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ABSTRACT

Class distribution skews in imbalanced datasets may lead to models with predic-
tion bias towards majority classes, making fair assessment of classifiers a chal-
lenging task. Metrics such as Balanced Accuracy are commonly used to evaluate
a classifier’s prediction performance under such scenarios. However, these met-
rics fall short when classes vary in importance. In this paper, we propose a simple
and general-purpose evaluation framework for imbalanced data classification that
is sensitive to arbitrary skews in class cardinalities and importances. Experiments
with several state-of-the-art classifiers tested on real-world datasets from three dif-
ferent domains show the effectiveness of our framework – not only in evaluating
and ranking classifiers, but also training them.

1 INTRODUCTION

For a broad range of machine learning (ML) tasks, predictive modeling in the presence of imbal-
anced datasets – those with severe distribution skews – has been a long-standing problem (He &
Garcia, 2009; Sun et al., 2009; He & Ma, 2013; Branco et al., 2016; Hilario et al., 2018; Johnson
& Khoshgoftaar, 2019). Imbalanced training datasets lead to models with prediction bias towards
majority classes, which in turn results in misclassification of the underrepresented ones. Yet, those
minority classes often are the ones that correspond to the most important events of interest (e.g.,
errors in system logs (Zhu et al., 2019), infected patients in medical diagnosis (Cohen et al., 2006),
fraud in financial transactions (Makki et al., 2019)). While there is often an inverse correlation be-
tween the class cardinalities and their importance (i.e., rare classes are more important than others),
the core problem here is the mismatch between the way these two distributions are skewed: the ith

most common class is not necessarily the ith most important class (see Figure 1a for an illustration).
In fact, rarity is one of many potential criteria that can determine the importance of a class, which
is usually positively correlated with the costs or risks involved in its misprediction. Ignoring these
criteria when dealing with imbalanced data classification may have detrimental consequences.

Consider automatic classification of messages in system event logs as an example (Zhu et al., 2019).
An event log is a temporal sequence of messages that have transpired for a given software system
(e.g., operating systems, cyber-physical systems) over a certain time period. Event logs are partic-
ularly useful after a system has been deployed, as they can provide the DevOps teams with insights
about errors outside of the testing environment, thereby enabling them to debug and improve the
system quality. There is typically an inverse correlation between the stability/maturity of a system
and the frequency of the errors it produces in its event logs. Furthermore, the message types that
appear least frequently in an event log are usually the ones with the greatest importance. A concrete
example of this was a rare anomaly in Uber’s self-driving car that led to the death of a pedestrian,
since the system flagged it as a false positive in its logs (Efrati, 2018). If this event had not been
misclassified and dismissed by the system, the pedestrian death in Arizona may have been avoided.

A plethora of approaches have been proposed for building balanced classifiers (Sun et al., 2009;
Branco et al., 2016). A fundamental issue that still remains an open challenge is the lack of a
generally-accepted methodology for measuring classification performance. The traditional metrics,
which are designed to evaluate average case performance (e.g., Accuracy) are not capable of cor-
rectly assessing the results in presence of arbitrary skew mismatches between class cardinalities
and importances. On the other hand, metrics specifically proposed for imbalanced learning are ei-
ther domain-specific, do not easily generalize beyond two classes, or can not support varying class
importance (e.g., Balanced Accuracy) (Japkowicz, 2013).

Let us illustrate the problem with the simple example in Figure 1b. The test dataset consists of 100
data items from 3 classes (A, B, C). The greatest majority of the items belong to class C (70), but
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(a) Skew in distributions (b) Example
Figure 1: Skew in distributions of Class Cardinality or Class Importance, and the potential mismatch
between them render existing accuracy metrics unusable in general multi-class prediction problems.

class B (20) has the greatest importance (0.7). In other words, Cardinality and Importance are both
non-uniform and in favor of different classes (i.e., representing the top-right quadrant of Figure 1a).
The confusion matrix on the right shows the results from a classifier run against this test dataset.
Unsurprisingly, the classifier performed the best for the majority class C (60/70 correct predictions).
When evaluated using the traditional Accuracy metric, neither Class Cardinality nor Class Impor-
tance is taken into account. If Balanced Accuracy is used instead, we observe the degrading impact
of the Class Cardinality skew (0.38 < 0.65), but Class Importance is still not accounted for. This
example demonstrates the need for a new evaluation approach that is sensitive to both Cardinality
and Importance skew, as well as any arbitrary correlations between them. This is especially critical
for ensuring a fair comparative assessment across multiple classifiers or problem instances.

Our goal in this paper is to design an evaluation framework for imbalanced data classification, which
can be reliably used to measure, compare, train, and tune classifier performance in a way that is sen-
sitive to non-uniform class importance. We identify two key design principles for such a framework:

• Simplicity: It should be intuitive and easy to use and interpret.
• Generality: It should be general-purpose, i.e., (i) extensible to an arbitrary number of classes and

(ii) customizable to any application domain.

To meet the first goal, we focus on scalar metrics such as Accuracy (as opposed to graphical metrics
such as ROC curves), as they are simpler, more commonly used, and scale well with increasing num-
bers of classes and models. To meet the second goal, we target the more general n-ary classification
problems (as opposed to binary), as well as providing the capability to flexibly adjust class weights
to capture non-uniform importance criteria that may vary across application domains. Note that we
primarily focus on Accuracy as our base scalar metric in this paper, as it is seen as the de facto
metric for classification problems (Sci). However, our framework is general enough to be extended
to other scalar metrics, such as Precision and Recall. Similarly, while we deeply examine three use
cases (log parsing, sentiment analysis, URL classification), our framework in principle is generally
applicable to any domain with imbalanced class and importance distributions.

