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ABSTRACT

Object goal navigation in unseen environments is a fundamental task for building
intelligent embodied agents. Existing works tackle this problem with modular or
end-to-end learning-based methods, which implicitly learn from 2D maps, sparse
scene graphs or video sequences, ignoring the established fact that objects lie in
3D. Hence, in this work, we propose a dedicated 3D-aware online semantic point
fusion algorithm that online aggregates 3D points along with their semantic pre-
dictions from RGB-D observations to form a high-efficient 3D point-based sparse
map, which further enables us to check spatial semantic consistency. To lever-
age the 3D information for navigation while remaining sample efficient, we then
propose a two-stage reinforcement learning framework that decomposes the ob-
ject goal navigation into two complementary sub-tasks, namely exploration and
verification, each learning in a different discrete action space. Thanks to the
highly accurate semantic understanding and robust goal verification, our frame-
work achieves the best performance among all modular-based methods on the
Matterport3D and Gibson datasets. Furthermore, compared to mainstream RL
based works, our method requires (5-28x) less computational cost for training.
We will release the source code upon acceptance.

1 INTRODUCTION

As a vital task for intelligent embodied agents, object goal navigation (ObjectNav), asks the agents
to find an object of a given category via exploring in an unmapped scene. A surge has occurred
recently in the research community, that learns 3D scene priors over abstract representations, e.g., 2D
maps (Ramakrishnan et al., 2022; Georgakis et al., 2022; Chaplot et al., 2020b), scene graphs (Zhu
et al., 2021) or directly over RGBD sequences (Ye et al., 2021; Ramrakhya et al., 2022; Maksymets
et al., 2021), to enable ObjectNav. We argue that semantic understanding plays a crucial role in
ObjectNav, however existing works fall short of delivering highly accurate semantic predictions to
guide the navigation, due to their unawareness of the 3D structure.
Given that objects naturally lie in 3D space, 3D scene understanding naturally offers more accurate,
spatially dense and consistent semantic prediction than its 2D counterpart, as proved by Dai &
Nießner (2018); Nekrasov et al. (2021); Vu et al. (2022). Hence if the agent could take advantage
of the 3D structure derived from multi-view observations during navigation, it is expected that the
agent will have a more comprehensive understanding of the surrounding 3D environments.
However, leveraging 3D scene representations in ObjectNav raises two main concerns: 1) building
and querying 3D scene representation requires extensive computational cost (Zheng et al., 2019);
2) training reinforcement learning policy with 3D scene representation typically suffers from low
sampling efficiency (Zhu et al., 2017; Lin et al., 2020). These issues collectively hinder the use of
3D representations in the ObjectNav task.
To tackle these issues, we propose a 3D-aware two-stage object goal navigation approach featured
by two key designs.
First, we propose a highly efficient online semantic point fusion algorithm that online organizes
the 3D points into a 3D sparse map and updates their semantic labels along with spatial seman-
tic consistency in 3D space. Specifically, the unstructured points are organized into sparse blocks
of 3D grids at the coarse level and per-point octree at a fine-grained level for fast querying and
neighborhood searching, respectively. It’s worth noting that, different from dense voxel-based rep-
resentation Chaplot et al. (2021), 3D points are naturally more memory-efficient. Based on all these
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Figure 1: We present a two-stage navigation framework along with an online semantic point fusion:
from A → B, explore the environment to find a potential target category object; from B → C, verify
the correctness of the target category object and confirm whether to stop. As the robot approaches
the chair, semantic prediction and spatial semantic consistency are improved, thanks to the fusion.

advantages, our method is able to achieve near real-time frame rates and requires extremely few
memory resources.
Second, we use a two-stage navigation mechanism to drive the robot to reach the target goal. Unlike
current popular methods, which directly learn to predict a global goal Ramakrishnan et al. (2022);
Yadav et al. (2022), we separate the goal navigation task into two complementary sub-tasks: ex-
ploration and verification, each with different learning policies. The exploration policy, taking a
coarse 2D map and fine-grained 3D points as input, learns to predict a discrete direction in a low
dimension. It shares the benefit of avoiding back-and-forth paces with heuristic-based methods Luo
et al. (2022), while efficiently leveraging the semantic priors. When the agent observes something
that is predicted with goal semantic label and needs to decide whether marches to the place, our
proposed verification policy learns to dynamically adjust a confidence threshold to accommodate
different object categories, and we can further use the spatial semantic consistency to check whether
we can trust the semantic prediction, which makes our navigation robust to semantic errors. Bene-
fiting from the accurate and robust 3D understanding, our method significantly outperforms all the
previous object goal navigation works while achieving a very high sampling efficiency, owing to the
low-dimensional discrete action spaces and sub-tasks learning.
To summarize, our method incorporates online semantic point fusion with a two-stage policy learn-
ing to present a practically performing solution to 3D-aware object goal navigation. To the best of
our knowledge, this work is the first 3D fusion-based ObjectNav method. The contributions are:

• We construct a 3D semantic point fusion framework that is able to on-the-fly update tem-
poral semantic prediction and consistency. This framework requires satisfactory computa-
tional resources and enables a comprehensive 3D understanding of the environment.

