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Abstract

Adapting large-scale generative AI tools to differ-
ent end uses continues to be challenging, as many
industry grade image generator models are not
publicly available. Thus, to finetune an industry
grade image generator is not currently feasible
in the classical sense of finetuning certain layers
of a given deep-network. Instead, we present an
alternative perspective for the problem of adapt-
ing large-scale generative models that does not
require access to the full model. Recognizing
the expense of storing and fine-tuning generative
models, as well as the restricted access to weights
and gradients (often limited to API calls only), we
introduce AdvIN (Adapting via Inversion). This
approach advocates the use of inversion methods,
followed by training a latent generative model as
being equivalent to adaptation. We evaluate the
feasibility of such a framework on StyleGANs
with real distribution shifts, and outline some
open research questions. Even with simple in-
version and latent generation strategies, AdvIN
is surprisingly competitive to fine-tuning based
methods, making it a promising alternative for
end-to-end fine-tuning.

1. Introduction
Recent successes in generative modeling (Ramesh et al.,
2022; Saharia et al., 2022; Rombach et al., 2022) have
brought renewed focus on the challenges and opportuni-
ties in adapting large-scale generative models. In particular,

1Geometric Media Lab, Arizona State University, Tempe, USA
2Lawrence Livermore National Laboratory, Livermore, USA. Cor-
respondence to: Sinjini Mitra <smitra16@asu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

This work was supported in part by the U.S. Department
of Energy through the Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344; and in part by the De-
fense Advanced Research Projects Agency (DARPA) under Grant
HR00112290073.

adapting generic base models to application-specific do-
mains has emerged as a critical research problem. The de
facto solution of model fine-tuning is often undesirable due
to the exorbitantly large memory footprints of these mod-
els, data scarcity in custom domains, and limited compute
availability in practical scenarios.

On the other hand, from a deployment standpoint, it is impor-
tant to consider the potential implications and legal respon-
sibilities associated with making model weights publicly
accessible. With risks for misuse and compromising data
privacy, it might be beneficial to allow model access only
through an API call in a black-box fashion, as currently done
with DALL-E (Ramesh et al., 2022) or Midjourney (Mid-
journey, 2022). In such a setting, it is not clear how model
adaptation can be posed, and we need new approaches that
do not directly require access to the base model’s weights
(or gradients), but can synthesize samples from a target dis-
tribution. We investigate the feasibility of such an approach,
in the context of unconditional StyleGANs (Karras et al.,
2019; 2020). To this end, we introduce a generic framework
AdvIN (Adapting via Inversion) as an alternative for model
fine-tuning, particularly for scenarios involving distributed-
shifted and limited target data. AdvIN first decomposes
model adaptation into two independent steps: (i) inverting
target data onto the latent space of the generative model, and
(ii) designing a target sampler, which is light-weight in com-
parison to the full generative model, to directly sample from
the sub-manifold corresponding to the target data. This ap-
proach has two key advantages over model fine-tuning. First,
it eliminates the need to access or update the model weights
at the client, assuming that the inversion step is carried out
on the server. Second, we can leverage the recent advances
in GAN inversion that can now enable effective recovery
of even out-of-distribution (OOD) images (Subramanyam
et al., 2022; Abdal et al., 2020; Alaluf et al., 2022).

In this study, we explore different choices for implement-
ing the inversion module, and design the target sampler as
a latent diffusion model. We systematically evaluate the
performance of AdvIN, particularly at low target sample
sizes and with multiple real-world shifts. In addition to mak-
ing specific contributions, we emphasize the open research
questions in this space:
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Figure 1. AdvIN Framework. We address the problem of adapting pre-trained generators to target distributions, without requiring access
to the weights or gradients of the generator. (Left) The two-stage training protocol, where we (1) collect latents for the target samples
using an inversion module, and (2) fit a target sampler, which is a latent generative model that learns to sample from the estimated posterior
P (z|Xtarget); (Right) During inference, we leverage the trained target sampler to synthesize realizations from the target distribution.

(i) When the generator update is restricted, a common ap-
proach is to directly learn a latent space transformation
using the discriminator loss, e.g., MineGAN++. We find
that AdvIN is consistently superior and does not have the
mode collapse issue faced by MineGAN++. However, ad-
vances to GAN inversion and its scalability can improve
both quality and efficiency of AdvIN.

(ii) There are a number of reasons for end-to-end fine-tuning
to be better than AdvIN, e.g., the inversion module can
work poorly for large shifts or the vanilla latent diffusion
can be ineffective with scarce data. Surprisingly, at the low
sample sizes we consider, AdvIN is indeed competitive to
fine-tuning. However, by adopting sophisticated regularizers
and optimization techniques, the gap between fine-tuning
and AdvIN can be further reduced.

(iii) Similar to existing fine-tuning methods, AdvIN inher-
ently preserves latent properties from the base model, e.g.,
attribute directions, semantic interpolation in the target do-
main. This motivates their utility as priors for downstream
tasks in the target domain.