We first provide a brief overview of related work in Section 2. Section 3 presents our new, class-
weighted evaluation framework. In Section 4, we show the practical utility of our framework by
applying it over: (i) three log parsing systems (Drain (He et al., 2017), MoLFI (Messaoudi et al.,
2018), Spell (Du & Li, 2016; 2018)) using four real-world benchmarks (Zhu et al., 2019); (ii) a
variety of deep learning models developed for sentiment analysis on a customer reviews dataset
from Amazon (Ni et al., 2019); and (iii) an industrial use case for URL classification with real
classifiers and datasets from four cyber-security companies. Finally, we conclude in Section 5.

2 RELATED WORK

Imbalanced Data Classification. Imbalanced data is prevalent in almost every domain (Cohen
et al., 2006; Batuwita & Palade, 2012; Makki et al., 2019). The growing adoption of ML models
in diverse application domains has led to a surge in imbalanced data classification research (He &
Garcia, 2009; Sun et al., 2009; He & Ma, 2013; Branco et al., 2016; Hilario et al., 2018; Johnson
& Khoshgoftaar, 2019). While the techniques widely vary, they fall under four basic categories:
pre-processing training data to establish balance via sampling techniques (Estabrooks et al., 2004;
Blaszczynski & Stefanowski, 2015), building custom learning techniques for imbalanced training
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Table 1: Notation
Notation Description

N total number of data items
C total number of data item classes
M number of importance criteria
ni true number of data items in class i
pi correctly predicted number of data items in class i
fi relative frequency of class i
wi relative weight of class i
ui relative user-defined importance of class i
ri relative rarity of class i

mi,j relative weight of class i for importance criteria j
Accuracyi Accuracy of class i

data (Joshi et al., 2001; Castro & de Pádua Braga, 2013), post-processing predictions from an im-
balanced model (Maloof, 2003), and their hybrids (Estabrooks & Japkowicz, 2001). In this paper,
we do not propose a new imbalanced learning technique, but a general-purpose performance evalua-
tion framework that could be used in the training and/or testing of models for any technique. Section
4 demonstrates the practical utility of our framework for a variety of real ML use cases.
Evaluation Metrics. Traditional metrics for evaluating prediction performance such as Accuracy,
Sensitivity/Specificity (and their combination G-mean), Precision/Recall (and their combination F-
Score) were not designed with imbalanced data issues in mind (Japkowicz, 2013). In fact, most
of these were originally intended for binary classification problems. To extend them to more than 2
classes, macro-averaging (i.e., arithmetic mean over individual class measurements) is used. Macro-
averaging treats classes equally (Branco et al., 2016). Balanced Accuracy is a popular averaging-
based approach. There are also probabilistic evaluation approaches that extend Balanced Accuracy
with Bayesian inference techniques for both binary and multi-class problems (Brodersen et al., 2010;
Carrillo et al., 2014). Close to our work, Cohen et al. (2006) introduced the notion of class weights,
yet in the specific context of Sensitivity/Specificity for binary classification in the medical domain.
Similarly, Batuwita & Palade (2012) proposed extensions to G-mean for the bio-informatics domain.
In addition to these scalar (a.k.a., threshold) metrics, graphical (a.k.a., ranking) evaluation methods
such as Receiver Operating Characteristic (ROC) curves or Precision-Recall (PR) curves (and the
Area Under the Curve (AUC) for such curves) as well as their extensions to imbalanced data / multi-
class problems were also investigated (Weng & Poon, 2008; Japkowicz, 2013). While these methods
provide more detailed insights into the operational space of classifiers as a whole, they do not easily
scale with use in problems with a large number of classes (Branco et al., 2016).

3 CLASS-WEIGHTED EVALUATION FRAMEWORK

In this section, we present our new evaluation framework for multi-class learning problems in pres-
ence of arbitrary skews among class distributions and/or importances. Our framework builds on and
extends commonly used scalar / threshold metrics such as Accuracy. These metrics were origi-
nally designed for binary classification problems, where there is typically more emphasis on one
class (the positive class, e.g., anomalies). To adopt them to multi-class problems where there is
no such single-class emphasis, each class’ metric can be computed separately and then an overall
aggregation (i.e., arithmetic mean) can be performed. For example, Accuracy has been extended
to BalancedAccuracy by following this approach. In our framework, we follow a similar aggre-
gation strategy, however, we do it in a more generalized way that allows custom class weights to
capture class importance. Furthermore, these class weights can be based on any importance criteria
such as rarity, cost, risk, expected benefits, and possibly a hybrid of multiple such criteria. There-
fore, it is critical to provide a flexible formulation that allows users or domain experts to adjust the
weights as needed by their problem instance. In what follows, we present our new class-weighted
evaluation framework in a top-down fashion. Using the basic notation summarized in Table 1, we
first formulate the general framework, and then we describe how this framework can be customized
to different importance criteria scenarios by specializing the weights in a principled manner. For
ease of exposition, we first focus on Accuracy as the underlying performance metric, and then we
discuss how our approach can be adopted to other similar metrics. Finally, we end this section with
a brief discussion of how our framework can be used in model training.

