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ABSTRACT

Deep learning-based networks have achieved unprecedented success in numer-
ous tasks, among which image classification. Despite these remarkable achieve-
ments, recent studies have demonstrated that such classification networks are eas-
ily fooled by small malicious perturbations, also known as adversarial examples.
This security weakness led to extensive research aimed at obtaining robust mod-
els. Beyond the clear robustness benefits of such models, it was also observed
that their gradients with respect to the input align with human perception. Several
works have identified Perceptually Aligned Gradients (PAG) as a byproduct of ro-
bust training, but none have considered it as a standalone phenomenon nor studied
its own implications. In this work, we focus on this trait and test whether Percep-
tually Aligned Gradients imply Robustness. To this end, we develop a novel ob-
jective to directly promote PAG in training classifiers and examine whether mod-
els with such gradients are more robust to adversarial attacks. We present both
heuristic and principled ways for obtaining target PAGs, which our method aims
to learn. Specifically, we harness recent findings in score-based generative mod-
eling as a source for PAG. Extensive experiments on CIFAR-10 and STL validate
that models trained with our method have improved robust performance, exposing
the surprising bidirectional connection between PAG and robustness.

1 INTRODUCTION

AlexNet (Krizhevsky et al., 2012), one of the first Deep Neural Networks (DNNs), has significantly
surpassed all the classic computer vision methods in the ImageNet (Deng et al., 2009) classification
challenge (Russakovsky et al., 2015). Since then, the amount of interest and resources invested in the
deep learning (DL) field has skyrocketed. Nowadays, such models attain superhuman performance
in classification (He et al., 2016; Dosovitskiy et al., 2021). However, although neural networks are
allegedly inspired by the human brain, unlike the human visual system, they are known to be highly
sensitive to minor corruptions (Hosseini et al., 2017; Dodge & Karam, 2017; Geirhos et al., 2017;
Temel et al., 2017; 2018; Temel & AlRegib, 2018) and small malicious perturbations, known as
adversarial attacks (Szegedy et al., 2014; Athalye et al., 2018; Biggio et al., 2013; Carlini & Wagner,
2017b; Goodfellow et al., 2015; Kurakin et al., 2017; Nguyen et al., 2015). With the introduction of
such models to real-world applications that affect human lives, these issues raise significant safety
concerns, and therefore, they have drawn substantial research attention.

The bulk of the works in the field of robustness to adversarial attacks can be divided into two types
– on the one hand, ones that propose robustification methods (Goodfellow et al., 2015; Madry et al.,
2018; Zhang et al., 2019; Wang et al., 2020), and on the other hand, ones that construct stronger
and more challenging adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Carlini &
Wagner, 2017a; Tramèr et al., 2020; Croce & Hein, 2020b). While there are numerous techniques
for obtaining adversarially robust models (Lécuyer et al., 2019; Li et al., 2019; Cohen et al., 2019b;
Salman et al., 2019), the most effective one is Adversarial Training (AT) (Madry et al., 2018). AT
proposes a simple yet highly beneficial training scheme – train the network to classify adversarial
examples correctly.

While exploring the properties of adversarially trained models, Tsipras et al. (2019) exposed a fasci-
nating characteristic of these models that does not exist in standard ones – Perceptually Aligned Gra-
dients (PAG). Generally, they discovered that such models are more aligned with human perception
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than standard ones, in the sense that the loss gradients w.r.t. the input are meaningful and visually
understood by humans. As a result, modifying an image to maximize a conditional probability of
some class, estimated by a model with PAG, yields class-related semantic visual features, as can be
seen in Fig. 1. This important discovery has led to a sequence of works that uncovered conditions
in which PAG occurs. Aggarwal et al. (2020) revealed that PAG also exists in adversarially trained
models with small threat models, while Kaur et al. (2019) observed PAG in robust models trained
without adversarial training. While it has been established that robust models lead to perceptually
aligned gradients, more research is required to better understand this intriguing property.

In this work, while aiming to shed some light on the PAG phenomenon, we pose the following
reversed question – Do Perceptually Aligned Gradients Imply Robustness? This is an interesting
question, as it tests the similarity between neural networks and human vision. Humans are capable
of identifying the class-related semantic features and thus, can describe the modifications that need
to be done to an image to change their predictions. That, in turn, makes the human visual system
“robust”, as it is not affected by changes unrelated to the semantic features. With this insight, we
hypothesize that since similar capabilities exist in classifiers with perceptually aligned gradients,
they would be inherently more robust.

