
On the Language Encoder of Contrastive Cross-modal Models

Anonymous ACL submission

Abstract

Contrastive cross-modal models such as CLIP001
and CLAP aid various vision-language (VL)002
and audio-language (AL) tasks. However, there003
has been limited investigation of and improve-004
ment in their language encoder – the central005
component of encoding natural language de-006
scriptions of image/audio into vector represen-007
tations. We extensively evaluate how unsuper-008
vised and supervised sentence embedding train-009
ing affect language encoder quality and cross-010
modal task performance. In VL pretraining,011
we found that sentence embedding training en-012
hances language encoder quality and aids in013
cross-modal tasks, improving contrastive VL014
models such as CyCLIP. Sentence embedding015
training benefits AL tasks when the amount of016
training data is large. We analyze the repre-017
sentation spaces to understand the strengths of018
sentence embedding training, and find that it019
improves text-space uniformity, at the cost of020
decreased cross-modal alignment 1.021

1 Introduction022

Significant progress have been made in pretrain-023

ing large-scale cross-modal models, such as CLIP024

(Radford et al., 2021) and ALIGN (Jia et al.,025

2021), for various vision-language (VL) applica-026

tions such as retrieval and zero-shot image classifi-027

cation. These models are often pretrained with028

large amounts of data, e.g., OpenAI leverages029

«400M caption-image pairs to train CLIP while030

LAION-AI scaled up this number to 5B (Schuh-031

mann et al., 2022; Cherti et al., 2023). Such a large032

amount of multi-modal pretraining data contains033

text captions at the same scale as the pretraining034

corpora of large language models (LLMs) such as035

BERT, which is pretrained on 3.3B words (Devlin036

et al., 2019).037

The success of VL pretraining encourages re-038

search on contrastive learning models for other039

1Code and model will be open upon publication.

modalities like audio. Pretrained audio-language 040

(AL) models such as AudioCLIP (Guzhov et al., 041

2022) and CLAP (Wu et al., 2023; Elizalde et al., 042

2023) show promising results on AL retrieval and 043

zero-shot audio classification tasks. 044

It is clear that the language encoder in cross- 045

modal contrastive models plays a central role when 046

scaling-up pretraining of a specific modality and/or 047

the amount of modalities. Therefore, analyzing and 048

improving the language encoder become increas- 049

ingly crucial. CLIP’s language encoder (CLIP 050

LM) – a decoder-only language model similar to 051

GPT-2 (Radford et al., 2019) – has been investi- 052

gated. Yan et al. (2022) showed that the CLIP LM 053

outperforms BERT (Devlin et al., 2019) in cluster- 054

ing entities with prompting. Wolfe and Caliskan 055

(2022) probed the CLIP LM, showing its word rep- 056

resentations are less anisotropic (Ethayarajh, 2019), 057

i.e., more uniformly distributed with respect to di- 058

rection, than GPT-2. Complementary to research 059

on CLIP LM, we focus on pretraining. CLIP-like 060

models are often pretrained with cross-modal con- 061

trastive learning. We measure – during pretraining 062

– the effectiveness of systematically modeling the 063

image captions with sentence embedding training 064

(Reimers and Gurevych, 2019; Gao et al., 2021), 065

which is a natural fit to the captions. 066

We pretrain CLIP and one of its new variants Cy- 067

CLIP (Goel et al., 2022) with sentence embedding 068

training, as well as the conventional cross-modal 069

contrastive learning. In addition to CLIP’s cross- 070

modal contrastive learning objective, CyCLIP ex- 071

plicitly optimizes for geometry consistency be- 072

tween the text and image representation spaces, 073

making it a suitable model for validating the effec- 074

tiveness of NLP methods. We evaluate pretrained 075

models on an array of tasks involving one or two 076

modalities such as SentEval, zero-shot VL retrieval, 077

and image classification. We find that unsuper- 078

vised sentence embedding training improves the 079

language encoder quality and VL tasks. Supervised 080
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sentence embedding training improves language en-081

