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Abstract

Pretrained language models (PLMs) based
knowledge-grounded dialogue systems are
prone to generate responses that are factually in-
consistent with the provided knowledge source.
In such inconsistent responses, the dialogue
models fail to accurately express the external
factual knowledge they rely upon. Inspired
by previous work which identified that feed-
forward networks (FFNs) within Transformers
are responsible for factual knowledge expres-
sions, we investigate two methods to efficiently
improve the factual expression capability of
FFNs by knowledge enhancement and align-
ment respectively. We first propose K-DIAL,
which explicitly introduces extended FFNs in
Transformers to enhance factual knowledge
expressions given the specific patterns of
knowledge-grounded dialogue inputs. Addi-
tionally, we apply the reinforcement learning
for factual consistency (RLFC) method to im-
plicitly adjust FFNs’ expressions in responses
by aligning with gold knowledge for the fac-
tual consistency preference. To comprehen-
sively assess the factual consistency and dia-
logue quality of responses, we employ exten-
sive automatic measures and human evalua-
tions including sophisticated fine-grained NLI-
based metrics. Experimental results on WoW
and CMU_DoG datasets demonstrate that our
methods efficiently enhance the ability of the
FFN module to convey factual knowledge, val-
idating the efficacy of improving factual con-
sistency for knowledge-grounded dialogue sys-
tems.1

1 Introduction

Pretrained dialogue models with the assistance of
external knowledge sources have demonstrated re-
markable performance to generate knowledgeable

∗Equal contributions.
†Corresponding author.
1Our code has been released on https://github.com/Amour
Waltz/FactDial.

Figure 1: An illustration of enhancing the factual knowl-
edge expression to tackle the inconsistency problem for
knowledge-grounded dialogue system in this work.

and reliable responses in many conversational ap-
plications (Dinan et al., 2019; Moghe et al., 2018;
Ghazvininejad et al., 2018; Gopalakrishnan et al.,
2019). However, these knowledge-grounded dia-
logue systems (KDS) are always hampered by fac-
tual inconsistency or even "hallucination" problem
(Santhanam et al., 2021; Ji et al., 2023), which has
been widely investigated in many natural language
generation (NLG) tasks such as abstractive sum-
marization (Zhu et al., 2021; Nan et al., 2021; Xie
et al., 2021; She et al., 2023) and machine transla-
tion (Lee et al., 2019). The factually inconsistent
responses produced by dialogue models are linguis-
tically fluent and contextually coherent but deviate
from the grounding factual knowledge, as exempli-
fied in the left hand of Figure 1, potentially leading
to misinformation to the users and restricting the
applicability of dialogue agents.

The factual consistency in KDS indicates "ac-
curately portrays the input knowledge (assuming
the provided knowledge is correct)" as defined in
prior research (Santhanam et al., 2021). Identi-
fying the intrinsic causes of factual inconsistency
in KDS remains persistently challenging, as the
generated responses are jointly affected by con-
versational history, grounding knowledge, and dia-
logue PLMs. Generally, the dialogue context and
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grounding knowledge are assumed to be accurate
and considered as ground truth, the factual inconsis-
tency thus can be naturally attributed to the innate
limitations of PLMs. The prior knowledge in PLMs
learned from large-scale unlabeled corpus might
be incomplete, outdated, or incorrect (Elazar et al.,
2021; Cao et al., 2021) thus inevitably affecting
the provided factual knowledge expressions, and
consequently results in untrustworthy responses as
shown in Figure 1, where the knowledge stored in
the model is likely to be "France won the World
Cup champion.". Therefore, it is essential to fig-
ure out the mechanism by which language mod-
els express factual knowledge. Previous research
(Geva et al., 2021a; Dai et al., 2022a) observed that
feed-forward networks (FFNs) in Transformers can
be viewed as key-value memories that store and
activate specific knowledge representations given
certain input patterns. Accordingly, we propose
two promising solutions to bolster FFNs’ ability
to produce factual knowledge and enhance factual
consistency for KDS.

First, we propose K-DIAL, a knowledge-
enhanced dialogue generation method that explic-
itly incorporates extended FFN modules in Trans-
formers for knowledge enhancement, which im-
proves the model’s ability to express the gold
knowledge given specific knowledge snippets and
dialogue contexts. As illustrated in Figure 1, the
factual knowledge "Argentina won the 2022 World
Cup champion." with the contexts is directly used
to enhance the expression of "Argentina" in the re-
sponse. Notably, the parameters in extended FFNs
are updated solely over the knowledge-related to-
kens occurring in both grounding knowledge and
responses, ensuring the efficiency of improved fac-
tual consistency while maintaining the dialogue
quality of KDS.

Second, we propose the reinforcement learning
for factual consistency (RLFC) technique, which
leverages alignment with the factual consistency
preference to implicitly enable FFNs to express fac-
tual knowledge in responses. As shown in Figure
1, the response is aligned with factual knowledge
"Argentina won the 2022 World Cup champion." to
implicitly adjust FFNs to express accurately. The
reward model is utilized for alignment which is a
binary NLI model as a factual consistency classi-
fier trained on publicly available benchmarks (San-
thanam et al., 2021; Gupta et al., 2022; Dziri et al.,
2021) for factual consistency evaluations of KDS.

The obtained consistency score of the reward model
is utilized for RLFC training to induce factual ex-
pressions within FFNs.

To assess the factuality and conversationality
of dialogue generations, we conduct a compre-
hensive evaluation employing both automated and
human evaluations, including our carefully de-
fined finely-grained NLI metrics based on recent
human-annotated datasets released by Labadie et al.
(2021); Dziri et al. (2022); Gupta et al. (2022).
Significant performance improvements across the
aforementioned metrics are obtained on both WoW
(Dinan et al., 2019) and CMU_DoG (Zhou et al.,
2018) datasets using K-DIAL and RLFC, demon-
strating their efficiency in improving the expres-
sions of factual knowledge within FFNs and miti-
gating the risk of factual inconsistency for KDS.