3.1 WEIGHTED BALANCED ACCURACY (WBA)

Suppose we are given a test dataset with N data items in it, each of which belongs to one of C
distinct classes. Furthermore, each class i contains ni of the data items in this dataset. Thus:
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N =

C∑
i=1

ni (1)

The relative frequency of each class i in the whole dataset is:

fi =
ni

N
(2)

Assume a classifier that makes a prediction about the class label of each data item in the test dataset,
and correctly predicts pi out of ni labels for a given class i, where pi ≤ ni. Then, the total number
of correct predictions out of all the predictions gives us the overall Accuracy of the classifier:

Accuracy =

∑C

i=1
pi

N
(3)

The classifier’s Accuracyi for a given class i (a.k.a., per-class Recall score) can be computed as:

Accuracyi =
pi
ni

(4)

BalancedAccuracy is the macro-average of Accuracyi over all classes in the dataset:

BalancedAccuracy =
1

C
×

C∑
i=1

Accuracyi (5)

The above formulation represents the state of the art in how prediction accuracy is evaluated for
multi-class classifiers in presence of imbalanced datasets (i.e., those where fi are not even). While
for balanced datasets (i.e., ∀i, ni = N/C and fi = 1/C) BalancedAccuracy = Accuracy, for
imbalanced datasets, BalancedAccuracy ensures that the prediction accuracy is not inflated due
to high-frequency classes’ results dominating over the others’. BalancedAccuracy works well as
long as each class is of the same importance, since it is the simple arithmetic mean across per-class
accuracy measurements (i.e., each class’ accuracy contributes evenly to the overall accuracy). As we
discussed in earlier sections, in many real-world classification problems, this assumption does not
hold. Rather, classifiers must be rewarded higher scores for their prediction performance on more
important classes. In order to capture this requirement, we generalize BalancedAccuracy into
WeightedBalancedAccuracy by extending it with per-class importance weights wi as follows:

WeightedBalancedAccuracy =

C∑
i=1

wi ×Accuracyi (6)

This simple yet powerful extension enables us to capture both skews and imbalances in class cardi-
nalities as well as importances (i.e., the complete design space in Figure 1a). This general formu-
lation can support any importance criteria for weights as long as 0 ≤ wi ≤ 1 and

∑C
i=1 wi = 1.

In the following subsections, we present general use of WBA with custom weights, for other scalar
metrics, as well as in improving model training.

3.2 WEIGHT CUSTOMIZATION

In a multi-class setting, not only may the classes carry different importance weights, but also the cri-
teria of importance may vary from one problem or domain to another. We now discuss several types
of criteria that we think are commonly seen in applications. This is not meant to be an exhaustive
list, but it provides examples and templates that can be easily tailored to different problems.

Importance criteria = User-defined. This is the most general and flexible form of importance cri-
teria. The application designer or domain expert specifies the relative weight of each class based on
some application-specific criteria. As an example, the problem might be about classifying images of
different types of objects in highway traffic and the user gives higher importance to correct recog-
nition of certain objects of interest (e.g., pedestrians, bikes, animals, etc). We express user-defined
relative weight of a class i with ui, which is simply used as wi in Equation 6 (i.e., wi = ui).

Importance criteria = Rarity. It is often the case that the rarer something is, the more noteworthy
or valuable it is. In multi-class problems, this corresponds to the case when importance of a class
i is inversely correlated with its relative frequency of occurrence (fi) in the dataset. For example,
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in system log monitoring, log messages for more rarely occurring errors or exceptions (e.g., denial
of service attack) are typically of higher importance. Therefore, a classifier that performs well on
detecting such messages must be rewarded accordingly. In our framework, we capture rarity using
weights that are based on normalized inverse class frequencies formulated as follows:

wi = ri =
1

fi ×
∑C

j=1
1
fj

(7)

Multiple importance criteria. In some problems, importance of a class depends on multiple differ-
ent criteria (e.g., both rarity and a user-defined criteria). To express class weights in such scenarios,
we leverage techniques from multi-criteria decision making and multi-objective optimization (Tri-
antaphyllou, 2000; Helff et al., 2016). One of the most basic methods is using normalized weighted
sums based on composite weights (Helff et al., 2016). Composite weights can be computed either
in additive or multiplicative form (Tofallis, 2014). The multiplicative approach tends to promote
weight combinations that are uniformly higher across all criteria, and as such is found to be a more
preferred approach in application scenarios similar to ours (Helff et al., 2016; Tofallis, 2014). While
we present this approach here, in principle, other approaches from multi-criteria decision making
theory could also be used within our framework. Given M different criteria with mi,j denoting the
relative weight of class i for criteria j, we can compute the composite weight of a class i as follows:

wi =

∏M

j=1
mi,j∑C

k=1

∏M

j=1
mk,j

(8)

For example, if we had two criteria, rarity r and user-defined u with weights ri and ui for each class
i, respectively, then the composite weight for class i would be wi =

ri×ui∑C

j=1
rj×uj

.

Partially-defined importance criteria. One commonly expected scenario (especially in those clas-
sification problems where the number of classes C can be very large) is that not all of the class
importance weights might be supplied by the user. For example, in a sentiment analysis use case,
the user supplies the weights for all the negative classes, and leaves the others unspecified. Our
framework can support such cases by automatically assigning weights to the unspecified classes.
The default approach is to distribute the remaining portion of weights evenly across all unspecified
classes: (1 - total weights specified) / (number of unspecified classes). If the user prefers an alterna-
tive approach (e.g., distribute the remainder based on rarity of the unspecified classes), this can also
be easily supported by our framework.