coder quality, but the benefit does not necessarily082

transfer to VL tasks. We analyze the learned repre-083

sentation spaces and find that sentence embedding084

training improves text-space uniformity (Wang and085

Isola, 2020) and reduces anisotropy (Ethayarajh,086

2019; Wolfe and Caliskan, 2022).087

We also investigate AL contrastive models such088

as CLAP (Wu et al., 2023). In contrast to VL pre-089

training, AL pretraining suffers from data scarcity090

and often leverages pretrained LLMs and audio en-091

coders. We determine the effectiveness of sentence092

embedding training in both scenarios: continued093

pretraining with LLMs and audio encoders, and094

pretraining from scratch. We find that sentence095

embedding training improves AL tasks when the096

amount of data is large, while the benefits become097

less noticeable on small datasets. To the best of our098

knowledge, this is the first study on investigating099

and trying to improve the language encoder of AL100

contrastive learning, and we expect our results will101

encourage more research in this direction.102

In summary, our contributions are as follows:103

(i) We extensively evaluate how unsupervised and104

supervised sentence embedding trainings affect VL105

and AL contrastive pretraining. Experimental re-106

sults indicate improved VL performance. AL tasks107

see improvements when the amount of training108

data is large, while the benefits become less notice-109

able on small datasets. (ii) We show that unsuper-110

vised sentence embedding training improves the111

language encoder of CyCLIP (Goel et al., 2022),112

hence improves performance of cross-modal tasks.113

(iii) We conduct a comprehensive analysis on the114

alignment and uniformity of learned representation115

spaces following Wang and Isola (2020), and show116

that sentence embedding training improves unifor-117

mity of the text representation space, but at the cost118

of decreased cross-modal alignment.119

2 Related work120

CLIP LM. Research has focused on the language121

encoder of OpenAI CLIP (Radford et al., 2021).122

The model consists of a language encoder (CLIP123

LM) and an image encoder that are jointly trained124

on Web-scale caption-image pairs. Yan et al. (2022)125

stressed the importance of CLIP LM, showing126

that it outperforms BERT (Devlin et al., 2019) in127

tasks, such as entity clustering, through prompting.128

Bielawski et al. (2022) showed that CLIP LM out-129

performs BERT in “human-centric” tasks such as130

genre classification on books or movies. Santurkar 131

et al. (2023) highlighted the importance of text cap- 132

tions for representation learning of CLIP by com- 133

paring it with SimCLR (Chen et al., 2020) in which 134

no language supervisions is present. Training sig- 135

nals from language are shown to be detrimental, 136

worthing any number of images in a sufficiently 137

large dataset. Our work follows this direction, with 138

a focus on determining how supervised or unsu- 139

pervised sentence embedding trainings affect CLIP 140

LM and VL contrastive learning. 141

Goel et al. (2022) introduced CyCLIP, incorpo- 142

rating extra training objectives than cross-modal 143

contrastive learning such that the geometry con- 144

sistency between the text and image spaces is im- 145

proved. One of CyCLIP’s training objectives is 146

computing similarities between captions; this moti- 147

vates us to determine how systematically modeling 148

the captions through supervised or unsupervised 149

sentence embedding training affects CyCLIP/CLIP. 150

Contrastive audio-language pretraining mod- 151

els have also been proposed. Guzhov et al. 152

(2022) extended CLIP to audio tasks by adding 153

an extra module and continued training on au- 154

dio datasets. Similar distillation methods such as 155

Wav2CLIP (Wu et al., 2022), have also been pro- 156

posed. Elizalde et al. (2023) and Wu et al. (2023) in- 157

dependently proposed CLAP, in which a language 158

encoder and an audio encoder are jointly trained 159

on AL datasets, which resembles CLIP. We focused 160

on the language encoder in the AL models, and 161

demonstrated the impact of sentence embedding 162

training. To the best of our knowledge, this is the 163

first step in this direction. 164

Sentence embedding is an extensively inves- 165

tigated NLP topic. Methods ranging from bag- 166

of-word averaging non-contextualized embeddings 167

(Mikolov et al., 2013; Pennington et al., 2014) 168

to training LSTMs (Hochreiter and Schmidhuber, 169

1997), e.g., SkipThought (Kiros et al., 2015) and 170

InferSent (Conneau et al., 2017), have been pro- 171

posed to effectively compose individual tokens to 172

meaningful sentence representations. Methods that 173

leverage post-hoc transforming (Li et al., 2020; Su 174

et al., 2021) or finetuning the pretrained BERT in 175

supervised (Reimers and Gurevych, 2019) or un- 176

supervised scenarios (Gao et al., 2021) are also in- 177

troduced. Zhang et al. (2022) show that grounding 178

sentence embedding learning to images improves 179

semantic textual similarity tasks. We present a fo- 180

cused investigation on the LM in CLIP/CyCLIP. 181

We pretrained from scratch an LM and ResNet-50 182
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(He et al., 2016) with cross-modal contrastive learn-183

ing, as well as unsupervised or supervised sentence184

embedding training with image captions. Verifying185

the effectiveness of sentence embeddings – a criti-186

cal component for retrieval and clustering (Reimers187

and Gurevych, 2019; Gao et al., 2021; Wang et al.,188

2021; Thakur et al., 2021; Geigle et al., 2022) – is189

of great importance because retrieval has been one190

of the main applications of CLIP-like models.191

3 Method192

Cross-modal contrastive learning plays a key role193

in training models such as CLIP/CLAP. We take194

image modality as an example for introducing195

this method. Consider a caption-image dataset196

tpIi, TiquNi“1 that includes N caption-image pairs,197

and denote Ie and T e as the output representations198

from an image and langauge encoder, respectively.199

The cross-modal contrastive loss (Radford et al.,200

2021) is defined as201

Lcontra.pτq “ ´

N
ÿ

j“1

log
exp

´

xIej , T
e
j y{τ

¯

ř

k exp
´

xIej , T
e
k y{τ

¯202

´

N
ÿ

k“1

log
exp pxIek, T

e
k y{τq

ř

j exp
´

xIej , T
e
k y{τ

¯ ,203

204 where τ is a trainable temperature parameter initial-205

ized to 0.07 and x¨, ¨y computes cosine similarity.206

CLIP’s training objective solely stresses the207

alignment between the two modalities. CyCLIP208

(Goel et al., 2022) has improved CLIP (Radford209

et al., 2021) by additionally optimizing for im-210

proved representation space geometry, such that211

the image and text spaces are more consistent with212

each other. Concretely, CyCLIP explicitly opti-213

mizes two additional objectives for cross-modal214

and in-modal consistency as well as Lcontra.:215

LC-cyclic “
ÿ

j

ÿ

k

`

xIej , T
e
k y ´ xIek, T

e
j y

˘2
,216

LI-cyclic “
ÿ

j

ÿ

k

`

xIej , I
e
ky ´ xT e

k , T
e
j y

˘2
.217

Intuitively, decreasing the cross-modal consis-218

tency loss LC-cyclic makes the cross-modal simi-219

larity matrix more symmetric, as shown in Fig-220

ure 1. Note that solely optimizing Lcontra. is ex-221

pected to symmetrize the cross-modal similarity222

matrix because the similarity of non-diagonal pairs223

are trained to be zero. Goel et al. (2022) showed224

that this scenario does not occur in practice and225

explicitly optimizing LC-cyclic is beneficial.226

I1

I2

T1 T2

Cross-modal contrastive

Cross-modal consistency

Figure 1: Cross-modal similarity matrix. Diagonal ele-
ments refer to cosine similarity between aligned caption-
image pairs while non-diagonal elements refer to mis-
matched caption-image pairs.

Optimizing LI-cyclic, however, reduces the incon- 227

sistency between the overall geometry of the text 228

and image spaces. Computing LI-cyclic requires cal- 229

culating the similarity between two text captions, 230

i.e., xT e
k , T

e
j y. It is thus reasonable to hypothesize 231

that accurately computing caption similarities is 232

beneficial for optimizing LI-cyclic. We use unsuper- 233

vised and supervised sentence embedding training 234

methods and test the hypothesis (§4). 235

We use the widely used SimCSE (Gao et al., 236

2021) method for unsupervise learning caption 237

representations. SimCSE also uses contrastive 238

learning: a caption is input to a language encoder 239

twice to obtain two vectors T e and T e
`. With 240

dropout (Srivastava et al., 2014) enabled, T e and 241

T e
` are generally different. These paired vectors 242

serve as the positive training pairs for contrastive 243

learning, while mismatched captions form negative 244

pairs. We denote the unsupervised SimCSE loss as 245

Lspτq “ ´
ÿ

j

log
exp

´

xT e
j , T

e
j,`y{τ

¯

ř

k exp
´

xT e
j , T

e
k,`y{τ

¯ , 246

τ is fixed to 0.05 following Gao et al. (2021). 247

Another direction of sentence embedding train- 248

ing is supervised training (Reimers and Gurevych, 249

2019) on natural language inference (NLI) datasets, 250

e.g., SNLI and MNLI (Bowman et al., 2015; 251

Williams et al., 2018). We denote the objective 252

as Ln and follow Gao et al. (2021) in using en- 253

tailment pairs as T e and T e
` and the contradiction 254

sentence as a hard negative. 255

Table 1 lists various models we use in our ex- 256

periments as well as their training objectives. Dur- 257

ing the experiments, we sum up the objectives but 258

weight them with different hyperparameters (λ) de- 259

pending on the combinations, which are shown in 260

§4. We add a suffix “s” to the name of models 261

trained with Ls and “n” to models trained with Ln. 262
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Lcontra. LC-cyclic LI-cyclic Ls Ln

CLI (A) P ✓ - - - -
CLI (A) Ps ✓ - - ✓ -
CLI (A) Pn ✓ - - - ✓
CyCLI (A) P ✓ ✓ ✓ - -
CyCLI (A) Ps ✓ ✓ ✓ ✓ -
CyCLI (A) Pn ✓ ✓ ✓ - (✓)

Table 1: List of training objectives. We follow Radford
et al. (2021) for CLIP, Wu et al. (2023) for CLAP, and
Goel et al. (2022) for CyCLIP.