To methodologically test this question, we need to train networks that obtain perceptually aligned
gradients without inheriting robust characteristics from robust models. However, PAG is known to
be a byproduct of robust training, and there are currently no ways to promote this property directly
and in isolation. Thus, to explore our research question, we develop a novel PAG-inducing general
objective that penalizes the input-gradients of the classifier without any form of robust training.
However, this process requires access to “ground-truth” perceptually aligned gradients, which are
challenging to obtain. We explore both heuristic and principled sources for such gradients. Our
heuristic sources stem from the rationale that such gradients should point towards the target class.
In addition, we provide in this work a second, principled approach towards creating such PAG
vectors, relying on denoising score matching as used in generative models Song & Ermon (2019).
We propose to estimate the gradient of the classification task for each input image as the difference
between a conditional and unconditional score, both obtained by a pre-trained denoising network.
This difference emerges from the Bayes rule, enabling theoretically justified distilled PAGs.

To validate our hypothesis, we first verify that our optimization goal indeed yields perceptually
aligned gradients as well as sufficiently high accuracy on clean images, then evaluate the robustness
of the obtained models and compare them to models trained using standard training (“vanilla”). Our
experiments strongly suggest that models with PAG are inherently more robust than their vanilla
counterparts, revealing that directly promoting such a trait can imply robustness to adversarial at-
tacks. Surprisingly, not only does our method yield models with non-trivial robustness, but it also
exhibits comparable robustness performance to adversarial training without training on perturbed
images. These findings can potentially pave the way for standard training methods (i.e., without
performing adversarial training) for obtaining robust classifiers.

2 BACKGROUND

2.1 ADVERSARIAL EXAMPLES

We consider a deep learning-based classifier fθ : RM → RC , where M is the data dimension and
C is the number of classes. Adversarial examples are instances designed by an adversary in order to
cause a false prediction by fθ (Athalye et al., 2018; Biggio et al., 2013; Carlini & Wagner, 2017b;
Goodfellow et al., 2015; Kurakin et al., 2017; Nguyen et al., 2015; Szegedy et al., 2014). In 2013,
Szegedy et al. (2014) discovered the existence of such samples and showed that it is possible to cause
misclassification of an image with an imperceptible perturbation, which is obtained by maximizing
the network’s prediction error. Such samples are crafted by applying modifications from a threat
model ∆ to real natural images. Hypothetically, the “ideal” threat model should include all the
possible label-preserving perturbations, i.e., all the modifications that can be done to an image that
will not change a human observer’s prediction. Unfortunately, it is impossible to rigorously define
such ∆, and thus, simple relaxations of it are used, the most common of which are the ℓ2 and the
ℓ∞ ϵ-balls: ∆ = {δ : ∥δ∥c∈{2,∞} ≤ ϵ}.
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More formally, given an input sample x, its ground-truth label y and a threat model ∆, a valid
adversarial example x̂ satisfies the following: x̂ = x + δ s.t. δ ∈ ∆, ypred ̸= y, where ypred is
the prediction of the classifier on x̂. The procedure of obtaining such examples is referred to as an
adversarial attack. Such attacks can be either untargeted or targeted. Untargeted attacks generate x̂
to minimize pθ(y|x̂), namely, cause a misclassification without a specific target class. In contrast,
targeted attacks aim to craft x̂ in a way that maximizes pθ(ŷ|x̂) s.t. ŷ ̸= y, that is to say, fool the
classifier to predict x̂ as a target class ŷ.

While there are various techniques for generating adversarial examples (Goodfellow et al., 2015;
Carlini & Wagner, 2017a; Dong et al., 2018), we focus in this work on the Projected Gradient
Descent (PGD) method (Madry et al., 2018). PGD is an iterative procedure for obtaining adversarial
examples that operates as described in Alg. 1. The operation Projϵ stands for a projection operator
onto ∆, and L(·) is the classification loss, usually defined as the cross-entropy:

LCE(z, y) = − log
exp(zy)∑C
i=1 exp(zi)

, (1)

where zy and zi are the classifier’s logits for classes y and i, respectively.