Our contributions are summarized as follows:
(1) We propose K-DIAL, which explicitly ex-

tends FFN modules in Transformers for knowledge
enhancement to express factual knowledge in re-
sponses to improve factual consistency while main-
taining conversational properties.

(2) We propose RLFC, which implicitly pro-
motes FFNs’ ability of factual expressions by align-
ing generated responses with the gold knowledge
for factual consistency preference of KDS.

(3) We obtain significant improvements across a
range of sophisticated automatic and human eval-
uation metrics, demonstrating the efficacy of our
two proposed methods in achieving superior per-
formance in terms of both the factual consistency
and dialogue quality of KDS.

2 Methodology

In this section, we first introduce the KDS models
in this work and pose the view of key-value mem-
ories of FFNs in Transformer models. We then
present our knowledge-enhanced dialogue genera-
tion method K-DIAL and reinforcement learning
for factual consistency (RLFC) technique respec-
tively.

2.1 Knowledge-Grounded Dialogue Model

As depicted in Figure 2, the causal graph illustrates
the procedure of KDS generation where response
Y is jointly determined by dialogue history X , re-
trieved knowledge K and PLM M. In this study,
we employ GPT2 (Radford et al., 2019) as PLMs
and fine-tune these models on grounded dialogue
datasets and obtain the dialogue model. The in-



Figure 2: An illustration of (a) a causal graph denoting the process of knowledge-grounded dialogue generations,
where factual inconsistency issue in this work is attributed in M and procedure ➃ while others are assumed correct;
(b) our proposed K-DIAL framework in a dialogue model with a sample.

put to the model concatenates a piece of knowl-
edge K and a dialogue history X consisting of
utterances that are segmented by the speaker types
<bot> and <user>. Distinct special token-type em-
beddings are employed to delineate each part of
the input for all GPT-2 models. For simplicity, we
directly leverage the gold knowledge in this work
thus the input knowledge is naturally correct. The
dialogue model is trained to generate the response
Y = [y1,y2, . . . ,ym] given the input via minimiz-
ing the cross-entropy loss:

LCE = − 1

m

m∑
i=1

log p(yi|y<i,X,K) (1)

2.2 Key-Value Memories in FFNs
Prior studies have exhibited PLMs are knowledge
base (Petroni et al., 2019) and the knowledge is
implicitly preserved in the parameters of FFNs in
Transformers (Dai et al., 2022a). Generative PLMs,
such as GPT-3 or GPT-2 (Brown et al., 2020; Rad-
ford et al., 2019), feature a deep stacking of mul-
tiple Transformer decoder blocks (Vaswani et al.,
2017). As shown in Figure 2 (b), each feed-forward
network (FFN) module in a Transformer block con-
tains a two-layer linear model with an activation
function between. Assume that hl

i ∈ Rdm rep-
resents the i-th hidden input of the FFN module
in the l-th Transformer layer with dm-dimension
word embedding . The normalized hl

i is then fed
into FFN as:

FFN(hl
i) = Θl

v · Act(Θl
k · hl

i) (2)

where Θl
k ∈ Rd×dm ,Θl

v ∈ Rdm×d denote the
weight matrices of the FFNs and Act(·) is the

activation function. The bias terms are omitted.
Geva et al. (2021b) pointed that Θl

k in FFNs cor-
responding to keys are multiplied with hl to yield d
memory coefficients. Each individual key kl

i ∈ Θl
k

can capture a textual pattern across the input prefix
[hl

1, · · · ,hl
n] and only be triggered upon the occur-

rence of specific input patterns. The coefficients
are then employed to compute the weighted sum
with values Θl

v to induce a distribution over the
vocabulary of the next token prediction. Dai et al.
(2022a) further proposes the concept of knowledge
neurons in FFNs that can store and activate the
factual knowledge prediction. The observations
provide insight to improve factual consistency for
KDS by augmenting PLMs to recall and output
factual knowledge in responses.

2.3 K-DIAL: Knowledge-Enhanced Dialogue
Generations

KDS is supposed to generate more reliable and
knowledgeable responses for knowledge-intensive
situations leveraging the wealth of information in
external knowledge. Even though gold knowledge
is provided, the models still encounter challenges
related to fictional expressions of gold knowledge
they rely on, and resulting in factual inconsistency,
for example, manifesting in the responses that are
factually incorrect or uninformative. As shown in
Figure 2 (a) where X and K are considered always
correct, we can naturally infer that the inconsis-
tency arises from M.

As the knowledge in PLMs inevitably contains
inaccurate, outdated, incomplete redundant infor-
mation (Elazar et al., 2021; Cao et al., 2021), which
may influence factual knowledge predictions of



Figure 3: Reward model training and workflow of RLFC training for KDS.

FFNs. Factual knowledge, or world knowledge, is
generally represented among entities in languages
(i.e., dates or locations) (Roberts et al., 2020). As
illustrated in Figure 2(b), we propose K-DIAL,
which directly extended an additional FFN module
with d′ key-value pairs and further concatenated
with the original FFNs of PLMs, to maximize the
activation of each entity token yk over a certain
knowledge-grounded dialogue input pattern of the
sequence [K,X,y<k]. The loss function of K-
DIAL framework is formulated as follows:

LKCE = − 1

n′

m∑
i=1

1ỹk
(yi) log p(yi|y<i,X,K)

(3)

where n′ is the number of entities in Y and 1ỹk
(yi)

denotes whether yi belongs to the entity set ỹk.
The training process of K-DIAL framework is

specified in two steps. First, all the parameters of
the original PLM are frozen, and the loss LKCE is
only calculated over the parameters of the extended
FFNs. Afterward, we further adapt the knowledge-
enhanced model on the KDS datasets using super-
vised fine-tuning of Equation (1) while keeping
the parameters in extended FFNs fixed. The word
embedding dimension and hidden size of extended
FFN module are set equal to the corresponding
Transformer FFN layers. Note that K-DIAL frame-
work is only applied on the top 3 layers of the
model in our experiments.