3.3 METRIC CUSTOMIZATION

The class-weighted evaluation framework presented above focused on the popular Accuracy metric
as the underlying metric of prediction performance. However, our framework follows a general
structure based on the idea of weighted macro-averaging with customizable weights, which can
essentially be used with any performance metric that can be computed on the basis of a class. For
example, the macro-averaging approaches that are already being used for Precision, Recall, and F-
Score could easily be extended with our customizable weighing approach by replacing Accuracy in
our formulas with one of these metrics.

3.4 MODEL TRAINING IMPROVEMENT USING CLASS WEIGHTS

The customized weights presented in Section 3.2 not only helps to give a user-preferred ranking via
the proposed WBA metric, but also helps to improve model training. Recall that ML model training
aims to minimize the loss between model predictions and ground truth labels. A common practice
is to minimize the sum of all per-sample losses. Using Lossi to denote the total loss incurred by all
samples within class i, the model loss to minimize in training would be: L =

∑C
i=1 Lossi.

By applying class importance weights wi as suggested in Section 3.2, the loss value for important
classes takes a larger portion in the final loss value to minimize. This enables the back-propagation
process to focus more on optimizing the model parameters for the higher weighted classes, and thus
improves their accuracy. The model loss incorporating class importance weights becomes:

L =

C∑
i=1

wi × Lossi (9)
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The advancement of popular deep learning frameworks have made this process rather straight-
forward to implement. For example, the TensorFlow API provides a parameter named
class weight which allows user to pass in a JSON data structure that specifies a weight value
for each class label (TensorFlow). Similarly, the PyTorch API for cross entropy loss also provides
a parameter to pass in class weights (PyTorch). These provide perfect interfaces for the usage of
the importance weights in our WBA framework, both to improve a model’s learning ability of the
important classes as well as raising the overall WBA score of the classification outcomes.

4 EXPERIMENTAL STUDY

We now present an experimental analysis of our new framework for three application domains. Our
goal is to demonstrate the value of WBA compared to existing metrics when evaluating ML models
over real-world imbalanced data classification problems. As we will show, often times a traditional
metric like Accuracy or BalancedAccuracy will make classifier A seem preferable to classifier B,
when in reality classifier B is superior. In addition, we also provide an analysis of how WBA can
positively impact, not only the testing of models, but also their training. Details of our experiments
(incl. code, data, and examples) can be found in the supplementary file and in the appendix.

4.1 USE CASE 1: LEARNED LOG PARSING

ML-based log parsers are tools that are designed to automatically learn the structure of event logs
generated by hardware and software systems to properly categorize them into event classes (e.g.,
different error types). In our first study, we used WBA to evaluate 3 state-of-the-art log systems:
Drain, Spell, and MoLFI (Du & Li, 2016; He et al., 2017; Messaoudi et al., 2018). We start by
providing an abbreviated description of our experimental setup.
Log Parsing Systems. Drain is a rule-based, online log parsing system that encodes the parsing
rules in a fixed-depth parse tree (He et al., 2017). It performs a pre-processing step for each new log
message using regular expressions created by domain experts. Spell, like Drain, is also rule-based;
it principally uses the longest common subsequence (LCS) to find new log message classes (Du &
Li, 2016). Finally, MoLFI casts log parsing as a multi-objective optimization problem and provides
a solution based on genetic programming (Messaoudi et al., 2018).
Datasets. We test each aforementioned log message classification system with four real-world
datasets taken from a public benchmark (Zhu et al., 2019). Each dataset has 2000 log instances
randomly sampled from a larger dataset. The macOS dataset contains raw log data generated by the
macOS operating system (341 log classes, 237 infrequent classes (i.e., those that have fewer occur-
rences in the dataset than the average number of messages per class), and an average class frequency
of 5). The BlueGene/L (BGL) dataset is a collection of logs from the BlueGene/L supercomputer
system (120 log classes, 101 infrequent classes, and an average class frequency of 16). The An-
droid dataset consists of logs from the Android mobile operating system (Zhu et al., 2019) (166 log
classes, 127 infrequent classes, and an average class frequency of 16). Finally, the HDFS dataset
consists of log data collected from the Hadoop Distributed File System (14 log classes, 8 infrequent
classes, and an average class frequency of 142). Overall, the first three datasets are highly skewed
in class frequencies, whereas the HDFS dataset is relatively much less skewed (see Appendix A.1).
Results. For Drain, Spell, and MoLFI, traditional metrics of Precision, Recall, F1-Score, and
Accuracy (named Parsing Accuracy in the original papers) were used for training and testing clas-
sification performance. None of these metrics are class-sensitive, while in log parsing, messages
have in fact varying importance across the classes. The importance criteria is rarity: the more rare
an error message is, the more important it is to correctly classify this message. To capture this,
we configure the WBA to WBArarity , which automatically assigns weights to WBA based on the
dataset classes’ inverse frequencies, as described in Section 3.2. Then we evaluate the test results
from the 3 parsers over 4 datasets using WBArarity and compare against traditional metrics in two
categories: class-insensitive and class-sensitive, as shown in Figure 2.
WBArarity vs. Class-insensitive Metrics: The class-insensitive metrics (specifically, F1-Score and
Accuracy) agree on how to rank the classification performance of the 3 parsers across all datasets
(for macOS and Android, Drain > Spell > MoLFI; for BGL, Drain > MoLFI > Spell; for HDFS, all
perform similarly). Since WBArarity is sensitive to classes’ data distribution and importance skews,
it makes a completely different judgement. Furthermore, it ranks the techniques differently for each
dataset (Drain > MoLFI > Spell in macOS; MoLFI > Spell > Drain for BGL; Spell > Drain >
MoLFI for Android; and for HDFS, Spell > Drain and MoLFI). The WBArarity ranking aligns with
our observation on per-class accuracy of the methods. For example, on BGL dataset, although Spell
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(a) macOS (skew = 8.454) (b) BGL (skew = 8.900)