Algorithm 1 Projected Gradient Descent
Input: classifier fθ, input x, ground-truth class y, target class ŷ, threat model parameter ϵ, step size
α, number of iterations T
δ0 ← 0
for t from 0 to T do

if ŷ is not None then
δt+1 = Projϵ(δt − α∇δL(fθ(x+ δt), ŷ))

else
δt+1 = Projϵ(δt + α∇δL(fθ(x+ δt), y))

end
end
xadv = x+ δT
Output: xadv

2.2 ADVERSARIAL TRAINING

Adversarial training (AT) (Madry et al., 2018) is a learning procedure that aims to obtain adversar-
ially robust classifiers. A classifier is considered adversarially robust if applying small adversarial
perturbations to its input does not change its label prediction (Goodfellow et al., 2015). Such classi-
fiers can be obtained by solving the following optimization problem:

min
θ

∑
(x,y)∈D

max
δ∈∆
L(fθ(x+ δ), y). (2)

Intuitively, the above optimization trains the classifier to accurately predict the class labels of
its hardest perturbed images allowed by the threat model ∆. Ideally, L is the 0-1 loss, i.e.,
L(z, y) = I(argmaxi(zi) = y) where I is the indicator function. Nevertheless, since the 0-1
loss is not differentiable, the cross-entropy loss, defined in Eq. (1), is used as a surrogate. In prac-
tice, solving this min-max optimization problem is challenging, and there are several ways to obtain
an approximate solution. The most simple yet effective method is based on approximating the solu-
tion of the inner-maximization via adversarial attacks, such as PGD (Madry et al., 2018). According
to this strategy, the above optimization is performed iteratively by first fixing the classifier’s param-
eters θ and optimizing the perturbation δ for each example via PGD and then fixing δ and updating
θ. Repeating these steps results in a robust classifier. Since its introduction by Madry et al. (2018),
various improvements to adversarial training were proposed (Andriushchenko & Flammarion, 2020;
Huang et al., 2020; Pang et al., 2020; Qin et al., 2019; Xie et al., 2019; Zhang et al., 2019; Wang
et al., 2020), yet in this work we will focus mainly on the basic AT scheme (Madry et al., 2018) for
its simplicity and generality.
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2.3 PERCEPTUALLY ALIGNED GRADIENTS

Perceptually aligned gradients (PAG) (Engstrom et al., 2019; Etmann et al., 2019; Ross & Doshi-
Velez, 2018a; Tsipras et al., 2019) is a phenomenon according to which, classifier input-gradients
are semantically aligned with human perception. This means, inter alia, that modifying an image
to maximize a specific class probability should yield visual features that humans associate with the
target class. Tsipras et al. (2019) discovered that PAG occurs in adversarially trained classifiers, but
not in “vanilla” models. The prevailing hypothesis is that the existence of PAG only in adversarially
robust classifiers and not in regular ones indicates that features learned by such models are more
aligned with human vision. PAG is a qualitative trait, and currently, no quantitative metrics for
assessing it exist. Moreover, there is an infinite number of equally good gradients aligned with
human perception, i.e., there are countless perceptually meaningful directions in which one can
modify an image to look more like a certain target class. Thus, in this work, similar to (Tsipras et al.,
2019), we gauge PAG qualitatively by examining the visual modifications done while maximizing
the conditional probability of some class, estimated by the tested classifier. In other words, we
examine the effects of a large-ϵ targeted adversarial attack and claim that a model has PAG if such a
process yields class-related semantic modifications, as demonstrated in Fig. 1.

Bird Cat Deer Dog Frog Horse Ship Truck Plane Car
PAG?

Figure 1: Visual demonstration of large-ϵ adversarial examples on ”vanilla” and robust ResNet-18
trained on CIFAR-10 as a method to determine whether a model obtains PAG.

In recent years, PAG has drawn a lot of research attention which can be divided into two main types
– an applicative study and a theoretical one. The applicative study aims to harness this phenomenon
for various computer vision problems, such as image generation and translation (Santurkar et al.,
2019), the improvement of state-of-the-art results in image generation (Ganz & Elad, 2021), and
explainability (Elliott et al., 2021).

As for the theoretical study, several works aimed to better understand the conditions under which
PAG occurs. Kaur et al. (2019) examined if PAG is an artifact of the adversarial training algorithm
or a general property of robust classifiers. Additionally, it has been shown that PAG exists in ad-
versarially robust models with a low max-perturbation bound (Aggarwal et al., 2020). To conclude,
previous works discovered that training robust models leads to perceptually aligned gradients. In
this work, we explore the opposite question – Do perceptually aligned gradients imply robustness?

3 DO PERCEPTUALLY ALIGNED GRADIENTS IMPLY ROBUSTNESS?

As mentioned in Sec. 2.3, previous work has validated that robust training implies perceptually
aligned gradients. More specifically, they observed that performing targeted PGD attacks on robust
models yields visual modifications aligned with human perception. In contrast, in this work, we
aim to delve into the opposite direction and test if training a classifier to have perceptually aligned
gradients will improve its adversarial robustness.