4 Experiments263

4.1 Datasets264

To pretrain VL models such as CLIP and CyCLIP,265

we follow Bugliarello et al. (2021); Goel et al.266

(2022) and use the Conceptual Captions dataset,267

which consists of approximately2 3M caption-268

image pairs (CC3M; Sharma et al. (2018)). CC3M269

has a reasonable size for pretraining and contains270

a broad coverage of Web content, making it a271

good option for learning generic VL representa-272

tions (Bugliarello et al., 2021).273

To evaluate the trained VL models, we follow274

(Radford et al., 2021) and conduct evaluations275

with zero-shot image-text retrieval on the Karpa-276

thy (Karpathy and Fei-Fei, 2015) test splits of277

Flickr30K (Plummer et al., 2015) and MSCOCO278

(Chen et al., 2015). We skip the evaluation on279

Flickr30K when supervised sentence embedding280

training is used, i.e., when Ln is considered in281

training. This is because Flickr30K captions are282

the premises in the SNLI dataset (Bowman et al.,283

2015), overlapping with the supervised sentence284

embedding training data. For zero-shot image clas-285

sification, we use the standard benchmarks CI-286

FAR10, CIFAR100 (Krizhevsky et al., 2009), and287

ImageNet1K (Russakovsky et al., 2015). Zero-288

shot image classification with domain shift, out-of-289

domain, and adversarial examples are also consid-290

ered: ImageNetV2 (Recht et al., 2019), ImageNet-291

Sketch (Wang et al., 2019), ImageNet-O, ImageNet-292

A, and ImageNet-R (Hendrycks et al., 2021b,a).293

To pretrain AL models, e.g., CLAP and CyCLAP,294

we conduct experiments with Clotho (Drossos295

et al., 2020) consisting of «6K caption-audio pairs,296

AudioCaps consisting of «50K3 caption-audio297

2CC3M images need to be downloaded by users. Due to
broken URLs, the exact amount of data varies from time to
time; Table 2 shows the exact number of images.

3Similar to CC3M, AudioCaps only provides audio cap-
tions while users need to download corresponding YouTube
videos and convert their audio to waveforms and Table 2 shows

Dataset Pretraining Retrieval ZS Size

CC3M ✓ - - 2,806,641
MSCOCO - ✓ - 5,000
Flickr30K - ✓ - 1,000
CIFAR10 - - ✓ 10,000
CIFAR100 - - ✓ 10,000

VL ImageNet1K - - ✓ 50,000
ImageNetV2 - - ✓ 10,000
ImageNetSketch - - ✓ 5,0889
ImageNet-O - - ✓ 2,000
ImageNet-A - - ✓ 7,500
ImageNet-R - - ✓ 30,000

AL

Clotho ✓ ✓ - 5,929
AudioCaps ✓ ✓ - 50,725
FreeSound ✓ ✓ - 194,895
ESC50 - - ✓ 400
US8K - - ✓ 8,732

Table 2: Datasets and their amount of examples. We re-
port amount of images for VL datasets and of waveform
files for AL datasets. “ZS”: zero-shot classification.

pairs (Kim et al., 2019), and FreeSound (Fonseca 298

et al., 2017; Mei et al., 2023) consisting of «195K 299

caption-audio pairs. In contrast to the VL scenario, 300

AL pretraining is known to be challenging due to 301

data scarcity (Wu et al., 2023). We explore the 302

effectiveness of sentence embedding training for 303

AL with datasets with various scales of size. 304

To evaluate pretrained AL models, we conduct 305

cross-modal retrieval and zero-shot audio classifi- 306

cation tasks. For Clotho, we train the models on 307

the training split and report retrieval results on the 308

validation split. For AudioCaps and FreeSound, 309

we select the best-performing checkpoint on the 310

validation split and report test split results. We con- 311

duct zero-shot classification on the Environmen- 312

tal Sound Classification dataset (ESC50; Piczak 313

(2015)) and UrbanSound8K (US8K; Salamon et al. 314

(2014)), which have been widely used (Wu et al., 315

2023; Elizalde et al., 2023). ESC50 contains short 316

audio clips containing the sound of different com- 317

mon events such as cats meowing and dogs barking; 318

the clips are categorized into 50 classes, and US8K 319

contains audio clips of urban event sounds such as 320

drilling and street music; the clips are categorized 321

into ten classes. 322

Table 2 lists all the cross-modal datasets and 323

their usage. We follow Goel et al. (2022) in pro- 324

cessing the VL datasets and Wu et al. (2023) in 325

processing the AL datasets; the detailed steps of 326

these processes are shown in Appendix §A.1. 327

4.2 Experiment settings 328

To pretrain the VL models, we use the same model 329

architecture as CyCLIP (Goel et al., 2022), i.e., a 330

the exact amount of waveforms we used.
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ResNet-50 as the image encoder and Transformer331