As illustrated in Figure 2, the extended FFNs
are supposed to predict Argentina as the next to-
ken given the specific knowledge and context. The
K-DIAL framework takes advantage of FFNs’ abil-
ity to learn the complex dependency between the
knowledge snippet and dialogue via activating re-
lated entity tokens. In this way, factual consistent
entity words can be triggered in the response. The
ability of PLMs to express factual knowledge has

been improved while maintaining the general lan-
guage ability.

2.4 RLFC: Reinforcement Learning for
Factual Consistency

For KDS, we prefer knowledgeable responses that
are faithful to the gold knowledge. However, since
PLMs are trained on the massive unlabeled cor-
pus, KDS models do not inherently prioritize fol-
lowing the preferences to constantly output factual
knowledge and consistent responses. Aligning with
the factual consistency preference can implicitly
encourage FFNs of Transformers to convey fac-
tual knowledge and ultimately reinforce the fac-
tual consistency of responses. Inspired by the re-
cent progress of reinforcement learning from hu-
man feedback (RLHF) technique to align human
preferences (Ouyang et al., 2022; Ziegler et al.,
2019; Christiano et al., 2017) like mitigating toxic-
ity (Faal et al., 2023), we regard factual consistency
as one type of preferences and thus propose rein-
forcement learning for factual consistency (RLFC)
method in this work.

Specifically, we first design a reward model us-
ing a factual consistency classifier. There are some
recent publicly human-annotated benchmarks and
datasets containing information on the preference
for factual consistency (Santhanam et al., 2021;
Gupta et al., 2022; Dziri et al., 2021), where the
similar definitions to factual consistency as "at-
tributed" and "supported" are used in KDS indi-
cating whether the response utilizes and follows
the provided knowledge. We thus take advantage
of these well-aligned data to train a binary NLI
model, serving as a reward model to provide infor-
mative reward signals for RL training. The reward
model R(·) is optimized using the following binary
cross-entropy loss function:



LBCE = − 1

n

n∑
i=1

(ŷ(i) logR(K(i),Y (i))

+ (1− ŷ(i)) log (1−R(K(i),Y (i))))
(4)

where the knowledge-response pair (K(i),Y (i)) is
the input to the reward model and ŷ(i) is the label.

As illustrated in Figure 3, the dialogue model
to be optimized for RLFC training is used as the
policy model. The response Y generated by the
policy model and gold knowledge snippet K are
fed into the reward model to obtain the consistency
reward score r1 as r1 = R(K,Y ) which is mainly
used to align the preferences for FFNs’ factual ex-
pression. The reward model will return a higher
score for the factually consistent pairs to facilitate
the factual expressions of the policy model. Fur-
thermore, a reference model generating a response
Y ′ is also introduced, which is usually the dialogue
model before RLFC training. The KL divergence
r2 = KL[Y ||Y ′] between the outputs of the ref-
erence model and the policy model is used as an
extra reward signal to make sure the generated re-
sponses don’t diverge too far from the originals.
The optimization objective r = r1 + r2 is utilized
for RLFC training via the Proximal Policy Opti-
mization (PPO) algorithm (Schulman et al., 2017).

3 Experimental Setup

3.1 Datasets
WoW The Wizard of Wikipedia (WoW) 2 is a
large-scale multi-turn knowledge-grounded dia-
logue dataset (Dinan et al., 2019) collected through
human-human crowd-worker chats, where a "wiz-
ard" as the <bot> can respond to an "apprentice" as
a <user> in a knowledgeable way given evidence
from external Wikipedia documents. We only fo-
cus on modeling the responses by the "wizard"
provided the selected gold-label evidence and the
previous dialogue contexts.

CMU_DoG The CMU Document Grounded
Conversations Dataset (CMU_DoG) 3 (Zhou et al.,
2018) refers to a collection of conversations that
encompass two users discussing various famous
movies given related Wikipedia documents. Ut-
terances by the user who can access the movie
evidence in the documents are treated as <bot>
2https://parl.ai/projects/wizard_of_wikipedia/
3https://github.com/festvox/datasets-CMU_DoG

responses for dialogue modeling. Note that the
initial configuration of CMU_DoG entails the pro-
vision of a gold knowledge paragraph to the mod-
els alongside the dialogue. In this work, we split
these knowledge documents into sentence pieces
and select the most relevant one as the grounding
knowledge, preserving the average token number of
knowledge snippets comparable to those on WoW.

More data processing details can be referred to
in Appendix A.

3.2 Implementation Details

For the dialogue generation models, we leverage
GPT2 series (GPT2-Medium(M), GPT2-Large(L),
GPT2-XL) models (Radford et al., 2019) imple-
mented using HuggingFace library (Wolf et al.,
2020) 4 based on PyTorch (Paszke et al., 2017). All
the PLMs are further fine-tuned on the above WoW
and CMU_DoG dialogue datasets by minimizing
the cross-entropy loss in Equation (1). ADAM
parameter update is used in a mini-batch mode
for all models. In the decoding stage, we use the
beam search algorithm and set the number of beams
n = 5. During K-DIAL training, all the knowl-
edge entities in gold knowledge and responses are
recognized using spaCy5. The RLFC is imple-
mented by trl6 in this work, and all the hyper-
parameters related to PPO algorithm are default
values by the trl PPOConfig recipe 7 except the
epoch, learning rate and batch size. The reward
model is obtained by training a BERT-Large (De-
vlin et al., 2019) based NLI model as a factual
consistency classifier trained on three public, high-
quality human-annotated benchmarks and datasets
Santhanam et al. (2021)8, Dziri et al. (2021) 9,
Gupta et al. (2022) 10.