• We develop a two-stage goal navigation method to improve sampling efficiency. Our
method disentangles the object goal navigation task into two sub-tasks: an exploration
stage and a verification stage, both with discrete action space for RL.

• Experiments on the photorealistic 3D environments of Gibson Xia et al. (2018) and Mat-
terport3D Chang et al. (2017) validate the effectiveness of our key designs. Our method
outperforms all the existing modular-based methods and requires (up to 10x) less time than
mainstream modular RL-based methods Chaplot et al. (2020b); Georgakis et al. (2022).

2 RELATED WORK

GoalNav with Visual Sequences. There are constantly emerging researches on object goal navi-
gation. One line of recent works directly leverages RGBD sequences, called end-to-end RL meth-
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Figure 2: An overview of our approach. We take in posed RGB-D images at time step t and perform
online semantic point fusion to organize the 3D points (M3D), along with a M2D from semantics
projection. Then, we leverage a two-stage policy, including exploration policy and verification
policy, to predict a discrete direction and target goal (if exists). Finally, a local planner is used
to drive the robot to the given direction or target goal.

ods Wijmans et al. (2019), which tends to implicitly encode the environment and predict low-level
actions. These works benefit from visual representation Mousavian et al. (2019); Yang et al. (2018),
auxiliary task Ye et al. (2021), and data augmentation Maksymets et al. (2021), demonstrating strong
results on object goal navigation benchmarks Batra et al. (2020b); Yadav et al. (2022). However, by
learning all skills, e.g., avoiding collisions, exploration, and stopping from scratch, it’s well known
that it suffers from sampling efficiency and generalizability. Ramakrishnan et al. (2022); Campari
et al. (2020).
GoalNav with Explicit Scene Representations. To ease the burden of learning directly from visual
sequences, another category of methods, called modular-based methods Chaplot et al. (2020a;b);
Parisotto & Salakhutdinov (2018); Gupta et al. (2017); Georgakis et al. (2019), use explicit repre-
sentations as a proxy for robot observations. By leveraging explicit scene representations like scene
graph Zhu et al. (2021); Qiu et al. (2020) or 2D top-down map Ramakrishnan et al. (2022); Georgakis
et al. (2022), modular-based methods benefit from the modularity and shorter time horizons. They
are considered to be more sample efficient and generalizable Ramakrishnan et al. (2022); Georgakis
et al. (2022). Recent progress in modular-based methods has proposed a frontier-based exploration
strategy Ramakrishnan et al. (2022), a hallucinate-driven semantic mapping method Georgakis et al.
(2022), and novel verification stage Luo et al. (2022). In contrast with prior map-based works,
our method utilizes 3D spatial knowledge, including 3D point semantic prediction and consistency,
enabling a more comprehensive understanding of the environments.
Online 3D Scene Segmentation. With the ability to on-the-fly construct scenes and predict se-
mantic or instance labels, online scene segmentation methods have potential applications in embod-
ied AI tasks. In this literature, the leading works perform the 3D convolutionZhang et al. (2020);
Huang et al. (2021) or graph neural network Wald et al. (2020); Rosinol et al. (2020) on dense
scene representation, e.g. voxels or patch-based graph Wu et al. (2021), demonstrating better se-
mantic prediction results on existing room-level datasets Dai et al. (2017). Despite the efforts to
improve efficiency Liu et al. (2022), these methods still require extensive computational resources
under floor-level or building-level scenes Xia et al. (2018); Chang et al. (2017). To reduce the bur-
den of 3D convolution, McCormac et al. (2017); Narita et al. (2019); Grinvald et al. (2019) directly
back-project the 2D segmentation result to 3D space and perform temporal 3D fusion with heuristic
design algorithms. In our work, intended for making online 3D scene understanding practically use-
able in GoalNav, we extend a point-based framework Zhang et al. (2020) with efficiently multi-view
semantic label fusion while requiring satisfactory computational resources for RL.

3 APPROACH

3.1 TASK DEFINITION AND OVERVIEW

Object Goal Navigation Task. In the Object Goal task, the robot is expected to navigate to an in-
stance of a specific object category (e.g., chair) in an unknown environment. The robot is initialized
at a random location with a target category object ID and does not have access to a pre-built envi-
ronment map. At each time step t, the agent receives onboard sensor readings, including an RGBD
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Figure 3: Illustration of online semantic point fusion. (A) A robot takes multi-view observations
during navigation. (B) The online captured points are divided into blocks of a 3D coordinate map
for fast querying. (C) The points are organized as per-point octrees which can be used to search
neighborhood points of any given point. (D) The 2D semantic prediction from multi-view observa-
tions will be fused to obtain 3D semantic prediction.