(Vaswani et al., 2017) as the language encoder. We332

pretrain the model from scratch and largely reuse333

CyCLIP’s hyperparameters. To weight different334

training objectives (Table 1) in CyCLIP, we set335

λI-cyclic and λC-cyclic to 0.25, λcontra. is set to 1.0,336

and we empirically set λs and λn to 0.1. We use a337

batch size of 80, and each pretraining trial is run for338

64 epochs, taking four days with four A100 GPUs.339

We enable dropout in the language encoder and use340

dropout rate of 0.1. Appendix §A.1 lists the details341

of the hyperparameters.342

The VL pretraining dataset CC3M has a vali-343

dation split consisting of «15K text-image pairs.344

We select the best-performing checkpoint on this345

validation split for downstream task evaluations.346

Due to data scarcity, AL pretraining often lever-347

ages pretrained language and audio encoders. We348

use the same model architecture as LAION-CLAP349

(Wu et al., 2023): pretrained RoBERTa-base (Liu350

et al., 2020) as the language encoder and pretrained351

Hierarchical Token-Semantic Audio Transformer352

(HTSAT; Chen et al. (2022)) as the audio encoder.353

HTSAT has shown to outperform CNNs in vari-354

ous audio tasks (Chen et al., 2022). We use the355

HTSAT-tiny variant with 31M parameters. Due to356

smaller dataset size, each pretraining experiment357

takes less than one day on a single A100 GPU. We358

use the default dropout rate of 0.1 of RoBERTa-359

base in our experiments when the unsupervised360

sentence embedding training objective is used. Ta-361

ble 9 lists other hyperparameters used in the exper-362

iments.363

For weighting the training objectives, due to the364

small model size and dataset size, we grid search365

the optimal λI-cyclic, λC-cyclic, and λs from [0.1,366

0.25, 0.5]; λcontra. is set to 1.0. Supervised sen-367

tence embedding training (λn) is not considered368

due to the small size of the AL datasets.369

For the AL datasets Clotho, AudioCaps, and370

FreeSound, we select the best-performing check-371

point on the validation splits then conduct evalua-372

tion on downstream tasks.373

5 Results and analyses374

5.1 Results375

Table 3 lists the zero-shot VL retrieval results on376

MSCOCO and Flickr30K, following the settings in377

Radford et al. (2021). We first utilize the pretrained378

image and language encoders in a VL model to379

encode images and captions into vectors. In text380

Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 15.70 37.22 49.06 12.48 31.10 42.23
CLIPs 17.78 38.92 50.10 13.46 32.93 44.09
CLIPn 15.74 35.66 47.38 13.12 31.46 42.55

CyCLIP 18.92 41.46 54.00 15.40 35.61 46.95
CyCLIPs 21.30 44.34 56.54 16.69 37.75 49.24
CyCLIPn 16.32 36.76 48.16 14.53 34.07 45.52

Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 31.80 62.10 72.90 25.50 52.28 64.34
CLIPs 35.20 63.20 75.30 26.70 52.34 64.32

CyCLIP 37.30 66.10 76.40 30.22 56.70 67.40
CyCLIPs 40.00 69.30 79.70 31.74 58.02 69.46

Table 3: Zero-shot VL retrieval results (%) on
MSCOCO (top) and Flickr30K (bottom). Integrating
unsupervised sentence embedding learning (CLIPs and
CyCLIPs) noticeably improves zero-shot retrieval; su-
pervised embedding training (CLIPn and CyCLIPn) has
neutral to negative impacts.

retrieval, we then input the image vector to retrieve 381

the aligned captions and vice-versa for image re- 382

trieval. We report Recall@N for N in [1, 5, 10]. 383

Comparing CyCLIP and CLIP variants. We 384

see that CyCLIP clearly outperforms CLIP across 385

the board for both datasets, highlighting the signifi- 386

cant value of incorporating LC-cyclic and LI-cyclic in 387

optimizing for consistent geometry of the text and 388

image representation spaces (Goel et al., 2022). 389

When comparing CyCLIPs/CLIPs to Cy- 390

CLIP/CLIP, we observe the effectiveness of im- 391

proving the language encoder with unsupervised 392

sentence embedding training Ls. CyCLIPs/CLIPs 393

clearly surpass CyCLIP/CLIP in all configurations 394

except Flickr30K-CLIPs-ImageRetrieval-R@10. 395

This suggests that, we improve CyCLIP on zero- 396

shot vision-language retrieval tasks through learn- 397

ing better representations of the captions. We also 398

observe more gains in text retrieval than in image 399

retrieval. For example, on Flickr30K@1, CyCLIPs 400

outperforms CyCLIP by 2.70% (absolute) in text 401

retrieval and by 1.52% (absolute) in image retrieval. 402

This observation reflects the effectiveness of im- 403

proved caption representations. 404

In contrast to the unsupervised embedding train- 405

ing scenario (Ls and CyCLIPs/CLIPs), super- 406

vised sentence embedding training (Ln and Cy- 407

CLIPn/CLIPn) results in a neutral to negative im- 408

pact on the overall retrieval results. Investigating 409

the text and image representation spaces, we find 410

that Ln extensively enforces a uniform text repre- 411
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Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 5.54 18.11 26.81 5.71 18.24 26.94
CLAPs 5.97 18.74 27.54 6.09 19.10 27.53

CyCLAP 5.69 18.94 27.91 5.95 19.11 27.97
CyCLAPs 6.05 19.36 28.52 6.29 19.62 28.02

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 13.88 34.16 48.90 11.67 33.80 47.10
CLAPs 13.49 35.60 49.00 11.92 32.54 45.47

CyCLAP 14.74 35.50 48.52 11.90 34.95 48.61
CyCLAPs 14.93 36.84 51.00 12.08 34.09 46.76

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 44.10 76.80 87.67 34.82 70.62 82.93
CLAPs 42.73 75.44 87.57 34.69 69.80 82.99

CyCLAP 40.65 74.19 86.52 34.13 69.24 82.30
CyCLAPs 39.81 74.40 85.79 34.23 70.24 82.74

Table 4: Text-audio retrieval results (%) on FreeSound
(top), Clotho (mid), and AudioCaps (bottom). Adding
unsupervised sentence embedding training consistently
improves performance of CLAP/CyCLAP on the large
dataset FreeSound, while improvements on the two
small datasets are less noticeable.

sentation space such that the alignment between412

the text and image spaces is negatively affected; we413

provide more in-depth analyses in §5.2.414

AL retrieval results on Clotho, AudioCaps, and415

FreeSound are listed in Table 4. Supervised sen-416

tence embedding training objective Ln is not con-417

sidered because NLI datasets are much larger than418

AL datasets (e.g., MNLI: 433K; Clotho: 6K); sub-419

sampling introduces extra random factors that are420

difficult to control.421

On FreeSound, we observe improvements when422

comparing CyCLAP to CLAP, demonstrating that423

explicitly optimizing for the consistency between424

the audio and text spaces as in CyCLIP (Goel425

et al., 2022) is also promising for improving AL426

retrieval tasks. We also observe consistent improve-427

ments of CLAPs/CyCLAPs to CLAP/CyCLAP,428

this shows the benefits of integrating unsupervised429

sentence embedding training objective during AL430

contrastive learning.431

On Clotho, we observe overall improvements432

when comparing CyCLAP to CLAP. We see only433

one exception on text-retrieval-R@10 (i.e., 48.90%434

for CLAP and 48.52% for CyCLAP); When com-435

paring CyCLAPs/CLAPs with CyCLAP/CLAP, we436

see clear improvements on text retrieval. However,437

CLIP CLIPn CLIPs CyCLIP CyCLIPn CyCLIPs

CIFAR10 28.31 44.06 36.80 38.67 41.16 44.97
CIFAR100 13.23 17.93 10.72 17.44 19.82 22.05
ImageNet1K 14.94 15.97 16.01 20.99 18.13 22.13

ImageNetV2 12.85 13.41 14.09 17.77 15.65 18.68
ImageNet-Sk. 7.72 7.75 8.14 11.67 9.93 12.85
ImageNet-O 20.75 21.95 21.30 27.05 24.45 29.55
ImageNet-A 3.59 3.41 3.95 5.03 4.45 5.19
ImageNet-R 18.39 18.51 18.24 24.37 23.07 26.72

Table 5: Zero-shot image classification (R@1 in %) on
standard datasets (top) and datasets with distribution
shift or adversarial examples (bottom).