Further model setting information can be found
in Appendix B.

3.3 Metrics

We exhibit a range of comprehensive metrics to
gauge the factuality and conversational ability of

4https://huggingface.co/gpt2
5https://spacy.io/
6https://github.com/lvwerra/trl
7https://github.com/huggingface/trl/blob/main/trl/trainer/
ppo_config.py

8https://github.com/alexa/factual-consistency-analysis
-of-dialogs

9https://github.com/google/BEGIN-dataset
10https://github.com/salesforce/DialFact
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https://github.com/salesforce/DialFact


KDS, entailing both a series of automated tech-
niques as well as human evaluations.

Lexical and Semantic Metrics In this work, we
adopted token-level F1 uni-gram overlap, BLEU,
and ROUGE-L metrics to measure the lexical simi-
larity for dialogue quality evaluation between gen-
erated and ground-truth responses. Additionally,
Knowledge F1 (KF1) (Shuster et al., 2021) and
BERTScore (Zhang* et al., 2020) (BERT.) are used
to capture such lexical overlap and semantic simi-
larity of response and grounding knowledge.

Fine-Grained NLI-based Metrics NLI-based
metrics are more robust and widely used to de-
tect factual inconsistency or hallucinations in
knowledge-intensive NLP tasks (Dušek and Kas-
ner, 2020; Mishra et al., 2021; Falke et al., 2019;
Welleck et al., 2019; Chen et al., 2023). Therefore,
we developed a synthetic dataset for a BERT-based
(Devlin et al., 2019) NLI model pre-training. The
synthetic dataset adopts factual consistent samples
that are derived from the ground-truth response
and gold knowledge pairs in WoW. Inconsistent
responses are generated by random pairing, nega-
tion, and entity swapping (Kryscinski et al., 2020a;
Gupta et al., 2022).

Following (Santhanam et al., 2021), we develope
three metrics to finely-grained evaluate factual con-
sistency and fine-tune the pre-trained NLI model
on the datasets released by (Santhanam et al., 2021;
Gupta et al., 2022; Dziri et al., 2021), which are
also used for reward model training of RLFC. The
three fine-grained NLI metrics are designed to in-
spect 1) Verification (Verif.): whether a response
contains verifiable information; 2) Hallucination
(Hallu.): whether a response does NOT comprises
hallucinated content; and 3) Factual Correctness
(Fact.): whether a response is factually consistent
with grounding knowledge.

Although there may be slight variations across
the definitions in the aforementioned benchmarks,
their shared objective is to enhance the faithfulness
and reliability of responses to the provided gold
knowledge. The data processing and alignment
details are presented in Appendix C.

Q2 Metric Honovich et al. (2021) proposed Q2

metric 11 employed a question generation system,
a question answering system, and an NLI model to
find the corresponding answer span in the knowl-

11https://github.com/orhonovich/q-squared

edge that the response should be grounded to eval-
uate the factual consistency of KDS.

Human Evaluation We exhibit human evalua-
tions as a means of assessing performance across
various dimensions of generation quality. Annota-
tors were requested to answer: 1) whether the re-
sponse is fluent and understandable (Flue.) and 2)
whether the response is contextually coherent given
previous conversations (Cohe.) and 3) whether the
response is factually correct (Fact.).

All the annotators were asked to rate each quality
on a two-level Likert scale from 0 (Not Flunet,
Not Coherent, Inconsistent) to 1 (Flunet, Coherent,
Consistent) to evaluate the fluency, coherence, and
factual consistency of generated responses. The
averaged results by the human evaluation scores
are reported.

4 Results and Analysis

4.1 Main Experiments of K-DIAL and RLFC

Results of Automatic Evaluations In Table 1,
we present the experimental results of various
GPT2-based dialogue PLMs using K-DIAL and
RLFC on WoW and CMU_DoG test sets. Several
trends can be found below:

1) The effects of K-DIAL: GPT2 series models
using K-DIAL outperform all standard dialogue
models in both factual consistency and dialogue
quality for KDS on both WoW and CMU_DoG test
sets. Significant factual consistency improvements
of GPT2-L+K-DIAL in Fact. and Q2 in terms
of 5.36% and 7.63% absolutely over GPT2-L on
WoW indicate that K-DIAL effectively enhances
factual expressions. On CMU_DoG, supreme fac-
tual consistency improvements of 3.84% and 4.11%
absolutely on Fact. and Q2 are obtained on GPT2-
M after using K-DIAL.

Improvements in the KF1 measure suggest that
the responses equipped by K-DIAL are more
knowledgeable and faithful to the supported knowl-
edge. The performance improvements obtained on
the conversationality metrics of BLEU, F1, and
ROUGE-L present that through enhancing factual
expressions for responses, the dialogue quality can
be also marginally improved.