camera (first-person RGB and depth images) and GPS+compass (location and orientation relative
to the start of an episode). The agent then executes an action at ∈ A, where A consists of four
discrete actions: move forward, turn left, turn right and stop. The agent is required
to navigate within ds = 1.0m of the target object and take the stop action to complete the task.
The agent is allowed to take no more than 500 steps.
Overview. We present a novel framework for object-goal navigation with two-stage reinforcement
learning powered by an online semantic point fusion algorithm. During the navigation, our method
consistently constructs a 3D coordinate map to on-the-fly organize 3D points from observed posed
RGBD frames (Sec.3.2). Benefiting from fusing multi-view observation. We can online achieve
more complete scene reconstruction and more accurate semantic prediction, which can be further
used to measure the consistency of the target object. To efficiently leverage the semantic point
fusion framework, we separate the object goal navigation into two complementary sub-tasks: ex-
ploration and verification (Sec.3.3). In the exploration stage, a policy implicitly learns the semantic
and consistency priors from coarse-grained 2D maps and fine-grained 3D points. Then the policy
predicts a discrete exploring direction, which drives the robot to explore the unobserved area where
it could potentially find the target goal. For the verification stage, the agent exclusively takes the 3D
points observation to predict a dynamic confidence threshold with a consistency check mechanism
to confirm the final target goal. These two stages simultaneously perform during navigation. If the
verification does not find any target goal, the agent will follow the predicted direction to explore the
environment until a target goal is predicted and verified. To reach the given direction or target goal,
we use a local planner to navigate the agent using analytical path planning. A visualization of the
proposed pipeline can be found in Fig. 2.

3.2 ONLINE SEMANTIC POINT FUSION

During navigation, the robot constantly obtains new observations while incrementally building a 3D
scene representation to predict the next action. However, utilizing 3D scene representation in active
learning-based methods is fairly challenging due to two major requirements: 1) memory efficiency
and 2) fast updating and querying. In this section, we introduce our proposed online semantic
point fusion algorithm to enable fast 3D semantic perception for robot learning while maintaining
memory-efficient. Our algorithm leverages the way introduced by a point-based fusion framework
Zhang et al. (2020) to organize the 3D points and further devise the semantic fusion and consistency
estimation module tailored for navigation policy learning.
3D Sparse Map. Here, we briefly revisit a 3D point fusion algorithm Zhang et al. (2020). Given
a sequence of posed color image Ict and depth images Idt at time step t along with the camera
intrinsics, we can obtain the 3D points pt | pt = (xp, yp, zp) via back-projection. To facilitate fast
point querying, the points are online organized in a 3D sparse map M3D. Specifically, we construct
a 3D grid and the 3D sparse map M3D is composed of the occupied 3D blocks {Bk} along with
their indices k obtained by a tree-based method Jagadish et al. (2005). Each block Bk records the
points inside it, i.e. the points within a given coordinate range:

xp ∈ [Xmin
k , Xmax

k ), yp ∈ [Y min
k , Y max

k ), zp ∈ [Zmin
k , Zmax

k ), (1)
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After constructing the 3D sparse map, we can achieve efficient point searching and neighborhood
retrieval for any given 3D point p. However, the points sharing the same 3D block are still un-
structured at the per-point level. To obtain the fine-grained relationship of points, we further build a
one-level octree Oi for each point pi. Specifically, we connect the point with the nearest points in
the eight quadrants of the Cartesian coordinate system. Now, given any given point, we can search
the nearest points in eight directions and expand the search region as large as we want. Please see
Fig. 3 for more detail explanation.
Note that, under online scanning, there are considerable overlaps between consecutive frames.
Therefore, we can reuse most of (∼ 60%) the blocks and thus significantly boost the running ef-
ficiency. Additionally, we only insert the newly observed points that have a distance (greater than 4
cm) from all existing points, making the points as uniformly distributed as possible. This algorithm
for organizing 3D points can run at 15 FPS while requiring reasonable memory resources. More
details can be found in the appendix.
Online Semantic Fusion. Considering a sequence of RGBD observations (Ict=1..N and Idt=1..N ),
our method first obtains the semantic prediction S2D(pi|Ict ) by a pre-trained 2D network Jiang
et al. (2018), following existing works Ye et al. (2021); Ramakrishnan et al. (2022). Leveraging our
3D sparse map, we can easily fuse the predictions to lower the errors. For any 3D point, Our 3D
sparse map enables us to efficiently 1) find the corresponding pixels cross multi-view observation
and 2) search its nearest neighbor points, which enables us to perform the semantic fusion.
We thus propose to online aggregate the multi-view 2D semantic predictions S2D(pi|Ict ) using a
max-fusion mechanism to obtain the final 3D semantic prediction:

S3D(pi|Ict=1,..,N ) = normalize(max(S2D(pi|Ict=1), ..., S2D(pi|Ict=N ))), (2)

where max is performed per semantic class followed by a normalization to linearly scale to 1.
Note that, different from Huang et al. (2021); Zhang et al. (2020) that leverage 3D convolution
for fusing the semantics, we propose to utilize this simple yet effective max fusion since simply
incorporating 3D convolution into such a floor-level or building-level 3D map leads to a formidable
computational cost, especially in the context of online reinforcement learning for navigation policy.
Also, we find that directly aggregating the 2D semantic prediction in our semantic fusion algorithm
already achieves impressive improvement on semantic accuracy with significantly higher memory
efficiency and time efficiency. Similar findings have also been reported and exploited in relevant
works Chaplot et al. (2021); Grinvald et al. (2019). Moreover, through experiment, we find that the
max-fusion demonstrates better performance than Bayesian-fusion McCormac et al. (2017).
Spatial Semantic Consistency. In addition to fusing semantics, our 3D sparse map further enables
us to check the spatial semantic consistency among neighboring points, which provides critical
information for whether to trust the semantic prediction. We propose to model the spatial semantic
consistency C3D of object points by measuring the maximum KL-divergence between a given point
and its connected points in octree O. Notably, this consistency will be on-the-fly updated during the
navigation. This also showcases that our 3D point-based method is more powerful for perceiving
3D space and enabling a more comprehensive scene understanding for the agent.

3.3 TWO-STAGE REINFORCEMENT LEARNING

Although our online semantic point fusion algorithm is designed to be very efficient, it still con-
sumes far more time than naive 2D-map-based methods in the context of reinforcement learning for
navigation policy. Therefore, to improve the sampling efficiency of reinforcement learning, we dis-
entangle the whole navigation task into two complementary sub-tasks: exploration and verification,
with each learning in different discrete action spaces.
Exploration Stage. In the exploration stage, the agent, driven by an exploration policy, attempts
to explore the unobserved area where it could access the potential target category object. Existing
map-based methods learn the semantic priors from the 2D map and predict a global goal within
the current 2D map. These approaches implicitly encode the priors between the object distribution
and scene layout, then predict a continuous global Chaplot et al. (2020b) or a discrete goal but with
a large action space dimension Georgakis et al. (2022). These methods require extensive training
time Chaplot et al. (2021) or complicated data preparation Ramakrishnan et al. (2022). Recently,
Luo et al. (2022) proposed a heuristic goal selection strategy, which simply guides the agent fol-
lowing a clockwise varying direction. This strategy avoids repeated forward-backward moving and
demonstrates high navigation efficiency. However, it is a sub-optimal design because the heuristic
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direction selection strategy does not encode the object category information. Please see Fig.4 for a
visual explanation.
Here, to take the best of both worlds, we define an exploration policy dt = πe(xt; θe) that predicts
a goal direction dt ∈ D that drives the agent to find the target category object as soon as possible,
where θe indicates the parameters of the policy, D contains four pre-defined target directions (Fig.4
middle) and , the state xt is comprised of a coarse 2D top-down map M2D ∈ (C2D ×M ×M) and
sampled 3D points from 3D sparse map M3D ∈ (C3D×N). For a 2D map, the M×M denotes the
map size, and the C2D is composed of the obstacle map, explored map, and semantic channels. For
3D sparse map M3D, the N indicates the point number (4096), and C3D includes position, spatial
semantic consistency, and semantic channels. Here, the coarse (20 cm) 2D map is constructed to
give a large perception view of the scenes, and 3D points perform as a fine-grained observation
of objects. The experiment shows that the combination demonstrates better performance than any
individual representation.

Stubborn Ours SemExp

Figure 4: Illustration of exploration policy.
(Left) Heuristic direction selection Luo et al.
(2022); (Middle) Learning-based direction selec-
tion (Ours); (Right) Learning-based dense global
goal prediction Chaplot et al. (2020b)

Once the direction is determined, the agent uses
a deterministic local planner to plan a path to
reach the predicted direction. Note that, our
method also builds a fine-grained (5cm) 2D oc-
cupancy map for local planning only, which re-
quires a small amount of memory without train-
ing. More details are offered in the appendix.
Verification Stage. During navigation, the
agent has to decide where and whether to stop
when observing objects whose predicted se-
mantic label is the same as the target object.
Most works consider tackling this problem by
simply setting a hard confidence threshold on
the semantic prediction Chaplot et al. (2020b).
In this case, if the agent observes a point with a higher predicted probability than the given thresh-
old, the agent will switch its policy to a simple reaching policy that allows it to directly rush to the
location of that point. However, this strategy has two major limitations: 1) it relies on a single-point
prediction and thus is not robust to wrong semantic predictions with high confidence; 2) different
object categories behave differently under a semantic predictor, making the confidence threshold
hard to decide. These limitations can lead to numerous mistakes, and what’s worse, the agent won’t
be able to recover from the mistake once it starts marching to the wrong goal.
To tackle these issues, we propose a verification stage that leverages the predicted confidence thresh-
old and spatial semantic consistency. Specifically, we define a policy at = πv(xt; θv) which takes
in the online fused 3D points M3D and target category ID as observation and outputs a threshold-
indicating action st ∼ {0, 1..., 10}. The actual threshold st can be obtained by:

τt = τlow +
(st − 5)

5
· (1− τlow), (3)

where the τlow is set to 0.75 in our implementation with τt ∈ [0.5, 1]. The predicted threshold is
then used to filter out the low confidence points. And for each remaining point, we search its nearest
points along the octree O and label the points with at latest one near point share the same category as
the potential goal points. Finally, we choose the points with at least 4 nearest potential points as the
final target goal. Note that, the agent will consistently perform semantic point fusion and on-the-fly
update the target goal, which can dismiss the mistake when reaching a wrong category object.
Local Planner. Following existing works, we use the Fast Marching Method Sethian (1999) to
compute the shortest path from the robot location to the given direction or target goal. The local
planner then takes deterministic actions to drive the agent along this shortest path. This could be
further improved by changing to a learning model, like Chaplot et al. (2020a); Wijmans et al. (2019).
Rewards. For the exploration policy, we share a similar reward design as Ye et al. (2021); Batra
et al. (2020b). The agent receives a sparse success reward rsuccess = 2.5, a slack reward rslack =
10−2 and an exploration reward rexplore. The exploration reward is a dense reward, defined by the
number of new inserted point nnew

p as rexplore = nnew
p × 10−3. The slack reward and exploration

reward encourages the agent to take the most effective direction to the unobserved area. And for the
verification policy, we remove the exploration reward.
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4 EXPERIMENT

4.1 EXPERIMENT SETUP.

We perform experiments on the Matterport3D (MP3D) Chang et al. (2017) and Gibson Xia et al.
(2018) datasets with the Habitat simulator Savva et al. (2019a). Both Gibson and MP3D contain
photorealistic 3D reconstructions of real-world environments. For Gibson, we use 25 train /5 val
scenes from the Gibson tiny split. And we follow the same setting as in Chaplot et al. (2020b);
Ramakrishnan et al. (2022) where we consider 6 goal categories, including chair, couch, potted
plant, bed, toilet and TV. For MP3D, we use the standard split of 61 train /11 val scenes with Habitat
ObjectNav dataset Savva et al. (2019b), which consists of 21 goal categories (the full list can be
found in the appendix). Note that, the depth map and odometry are noise-free from simulation
(follow the definition of Batra et al. (2020b)). Estimation of the pose from noisy sensor readings
is out of the scope of this work and can be addressed, if necessary, by incorporating off-the-shelf
odometry Zhao et al. (2021).
Implementation Details. On MP3D, we use a pre-trained semantic model RedNet Jiang et al.
(2018) as Ramakrishnan et al. (2022); Ye et al. (2021). On Gibson, we leverage a Mask R-CNN He
et al. (2020), which is trained with COCO dataset Lin et al. (2014). For each frame, we randomly
sample 512 points for point-based fusion and use a sliding window to maintain the latest update
points(4096) for the learning policy. Moreover, we use PointNet Qi et al. (2017) to obtain the
feature of 3D points and a fully convolutional network for the 2D top-down map. During training,
we sample actions every 25 steps and use Proximal Policy Optimization (PPO) Schulman et al.
(2017) for both exploration and verification tasks. More details can be found in the appendix.
Evaluation Metrics. Following existing works Batra et al. (2020a); Ramakrishnan et al. (2022),
we adopt the following evaluation metrics: 1) Success rate: the percentage of successful episodes
2) SPL: success weighted by path length. It measures the efficiency of the agent over oracle path
length. 3) Soft SPL: a softer version of SPL measure the progress towards the goal (even with 0
success). 3) DTS: geodesic distance (in m) to the success at the end of the episode. We usually use
SPL first to measure the agent’s performance, as did in Habitat ChallengeYadav et al. (2022).
Baselines. We consider mainstream baselines in the ObjectNav task. For end-to-end RL meth-
ods, we cover DD-PPO Wijmans et al. (2019), Red-Rabiit Ye et al. (2021), THDA Maksymets
et al. (2021), and Habiat-web Ramrakhya et al. (2022). For modular based methods, we cover
FBE Robotics (1997), ANS Chaplot et al. (2020a), L2M Georgakis et al. (2022), SemExp Chaplot
et al. (2020b), Stubborn Luo et al. (2022) and PONI Ramakrishnan et al. (2022). Note that, some
works use additional data to improve the performance, e.g. Habitat-web leverages human demon-
stration trajectories, and THDA utilizes data augmentation. It is challenging to compare all the
methods fairly. Therefore, we are particularly interested in the three most relevant baselines: Se-
mExp, Stubborn, and PONI. These three methods, performing as a strong baseline, share the same
semantic predictor Jiang et al. (2018) as our method.