this comes with a decreased performance on audio 438

retrieval results of R@5 and R@10. 439

On AudioCaps, CyCLAP falls behind CLAP, 440

showing that optimizing for geometry consistency 441

brings no improvements on AudioCaps. The HT- 442

SAT audio encoder has already been pretrained 443

with audio classification tasks on AudioSet (Gem- 444

meke et al., 2017), from which AudioCaps is de- 445

rived. This may contribute to the noisy results. Sim- 446

ilarly, LAION-CLAP (Wu et al., 2023) reported 447

that adding additional 630K AL pairs largely boosts 448

AL retrieval performance on Clotho, but hurts on 449

AudioCaps. We observe similar results when com- 450

paring CyCLAPs/CLAPs with CyCLAP/CLAP. 451

We further conduct in-depth analyses (c.f. §5.2) on 452

the audio caption properties of different datasets, 453

and find that AudioCaps captions have a small 454

vocabulary and the language use has very small 455

variations, which likely limits the effectiveness of 456

sentence embedding training. 457

Comparing VL and AL retrieval results in 458

Table 3 and Table 4, we observe that (1) CyCLIP 459

noticeably improves over CLIP than CyCLAP over 460

CLAP; (2) improving the language encoder with 461

sentence embedding training is more beneficial to 462

VL than AL. We hypothesize that this is because 463

AL pretraining starts with pretrained encoders, 464

which have geometry that is difficult to alter due to 465

the small AL dataset size. We further conduct AL 466

pretraining from scratch (Appendix §A.4), where 467

the language and audio encoders are randomly re- 468

initialized. We observe that sentence embedding 469

training brings more consistent and noticeable re- 470

sults, especially on FreeSound and Clotho. How- 471

ever, not utilizing the pretrained encoders leads 472

to inferior absolute performances due to the small 473

dataset sizes. We believe that resolving the data 474

scarcity issue is still a critical step for future work 475

in AL pretraining. 476

For zero-shot image classification, Table 5 lists 477
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CLAP CLAPs CyCLAP CyCLAPs

FreeSound
ESC50 91.00 91.75 92.25 91.25
US8K 82.02 82.56 82.95 82.65

Clotho
ESC50 72.25 74.00 77.00 77.50
US8K 69.84 70.58 71.99 69.14

AudioCaps
ESC50 80.75 76.00 79.00 79.00
US8K 71.66 66.30 69.06 69.31

Table 6: Zero-shot audio classification (R@1 in %) on
ESC50 and US8K of models pretrained on FreeSound,
Clotho, and AudioCaps.

the Top1 accuracy on standard image classifica-478

tion datasets (top) and datasets with distribution479

shifts or adversarial examples (bottom). We fol-480

low Radford et al. (2021) and use their prompts for481

zero-shot classification. For an image to be classi-482

fied, we compute the cosine similarity between its483

vector and the encoded vector of all classes. Each484

of the classes is reformulated with various prompts.485

E.g., the ImageNet class “plane” is reformulated486

with 80 templates 4 such as “a photo of a ” and “a487

blurry photo of a ”, resulting in prompts “a photo of488

a plane” and “a blurry photo of a plane” (Radford489

et al., 2021). The vectors of encoded prompts of490

a class are averaged; we select the class with the491

maximum cosine similarity with the image vector.492

Similar trends as in the retrieval tasks are ob-493

served. CyCLIP variants outperform their CLIP494

counterparts; unsupervised sentence embedding495

training benefits both CyCLIP/CLIP while super-496

vised sentence embedding training does not result497

in consistent improvement or deterioration.498

For zero-shot audio classification, we follow499

the VL scenario to write several prompts (c.f.500

Appendix §A.3) such as “a sound of dog bark-501

ing” and conduct similar experiments. Table 6502

list the Top1 accuracy on ESC50 and US8K of503

models pretrained on FreeSound, Clotho, and Au-504

dioCaps respectively. CyCLAP generally outper-505

forms CLAP, except for AudioCaps-US8K. We506

observe mixed performance when comparing dif-507

ferent model configurations, and CyCLAPs/CLAPs508

perform on par with CyCLAP/CLAP across differ-509

ent datasets. Prompting inherently leads to per-510

formance with large variances (Zhao et al., 2021);511

we leave the extensive “prompt engineering” of512

designing more prompts for future work.513

5.2 Analyses514

Alignment and uniformity of representation515

spaces. In this section, we take a closer look at516

4OpenAI templates are public on GitHub link.
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Figure 2: Visualizing cross-modal alignment w.r.t. text
space uniformity of trained VL and AL models. To
visualize AL results, we use models pretrained on Au-
dioCaps. We observe that sentence embedding training
trades cross-modal alignment for text space uniformity.

the learned representation spaces. Following Wang 517

and Isola (2020), we inspect the alignment and uni- 518

formity on the hypersphere of learned spaces. Con- 519

sidering a caption-image dataset tpIi, TiquNi“1, we 520

can compute the alignment and uniformity scores 521

defined as: 522

Lalign fi E
pI,T q „ ppos

}Ie ´ T e}
2
2 ,

LT,uniform fi log E
Ti,Tj

i.i.d.
„ pdata

e´2}T e
i ´T e

j }
2

2 ,

LI,uniform fi log E
Ii,Ij

i.i.d.
„ pdata

e´2}Iei ´Iej }
2

2 ,

523

where pI, T q „ ppos refers to aligned text-images 524

pairs, pTi, Tjq „ pdata refers to independent and 525

identically distributed (IID) sampled text pairs, 526

pIi, Ijq „ pdata refers to IID sampled image pairs, 527

and Ie, T e respectively refer to the encoded image 528

and text vectors. Recall that the trained models out- 529

put ℓ-2 normalized vectors residing on the unit ball. 530

Intuitively, we want vectors of aligned pairs of two 531

modalities to be well aligned in the representation 532

space, such that Lalign is close to zero. However, 533

we want the space of a single modality to be more 534

uniform than anisotropic (Ethayarajh, 2019; Wolfe 535

and Caliskan, 2022), such that the overall represen- 536

tation space capacity is well used. This results in a 537

near minus infinite Luniform. 538

Figure 2 illustrates the results. We only show 539

Lalign w.r.t. LT,uniform since our main focus is the 540

language encoder. We see that unsupervised sen- 541
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tence embedding training trades cross-modal align-542