2) The effects of RLFC: Comparable per-
formance improvements are also acquired using
RLFC on GPT2 dialogue models, demonstrating
that RLFC can proficiently improve the factual con-
sistency of KDS on both WoW and CMU_DoG,

https://github.com/orhonovich/q-squared


Model Dataset KF1 BERT. Verif. Hallu. Fact. Q2 BLEU F1 ROUGE
GPT2-M

WoW

46.51 38.25 13.67 10.94 5.74 55.55 27.09 60.83 7.83
+ K-DIAL 48.36 41.97 16.67 11.54 9.36 62.47 28.33 61.48 8.69
+ RLFC 47.23 40.34 18.84 11.15 8.44 59.14 25.43 59.26 6.24
+ RLFC + K-DIAL 50.27 41.65 18.74 12.37 11.56 63.26 27.45 61.34 7.98

GPT2-L 68.46 47.44 43.96 32.35 40.19 76.08 53.32 76.18 30.82
+ K-DIAL 70.59 50.73 45.38 34.12 45.55 83.71 55.78 77.64 32.45
+ RLFC 70.44 52.27 47.73 35.16 44.41 80.25 55.42 75.25 31.24
+ RLFC + K-DIAL 72.38 53.25 48.81 37.98 46.37 82.72 56.78 77.57 33.34

GPT2-XL 73.67 51.40 50.15 34.44 48.40 79.38 54.45 79.72 36.90
+ K-DIAL 75.48 53.38 50.07 36.45 49.12 83.38 53.96 80.23 36.84
+ RLFC 75.21 52.26 51.33 36.17 49.31 82.01 54.60 80.11 37.02
+ RLFC + K-DIAL 76.35 53.60 50.94 37.08 50.13 83.87 54.77 79.99 37.19

GPT2-M

CMU_DoG

26.13 32.35 10.27 7.54 4.26 37.51 36.68 61.33 19.12
+ K-DIAL 29.21 37.44 12.08 8.94 8.10 41.62 37.64 62.19 19.39
+ RLFC 30.54 35.20 12.96 8.21 7.27 40.43 38.24 62.13 20.13
+ RLFC + K-DIAL 31.66 38.12 14.09 9.89 9.23 42.36 38.56 62.49 21.07

GPT2-L 51.35 39.42 31.54 27.65 23.38 57.82 45.17 68.55 31.27
+ K-DIAL 53.16 42.23 33.64 30.06 25.45 59.40 45.74 69.16 32.57
+ RLFC 52.87 42.36 33.95 28.71 25.31 59.12 46.72 69.88 33.37
+ RLFC + K-DIAL 54.02 44.89 34.70 31.43 28.67 61.34 46.65 70.18 34.09

GPT2-XL 65.14 45.09 42.88 35.17 33.97 66.13 48.25 75.39 34.35
+ K-DIAL 66.48 45.26 44.08 37.24 34.53 68.50 48.79 75.22 35.52
+ RLFC 66.11 51.33 44.06 37.16 34.83 69.34 50.02 75.64 35.86
+ RLFC + K-DIAL 67.41 46.21 44.97 38.03 35.05 70.14 51.14 75.49 36.10

Table 1: Experiments of GPT2 series models fine-tuned on KDS datasets employed with K-DIAL and RLFC
methods on WoW and CMU_DoG test set.

where performance improvements of 3.77% in
Verif. on WoW and 2.41% on CMU_DoG are ob-
tained by GPT2-L+RLFC over GPT2-L models.

RLFC performs better on Verif. measure over
standard baseline models than K-DIAL, suggest-
ing that RLFC is better at promoting the model’s
ability to generate verifiable responses by aligning
with factual knowledge. The side-effect of degra-
dation on dialogue quality metrics implies that ap-
plying RLFC uniquely cannot effectively maintain
the original conversationality of the standard GPT2
dialogue model.

3) The effects of RLFC+K-DIAL: The opti-
mal training strategy to obtain the final models is
specialized in two stages. We first train the GPT2
models using RLFC and then apply K-DIAL on
the obtained model. The supreme performance im-
provements are obtained on the setting of GPT2-L
using the combination of RLFC and K-DIAL meth-
ods in Q2 and Fact. in respective of 6.18% and
8.64% absolutely over standard GPT2-L dialogue
model on WoW. The combination of RLFC and
K-DIAL can implicitly and explicitly improve the
models’ ability to express factual knowledge as
a complementary, demonstrating the best perfor-
mance in respect of factual consistency and dia-
logue quality.

4) The effects of model size: We observe that
better performance improvements are attained on

GPT2-M and GPT2-L models using either K-DIAL

or RLFC than on larger-scale GPT2-XL models on
both WoW and CMU_DoG test sets, as the GPT2-
XL models finetuned on KDS datasets are more
robust to generate factual consistent contents.

Model Dataset Flue. Cohe. Fact.
GPT2-L

WoW

1.00 0.88 0.65
+ K-DIAL 1.00 0.90 0.68
+ RLFC 1.00 0.91 0.69
+ RLFC + K-DIAL 1.00 0.91 0.74

GPT2-L

CMU_DoG

1.00 0.86 0.69
+ K-DIAL 1.00 0.86 0.73
+ RLFC 1.00 0.87 0.74
+ RLFC + K-DIAL 1.00 0.86 0.76

Table 2: Human evaluation results of GPT2-L model
using respective and combination of proposed K-DIAL
and RLFC on 100 samples selected from WoW and
CMU_DoG test sets respectively.

Results of Human Evaluations To accurately
gauge the performance of the proposed methods,
we perform human evaluations in Table 2. We
select a subset of examples from the WoW and
CMU_DoG test sets, using 100 examples from
each dataset per model variant with 3 human raters.
Results indicate that responses generated by all
the models are fluent and coherent to appropriately
make sense in engaging the context of the conver-
sations. Furthermore, the assessment of factual
consistency by human evaluators demonstrates a



Model Dataset # Para KF1 BERT. Verif. Hallu. Fact. Q2 BLEU F1 R.L.
GPT2-M

WoW

355M 46.51 38.25 13.67 10.94 5.74 55.55 27.09 60.83 7.83
+ K-ADAPTER 377M 46.96 39.32 14.66 10.35 7.64 60.36 26.03 59.17 7.06
+ K-Former 361M 47.43 39.91 15.51 11.50 8.37 57.87 26.28 59.08 8.14
+ NKB 361M 46.60 38.74 13.49 9.51 6.35 58.88 25.30 60.55 6.84
+ K-DIAL (ours) 361M 48.36 41.97 16.67 11.54 9.36 64.47 28.33 61.48 8.69
+ K-DIAL-α (ours) 361M 49.03 41.66 16.50 11.23 9.48 62.34 29.36 61.06 8.40
GPT2-M