(c) Android (skew = 4.822) (d) HDFS (skew = 0.202)

Figure 2: WBA vs. class-insensitive & class-sensitive metrics for log parsing: F1-Score & Accuracy
agree in all. BA & WBA agree in (c) & (d) only. WBA disagrees with class-insensitive in all.
has the most mis-classified samples and in most classes (and thus the lowest overall Accuracy and
Balanced Accuracy), it has very few mis-classified samples for rare classes, making its WBArarity

higher than Drain. On the other hand, MoLFI performs the best on rare classes and thus has the
best WBArarity . A discussion on per-class performance can be found in Appendix A.1. This result
validates that WBArarity provides a more sensitive tool for assessing classification performance.
WBArarity vs. Balanced Accuracy (BA): As discussed earlier, BA is class-sensitive, but only to dis-
tribution imbalance. We can observe the difference between BA and WBA in Figure 2. In macOS
and BGL, where the skew is the highest and rarity is more pronounced, the two metrics completely
disagree in how they rank the parsers. In contrast, for Android and HDFS, where the skew is lower,
there is an overall agreement, although the separation in metric values slightly differ. Of particular
importance is the difference seen in Figure 2a. We observe that the best performing model is Spell
when scored by BA, and Drain when scored by WBArarity . The reason for this difference is due to
Spell’s and Drain’s differences in their ability to correctly classify infrequent classes, i.e., those that
represent failures and errors that require the most immediate response.

4.2 USE CASE 2: SENTIMENT ANALYSIS

In social media and other user-facing domains like e-commerce sites, it is often useful to understand
the view or feelings (“sentiments”) associated with users’ behavior or preferences. In the second
part of our experimental study, we apply WBA in the context of such a sentiment analysis use case,
which involves analyzing text-based product reviews from Amazon’s e-commerce websites.
Dataset. The dataset consists of customer reviews and ratings of Amazon products (Ni et al., 2019).
The task is to classify the reviews into 5 classes (with 1 being the lowest and 5 being the highest
review rating a product can get), where ratings constitute the ground truth class labels. There is
high class imbalance in this dataset (skew=2.140). As shown in the Frequency column of Table 2,
Class 5 with the highest customer rating clearly dominates compared to the others. It is known that
the distribution of customer review ratings is typically imbalanced and generally follow a J-shaped
distribution (Mudambi & Schuff, 2010; Pavlou & Dimoka, 2006).
Sentiment Analysis Models. We compare 4 types of recurrent neural networks (RNN), all con-
sisting of an embedding layer with pre-trained word embeddings from (Pennington et al., 2014)
followed by a recurrent layer from PyTorch (Subramanian, 2018): RNN, LSTM, GRU, BiLSTM.
The hidden state output from the last time step of these are passed to a fully-connected layer with
input of 256 neurons and output from 5 neurons.
Results. For this use case, we first worked with a user-defined importance criteria borrowed from
published studies suggesting that extreme review ratings (classes 1 and 5) carry more importance
(Mudambi & Schuff, 2010; Pavlou & Dimoka, 2006). Thus, we set the weights as shown in Table 2
(shown as WBA(user) or user in Figure 3).
WBA vs. Other Accuracy Metrics: First, we compare WBA(user) with Accuracy and BalancedAc-
curacy (BA) when used as a metric for both training and testing of the 4 DNN models (Figure 3a).
We make a few observations: (i) The class-insensitive Accuracy showcases the imbalance problem
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Table 2: Amazon per-class breakdown: Frequencies are highly skewed (skew=2.140); Accuracyi in
each model when both trained+tested with user-defined weights wi (same weights as in Figure 3a).

Class Frequency (fi) Weights (wi) LSTM RNN GRU BiLSTM
1 0.092 0.7 0.19 0.04 0.16 0.17
2 0.052 0 0 0 0 0
3 0.075 0 0 0 0 0
4 0.142 0 0 0 0 0
5 0.639 0.3 0.81 0.96 0.84 0.83