2. Adapting via Inversion
Adaptation is the problem of approximating a target distri-
bution Ptarget(X) given access to (a small number of) target
samples, {Xi ∼ Ptarget}, and a pre-trained generator that
can sample from a base, training distribution G(z) ∼ Pbase,
where z ∼ P (z) is a known prior.

Though fine-tuning is the most common approach for adap-
tation (Karras et al., 2020; Sauer et al., 2021), it can be

impractical in reality. Through AdvIN, we study the effec-
tiveness of adaptation by first inverting the target dataset
onto the latent space of the base generative model, and sub-
sequently training a target sampler that fits to the latent
(target) distribution. This formulation is agnostic to the
choice of inversion technique (e.g., pSp, e4e and hyper-
style) or the target sampler design. Note that, most existing
inversion methods require access to gradients from the gen-
erator model. However, the inversion step can be carried
out directly on the server side, without requiring the client
to access the model.

Given latents for the target set, the adaptation is performed
by learning to sample from the sub-manifold, P (z|Xtarget).
Next, we define a target sampler F (z) that learns to ap-
proximate P (z|Xtarget). In other words, it is a generative
model in the latent space, that maps a known prior distri-
bution to match the target latents obtained via inversion.
Once trained, we can sample from the target distribution as
G(F (z)) ∼ Ptarget, as illustrated in Figure 1.

A closely related work to our approach is Mine-
GAN++ (Wang et al., 2021), where an explicit miner net-
work is used to transform the latent prior, so that the gener-
ator synthesizes samples only from the target distribution.
In practice, this is optimized directly using the discrimina-
tor’s loss, and one can also optionally update the generator
parameters.

Target sampler design. This can be designed as any gener-
ative model of choice, that can be trained effectively with
limited data. In this study, we experimented with denois-
ing diffusion models (Ho et al., 2020; Song et al., 2020),
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Table 1. Performance Evaluation. We report the FID↓(blue) and IS↑(black) metrics for the Toonify and MetFaces datasets. AdvIN
consistently outperforms MineGAN++ w/ frozen generator across all target sizes, while closely matching the performance of MineGAN++
w/ generator fine-tuning.

# of target
images

AdvIN
(pSp)

AdvIN
(e4e)

AdvIN
(HyperStyle)

MineGAN++
(Finetune Gen.)

MineGAN++
(Freeze Gen.)

100 3.00/5.82 5.10/5.12 4.01/5.33 1.57/8.08 259.73/1.08
200 3.52/7.26 4.59/5.82 3.72/5.62 1.03/9.13 196.75/1.13MetFaces
300 2.72/8.60 4.14/6.28 3.06/6.73 0.76/11.15 151.49/1.45
54 10.52/3.11 9.61/3.56 9.69/3.08 23.57/1.523 291.384/1.14

108 7.13/4.81 8.66/4.79 9.69/4.50 19.88/1.77 220.04/1.66Toonify
217 5.86/6.25 9.61/5.81 9.60/6.23 6.40/2.64 201.69/1.76

MineGAN (w/o generator)
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130.10/1.09 3.02/7.74 2.64/8.91 2.04/9.43
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AdvIN (e4e)
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Figure 2. Results from AdvIN. Reconstructions and metrics (FID in blue, IS in black) are shown for three implementations of AdvIN
with different inversion strategies. We also include the results for MineGAN++ (without generator update). We notice that, across different
choices of inversion strategies, AdvIN converges more stably and recovers the target distributions with reasonable fidelity.

since GANs were more challenging to train in the low data
regimes. Specifically, we implement a diffusion model
with an 1D UNet backbone (Ronneberger et al., 2015),
F : R18×512 → R18×512. The U-Net model is lightweight
consisting of only 250K parameters, which is < 1% of
the number of parameters in the base generator (∼ 28M
parameters).

3. Experiments
To understand the behavior of AdvIN, we select StyleGAN2
trained on FFHQ faces as our base generator. We investi-
gate three widely-used inversion techniques, namely pSp
(Richardson et al., 2021), e4e (Tov et al., 2021), and Hy-
perstyle (Alaluf et al., 2022), for the inversion module. For
evaluating the adaptation performance, we utilize two OOD
datasets, namely MetFaces and Toonify, which serve as the

target distributions.

Baselines and Metrics. As our baseline for comparison, we
adopt a variant of MineGAN++ (Wang et al., 2021), wherein
we do not update the generator and the discriminator. In
this baseline, the miner network (an MLP) is trained using
a discriminator-based loss and is utilized as the posterior
sampler at inference time. We also report the performance
of MineGAN++, when the generator and discriminator are
also updated along with miner training. For evaluation, we
utilize FID (Fréchet Inception Distance) and IS (Inception
Score) metrics to asses the quality, diversity, and similarity
between the target and approximated distributions.