To this end, we propose to encourage the input-gradients of a classifier fθ to uphold PAG. Due to the
nature of our research question, we need to isolate PAG from robust training and verify whether the
former implies the latter. This raises a challenging question – PAG is known to be a byproduct of
robust training. How can one develop a training procedure that encourages PAG without explicitly
performing robust training of some sort? Note that a framework that attains PAG via robust training
cannot answer our question, as that would involve circular reasoning.

We answer this question by proposing a novel training objective consisting of two elements: the
classic cross-entropy loss on the model outputs and an auxiliary loss on the model’s input-gradients.
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We note that the input-gradients of the classifier, ∇xfθ(x)y , where fθ(x)y is the y-th entry of the
vector fθ(x), can be trained, since they are differentiable w.r.t. the classifier parameters θ. Thus,
given labeled images (x, y) from a dataset D, assuming we have access to ground-truth perceptually
aligned gradients g(x, yt), we could pose the following loss function:

Ltotal(x, y) = LCE (fθ(x), y) + λ

C∑
yt=1

Lcos (∇xfθ(x)yt
, g(x, yt)) , (3)

where LCE is the cross-entropy loss defined in Eq. (1), λ is a tunable regularization hyperparameter,
C is the number of classes in the dataset, and Lcos is the cosine similarity loss defined as follows:

Lcos(v,u) = 1− v⊤u

max(∥v∥2 · ∥u∥2, ε)
, (4)

where ε is a small positive value so as to avoid division by zero. Note that this loss considers the
direction of the model’s input-gradients without any requirement on their magnitude. This bodes
well with the general goal of these gradients being aligned with human perception.

We emphasize that, in contrast to robust training methods such as (Madry et al., 2018; Cohen et al.,
2019a), our scheme does not feed the model with any perturbed images and only trains on exam-
ples originating from the training set. Moreover, while other works (Ross & Doshi-Velez, 2018b;
Jakubovitz & Giryes, 2018) suggest that penalizing the input-gradients’ norm yields robustness, we
do not utilize this fact since we encourage gradient alignment rather than having a small norm. Thus,
our method is capable of promoting PAG without utilizing robust training.

After training a model to minimize the objective in Eq. (3), we aim to examine if promoting PAG in
a classifier increases adversarial robustness. First, to verify that the resulting model indeed upholds
PAG, we perform targeted PGD on test set images and qualitatively assess the validity of the resulting
visual modifications. Afterwards, we test the adversarial robustness of the said model and compare
it with vanilla baselines. If it demonstrates favorable robustness accuracy, we will have promoted an
affirmative answer to the titular research question of this work.

However, one major obstacle remains in the way of training this objective: so far, we have assumed
the existence of “ground-truth” model input-gradients, an assumption that does not hold in practice.
While we hypothesize that these gradients should point in the general direction of the target class
images, there is no clear way of obtaining point-wise realizations of them. In the following sec-
tion, we begin by presenting practical and simple methods for obtaining approximations for these
gradients, which we then use for training PAG-promoting classifiers. Next, we utilize score-based
generative models for obtaining theoretically justified such gradients as a better source of PAG.

4 HOW ARE “GROUND TRUTH” PAGS OBTAINED?

In order to train a classifier for minimizing the objective in Eq. (3), a “ground truth” perceptually
aligned gradient g(x, yt) needs to be provided for each training image x ∈ D and for each target
class yt ∈ {1, 2, . . . , C}. Since a true such gradient is challenging to obtain, we instead explore few
general pragmatic approaches for obtaining approximations for these PAGs, beginning with heuristic
approaches then advancing to theoretically justified ones.

4.1 TARGET CLASS REPRESENTATIVES

As explained above, we aim to explore “ground truth” gradients that promote PAG without relying
on robust models. To this end, we adopt the following simple premise: the gradient g(x, yt) should
point towards the general direction of images of the target class yt. Therefore, given a representative
of the target class, ryt

, we set the gradient to point away from the current image and towards the rep-
resentative, i.e., g(x, yt) = ryt − x. This general heuristic, visualized in Fig. 2, can be manifested
in various ways, of which we consider the following:

One Image (OI): Each representative should be chosen to reflect the visual features of its respective
class. The simplest such choice that comes to mind is to choose ryt

as an arbitrary training set image
with label yt, and use it as a global destination of yt-targeted gradients. This one image approach
satisfies the abstract requirements and provides simplicity, but it introduces a strong bias towards the
arbitrarily chosen representative image, without considering the target class as a whole.
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Class 1

Class 3

Class 2
Data Point x

Class Representative ryt

g(x,yt)

Figure 2: An illustration of the heuristic creation
of perceptually meaningful gradients.

