display more results of 1265

(1) adaptively scaling based on the question diffi- 1266

culty, (2) dynamically choosing the optimal Pi and 1267

(3) combining adaptively scaling and dynamically 1268

choosing the optimal Pi in Section D.1, D.2 and 1269

D.3, respectively. 1270

D.1 Adaptively Scaling Based on the Difficulty 1271

We use the following prompt to force the LLM to 1272

determine if the question is hard for given Pi. 1273

Question: 1274

{question} 1275

Using the method #{method}# to solve the ques- 1276

tion: 1277

{description} 1278

If the method is more likely to get the right an- 1279

swer, the question is easy. Otherwise, if the method 1280

is more likely to get the wrong answer, the ques- 1281

tion is hard. Please determine the difficulty of the 1282

question for the used method, and answer in the 1283

following JSON format. 1284

{"Difficulty": "Easy or Hard", "Reason": ""} 1285

Figure 16 to 20 reports the results of each 1286

prompting strategy when adaptively scaling based 1287

on the question difficulty. Our experiment results 1288

show that LLMs cannot accurately judge the diffi- 1289

culty of the input question most of the time, thus 1290

even leading to a reduced performance. Never- 1291

theless, This method is theoretically capable of 1292

enhancing the scaling performance, thereby moti- 1293

vating us to explore other approaches to accurately 1294

assess the question difficulty. 1295

18

Table 4: Difficulty proportion of questions and extreme peformance (denote by “Acc”) for each Pi and LLM
across benchmarks. CoT has more easy questions and fewer hard questions, and can reach the best extreme
performance on all LLMs.

Pi Easy Moderate Hard Acc Easy Moderate Hard Acc Easy Moderate Hard Acc

Phi-3.5-mini-Instruct Gemini-1.5-Flash GPT-4o-mini
DiP 78.4% 0.6% 21.1% 78.6 91.0% 0.0% 9.0% 91.0 89.7% 0.4% 9.9% 89.9
CoT 81.2% 0.4% 18.4% 81.4 91.2% 0.2% 8.6% 91.3 89.8% 0.3% 9.9% 90.0
L2M 80.2% 0.6% 19.2% 80.5 90.9% 0.2% 89.8% 90.9 89.8% 0.3% 10.0% 89.9
SBP 79.0% 0.6% 20.4% 79.3 90.6% 0.4% 9.0% 90.8 81.4% 0.2% 10.4% 89.5
AnP 77.0% 1.2% 21.8% 77.6 80.5% 0.6% 18.8% 90.9 81.4% 1.1% 17.5% 81.9

Figure 8: Performance of each prompting strategy under given sampling time N on GSM8K.

Figure 9: Performance of each prompting strategy under given cost O on GSM8K.

D.2 Dynamically Choosing the Optimal Pi1296

Figure 21 to 25 display the results on GSM8K on1297

LLaMA-3-8B-Instruct, GLM-4-9B-Chat, Phi-3.5-1298

mini-Instruct, Gemini-1.5-Flash and GPT-4o-mini,1299

respectively. It can be observed that all LLMs1300

tend to believe that CoT is the best prompting1301

strategy, while CoT does not excel at every ques- 1302

tion. With oracles to provide the optimal Pi labels, 1303

all LLMs demonstrate significant performance im- 1304

provements, even only with one sampling time, 1305

proving the enormous potential of this method. we 1306

will explore how to approach this upper bound in 1307

the future. 1308

19

Figure 10: Performance of each prompting strategy under given sampling time N on GSM-Hard.

Figure 11: Performance of each prompting strategy under given cost O on GSM-Hard.

Figure 12: Performance of each prompting strategy under given sampling time N on MATH.

20

Figure 13: Performance of each prompting strategy under given cost O on MATH.

Figure 14: Performance of each prompting strategy under given sampling time N on MMLU.

Figure 15: Performance of each prompting strategy under given cost O on MMLU.

21

0 25 50 75 100
Sampling Time

75.0

77.5

80.0

82.5

85.0

87.5

90.0
Pe

rf
or

m
an

ce
 (

%
)

DiP

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

80

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

78

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

70

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 16: Results of adaptively scaling based on the question difficulty on Llama-3-8B-Instruct on GSM8K.

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

80

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 17: Results of adaptively scaling based on the question difficulty on GLM-4-9B-Chat on GSM8K.

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

92

94

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 18: Results of adaptively scaling based on the question difficulty on Phi-3.5-mini-Instruct on GSM8K.