(a) WBA vs. Other Metrics (Train+Test) (b) WBA: Test vs. Train+Test

Figure 3: Amazon results

in classification, as it favors the RNN model which is heavily biased by the majority class (see
Accuracyi for RNN in Table 2 where class 5 scores 0.96). (ii) The frequency-sensitive BA met-
ric finds all models perform similarly. WBA(user), in contrast, identifies LSTM as the best model.
Indeed, Table 2 confirms that LSTM performs relatively the best in predicting the most important
class, class 1 (0.19 accuracy). Overall, we find that WBA is capable of capturing importance skews,
even when the frequency skew can be high and biased towards less important classes.
Impact of WBA in Model Training: Next we explore the use of WBA not only in model evaluation,
but also in training. We focus on two models (LSTM and RNN), and apply WBA only during
testing vs. to both training (by extending loss functions of DNNs with weights as in Section 3.4)
and testing. Intuitively, if a model is trained being aware of the importance weights, then it should
also perform well when tested against the same criteria. To test this hypothesis, we repeated the
experiment for 3 alternative importance criteria: (i) rarity (w1 = 0.209, w2 = 0.368, w3 = 0.255,
w4 = 0.136, w5 = 0.030), (ii) user-defined (i.e., with weights in Table 2), and (iii) composite of
the two (w1 = 0.62, w2 = w3 = w4 = 0, w5 = 0.38). In Figure 3b, we observe: (i) Except for
rarity, WBA for both LSTM and RNN improves when integrated into model training. This verifies
our intuition, and shows that WBA is a useful metric not only for evaluation, but also for training.
(ii) When we zoom into rarity, we see that although class 2 is the most important, per-class accuracy
for class 5 is much higher for both LSTM and RNN in the Test-only case, because both models are
still trained heavily biased towards the majority class (5). (iii) Though rarity by itself is not useful in
training, when combined with user importance, it visibly improves the WBA scores. This shows that
our multi-criteria composition approach is capable of combining importance criteria as intended.

4.3 USE CASE 3: URL CLASSIFICATION

URL classification is a crucial task in the cyber-security industry for managing web traffic. Given a
URL, the goal is to categorize the corresponding webpage into several well-defined classes such as
benign (i.e., no harmful content), malware, phishing, NSFW (i.e., not safe for work), etc. Given the
vast number of URLs available, accurately learning and evaluating a URL classifier can greatly help
in automatically categorizing webpages without requiring manual labeling (Vallina et al., 2020).
Dataset. Our dataset contains URLs from several different types of categories: benign (e.g., news,
sports), NSFW (e.g., drugs, gambling), and malicious (phishing and malware). These URLs were
sampled from a variety of third-party sources so as to minimize potential data bias. Many of the
phishing and malware URLs were sampled from VirusTotal (VirusTotal), which aggregates various
cyber-security vendors’ detections into a single site, while benign URLs were sampled from Alexa’s
Top Sites lists (Amazon), which rank websites according to their popularity. We are unable to reveal
the exact URLs used in the analysis due to legal reasons, but we tried to ensure that our dataset is
representative of the types of URLs encountered in real-world URL filtering scenarios.
URL Classification Services. We tested the performance of URL filtering products from 4 commer-
cial companies, whose names had to be anonymized as A, B, C, D. Since each URL filtering product
has its own unique taxonomy of categories, we created mappings from each service’s category space
to a single shared category space so that we can easily compare the results. Furthermore, since no
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Table 3: Evaluating and ranking the URL classification services

Category #URLs Rarity wi User wi
Classification Accuracy RankingService A Service B Service C Service D

benign 16762 0.04 0.05 0.761 0.815 0.661 0.853 DBAC
NSFW 5276 0.14 0.05 0.965 0.804 0.533 0.767 ABDC
malware 1913 0.38 0.8 0.890 0.845 0.602 0.872 ADBC
phishing 1675 0.44 0.1 0.968 0.811 0.521 0.771 ABDC

Accuracy 0.826 0.815 0.621 0.831 DABC
Balanced Accuracy 0.896 0.819 0.579 0.816 ABDC

WBArarity 0.929 0.823 0.559 0.812 ABDC
WBAuser 0.895 0.838 0.593 0.856 ADBC

Table 4: Training and evaluating a URLNet model using WBA

Category
Dataset Statistics Classification Accuracy

Train Test Rarity User Train with Train with Train with
#URLs #URLs wi wi no WBA rarity wi user wi

benign 10000 6762 0.04 0.05 0.981 0.300 0.458
NSFW 3150 2126 0.14 0.15 0 0.608 0.418
malware 1143 770 0.38 0.45 0.705 0.839 0.895
phishing 1000 675 0.44 0.35 0.782 0.788 0.754

Test with Accuracy 0.745 0.435 0.502
Test with Balanced Accuracy 0.617 0.634 0.631

Test with WBArarity 0.653 0.761 NA
Test with WBAuser 0.640 NA 0.752

company had access to our test dataset sampled from various third-party sources, no company was
able to gain an unfair advantage in this URL classification task.
Results. We submit the sampled URLs from each category to the above services, calculate their
per-category accuracy, and compute a final accuracy score for competitive analysis.
Evaluating and Ranking the Classifiers: Table 3 shows our results for Companies A-D. For overall
Accuracy, D is the best as it has the highest classification accuracy on benign class (i.e., the majority
class). With BalancedAccuracy, we can see that A is the best, since it has higher accuracy for non-
benign classes compared with other services, and this advantage is more evident with WBArarity ,
shown as a larger gap between their WBArarityvalues. B is better than D when using WBArarity ,
but if users consider malicious class to be the most important and apply a very high weight on it
(e.g., 0.8), the resulted WBAusermetric would show that D is preferable over B.
Improving Model Training with WBA: In this experiment, we adopt our dataset to train a URLNet
model (Le et al. (2018)) by applying various WBA weights as suggested in Section 3.2, to show its
effectiveness in terms of improving corresponding WBA metric. As shown in Table 4, 60% of the
dataset is used for training while the remaining 40% is for evaluation. Table 4 Classification Accu-
racy columns show the results under different settings. For vanilla training (without class weights),
we get a high accuracy for the benign class but low accuracy for the others. The main reason is
benign class has the most number of URLs in training data. In order to boost the accuracy for non-
benign classes, we apply rarity weights. With this, the accuracy for all non-benign and rarer classes
are improved (noticeably, from 0 to 0.608 for the NSFW category). Note that malware content is
often considered more harmful among all non-benign categories. For the third experiment, we ap-
ply user-defined weights which assign higher weight on the malware class, successfully boosting its
accuracy from 0.839 to 0.895. It is clear that applying corresponding class weights in training can
significantly improve the related WBA accuracy on the test dataset. For instance, when applying
rarity weights, WBArarity improves from 0.653 to 0.761; while WBAuser is improved from 0.640
to 0.752 if the same user-defined weights are used in training. This aligns with our observation
that increasing the weights in concerned categories can notably improve the accuracy in those cate-
gories. As a comparison, neither the Accuracy nor the Balanced Accuracy measure does a good job
in ranking the different training methods.