Class Mean (CM): In order to reduce the bias
towards a single image, we set ryt

to be the
mean of all the training images with label yt.
This mean can be multiplied by a constant in
order to obtain an image-like norm. However,
the class mean approach suffers from a clear
limitation: a class’ image distribution can be
highly multimodal, possibly reducing its mean
to a non-informative image.

Nearest Neighbor (NN): As a possibly better
trade-off, we examine a nearest neighbor ap-
proach – for each image x and each target class yt ∈ {1, 2 . . . , C} we set the class representative
ryt(x) (now dependent on the image) to be the image’s NN amongst a limited set of samples from
class yt, using L2 distance in the pixel space. More formally, we define

r(x, yt) = argmin
x̂∈Dyt s.t. x̸̂=x

∥x̂− x∥2, (5)

where Dyt is the set of sample images with class yt. In practice, we sample Dyt to be a small
number of i.i.d. training set images with class yt.

4.2 SCORE-BASED GRADIENTS

Denoising diffusion probabilistic models (DDPMs) have recently emerged as an interesting gener-
ative technique (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020). Such models
are capable of generating phorealistic images by performing an iterative process that starts from
a Gaussian noise and follows the direction of the score function, defined as ∇xt

log p(xt). Other
works (Ho et al., 2022; Dhariwal & Nichol, 2021) have proposed to provide the class information to
such networks, enabling them to model a class-condition score function ∇xt log p(xt|y). We pro-
vide additional details regarding DDPMs in Appendix B. we further examine these score functions
and using the Bayes rule, we observe that the class-conditional score function can be factorized into

∇xt
log p(xt|y) = ∇xt

log p(y|xt) +∇xt
log p(xt), (6)

leading to
∇xt

log p(y|xt) = ∇xt
log p(xt|y)−∇xt

log p(xt). (7)
This equation brings forth a principled way to estimate the correct gradients for the expression
log p(y|xt), which classification networks aim to output. By training a diffusion model that can
optionally accept a class label (or act as unconditional), we obtain an estimation for “ground-truth”
classifier input-gradients by a simple subtraction of conditional and unconditional outputs of the
network. As can be seen in Eq. (7), the output is a subtraction of the unconditional score function
from the class-conditioned one. To avoid the training of two separate diffusion models, we modify
the model’s architecture to account for both the conditional and unconditional cases. In particular,
for a C-classes dataset, we train a single class-conditioned diffusion model with C + 1 classes,
where the additional class represents the unconditional case. Instances of this class are drawn with
probability 1/C and they originate uniformly from each of the C classes. After training such a
model, we use its outputs to obtain gradients according to Eq. (7).

5 EXPERIMENTAL RESULTS

In this section we empirically assess whether promoting PAG during classifier training improves its
adversarial robustness at test time. We experiment using both synthetic and real datasets and present
our findings in section 5.1 and sections 5.2 and 5.3, respectively.

5.1 A TOY DATASET

To illustrate and better understand the proposed approach and its effects, we experiment with a
synthetic 2-dimensional dataset and compare our nearest neighbor method with the vanilla training
scheme that minimizes the cross-entropy loss. We train a two-layer fully-connected classifier twice:
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with our nearest neighbor method and without it. We then examine the obtained accuracies and
visualize the decision boundaries. While both methods reach a perfect accuracy over the test set,
the obtained decision boundaries differ substantially, as can be seen in Fig. 3. The baseline train-
ing method results in Fig. 3a yields dimpled manifolds as decision boundaries, as hypothesized by
(Shamir et al., 2021) – the decision boundary of DNN is very close to the data manifold, exposing
the model to malicious perturbations. In contrast, in Fig. 3b, the margin between the data samples
and the decision boundary obtained using our approach is significantly larger than the baseline. This
observation helps explain the following robustness result: our model achieves a 75.5% accuracy
on a simple adversarial PGD attack, whereas the baseline model collapses to 0.0%. The notion of
“perceptually aligned” gradients admits a very clear meaning in the context of our 2-dimensional
experiment – faithfulness to the known data manifold. Therefore, our empirical findings strongly
attest that PAG imply robustness in the synthetic use case (see Appendix F.1 additional details).

(a) Vanilla Training Scheme (b) Our Training Scheme

Figure 3: Visualization of the decision boundary on a synthetic two-class dataset – the points are the
test samples, and the background color represents the predicted class. Figures 3a and 3b present the
decision boundary of a vanilla training method and ours, respectively.