4.2 RESULTS

Comparison on MP3D and Gibson. We evaluate our approach on MP3D (val) and Gibson (val) in
contrast with other baselines, including end-to-end RL(rows 1 - 4) and modular-based methods(rows
5 - 10). Our approach is grouped into modular-based methods. The results are demonstrated in
Table.1. On the MP3D dataset, our method is significantly better than all existing baselines in SPL
and DTS, and achieves the best success rate among all modular-based methods. Considering three
particular methods: SemExp, Stubborn, and PONI, which share the same 2D semantic predictor as
ours, we outperform these three on all metrics, clearly performing the superiority of our method
among modular-based methods. Moreover, compared to the end-to-end RL-based methods, like
Habitat-web Yadav et al. (2022) trained with extra human demonstration, our method still achieves
more efficient navigation with 10% higher SPL and competitive success rate. Still, the performance
of our method on the success rate could be further improved with a more accurate 2D semantic
predictor Liu et al. (2021) and training data Zhou et al. (2018). A qualitative visualization can be
found Figure.5. Here, our method online updates the semantic prediction and successfully dismisses
the wrong target goal. For more episode qualitative results, please refer to the appendix.
On the Gibson dataset, our method achieves comparable performance to other baselines. However,
due to the different 2D semantic predictors for methods, it is unfair to compare the final performance.
Here, we provide the results only as a reference.
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Table 1: ObjectNav validation results on MP3D and Gibson. Baselines are adapted from Ramakr-
ishnan et al. (2022), Chaplot et al. (2020b). Note that, the L2M, SemExp and Stubborn do not report
the results on MP3D validation. We therefore faithfully provide the results, denoted with *, by eval-
uating the pre-trainedmo model from their open available code.

Gibson (val) Mappterport 3D (val)
Method SPL(%)↑ Succ.(%)↑ DTS(m)↓ SPL(%)↑ Succ.(%)↑ DTS(m)↓
DD-PPO Wijmans et al. (2019) 10.7 15.0 3.24 1.8 8.0 6.90
Red-Rabbit Ye et al. (2021) - - - 7.9 34.6 -
THAD Maksymets et al. (2021) - - - 11.1 28.4 5.58
Habitat-Web Ramrakhya et al. (2022) - - - 10.2 35.4 -
FBE Robotics (1997) 28.3 64.3 1.78 7.2 22.7 6.70
ANS Chaplot et al. (2020a) 34.9 67.1 1.66 9.2 27.3 5.80
L2M Georgakis et al. (2022) - - - 11.0 32.1 5.12
SemExp* Chaplot et al. (2020b) 39.6 71.7 1.39 10.9 28.3 6.06
Stubborn* Luo et al. (2022) - - - 13.5 31.2 5.01
PONI Ramakrishnan et al. (2022) 41.0 73.6 1.25 12.1 31.8 5.10
Ours 41.7 72.5 1.21 14.8 32.6 4.04

Step 10 Step 11 Step 12

Step 157 Step 158 Step 167 (STOP)

Dismiss the Mistake Mistake Fixed

More Consistent More Consistent
: Agent Spawned : Correct Object

: Deceptive Object

3D Semantic Map
0 1

3D KL Map

Success!

: Bed (Target Goal ) : Sofa

: Cushion : Chair

: Other Objects

Mistake 
Occurs!

Figure 5: Qualitative results of navigation using the proposed method. We visualize an episode on
Matterport3D (val), along with a top-down semantic map and KL map. The robot is expected to find
a bed. At step 10, the robot obtain a partial observation of a sofa, which is mistakenly recognized
as a bed. And during the approach to the sofa, the multi-view observation improve the semantic
prediction and successfully dismiss the mistake. Then the robot continue to explore the environment
until step=157, when the robot obtain new partial observation of an object which could be the bed.
As the robots moving to the target, the points are more complete and the semantic prediction is tend
to be bed. And for KL map, we can find that the false target goal (red circle) has large inconsistency
contrasted to the correct object(green circle).

Table 2: Comparison on exploration policy;
G. denotes Global Goal; D. denotes Direction.

Method SPL(%) Succ.(%) DTS(m)
Learn Continuous G. 11.2 29.2 5.063
Learn Grid G. 13.0 31.5 4.944
Learn 8 D. 13.6 31.7 4.692
Heuristic. 4 D. 14.4 32.1 5.024
Learn 4 D. (Ours) 14.8 32.6 4.036

Comparison on Exploration Policy. We con-
duct an experiment on MP3D to validate the ef-
ficiency of our exploration policy. To remove
the effect of the 2D semantic predictor and stop
strategy, all competitors share the same seman-
tic predictor and the verification policy pro-
posed in Sec3.3. The results is reported in Table
2. Our exploration outperforms the mainstream
existing methods Ramakrishnan et al. (2022);
Luo et al. (2022), including learning-based and heuristic strategies. Moreover, we find that learn-
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A1

A2

B1

B2

: cabinet : drawer : table : chair : sofa : cushion

Figure 6: Visualization of the results of online semantic point fusion. The fusion algorithm can give
more accurate and complete points to guide the agent.