0 10 20
Sampling Time

93.0

93.5

94.0

94.5

95.0

95.5

96.0

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

93.5

94.0

94.5

95.0

95.5

96.0

Pe
rf

or
m

an
ce

 (
%

)

CoT
Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

L2M
Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)
AnP

Vanilla
Adaptive
Oracle

Figure 19: Results of adaptively scaling based on the question difficulty on Gemini-1.5-Flash on GSM8K.

0 5 10 15 20 25
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

97

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

L2M
Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

SBP
Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 20: Results of adaptively scaling based on the question difficulty on GPT-4o-mini on GSM8K.

D.3 Combining Adaptively Scaling and1309

Dynamically Choosing the Optimal Pi1310

Figure 26 to 30 display the results of combining1311

adaptively scaling and dynamically choosing the1312

optimal Pi on GSM8K on LLaMA-3-8B-Instruct,1313

GLM-4-9B-Chat, Phi-3.5-mini-Instruct, Gemini-1314

1.5-Flash, and GPT-4o-mini, respectively. Figure 1315

31 to 36 show the results on each LLM on MATH, 1316

respectively. Extensive experiments demonstrate 1317

the general effectiveness and superiority of this 1318

method, which has an extremely high upper bound. 1319

22

Figure 21: Results of dynamically choosing the optimal
Pi on LLaMA-3-8B-Instruct on GSM8K.

Figure 22: Results of dynamically choosing the optimal
Pi on GLM-9B-Chat on GSM8K.

Figure 23: Results of dynamically choosing the optimal
Pi on Phi-3.5-mini-Instruct on GSM8K.

Figure 24: Results of dynamically choosing the optimal
Pi on Gemini-1.5-Flash on GSM8K.

Figure 25: Results of dynamically choosing the optimal
Pi on GPT-4o-mini on GSM8K.

Figure 26: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on LLaMA-3-8B-
Instruct on GSM8K.

Figure 27: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GLM4-9B-
Chat on GSM8K.

Figure 28: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Phi-3.5-mini-
Instruct on GSM8K.

23

Figure 29: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Gemini-1.5-
Flash on GSM8K.

Figure 30: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GPT-4o-mini
on GSM8K.

Figure 31: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Qwen2.5-7B-
Instruct on MATH.

Figure 32: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on LLaMA-3-8B-
Instruct on MATH.

Figure 33: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GLM-4-9B-
Instruct on MATH.

Figure 34: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Phi-3.5-mini-
Instruct on MATH.

Figure 35: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Gemini-1.5-
Flash on MATH.

Figure 36: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GPT-4o-mini
on MATH.

24

E Implementation Details and Prompts1320

We use vllm (Kwon et al., 2023) to deploy open-1321

sourced LLMs, with top-p = 0.9 and temperature1322

= 0.7. For close-sourced LLMs, we use their APIs1323

with default settings. We set the content safety1324

detection threshold of Gemini-1.5-Flash to zero to1325

prevent erroneous judgments that may result in null1326

outputs.1327

Following (Wang et al., 2024; Lightman et al.,1328

2024; Qi et al., 2024), we use MATH-500, a subset1329

of representative problems from the MATH dataset1330

to speed up the evaluation. We use the test split1331

of each dataset. The license for all datasets is CC-1332

BY 4.0 or others for open academic research. The1333

number of samples on each dataset is shown in1334

Table 5. We ensure our use of existing artifacts1335

is aligned with their intended purposes. All of1336

them are public English datasets for academic re-1337

search. On GSM8K and GSM-Hard, we use the1338

same 1-shot prompt in the original paper of Least-1339

to-Most (Zhou et al., 2023) shown in Figure 391340

and Figure 40. On other datasets, we use the 0-1341

shot prompt shown in Figure 41. We use the same1342

prompt in Analogous Prompting (Yasunaga et al.,1343

2024), and guide the LLM to recall one analogous1344

problem. We use the same 1-shot prompt in Step-1345

Back Prompting (Zheng et al., 2024) on MMLU,1346

and apply their prompt designed for reasoning tasks1347

on other datasets. We use the same prompt in 0-1348

shot Chain-of-Thought (Kojima et al., 2022), Multi-1349

Agent Debate (Du et al., 2024) and Self-Refine1350

(Huang et al., 2024) on all datasets. Prompts are1351

shown in Figure 37 to 46.1352

Table 5: The number of samples in each dataset.