5.2 CIFAR EXPERIMENTS

With the encouraging findings presented in Sec. 5.1, we now turn to conducting thorough exper-
iments to verify if indeed promoting PAG can lead to improved adversarial robustness on a real
dataset. We choose CIFAR-10 (Krizhevsky et al., 2014) as our main testing bed as it is the most
common and studied dataset in the field of adversarial robustness. For methodologically answering
our titular question, we train models to minimize Eq. (3) and follow a two-step evaluation proce-
dure. First, we validate that models trained with our approach obtain PAG, and next, we test their
adversarial robustness. As for examining if a model has PAG, we qualitatively probe whether modi-
fying an image to maximize a certain class probability, estimated by a model, leads to a meaningful
semantic change. For evaluating the robustness, we adopt AutoAttack (AA) (Croce & Hein, 2020a)
under ℓ∞ (ϵ = 8/255) and the ℓ2 (ϵ = 0.5) attacks.

In all the conducted experiments, we train a classifier using our proposed sources for ground-truth
gradients – One Image (OI), Class Mean (CM), and Nearest Neighbor (NN) and the Score-Based
Gradients (SBG). In addition, we train the same architectures using standard (Vanilla) and Adversar-
ial Training (AT) (Madry et al., 2018) with l2 (ϵ = 0.5) and l∞ (ϵ = 8/255) threat models. To con-
trol for the effect of the architecture used and better establish our empirical findings, we experiment
with models from different architecture families – ResNet-18 (He et al., 2016) and ViT (Dosovitskiy
et al., 2021). We provide additional implementation and experimental details in Appendix F.2. First,
we show in Figure 4 that while vanilla models do not exhibit semantically meaningful changes, our
approach does, as intended. Surprisingly, although our method is trained to have aligned gradients to
some ground truth ones only on the data points, the model generalizes to have meaningful gradients
beyond these points.

We proceed by quantitatively evaluating the performance on clean and adversarial versions of the
test set, and show our CIFAR-10 results in Tab. 1. While the vanilla baseline is utterly vulnerable
to adversarial examples, all the tested PAG-inducing techniques improve the adversarial robustness
substantially while maintaining competitive clean accuracies. This strongly suggests that promoting
PAG can improve the classifier’s robustness in real image datasets. Moreover, as our method does
not perform adversarial training, it is faster than AT by up to x6.14 (see Appendix G)

A closer inspection of the results indicates that our method performs better in the L2 case over the
L∞ one. We hypothesize that this stems from the Euclidean nature of the cosine similarity loss used
to penalize the model gradients. Moreover, while both the heuristic-based and the theoretical-based
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Table 1: Accuracy on the CIFAR-10 dataset using the ResNet-18 and ViT architectures.

Method Clean AutoAttack L2 AutoAttack L∞
RN-18 ViT RN-18 ViT RN-18 ViT

Vanilla 93.61% 80.51% 00.00% 00.87% 00.00% 00.01%

OI 79.46% 78.06% 46.63% 15.47% 13.50% 00.21%
CM 81.41% 78.98% 47.25% 13.73% 11.24% 00.17%
NN 80.65% 79.00% 42.12% 13.91% 07.51% 00.15%
SBG 78.56% 81.28% 55.39% 57.80% 23.97% 22.85%
AT ℓ∞ 82.49% 62.20% 56.57% 42.80% 37.59% 24.62%
AT ℓ2 86.79% 72.81% 60.82% 42.99% 19.63% 08.13%

“ground-truth” gradient sources substantially increase the adversarial robustness, the latter leads to
significantly improved performance. It suggests that not only does PAG imply robustness, but there
is also a positive correlation between the two – better sources for PAG lead to more robustness.
To better study this effect, we use SBG with different values of λ (i.e., PAG regularization) and
show that better PAG indeed leads to more robust models, as can be seen in Fig. 5. Interestingly,
the robustification obtained by Score-Based Gradients is comparable to AT, without training on
adversarial perturbations, potentially setting the foundations for non-adversarial methods for robust
training. In addition, SBG outperforms AT ℓ2 on unseen attacks (ℓ∞) on both RN-18 and ViT,
without training on adversarial perturbed images.

Other fascinating results are the ones obtained on ViT, which is currently the best-performing vi-
sion model in computer vision. However, despite their tremendous popularity, ViTs are relatively
unstudied in the field of adversarial robustness, which still mainly focuses on CNNs. Our findings
show that off-the-shelf AT is significantly less effective on ViTs and decreases clean accuracy sub-
stantially. However, applying our method to ViT improves the robustness compared to AT while
preserving the accuracy of natural images. Besides the improved quantitative performance, Figure 7
in Appendix E.2 shows that AT leads to inferior PAG compared to our method, which further attests
to the strong bidirectional connection between PAG and adversarial robustness.