CMU_DoG

355M 26.13 32.35 10.27 7.54 4.26 37.51 36.68 61.33 19.12
+ K-ADAPTER 377M 27.69 34.44 11.32 8.63 6.64 39.26 37.26 61.19 18.84
+ K-Former 361M 28.90 35.89 12.61 9.06 7.37 40.35 37.18 61.48 19.24
+ NKB 361M 27.63 32.97 10.59 9.51 5.23 36.86 36.45 61.30 18.55
+ K-DIAL (ours) 361M 29.21 37.44 12.08 8.94 8.10 41.62 37.64 62.19 19.39
+ K-DIAL-α (ours) 361M 28.83 37.25 12.20 9.23 7.68 40.28 37.77 62.10 20.84

Table 3: Experiments and parameter use of several knowledge enhancement baseline and K-DIAL variants compar-
isons on GPT2-M on WoW and CMU_DoG test set.

Figure 4: An example of a conversation on WoW valid set before and after using K-DIAL and RLFC on the dialogue
model (denoted as <bot>). Incongruous content is highlighted in Red, while the counterpart gold knowledge in the
Wikipedia document is in Blue.

strong correlation with the Fact. and Q2 metrics in
Table 1, which confirms that our proposed methods
exactly improve factual consistency for KDS. The
raters’ agreements for each quality are measured
separately using Fleiss’ Kappa of statsmodels 12.
All the results (Flue.:0.99, Cohe.:0.95, Fact.:0.77
respectively) demonstrate substantial and almost
perfect agreement levels.

4.2 Baseline Methods and K-DIAL Variants
Comparisons

Experiments of Baseline Comparisons To the
best of our knowledge, this work is the first to
propose to improve factual consistency for KDS.
Previous related works that investigate the factual
consistency of KDS only focus on evaluation meth-
ods (Honovich et al., 2021) or datasets (Labadie
et al., 2021; Dziri et al., 2022; Gupta et al., 2022).
Therefore, there is no direct improvement method
to be compared.

Nevertheless, for the knowledge-enhancing
method K-DIAL, we still carry out experiments
on several knowledge injection and enhancement
methods for NLG tasks, including K-Adapter
(Wang et al., 2021), Kformer (Yao et al., 2022), and

12https://github.com/statsmodels

eural Knowledge Bank (NKB) (Dai et al., 2022b),
which first integrate substantial exogenous knowl-
edge and are further adapted on KDS tasks as base-
lines presented in Table 3. Experimental results on
GPT2-M dialogue models generally show that all
the knowledge injection methods can marginally
improve the factual consistency but slightly de-
grade the dialogue quality on BLEU and ROUGE-
L. K-DIAL outperforms the three baseline knowl-
edge injection methods in both factuality and con-
versationality, demonstrating superior performance
to improve factual consistency without sacrificing
the dialogue qualities for KDS tasks.

More details regarding the baseline configura-
tions and implementations are available in Ap-
pendix D.

Experiments of K-DIAL Variants We also con-
duct variant comparison experiments of a K-DIAL-
α which updates the extended FFN modules using
LCE as Equation (1) and calculate the loss on all
tokens rather than LKCE of Equation (3) for just
knowledge entities. Experimental results suggest
that optimizing K-DIAL by either LCE or LKCE

has comparable performance, as the knowledge in-
formation is mainly represented by the knowledge
entities and learned by the FFN modules. For ef-

https://github.com/statsmodels


ficiency, we adopt only updating extended FFN
parameters on knowledge entities for the K-DIAL

method.

4.3 Case Analysis of K-DIAL and RLFC

We further present a representative case in Figure
4 to analyze the practical performance of proposed
K-DIAL and RLFC methods in comparison with
the standard GPT2-L model respectively. The fol-
lowing trends are found:

1) Both K-DIAL and RLFC can effectively cor-
rect the inconsistent response generated by the
standard GPT2-L dialogue model that contradicts
the factual knowledge in the Wikipedia document,
demonstrating their efficacy in improving factual
consistency for KDS.

2) The K-DIAL method is more likely to learn
the important knowledge snippet and directly ex-
press it in responses, which is achieved by extended
FFNs’ explicit ability to enhance factual knowledge
expressions.

3) RLFC implicitly aligns the FFNs’ expressions
with external gold knowledge for the factual con-
sistency preference, which is more semantically
natural and human-like than K-DIAL.

5 Related Works

Factual Consistency in NLG The issue of fac-
tual inconsistency in NLG tasks has attracted in-
creasing attention in many fields such as abstrac-
tive summarization, with studies focusing on both
improving and evaluating the factual consistency
(Kryscinski et al., 2020b; Maynez et al., 2020; Xie
et al., 2021; Zhu et al., 2021; Nan et al., 2021).
Related works were also conducted on data-to-text
generation (Dušek and Kasner, 2020; Thomson
and Reiter, 2020). In the context of dialogue sys-
tems, Dziri et al. (2021); Gupta et al. (2022) in-
troduced the benchmarks for measuring the attri-
bution and fact-checking of dialogue generations
with grounding knowledge. In the context of di-
alogue systems, Rashkin et al. (2021) added con-
trollable tokens on the input of the dialogue model
to generate responses that are more faithful to the
source knowledge. Shuster et al. (2021) investi-
gated the Retrieval-Augmented Generation (RAG)
approach to reduce knowledge hallucination in con-
versational agents. Peng et al. (2023) introduced
LLM-AUGMENT, a framework for augmenting
black-box LLMs with external knowledge and au-
tomated feedback to reduce hallucinations.