Dataset Samples

GSM8K 1318
GSM-Hard 1318
MATH-500 500

MMLU-Biology 310
MMLU-Chemistry 203

MMLU-Physics 151

25

User:
<question>

Assistant:
<answer>

Direct Prompting

Figure 37: Prompt of DiP.

User:
Question:
<question>

Answer:
Let’s think step by step.

Assistant:
<answer>

Chain-of-Thought prompt

Figure 38: Prompt of CoT.

User:
Question: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they
have together?
Answer: Let's break down this problem: 1. How many apples does Anna have? 2. How
many apples do they have together?
1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.
2. Elsa and Anna have 5 + 7 = 12 apples together.
The answer is: \\boxed{12}.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt on GSM8K

Figure 39: Prompt of L2M on GSM8K.

26

User:
Question: Elsa has 524866 apples. Anna has 432343 more apples than Elsa. How many
apples do they have together?
Answer: Let's break down this problem: 1. How many apples does Anna have? 2. How
many apples do they have together?
1. Anna has 432343 more apples than Elsa. So Anna has 524866 + 432343 = 957209 apples.
2. Elsa and Anna have 524866 + 957209 = 1482075 apples together.
The answer is: \\boxed{1482075}.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt on GSM-Hard

Figure 40: Prompt of L2M on GSM-Hard.

User:
In order to solve the question more conveniently and efficiently, break down the question
into progressive sub-questions. Answer the sub-questions and get the final result according
to sub-questions and their answers.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt

Figure 41: Prompt of L2M on MATH and MMLU.

27

User:
Question:
<question>

Answer:
Let’s think step by step.

Assistant:
<answer>

User:
Given the question and several solutions, decide which solution is the most promising.
Analyze each solution in detail, then conclude in the last line "The index of the best solution
is x", where x is the index number of the solution.

<Solution 1>
<Solution 2>
......

Tree-of-Thoughts prompt

Figure 42: Prompt of ToT.

User:
<question>

Assistant:
<previous answer>

User:
Review your previous answer and find problems with your answer.

Assistant:
<feedback>

User:
Based on the problems of your previous answer, improve your answer.

Assistant:
<revised answer>

Self-Refine Prompt

Figure 43: Prompt of S-RF.

28

User:
You are an expert at <subject>. Your task is to extract the mathematics concepts and
principles involved in solving the problem.

Question:
<question>

Principles involved:

Assistant:
<answer>

User:
You are an expert at <subject>. You are given a <subject> problem and a set of principles
involved in solving the problem. Solve the problem step by step by following the principles.

Question:
<question>

Principles:
{principles}

Answer:

Assistant:
<answer>

Step-Back Prompting

Figure 44: Prompt of SBP.

29

User:
Your task is to tackle mathematical problems. When presented with a math problem, recall
relevant problems as examples. Afterward, proceed to solve the initial problem.

Initial Problem:
{question}

Instructions:
Relevant Problems:
Recall an example of the math problem that is relevant to the initial problem. Your
problem should be distinct from the initial problem (e.g., involving different numbers and
names). For the example problem:
- After "Q: ", describe the problem.
- After "A: ", explain the solution and enclose the ultimate answer in \\boxed{}.

Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \\boxed{} here.

Assistant:
<answer>

Analogous Prompting

Figure 45: Prompt of AnP.

30

User:
<question>

Assistant:
<solving process>
<answer>

User:
These are the answers to the question from other agents:

One agent answer: ...
One agent answer: ...
...

Using the answers from other agents as additional information, can you provide your
answer to the question?
<question>

Assistant:
<answer>

User:
...

Assistant:
...

Multi-Agent Debate

Figure 46: Prompt of MAD.

31

	Introduction
	Scaling System Designs
	Models
	Prompting Strategies
	Benchmarks
	Formal Expression

	CoT Dominates as Test-Time Scaling
	Why CoT Performs worse with Lower N while better with Larger N?
	CoT Has More Easy Questions and Fewer Hard Questions
	CoT is Less Likely to be Affected by Wrong Answers

	Predicting Scaling Performance and P*N
	Improving Scaling Peformance
	Adaptively Scaling Based on the Difficulty
	Dynamically Choosing the Optimal Pi
	Combining Adaptively Scaling and Dynamically Choosing the Optimal Pi

	Related Work
	Conclusion
	Broader Related Work
	Proofs
	Detailed Results
	More Discussions on Improving the Scaling Performance
	Adaptively Scaling Based on the Difficulty
	Dynamically Choosing the Optimal Pi
	Combining Adaptively Scaling and Dynamically Choosing the Optimal Pi

	Implementation Details and Prompts