ment for improving the text space uniformity. For543

VL pretraining, supervised sentence embedding544

training (CLIPn/CyCLIPn) overly focuses on text545

space uniformity while the VL space alignment546

deteriorates, as evidenced when visualizing them547

using the Flickr30K (›) dataset in which the cap-548

tions largely overlap with the dataset for supervised549

sentence embedding training (§4.1).550

Another interesting observation is that the text551

encoder of CyCLIP/CyCLAP outputs representa-552

tion space less uniform than that of CLIP/CLAP, as553

shown in Figure 2 (x-axis). Liang et al. (2022)554

show that randomly initialized encoders output555

vectors residing in different cones. The in-modal556

cyclic loss LI-cyclic (§3) stresses consistency be-557

tween cones; it is thus expected to be challenging558

to learn a uniform space while simultaneously pre-559

serving consistency between two spaces5. Sentence560

embedding training provides extra training signals.561

Audio dataset analyses. Table 4 shows that sen-562

tence embedding training consistently improves on563

the largest AL dataset FreeSound; the benefits di-564

minish on Clotho and AudioCaps. Besides dataset565

size, we further investigate properties of the AL566

datasets. We firstly compute word frequency, and567

then normalized it by the total number of words in568

the captions. Then we sort the words in decreas-569

ing order. Figure 3 shows the results in log scale.570

AudioCaps has the smallest vocabulary size, and571

there are little variations on the word use (i.e., a few572

words dominant the captions). This property could573

hinder improving the uniformity of the text space.574

Clotho, «9 times smaller than AudioCaps, has a575

larger vocabulary and a more uniform word fre-576

quency distribution of its captions. FreeSound has577

the largest number of and diverse captions among578

AL datasets; integrating sentence embedding train-579

ing consistently improves the AL tasks.580

LM quality. We evaluate the language encoder581

quality of pretrained VL models. Our motivation is582

two-fold. First, as a sanity check, we want to verify583

that incorporating sentence embedding training in584

VL contrastive learning still improves the language585

encoder’s ability of representing general sentences.586

Second, the evaluation results help us measure the587

compatibility and possible interferences among the588

various training objectives (Pfeiffer et al., 2023).589

To this goal, we use the sentence embedding bench-590

5We find that improving text space uniformity also benefits
the image space for CyCLIP. More discussions are presented
in Appendix §A.2.
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Figure 3: AudioCaps has the smallest vocabulary size; a
small amount of frequent words dominants the captions,
leading to small variations on the word use. We cut the
vocabulary size to 20K for better visualization.

CLIP CLIPn CLIPs CyCLIP CyCLIPn CyCLIPs

Intrin. 55.45 64.50 57.58 53.72 49.70 55.67

Extrin. 67.03 68.68 67.64 65.82 69.49 67.95

Table 7: Averaged intrinsic and extrinsic SentEval task
results of the language encoder in VL models.

mark SentEval (Conneau and Kiela, 2018). Default 591

SentEval configurations are used in all experiments, 592

and we conduct both intrinsic (e.g., semantic tex- 593

tual similarity) and extrinsic tasks (e.g., sentiment 594

analysis). Table 7 lists the averaged results on Sen- 595

tEval (Appendix §A.7 shows individual results). 596

We observe that unsupervised sentence embedding 597

training is generally beneficial for CyCLIP/CLIP 598

on both intrinsic and extrinsic tasks. Supervised 599

sentence embedding training results in more signif- 600

icant improvements6, however, it negatively affects 601

CyCLIPn on the sensitive intrinsic tasks. 602

6 Conclusion 603

We extensively investigate the effectiveness of 604

sentence embedding training for pretraining con- 605

trastive vision-language and audio-language mod- 606

els. We show that it improves vision-language pre- 607

training, resulting in a better CyCLIP. Sentence 608

embedding training also improves audio-language 609

pretraining on large datasets, while the benefits di- 610

minish on small datasets. We conduct comprehen- 611

sive analyses and show that sentence embedding 612

training increases text space uniformity, but with a 613

cost of reduced cross-modal alignment. 614

6Improvements of supervised sentence embedding training
may due to the observation that NLI datasets have similar do-
mains and language use as SentEval tasks. In Appendix §A.6,
we show that the improvements are indeed from supervised
training, rather than domain similarity.
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Limitations615

We restrict our scope to cross-modal contrastive616

models with three most common modalities: lan-617

guage, image, and audio. While contrastive learn-618

ing has been successfully extended to other modali-619

ties such as music, incorporating music poses addi-620

tional challenges, particularly regarding licensing621

and the heterogeneity of music sources. Download-622

ing music from the internet and mining reliable623

music-language pairs are time-consuming tasks,624

which we did not consider in detail in this study.625

Nevertheless, we conducted initial experiments on626

the music modality using MusicCaps (Agostinelli627

et al., 2023) and show promising results in §A.8.628

In our audio-language pretraining experiments,629

we explored both pretraining from scratch and pre-630

training from publicly available language and audio631

encoders. We believe that a promising direction for632

future work would involve adapting the pretrained633

language encoder to the audio domain by perform-634

ing additional pretraining (Gururangan et al., 2020)635

on audio descriptions before engaging in cross-636

modal contrastive learning. Nevertheless, we chose637

to follow the current methods in the literature to638

ensure consistent evaluations and facilitate mean-639

ingful comparisons.640
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A Appendix1105

A.1 Datasets and hyperparameters1106

For VL pretraining, our experiments largely follow1107

those for CyCLIP (Goel et al., 2022) and for CLIP1108

(Radford et al., 2021). We also directly reuse Cy-1109

CLIP training hyperparameters but with a smaller1110

batch size, as listed in Table 8.1111

For AL pretraining, our experiments largely fol-1112

low that of for LAION-CLAP (Wu et al., 2023). To1113

process the audio data, we sample the wavefiles at1114

a rate of 48kHz and then convert them to FLAC1115

Hyperparameter Value

Logit scale range 0 to 4.6052
Epochs 64
Batch size 80
Learning rate 0.0005
Optimizer Adam
Scheduler Cosine
Learning rate warmup steps 10000
Language encoder dropout 0.1

Table 8: Hyperparameters used for training VL models.

Hyperparameter Value

Logit scale range 0 to 4.6052
Epochs 90
Batch size 80
Learning rate 0.00009
Optimizer AdamW
Scheduler Cosine
Learning rate warmup steps 9600
Language encoder dropout 0.1

Table 9: Hyperparameters used for training AL models.
For FreeSound, we train for 30 epochs and use warmup
steps 3200 due to its larger size.

format using FFmpeg7. We then use a hop size of 1116

480, window size of 1024, and 64 mel-bins for 1117

computing Short-time Fourier transform (STFT) 1118

and mel-spectrograms. The audio encoder input 1119

thus has a dimension of 1024 for time steps and 64 1120

for frequency bins. We list the hyperparameters in 1121

Table 9. 1122

A.2 Text and image space consistency 1123

CyCLIP variants ensure cross-modal consistency, 1124

such that improving the uniformity of the text space 1125

with sentence embedding training also benefits im- 1126

age space uniformity as shown in Figure 4. As 1127

expected, this observation does not hold for CLIP. 1128

A.3 Zero-shot audio classification with 1129

prompts 1130

To resemble zero-shot image classification in VL 1131

experiments, we write several prompts for zero- 1132

shot audio classification, as listed in Table 10. 1133

7https://ffmpeg.org/
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(c) CyCLIP: alignment vs. text space uniformity
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(d) CyCLIP: alignment vs. image space uniformity

Figure 4: Comparing the text and image space consistency between CLIP and CyCLIP variants. Improving
uniformity of the text space also benefits image space in CyCLIP.
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A sound of label.
a sound of label.
The sound of label.
the sound of label.
A constant sound of label.
a constant sound of label.
A big sound of label.
a big sound of label.
A small sound of label.
A small sound of label.
A label is making a sound.
a label is making a sound.
An label is making a sound.
an label is making a sound.
A sound of label followed by a sound of label.
A sound of label followed by label.
A label.
An label.
label.
label and label.
A label is running.
A label is happening.