Training and inference. After the inversion step, we first
normalize the latent codes (z̄i−µ)/γ, where µ and γ are the
mean and standard deviation of all latent codes {z̄i}. Since
diffusion models are sensitive to the variance of the training
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Figure 3. Attribute preservation results on MetFaces and Toonify datasets. We illustrate the effectiveness of AdvIN in preserving
attributes for out-of-distribution target images. We show results on the MetFaces and Toonify datasets, demonstrating attribute manipulation
using pre-specified attribute directions.

data, this normalization is crucial to ensure that the target
sampler achieves sufficient diversity. For target sampler
training, we construct batches of size B (see appendix A for
details), such that each input to the diffusion model is of size
B × 18× 512. During inference, the latent normalization
is reversed and the unnormalized latents are passed to the
frozen StyleGAN2 generator to generate the images. The
training details are included in Appendix A.

Results. We report quantitative metrics and qualitative sam-
ples obtained using the different AdvIN implementations in
Figure 2 and Table 1 respectively. We observe surprisingly
competitive performance even when compared to Mine-
GAN++ with fine-tuning, while consistently outperforming
MineGAN++ with a frozen generator. We also notice that
for each inversion technique, the specific traits of the method
are preserved in the final outcome – for instance, e4e is de-
signed to preserve image quality for latent editing and this is
reflected in the inference images for that particular method.

Preserving attribute directions. Modern GAN architec-
tures posses capabilities to discover and manipulate seman-
tic attributes. StyleGAN2, for example, enables attribute ma-
nipulation by modifying the values of latent vectors (W+)
along pre-defined directions corresponding to desired at-
tributes. However, achieving similar attribute manipulations
in out-of-distribution (OOD) images is known to be chal-
lenging. Interestingly, AdvIN successfully preserves the
attributes within the latent submanifold for OOD images,
demonstrating its ability for attribute manipulation. Our
results for MetFaces and Toonify datasets obtained using

both pSp and e4e shown in Figure 3 clearly demonstrate the
effectiveness of AdvIN.

4. Discussion
This study presents AdvIN, an effective solution to gen-
erator fine-tuning in blackbox adaptation to small target
datasets. AdvIN displays competitive performance to end-
to-end fine-tuning approaches, particularly at low sample
sizes. One interesting observation we make is AdvIN’s
ability to preserve attributes within the latent submanifold,
even for out-of-distribution (OOD) images, similar to con-
ventional fine-tuning methods. This ability for attribute
manipulation presents promising opportunities for leverag-
ing AdvIN as a prior to perform downstream tasks (e.g.,
inverse problems, data augmentation) in the target domain.

In addition to these findings, we want to emphasize some
open research problems: a) Advanced inversion methods,
that can effectively invert even far OOD data into StyleGAN,
are essential to further expand the utility of AdvIN to ar-
bitary target distributions, and improve the training stability
in very low data regimes; b) While the presented implemen-
tation of AdvIN produces low FID scores, visual inspection
reveals that aspects of the source domain (real faces) are still
present in the synthesized target images. Potential improve-
ments include regularizers for latent generation, and style
manipulation-based augmentations to enhance the sample
quality, in terms of avoiding source-domain style character-
istics; c) Designing alternatives to vanilla latent diffusion
can significantly impact the efficiency of AdvIN. In sum-
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mary, AdvIN presents a promising direction for generator
fine-tuning and its utility in application-specific, data con-
strained target domains is particularly significant.
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A. Appendix
Sampling from a sub-manifold. With a frozen generator,
the task of learning the correct sub-manifold to sample from
is not trivial. In (Wang et al., 2021) the authors present a
simple multi-layer perceptron(MLP) to help steer the sam-
pler to the correct regions. We use this network as the “target
sampler” in Figure 1 and attempt to learn ptarget without
manipulating the generator. We find that the network is
insufficient in accurately estimating the target distribution,
as observed in Figure 4. Thus, there is a need to rethink the
adaptation problem for generative models and this motivates
us to present our novel framework.

Training details. For MetFaces we set the batch size to
32, trained for 400 epochs using the Adam optimizer with
a learning rate of 1e − 4, and β = 0.9, β = 0.999. For
Toonify, the batch size was set to 8, trained for 400 epochs
using Adam optimizer with a learning rate of 1e − 5, and
β1 = 0.5 β2 = 0.999. The images in Figure 2 are generated
for the “full” size of each training set - 217 for Toonify,
500 for MetFaces. The subset metrics presented in Table 1
are calculated for random subsets generated from this full
training set. For Toonify, the batch size = 4 for subset size
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Figure 4. GAN training methods often collapse in settings with a
small amount of target data. We observe this phenomenon when
deploying the miner from (Wang et al., 2021) where the sampler
defaults to the average mode of all input latents (left). This further
demonstrates that the problem of estimating qtarget in the latent
space is not trivial and hence motivates us to rethink the problem.

= 54 and 108. For MetFaces, the batch size = 16 for subset
sizes = 200 and 300, batch size = 8 for subset size = 100.

6