Enhancing Knowledge in PLMs Previous
works have explored ways to incorporate exter-
nal knowledge into pre-trained language models
(PLMs). ERNIE (Zhang et al., 2019) and Know-
BERT (Zhang et al., 2019; Peters et al., 2019) en-
hance the word representations by incorporating
external knowledge graphs. K-ADAPTER intro-
duces two adapters to inject factual and linguis-
tic knowledge into PLM respectively (Wang et al.,
2021). Inspired by Dai et al. (2022a), recent works
focused to add extended FFNs in Transformer-like
K-former (Yao et al., 2022) or Neural Knowledge
Bank (NKB) (Dai et al., 2022b) to inject and update
extra knowledge while keeping the original model
parameters frozen. Dong et al. (2022) investigated
to detect the incorrect knowledge stored in PLMs
and proposed CALINET for knowledge calibration.

Reinforecment Learning in NLG With growing
interest in RL technique, learning enhanced LMs
from human feedback has been explored in Ouyang
et al. (2022); Bahdanau et al. (2019); Ramamurthy
et al. (2022). Language models are optimized to
align with human preferences such as harmless
and non-toxic outputs (Faal et al., 2022; Bai et al.,
2022), which means following human instructions
better. RLHF technique was also widely applied in
downstream tasks such as dialogue system (Jaques
et al., 2020; Lu et al., 2022; Kwan et al., 2023;
Wang et al., 2022) and abstractive summarization
(Böhm et al., 2019; Wu et al., 2021).

6 Conclusion

In this work, we investigate the inadequacy of KDS
that often produces factually inconsistent responses
unsupported by grounding knowledge. We pro-
pose two strategies to tackle this issue. K-DIAL

introduces extended FFN modules to explicitly en-
hance factual knowledge expressions given specific
input patterns of the knowledge snippets and di-
alogue contexts. RLFC technique is used to im-
plicitly adjust FFNs to augment factual expressions
in responses by aligning with the gold knowledge
for factual consistency preferences. Experiments
present that both K-DIAL and RLFC can promote
the knowledgeability, factual consistency and con-
versational ability of responses, demonstrating the
efficacy of our proposed methods to improve the
ability of FFNs to express factual knowledge to
generate more informative and reliable responses
in dialogue applications.



Limitations

The limitations of this work are summarized below:
1) As shown in Figure 2 (a) and described be-

fore, this paper assumes that factual inconsistency
comes along with dialogue model M and proce-
dure ➃ in Figure 2 (a), which deviated from the
reality that the knowledge retrieval process ➀ and
hallucinations in knowledge K and contexts X are
not always correct. A more challenging problem
lies in locating the inconsistency cause of genera-
tion processes. In future work, we will make a sys-
tematic investigation of the factual inconsistency
and hallucination problems in KDS.

2) Recently, large-scale language models
(LLMs) such as GPT3 and ChatGPT have demon-
strated state-of-the-art performance across a range
of NLP tasks. This work was only conducted on the
GPT2 series PLMs with a maximum of 1.26B pa-
rameters, which is extremely small in comparison
with such LLMs containing hundreds of billions of
parameters. However, since the proposed methods
involve plenty of model parameter updating, it is
difficult to employ on LLMs due to the limitations
of GPU resources in the initial work. Next, we
will continue to explore the transferability of the
framework using the parameter-efficient method to
the employment of open-source LLMs.
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A Dataset Details

WoW As listed below in Table 4, the WoW
dataset contains 18,430, 1,948, and 1,933 conver-
sations in Train/Valid/Test sets respectively. Both
"seen" and "unseen" topic portions of test sets have
been merged. Each conversation data spans 4-5
turns of utterances between Wizard and Appren-
tice. In each turn, the response by the Wizard is
grounded on gold knowledge of one or two checked
sentences in the Wikipedia documents as eviden-
tiary support.

CMU_DoG The CMU_DoG (Zhou et al., 2018)
dataset contains 3,373, 229, 619 conversations with
an average of 21.43 turns per conversation. In
CMU_DoG, the grounding knowledge is at the doc-
ument level, which is a more difficult (but realistic)
setting rather than WoW.

The number of processed training samples are
presented in 4 below.

WoW CMU_DoG
# Conv. # Samp. # Conv. # Samp.

Train 18,430 73,571 3,373 78,406
Valid 1,948 7,903 229 5,474
Test 1,933 7,844 619 14,700

Table 4: Data statistics of two datasets.

B Model Details

The hyper-parameters of GPT2 series models on
both WoW and CMU_DoG tasks are listed in Ta-
ble 5 including training epochs, batch size, learn-
ing rate, warm-up steps, and maximum sequence
length.

C Metrics Details

NLI-based Metrics For our annotation of fac-
tual consistency, we categorize responses into three
types as shown in Figure 6: Non-verifiable Re-
sponse does not include any information that needs
to be verified and cannot be evaluated as consis-
tent or not consistent. A factually consistent re-
sponse is informative and highly relevant to the
provided knowledge. Hallucinated responses may
not be always consistent with the knowledge but
could still be correct. Despite the exorbitant ex-
penses associated with human annotations, there
are still publicly precious gold-label datasets. Fol-
lowing Santhanam et al. (2021), we defined fine-
grained metrics on factual consistency evaluation

with respect to Verification, Factual Consistency,
and Hallucination as exemplified in Figure 6. Sim-
ilar taxonomy is also adopted in Gupta et al. (2022)
(Generic/Attributable/Not Attributable) and Dziri
et al. (2021) (Verification/Supported/Refuted/Not
Enough Information (NEI)).