Table 10: We write several prompts for zero-shot au-
dio classification resembling the VL prompts. “label”
refers to the audio class label.

A.4 Training audio-language models from1134

scratch1135

In §5.1 we show that sentence embedding train-1136

ing brings more noticeable impacts in learning VL1137

models than in AL models; we conjecture that this1138

is resulted from the fact that AL pretraining often1139

leverages pretrained language and audio encoders1140

(Elizalde et al., 2023; Wu et al., 2023). As a result,1141

we conduct the experiments of pretraining the AL1142

model from scratch, i.e., the language and audio1143

encoders re-initialized. Table 11 lists the retrieval1144

results on Clotho and AudioCaps.1145

Compared with Table 4, we observe a significant1146

performance drop since the encoders are pretrained1147

from scratch. The results are still noisy. We con-1148

sider that larger scale AL datasets are necessary1149

to highlight the effectiveness of learning consis-1150

tent representation spaces and sentence embedding1151

training.1152

A.5 Extended results of audio-language1153

models1154

We observe that the differences between Table 41155

results are smaller than in the VL scenario. As1156

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 1.42 5.09 8.32 1.54 5.30 8.42
CLAPs 1.63 5.17 8.40 1.69 5.46 8.89

CyCLAP 1.21 5.16 8.24 1.49 5.38 8.60
CyCLAPs 1.73 5.77 9.23 1.94 6.36 9.54

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 2.30 7.85 13.88 2.28 7.94 13.47
CLAPs 2.11 8.32 15.98 2.81 8.84 14.91

CyCLAP 2.97 9.09 14.07 2.07 7.67 13.11
CyCLAPs 3.54 10.05 15.41 2.64 8.88 14.87

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 16.30 43.78 58.41 14.19 40.02 53.98
CLAPs 17.76 44.10 57.99 13.81 38.60 52.02

CyCLAP 18.81 44.83 61.23 14.96 39.94 54.67
CyCLAPs 18.18 47.23 61.02 13.96 40.56 54.84

Table 11: Text and audio retrieval results (%) on
FreeSound (top), Clotho (mid) and AudioCaps (bottom)
when pretraining AL models from scratch.

a result, we repeat each experiment three times 1157

and then report mean and variance of the results 1158

in Table 12. Similar observations as in Table 4 are 1159

obtained. 1160

A.6 Unsupervised sentence embedding 1161

training with NLI datasets 1162

When evaluating the language encoder on SentEval 1163

tasks (§5.2), it is possible that the improvements 1164

brought by supervised sentence embedding train- 1165

ing is due to the fact that NLI datasets have similar 1166

domain and language use as the SentEval tasks. 1167

We thus conduct a new type of training, where we 1168

use sentences in the NLI datasets for unsupervised 1169

sentence embedding training with SimCSE, in ad- 1170

dition to VL contrastive learning. We name this 1171

new training scheme as CLIPe and CyCLIPe. 1172

Table 16 shows that the new training schemes, 1173

CLIPe and CyCLIPe fall behind the supervised 1174

sentence embedding training counterparts CLIPn 1175

and CyCLIPn on SentEval. This confirms that the 1176

gains of supervised sentence embedding trainings 1177

is from the NLI task supervision, e.g., premise 1178

and hypothesis relations, instead of other factors 1179

such as domain. For completeness, we also report 1180

CLIPe/CyCLIPe performance on VL retrieval tasks 1181

in Table 13 and zero-shot image classification in 1182

Table 17. 1183
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Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP (5.73, 0.04) (18.08, 0.00) (27.15, 0.09) (5.78, 0.02) (18.13, 0.01) (26.96, 0.01)
CLAPs (5.95, 0.01) (18.71, 0.06) (27.45, 0.07) (6.08, 0.00) (18.79, 0.12) (27.45, 0.10)

CyCLAP (5.84, 0.01) (18.86, 0.01) (27.81, 0.06) (5.91, 0.01) (18.82, 0.05) (27.68, 0.05)
CyCLAPs (6.11, 0.00) (19.37, 0.00) (28.42, 0.06) (6.11, 0.02) (19.31, 0.11) (28.22, 0.05)

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP (14.93, 0.55) (35.02, 0.41) (48.45, 0.12) (12.25, 0.21) (33.38, 0.23) (46.72, 0.59)
CLAPs (14.29, 1.43) (35.66, 1.04) (49.67, 0.22) (12.15, 0.12) (32.88, 0.06) (46.06, 0.18)

CyCLAP (13.75, 0.49) (36.07, 0.46) (48.77, 2.00) (11.94, 0.07) (34.37, 0.29) (48.13, 0.51)
CyCLAPs (14.96, 0.01) (37.58, 1.74) (50.59, 0.10) (12.16, 0.24) (34.23, 0.08) (47.27, 0.18)

Text Retrieval Audio Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP (42.81, 0.85) (76.21, 0.19) (86.87, 0.41) (34.99, 0.03) (70.05, 0.16) (82.44, 0.14)
CLAPs (35.08, 0.30) (69.89, 0.08) (82.47, 0.25) (44.26, 1.33) (75.65, 0.14) (87.39, 0.16)

CyCLAP (42.11, 2.50) (74.15, 0.09) (86.10, 0.09) (34.36, 0.05) (69.88, 0.44) (82.49, 0.34)
CyCLAPs (41.17, 4.30) (74.09, 0.20) (85.89, 0.02) (33.94, 0.06) (70.14, 0.07) (82.80, 0.19)

Table 12: Extended text-audio retrieval results (%) on FreeSound (top), Clotho (mid), and AudioCaps (bottom).
We repeat each experiment three times by changing random seeds, and then report the results in format: (mean of
performance, variance of performance). Similar observations as Table 4 can be obtained.

Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 15.70 37.22 49.06 12.48 31.10 42.23
CLIPs 17.78 38.92 50.10 13.46 32.93 44.09
CLIPn 15.74 35.66 47.38 13.12 31.46 42.55
CLIPe 16.90 38.40 49.92 13.21 31.21 42.26

CyCLIP 18.92 41.46 54.00 15.40 35.61 46.95
CyCLIPs 21.30 44.34 56.54 16.69 37.75 49.24
CyCLIPn 16.32 36.76 48.16 14.53 34.07 45.52
CLIPe 16.22 37.52 49.22 14.05 32.56 43.15

Table 13: Zero-shot VL retrieval results (%) on
MSCOCO (top) and Flickr30K (bottom).

A.7 Complete results on SentEval1184

Our intrinsic evaluation tasks are the semantic1185

textual similarity tasks: STS12-STS16, STS-B,1186

SICKR (Marelli et al., 2014; Cer et al., 2017;1187

Agirre et al., 2012, 2013, 2014, 2015, 2016). Ex-1188

trinsic evaluation tasks are movie review (MR;1189

Pang and Lee (2005)) product review (CR; Hu1190

and Liu (2004)) subjectivity status (SUBJ; Pang1191

and Lee (2004)), opinion polarity (MPQA; Wiebe1192

et al. (2005)), sentiment analysis on SST2 (Socher1193

et al., 2013), question-type classification (TREC;1194

Voorhees and Tice (2000)), and paraphrase detec-1195

tion (MRPC; Dolan et al. (2004)). Table 14 shows1196

individual task performances.1197

CLIP CLIPn CLIPs CyCLIP CyCLIPn CyCLIPs

STS12 46.14 54.25 50.31 37.84 45.60 40.42
STS13 50.24 59.67 48.44 52.35 37.82 54.90
STS14 48.70 59.26 51.73 46.58 40.55 49.46
STS15 64.90 73.81 66.09 63.25 59.62 67.01
STS16 51.94 63.08 55.62 50.96 46.80 52.87
STS-B 61.54 68.36 65.04 60.30 54.88 60.72
SICKR 64.70 73.09 65.82 64.78 62.62 64.34
Avg 55.45 64.50 57.58 53.72 49.70 55.67

MR 61.07 63.66 61.11 59.51 62.78 60.65
CR 67.63 71.07 68.03 67.02 73.67 66.12
SUBJ 76.39 78.09 77.52 74.24 78.90 77.36
MPQA 74.60 77.25 74.80 74.69 80.13 76.16
SST2 61.67 66.89 63.65 61.50 68.42 64.25
TREC 60.80 56.00 60.60 55.80 53.80 62.80
MRPC 67.07 67.77 67.77 68.00 68.75 68.29
Avg 67.03 68.68 67.64 65.82 69.49 67.95

Table 14: Intrinsic (top) and extrinsic (bottom) SentEval
task performance of the language encoder in VL models.

A.8 Preliminary experiments on the music 1198

modality 1199

We further conducted a new experiment with the 1200

music modality: music-text retrieval on the Music- 1201

Caps dataset introduced by MusicLM (Agostinelli 1202

et al., 2023). MusicCaps consists of 5521 music- 1203

caption pairs, of which 2858 pairs are for training 1204

and 2663 are for validation. Each music clip is 1205

associated with hand-curated English descriptions 1206

(including genre, mood, tempo, singer voices etc.) 1207

from expert musicians. We use MusicCaps because 1208

it is open-sourced and publicly available. Follow- 1209
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Text Retrieval Music Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLAP 6.05 18.42 28.33 5.46 18.45 28.50
CLAPs 5.99 18.66 28.85 6.05 19.01 28.43

CyCLAP 6.37 18.98 29.45 6.69 18.87 29.45
CyCLAPs 6.34 20.06 30.08 6.62 19.36 29.13

Table 15: Text and music retrieval results (%) on Music-
Caps.

ing tables show the retrieval results (the same ex-1210

periment configurations as the audio modality are1211

used; cf. §A.1).1212

It can be observed from Table 15 that improving1213

the text encoder with unsupervised sentence em-1214

bedding training also helps music-text retrieval in1215

the music modality, especially in the text retrieval1216

scenario (CLAPs generally outperforms CLAP; Cy-1217

CLAPs generally outperforms CyCLAP). These1218

music modality results are consistent with our pre-1219

vious findings on the image and audio modalities,1220

and we plan to explore more in this direction in1221

future work.1222
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CLIP CLIPn CLIPe CLIPs CyCLIP CyCLIPn CyCLIPe CyCLIPs

STS12 46.14 54.25 46.54 50.31 37.84 45.60 42.03 40.42
STS13 50.24 59.67 46.29 48.44 52.35 37.82 35.56 54.90
STS14 48.70 59.26 47.66 51.73 46.58 40.55 27.57 49.46
STS15 64.90 73.81 65.48 66.09 63.25 59.62 46.65 67.01
STS16 51.94 63.08 52.39 55.62 50.96 46.80 33.83 52.87
STS-B 61.54 68.36 60.99 65.04 60.30 54.88 44.63 60.72
SICKR 64.70 73.09 62.86 65.82 64.78 62.62 47.53 64.34
Avg 55.45 64.50 54.60 57.58 53.72 49.70 39.69 55.67

MR 61.07 63.66 59.91 61.11 59.51 62.78 59.60 60.65
CR 67.63 71.07 68.74 68.03 67.02 73.67 64.61 66.12
SUBJ 76.39 78.09 75.86 77.52 74.24 78.90 74.16 77.36
MPQA 74.60 77.25 73.54 74.80 74.69 80.13 73.95 76.16
SST2 61.67 66.89 60.19 63.65 61.50 68.42 60.46 64.25
TREC 60.80 56.00 56.60 60.60 55.80 53.80 57.60 62.80
MRPC 67.07 67.77 67.83 67.77 68.00 68.75 67.48 68.29
Avg 67.03 68.68 66.10 67.64 65.82 69.49 65.41 67.95

Table 16: Evaluating the language encoder of different VL models with intrinsic (top) and extrinsic (bottom)
SentEval tasks.

CLIP CLIPn CLIPe CLIPs CyCLIP CyCLIPn CLIPe CyCLIPs

CIFAR10 28.31 44.06 33.97 36.80 38.67 41.16 50.48 44.97

CIFAR100 13.23 17.93 12.30 10.72 17.44 19.82 21.76 22.05
ImageNet1K 14.94 15.97 15.74 16.01 20.99 18.13 20.07 22.13

ImageNetV2 12.85 13.41 13.51 14.09 17.77 15.65 17.34 18.68
ImageNet-Sk. 7.72 7.75 6.36 8.14 11.67 9.93 11.54 12.85
ImageNet-O 20.75 21.95 20.45 21.30 27.05 24.45 27.20 29.55
ImageNet-A 3.59 3.41 3.59 3.95 5.03 4.45 4.93 5.19
ImageNet-R 18.39 18.51 18.25 18.24 24.37 23.07 24.36 26.72

Table 17: Zero-shot image classification (R@1 in %) on standard datasets (top) and datasets with distribution shift
or adversarial examples (bottom).
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