Finally, we report additional results on the CIFAR-100 dataset in Tab. 3 for proving the method’s
scalability and validating the connection between PAG and robustness in a more diverse real-world
dataset.

Bird Cat Deer Dog Frog Horse Ship Truck Plane Car Horse Ape Ship Truck Plane Bird Car Cat Deer Dog

Figure 4: Perceptually Aligned Gradients phenomenon demonstrated by models trained with vanilla
training (top), our method (middle), and AT (bottom), using ResNet-18 on CIFAR-10 and STL.

5.3 STL EXPERIMENTS

To better validate that our hypothesis holds in general, we test our approach on an additional dataset
– STL (Coates et al., 2011), which contains images of a higher resolution of 96× 96 pixels. Besides
its resolution, we choose STL mainly due to its relatively small size – 5, 000 training and 8, 000
test images. While it is known that low data regimes are Adversarial Training’s Achilles’ heel,
as it requires more training data (Schmidt et al., 2018; Zhai et al., 2019), we aim to investigate
how our approach copes with such a challenging setup. We experiment with our different gradient
sources using ResNet-18 and compare them to the standard and adversarial training baselines. As
for the adversarial threat models, we use ϵ = 4/255 for L∞ and ϵ = 0.5 for L2. We summarize
our qualitative PAG results in Figure 4 and our quantitative ones in Tab. 2. As can be seen in the
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results, while AT struggles to obtain decent results, both our heuristic and principled approaches
significantly outperform it in clean and adversarial accuracy, while SBG is substantially better.

5.4 ENHANCING ADVERSARIAL TRAINING VIA PAG

Table 2: Accuracy on STL using ResNet-18.

Method Clean AA L2 AA L∞

Vanilla 82.60% 00.00% 00.00%

OI 71.29% 57.91% 29.65%
CM 70.66% 58.90% 33.71%
NN 70.16% 60.02% 36.21%
SBG 74.79% 65.96% 43.53%
AT ℓ∞ 54.90% 46.33% 28.30%
AT ℓ2 54.99% 46.04% 23.33%

Our empirical findings show that encourag-
ing non-robust models to have PAG robustifies
them. Moreover, we aim to check whether in-
troducing our PAG-inducing objective into ad-
versarial training (AT) can enhance its perfor-
mance. Specifically, we apply it to AT l2 trained
on CIFAR-10 using ResNet-18 and find out that
interestingly, it improves its l2 and l∞ accu-
racy from 60.82% and 19.63%, to 61.73% and
23.52%, respectively. We provide additional
details in Appendix F.3. These results indicate
that our approach can operate both as a stan-
dalone robustification method and as an auxil-
iary loss for boosting the performance of existing robust optimization methods.

0.1

0.5

1

2

22.53

48.34

50.87

55.39

0 0

0.43

11.21

15.97

23.97

0

Figure 5: Demonstration of the positive correlation between PAG and robustness. Higher λ indicates
more perceptually aligned gradients.

6 CONCLUSIONS AND FUTURE WORK

Table 3: Accuracy on CIFAR-100 using ResNet-18.

Method Clean AA L2 AA L∞

Vanilla 74.36% 00.00% 00.00%

CM 58.89% 19.94% 02.78%
SBG 55.94% 29.25% 08.24%
AT ℓ∞ 52.92% 26.31% 14.63%
AT ℓ2 58.05% 30.51% 08.03%

While previous work demonstrates that ad-
versarially robust models uphold the PAG
property, in this work, we investigate the
reverse question – Do Perceptually Aligned
Gradients Imply Adversarial Robustness?
We believe that answering this question sheds
additional light on the connection between
robust models and PAG. To empirically show
that inducing PAG improves classifier robust-
ness, we develop a novel generic optimiza-
tion loss for promoting PAG without relying
on robust models or adversarial training and test several manifestations of it. Our findings suggest
that all the manifestations of our PAG-inducing method improve the adversarial robustness com-
pared to a vanilla model. Specifically, our Score-Based Gradients approach provides robustness on
par with AT, which strongly suggests that PAG leads to robustness. Moreover, while AT requires
a large amount of data, our approach outperforms it on low-data regimes. In addition, our score-
based method shows better results than AT in ViT. We hope this work will lay the foundations for
developing non-adversarial methods for obtaining robust models in the future.
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A RELATED WORK

Recent works have explored properties of input gradients that improve adversarial robustness. The
authors of Jakubovitz & Giryes (2018) demonstrate that regularizing the Frobenius norm of a classi-
fier’s Jacobian to be small improves robustness. Such a method is equivalent to regularizing the norm
of each such gradient to be small, similar to Ross & Doshi-Velez (2018); Finlay & Oberman (2021).
This line of work attests that requiring small gradient norms, regardless of their direction, leads to
robustness. Moreover, none of these works promotes nor exhibits perceptually aligned gradients. On
Contrary, we penalize over the direction of the gradients, regardless of their size – opposing to the
above methods. By showing that our approach leads to PAG and improved robustness, our method
can be viewed as an alternative input-gradient loss for improving robustness. Nevertheless, the main
goal of our work is to better study PAG and its connection with adversarial robustness.