5 CONCLUSION
In this paper, we presented a simple yet general-purpose class-sensitive evaluation framework for
imbalanced data classification. Our framework is designed to improve the grading of multi-class
classifiers in domains where class importance is not evenly distributed. We provided a modular and
extensible formulation that can be easily customized to different importance criteria and metrics.
Experiments with three real-world use cases show the value of a metric based on our framework,
Weighted Balanced Accuracy (WBA), over existing metrics – in not only evaluating the classifiers’
test results more sensitively to importance criteria, but also training them so.
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ETHICS STATEMENT

This paper introduces a measurement framework for training and evaluating classification models.
The primary goal of this framework is to enable the creation of more accurate models, especially in
presence of imbalances across class distributions and their importances. As with any technological
tool, our work could be subject to misuse. In particular, unfair bias might be introduced to learned
models by purposefully misconfiguring the class importance weights. To avoid such ethical risks,
we urge the community to use our tool in a responsible manner.

REPRODUCIBILITY STATEMENT

This research is highly experimental in nature. We provide an appendix section as well as an addi-
tional file with supplementary material in order to document all of our experimental artifacts and how
they can be used to reproduce the results we reported in this paper. These artifacts include all datasets
used in the experiments, as well as code. Except for the URL classification use case, where the URLs
cannot be released either because of our contract with VirusTotal, or due to being customer-sensitive
information. Nevertheless, we have included the class labels and class predictions for each setting,
and corresponding scripts to calculate various WBA metrics which can reproduce our results in the
paper. In particular, the appendix section includes extra experimental results to validate our point,
as well as the details for each experiment. Our supplementary material contains 3 distinct folders
with source code and scripts for the 3 use cases in evaluation. Each folder contains a README file
that instructs how to run the code and reproduce the results.
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A APPENDIX

In this appendix, we provide details for the experimental study, including data and code. For further
information, please see the supplementary material.

A.1 DETAILS FOR LOG PARSING EXPERIMENTS

For the three log parsing techniques used in Section 4.1 (Drain, Spell, and MoLFI), we used the
implementations provided by the LogPAI team:

https://github.com/logpai/logparser/

The four datasets used in these experiments (macOS, BGL, Android, and HDFS) came from the
benchmarking data also provided by LogPAI:

https://github.com/logpai/loghub/

(a) macOS (skew = 8.454)

(b) BGL (skew = 8.900)

(c) Android (skew = 4.822)

(d) HDFS (skew = 0.202)

Figure 4: Histograms showing the relative frequencies of log parsing classes for the four experimen-
tal datasets: All graphs have their y-axes in log scale; green bars show the infrequent classes.

In Figure 4, we show the histograms for the four log datasets together with their skew values. As
defined in the Microsoft Excel Documentation, “Skewness characterizes the degree of asymmetry
of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric
tail extending toward more positive values, while negative skewness indicates a distribution with an
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(a) Drain mis-classification count for macOS dataset

(b) Spell mis-classification count for macOS dataset

(c) MoLFI mis-classification count for macOS dataset

Figure 5: Misclassification count of three different algorithms on the macOS dataset. x-axis is
ranked in descending order of class frequencies, as in Figure 4a. Drain performs best on rare classes
(right side), which aligns with the WBArarity ranking shown in Figure 2a.

asymmetric tail extending toward more negative values.” 1. In our context, skew provides a good
indication for the degree of imbalance in class cardinality distributions – the larger the skew, the
larger the degree of class imbalance.

We also provide data files with class labels (true + predicted) and weights (based on rarity as
importance criteria) used in generating the experimental data plotted in Figure 2 as part of our
WBA-Evaluator tool implementation included in the supplementary material (can be found under
the WBA-Evaluator/examples/LogParsing/ directory).

A visualization of the per-class mis-classification count for each method on each dataset can be
found from Figure 5 to Figure 7. The lower a bar is, the fewer samples being mis-classified in that
category. Note that the categories on x axis are ordered in a descending order of class frequencies,
i.e., in the same order of Figure 4. As a result, the lower the bars on the right side of each plot,
the better the log parser is in classifying infrequent classes for that dataset, and thus the better the
WBArarityscore should be. As explained by the legends in each figure, the per-class accuracy in
each plot aligns with WBArarity metrics in Figure 2.