ing 4 directions demonstrates better performance than 8. This proves that the 4 corner directions
can most efficiently drive the agent to explore the environment while benefiting from smaller action
space.
Comparison on Verification Policy. Another critical challenge in OjectNav is how to properly stop
the robot. Therefore, We evaluate our verification policy on MP3D along with other stop strategies,
including a 2D map-based policy adopted in Chaplot et al. (2020b); Ramakrishnan et al. (2022)
and 3D points-based methods proposed by our approach. The results are shown in Table. 3. We
observe a performance improvement (rows 1 - 4) by leveraging the proposed semantic point fusion
algorithm. It can be concluded that the multi-view observations provide more accurate semantic
prediction, which effectively reduces false positive prediction (see examples in Figure.6). Moreover,
instead of setting a hard confidence threshold to verify the objects, our method demonstrates better
performance benefiting from both dynamic threshold prediction and spatial semantic consistency.
Ablation Study. We also perform an ablation study to verify the effectiveness of different compo-
nents of our method. The results are demonstrated in Table.4. From rows 1-2, we find that only
using the 3D points for exploration does not outperform the 2D map. The reason is that the sampled
3D points suffer from a shorter perception field than a 2D map. The cooperation of the 2D top-down
map and 3D points (row 4) shows significant improvement by incorporating extensive scene percep-
tion (in 2D) and fine-grained object perception (in 3D). Moreover, rows (3-4) and (4-5) proved the
effectiveness of leveraging consistency and verification policy, respectively.

Table 3: Comparison of verification policy.

Method Type SPL(%) Succ.(%) DTS(m)Repr. Thre.

Deterministic

2D 0.75 13.0 29.7 5.168
2D 0.85 12.8 30.1 5.151
3D 0.75 13.7 32.3 4.179
3D 0.85 13.5 31.5 4.386

Learning (Ours) 3D - 14.8 32.6 4.036

Table 4: Ablation study of proposed method.

2D map 3D points V. Policy SPL(%) Succ.(%) DTS(m)Pos. KL div.
✓ 13.1 31.4 4.971

✓ ✓ 12.9 30.8 4.931
✓ ✓ 13.5 32.4 4.810
✓ ✓ ✓ 13.7 32.3 4.179
✓ ✓ ✓ ✓ 14.8 32.6 4.036

Analysis of Computation Cost. Our online semantic point fusion algorithm is extremely memory
efficient, which requires about 0.5GB for one scene, and can perform online fusion at a rate of 15
FPS. Moreover, our two-stage reinforcement learning framework requires only 48 GPU hours on
MP3D to achieve the SOTA performance among all modular-based methods. This is comparable
to supervised learning modular-based methods Ramakrishnan et al. (2022) and significantly faster
(5-28x) than existing reinforcement learning based methods Chaplot et al. (2020b); Ye et al. (2021).

5 CONCLUSION

We present a novel two-stage goal navigation framework for the object goal navigation task pow-
ered by a semantic point fusion algorithm. By fusing the 3D points from multi-view observation,
our method can on-the-fly update the semantic prediction and spatial consistency, enabling a com-
prehensive 3D scene understanding. Furthermore, to make training 3D-aware agents more efficient,
we disentangle the goal navigation task into two complementary sub-tasks, exploration and verifica-
tion, with each learning in different discrete action space. Finally, the results clearly demonstrate the
superiority of our 3D-aware navigation method. In the future, we would like to exploit the 3D-aware
agent in other embodied AI tasks, e.g. mobile manipulation.
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Ethics Statement. We believe this work has a broader impact by enabling more intelligent au-
tonomous robots with 3D scene understanding to navigate in unseen environments. The proposed
3D-aware robots could be further used in future embodied AI tasks, such as housekeeping and nurs-
ing for disabled populations. However, our method also has technical limitations, which can yield
social consequences. First, the data for training our agent mostly comes from North America and
Europe. It could lead to safety risks when adopted in out-of-distribution environments. Second, our
method relies on robust odometry for accurate pose tracking. This could be intractable under chal-
lenging environments, such as low-lighting conditions or fast camera shaking. These issues could
be resolved by involving more diverse data and using multi-modal odometry.
Reproducibility Statement. The source code is attached in the supplementary, and the hyperpa-
rameter can be directly applied. We further provide a README to guide the installation, training,
and evaluation.
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A APPENDIX