D Baseline Method Details

K-Adapter Wang et al. (2021) proposed K-
ADAPTER, a neural adapter architecture specifying
one kind of knowledge (e.g. Factual Knowledge or
Liguistic Knowledge), as plug-in connections into
different Transformer layers of PLMs. Following
Wang et al. (2021), we set each adapter model con-
sisting of three adapter layers plug-in among the
highest, middle, and lowest Transformer layers of
PLMs (e.g. for the 36-layer GPT2-Large, adapter
layers plug-in is configured as {1,18,36}), and pa-
rameters are not shared across different adapter lay-
ers. Each adapter layer comprises two Transformer
layers and two projection layers illustrated in Fig-
ure 5. The Transformer block of the adapter layer
has been established to be of equal size to that of
the PLMs. Additionally, the hidden dimensions of
the down-projection and up-projection layers have
been set to correspond to the word embedding and
hidden dimension of the PLMs in different scales
respectively.

Kformer Kformer (Yao et al., 2022) is a knowl-
edge fusion model that converts the knowledge into
dense embedding vectors and then injects them
into the parameters of expanded FFNs of the Trans-
former layers followed by Dai et al. (2022a). In
accordance with (Yao et al., 2022), we encode the
external knowledge via an embedding layer which
is initialized as the same word embedding matrix
of GPTs. Then we map the obtained knowledge
representations into the corresponding vector space
of FFN weights. Only the top 3 layers of all PLMs
were adopted for knowledge enhancement.

Neural Knowledge Bank Neural Knowledge
Bank (Dai et al., 2022b) have put forth the Neural
Knowledge Bank (NKB) which is an extended FFN
module as the memory slots for knowledge infu-
sion using Salient Span Masking (SSM) (Guu et al.,
2020) strategy to preserve the general language
modeling competency. The NKB architectures are
expanded onto the top three FFN layers of GPTs.
The quantity of supplementary memory slots is es-
tablished to match the dimension of intermediate



Model Dataset Epoch Batch L.R. Warm. Seq. Len.
GPT2-M

WoW

4 16 6e-5 2k 256
GPT2-M+K-DIAL (FFNs) 2 32 6e-5 2k 256
GPT2-M+K-DIAL (GPT2 Model) 3 16 6e-5 2k 256
GPT2-M+RLFC 3 16 1e-5 - 256
GPT2-L 4 8 6e-5 4k 256
GPT2-L+K-DIAL (FFNs) 2 24 6e-5 4k 256
GPT2-L+K-DIAL (GPT2 Model) 3 8 6e-5 4k 256
GPT2-L+RLFC 3 8 1e-5 - 256
GPT2-XL 4 4 6e-5 8k 256
GPT2-XL+K-DIAL (FFNs) 2 16 6e-5 8k 256
GPT2-XL+K-DIAL (GPT2 Model) 3 4 6e-5 8k 256
GPT2-XL+RLFC 3 4 1e-5 - 256
GPT2-M

CMU_DoG

4 16 1e-5 4k 256
GPT2-M+K-DIAL (FFNs) 2 32 1e-5 4k 256
GPT2-M+K-DIAL (GPT2 Model) 3 16 1e-5 4k 256
GPT2-M+RLFC 3 16 1e-5 - 256
GPT2-L 4 8 1e-5 8k 256
GPT2-L+K-DIAL (FFNs) 2 24 1e-5 8k 256
GPT2-L+K-DIAL (GPT2 Model) 3 8 1e-5 8k 256
GPT2-L+RL 3 8 1e-5 - 256
GPT2-XL 4 4 1e-5 8k 256
GPT2-XL+K-DIAL (FFNs) 2 16 1e-5 8k 256
GPT2-XL+K-DIAL (GPT2 Model) 3 4 1e-5 8k 256
GPT2-XL+RLFC 3 4 1e-5 - 256

Table 5: Training hyper-parameters of baseline GPT2 models as well as K-DIAL and RLFC based models in
different sizes on WoW and CMU_DoG datasets respectively. Epoch, Batch, L.R., Warm., Seq. Len. denote
training epochs, batch size, learning rate, warm-up steps, and maximum sequence length respectively.

Figure 5: Illustrations of (a) K-ADAPTER; (b) Kformer; (c) Neural Knowledge Bank (NKB) architectures.

Figure 6

hidden states within the FFN module.

The training procedure for all the knowledge-
enhanced models is divided into two stages. First,
When injecting knowledge, we froze all the param-
eters of GPT-2 models and injected factual knowl-
edge (passages of WoW or CMU_DoG datasets)

by only updating the parameters in the knowledge
module (e.g. K-Adapter, Kformer, and NKB).
Then, we fine-tune the knowledge-enhanced mod-
els for the two knowledge-grounded dialogue tasks
respectively.



Model Subset KF1 BERT. Verif. Hallu. Fact. BLEU F1 RL.
GPT2-M Seen 47.25 38.44 13.70 11.01 5.81 28.11 60.99 8.16
+ K-DIAL Seen 50.07 42.23 16.77 11.62 9.39 28.26 61.63 8.97
+ RLFC Seen 48.02 40.56 18.91 11.25 8.57 25.82 59.49 6.37

GPT2-M Unseen 45.78 38.06 13.64 10.87 5.67 26.07 60.67 7.50
+ K-DIAL Unseen 48.66 41.71 16.57 11.47 9.33 28.20 61.33 8.41
+ RLFC Unseen 46.45 40.12 18.77 11.06 8.31 25.04 59.03 6.11

Table 6: Experiments of standard GPT2-M models before and after using K-DIAL and RLFC methods on respective
seen and unseen WoW test subsets.

E Experiments on WoW Seen and Unseen
Sets

In this work, whether a topic in the test set has been
seen or unseen during training is irrelevant to the
effect of knowledge enhancement and alignment.
There are no distinct performance improvement dif-
ferences between seen and unseen test sets of WoW
using K-DIAL and RLFC in our early verification
experiments as Table 6, which doesn’t affect the
conclusions. Therefore, we merge the two subsets
for all models.