1
https://support.microsoft.com/en-us/office/skew-function-bdf49d86-b1ef-4804-a046-28eaea69c9fa
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(a) Drain mis-classification count for BGL dataset

(b) Spell mis-classification count for BGL dataset

(c) MoLFI mis-classification count for BGL dataset

Figure 6: Misclassification count of three different algorithms on the BGL dataset. x-axis is ranked
in descending order of class frequencies, as in Figure 4b. MoLFI performs best on rare classes (right
side), which aligns with the WBArarity ranking shown in Figure 2b.

A.2 DETAILS FOR SENTIMENT ANALYSIS EXPERIMENTS

For the sentiment analysis experiments of Section 4.2, we used a sample from the Amazon Customer
Reviews dataset provided at:

https://nijianmo.github.io/amazon/index.html

In Figure 8, we show the histogram for the Amazon dataset. As described in Section 4.2, we im-
plemented 4 RNN-based classifiers to experiment with this dataset. The code for these classifiers
can be found in the supplementary material (under the AmazonReviewsClassifier/src/
directory) along with a copy of the data (under the AmazonReviewsClassifier/dataset/
directory).

We also provide the data files with class labels (true + predicted) and weights (user) used in gener-
ating the experimental data for LSTM results plotted in Figure 3 and Table 2 as an example. These
can be found in our WBA-Evaluator tool implementation included in the supplementary material
under the WBA-Evaluator/examples/Amazon/ directory.

15

https://nijianmo.github.io/amazon/index.html


Under review as a conference paper at ICLR 2022

(a) Drain mis-classification count for Android dataset

(b) Spell mis-classification count for Android dataset

(c) MoLFI mis-classification count for Android dataset

Figure 7: Misclassification count of three different algorithms on the Android dataset. x-axis is
ranked in descending order of class frequencies, as in Figure 4b. Spell performs best on rare classes
(right side), which aligns with the WBArarity ranking shown in Figure 2c.

Figure 8: Histogram showing the relative frequencies of the five customer rating classes for the
Amazon dataset (skew = 2.140).

A.3 DETAILS FOR URL CLASSIFICATION EXPERIMENTS

For the URL classification experiment in Section 4.3, and specifically for the experiment result in
Table 4, our implementation is inherited from the URLNet work (Le et al. (2018)). In particular,
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Table 5: Training and evaluating a URLNet model using WBA - 2 classes

Category
Dataset Statistics Classification Accuracy

Train Test Rarity User Train with Train with Train with
#URLs #URLs wi wi no WBA rarity wi user wi

Benign 10000 6762 0.091 0.2 0.994 0.902 0.950
Phishing 1000 675 0.909 0.8 0.859 0.942 0.861

Test with Accuracy 0.958 0.903 0.942
Test with Balanced Accuracy 0.927 0.922 0.906

Test with WBArarity 0.854 0.904 NA
Test with WBAuser 0.868 NA 0.879

Table 6: Training and evaluating a URLNet model using WBA - 3 classes

Category
Dataset Statistics Classification Accuracy

Train Test Rarity User Train with Train with Train with
#URLs #URLs wi wi no WBA rarity wi user wi

Benign 10000 6762 0.07 0.1 0.992 0.795 0.177
NSFW 3150 2126 0.22 0.5 0 0.105 0.832
Phishing 1000 675 0.71 0.4 0.855 0.933 0.901

Test with Accuracy 0.762 0.652 0.374
Test with Balanced Accuracy 0.616 0.611 0.637

Test with WBArarity 0.673 0.738 NA
Test with WBAuser 0.441 NA 0.794

we changed the URLNet source code to support multi-class classification (previously binary), and
to apply various weights for model training. The URLNet open source repository is available at:

https://github.com/Antimalweb/URLNet/

Our implementation and modification can be found at the
WBA-Evaluator/WeightedURLNet/ directory.

In the main context, we show how the proposed WBA weights are able to improve training accuracy
for underrepresented classes. Due to page limit, only the evaluation results on 4 classes are listed in
Figure 4. Here we include the evaluation results for 2 classes and 3 classes respectively, to further
express the effectiveness of WBA weights in improving model training. As shown in Table 5, by ap-
plying WBArarity weights and user-defined weights which all focus more on phishing category, the
phishing accuracy is improved accordingly in both cases, with corresponding WBA metric improved
as well. In contrast, neither overall accuracy nor Balanced Accuracy is able to show the accuracy
improvement in the important class. Similarly, Table 6 shows the experiment results for 3 classes. It
should be noted that a vanilla training leads to 0 accuracy on the newly added NSFW category, while
another training with rarity weights brings some accuracy to this category, and applying a relatively
high user weight for this category boosts its accuracy to over 80%.

A.4 THE WBA-EVALUATOR TOOL

In addition to details on our experimental study as described above, we also provide a copy of the
WBA-Evaluator tool that implements our customizable, class-weighted evaluation framework de-
scribed in Section 3. WBA-Evaluator is written in Python and can be found in the supplementary
material along with a README that describes how it can be used. In a nutshell, WBA-Evaluator
takes as input three files (true class labels, predicted class labels, class weights) and a number of con-
figuration parameters in the form of commandline arguments, and then it generates accuracy scores
(BA or WBA) as specified by these arguments. The WBA-Evaluator implementation comes with
two subdirectories: src/ contains the Python source code; example/ contains all the input files
(labels and weights) and scripts in the scripts/ subfolder to run these. Please see the README
file for more details. Using this tool, results reported in the paper can be reproduced.
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