A.1 MODEL DETAILS

Inputs. Three types of inputs are used in our policy network: 1) The sampled 3D points (4096) from
the 3D coordinate map. Due to the progressively increased size of the 3D coordinate map, it is not
practical to leverage all the fused points. We instead only consider the latest observing points, which
are recently updated. Specifically, we use a sliding window to add the new observed/updated points
and remove non-observed points. These sampled points significantly reduce the memory resource
requirements but still offer significant spatial and temporal information. 2) A 2D top-down map
is also constructed to model the scene layout and semantics. We follow Chaplot et al. (2020a) to
construct the 2D map at a coarse level (20cm) and project the fused 3D point semantic to obtain the
semantic channels. 3) Extra information, including the number of steps, the discretized orientation
of the agent, and the target category ID. Using extra information can give an explicit environment
state to benefit the agent, which has been proved in Chaplot et al. (2020a;b).
Exploration and Verification Policy. Our exploration policy takes the sampled points, 2D top-
down map, and extra information as inputs and predicts a discrete direction to navigate the robot
(Fig.7). Specifically, the policy uses a PointNet Qi et al. (2017) to encode the 3D points information
(xyz, semantics, and kL divergence) to obtain a global feature (256D). The 2D top-down map will
be passed to a fully convolutional network and been flatten to a feature vector (256D). And the
extra information is embedded into a feature vector (24D). Note that, the processing of the 2D top-
down map and extra information share the same idea as Chaplot et al. (2020b). Finally, the three
feature vectors are concatenated, followed by an MLP. The network pipeline is based on the PPO
implementation Kostrikov (2018). The network architecture of the verification policy is almost the
same as the exploration policy, by removing the 2D top-down map branch from the input (Fig.8).
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A.2 IMPLEMENTATION DETAILS

Online Semantic Point Fusion. For each frame, we randomly sample 512 points and use a pre-
trained 2D semantic predictor to obtain the corresponding semantic prediction. If a point could find
any close point with a distance smaller than 4cm, it would be considered a new point and be added
to the 3D coordinate map. Otherwise, its semantic prediction will be fused to the closest point in
3D. Also, for each point, we only connect the points with distance ∈ [4cm, 15cm].
Goal Changing Strategy. During the evaluation, to make the comparison fair for other direction
selection strategies Luo et al. (2022), we leverage the same direction-changing mechanism, which
updates the goal only when it gets trapped or reaches a step-threshold.

A.3 EXPERIMENT DETAILS

Here, we provide additional descriptions of the experiments to support the main paper.
MP3D ObjectNav Dataset. The MP3D ObjectNav dataset from the Habitat challenge consists of
21 object categories: ‘chair’, ‘table’, ‘picture’, ‘cabinet’, ‘cushion’, ‘sofa’, ‘bed’, ‘chest of drawers’,
‘plant’, ‘sink’, ‘toilet’, ‘stool’, ‘towel’, ‘tv monitor’, ‘shower’, ‘bathtub’, ‘counter’, ‘fireplace’, ’gym
equipment’, ‘seating’, and ‘clothes’. The train / val splits consist of 263,2422 / 2,195 episodes from
61 / 11 MP3D scenes.
Comparision on Exploration Policy. Learn Continuous G.: learn to predict a continuous global
goal Batra et al. (2020b); Learn Grid G.: Learn to predict a dense discrete global goal Georgakis
et al. (2022); Heuristic 4 D.: A heuristic direction selection strategy Luo et al. (2022). Learn 4/8 D.:
learn to predict a direction to navigate the robots. The eight directions of ”Learn 8 D.” are equally
distributed in the 2D plane.

A.4 ADDITIONAL EXPERIMENTS

Comparison with L2M. L2M Georgakis et al. (2022) provides a self-made dataset which consist
of 781 episodes from 10 MP3D (val) scenes. Following the setting of the L2M dataset, we evaluate
our method on L2M Dataset, and the results are reported in Table.5.

Table 5: Comparison on L2M dataset. The results of L2M and SemExp are quoted form Georgakis
et al. (2022)

Method SPL(%) SoftSPL(%) Succ.(%) DTS(m)
SemExp Chaplot et al. (2020b) 17.9 - 30.1 4.782
L2M Georgakis et al. (2022) 17.0 22.1 39.1 3.373
Our 21.2 30.5 40.2 3.278

A.5 LIMITATIONS

We have elaborated the advantages of our approach in Sec.3 and Sec.4 of the main paper. Yet there
are some limitations we would like to acknowledge:
First, there exists a noticeable gap in the number of points among different categories. Large objects
(e.g., sofa) may have much more points (up to 100x) than small objects (e.g., plants). Therefore, the
large object may contribute more to the final prediction, leading to a performance drop in searching
of small objects. One possible solution to alleviate this problem is to define a center key-point Vu
et al. (2022) to weigh the unbalanced points.
Second, during training, our agent on-the-fly aggregates numerous scene observations. It can be
quite a waste to discard these scene contexts right after the end of each episode. The training effi-
ciency could be further improved if we can transfer the RL learning task into a supervised learning
task, as did in Ramakrishnan et al. (2022)(PONI).

A.6 ADDITIONAL VISUALIZATIONS

Finally, we provide some additional visualizations of selected episodes in Fig.9 and Fig.10. For
each episode, we display first-person observation(row1), predicted 2D Semantic Map(row2) and
structured 3D points(row3) of some specific steps in sequence, which either demonstrate the agent
dismissed mistakes encountered halfway or it became more and more confident when proceeding
towards the true target goal.
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Figure 9: EPS Page1.
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Figure 10: EPS Page2.
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