Another interesting work is ClusTR (Alfarra et al., 2020), which reveals an intrinsic connection be-
tween clustering and robustness. Moreover, the authors claim that clustering similar instances in the
feature space encourages the network to learn semantically meaningful representations. Although
related to our work, there are some main differences. First, as clustering is related to robustness, this
approach cannot test our titular question. Moreover, ClusTR was not proven to have PAG or more
semantical meaningful features, contrary to our work.

B DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic models (DDPMs) are a new fascinating generative approach (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020). Such methods achieve state-of-the-art
results in image generation (Dhariwal & Nichol, 2021; Song et al., 2021; Vahdat et al., 2021), and
were additionally deployed in several downstream tasks such as inverse problems (Kawar et al.,
2021; 2022), image compression (Theis et al., 2022), image segmentation (Amit et al., 2021), image
editing (Liu et al., 2021; Avrahami et al., 2022), text-to-image generation (Ramesh et al., 2022;
Saharia et al., 2022), among others.

The core idea of these models, which are also known as score-based generative models, is to start
from a random Gaussian noise image xT , and then iteratively denoise it into a photorealistic image
x0 in a controlled manner. This process can also be interpreted as an annealed version of Langevin
dynamics (Song & Ermon, 2019), where each iteration t ∈ {T, T−1, . . . , 1, 0} follows the direction
of the score function, defined as ∇xt

log p(xt), with an additional noise for stochasticity. Each
intermediate image xt can be considered a noisy version of a pristine image x0, with a pre-defined
noise level σt. The score function can be estimated using a neural network trained for mean-squared-
error denoising (Stein, 1981; Miyasawa, 1961; Efron, 2011). This estimation can also be generalized
for denoising models conditioned on a class label y, obtaining∇xt log p(xt|y) (Ho et al., 2022).

While diffusion models have been recently used in the context of adversarial robustness (Nie et al.,
2022; Blau et al., 2022), these works were mostly focused on denoising an adversarially perturbed
input to a vanilla classifier. In contrast, we propose a novel usage of diffusion model outputs as guid-
ance for training classifier gradients. Our method, in turn, enjoys the added benefit of significantly
faster runtime, as no iterative process is applied.

C ADDITIONAL ARCHITECTURES ABLATION

In this section, we provide the results of applying our method to additional architecture types.
While we focus in Sec. 5 on skip-connection-based convolutional NN (ResNet-18) and an attention-
based one (ViT), we turn to examine it on other types of architectures. Specifically, we apply it
to VGG (Simonyan & Zisserman, 2014), a convolutional network without residual connection, and
MLP Mixer (Tolstikhin et al., 2021), a top-performing dense architecture. We experiment with such
architectures using the SBG approach on CIFAR-10 and report the results in Tab. 4.

For the MLP Mixer, we follow the CIFAR-10 adjusted implementation1 and train it for 100 epochs
using a batch size of 128. We apply SBG and set λ = 0.5. As for the VGG, we follow the

1https://github.com/omihub777/MLP-Mixer-CIFAR
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implementation for CIFAR-102 and train for 100 epochs using a batch size of 64. Similarly to
MLP Mixer, we use λ = 0.5. Moreover, we do so for both VGG-11, VGG-13 and VGG-16 to
further study the depth effect. These ablation studies show that the connection between PAG and
robustness is general and architecture-independent.

Table 4: Accuracy on CIFAR-10 using VGG and MLP Mixer

Method Arch. Clean AutoAttack L2

Vanilla VGG-16 92.32% 00.20%
SBG 81.93% 42.03%
Vanilla VGG-13 92.47% 00.11%
SBG 82.05% 41.49%
Vanilla VGG-11 90.82% 02.50%
SBG 79.22% 35.79%

Vanilla MLP-Mixer 72.05% 00.50%
SBG 63.04% 35.97%

D TINY IMAGENET EXPERIMENTS

To further verify if indeed PAG implies robustness, we apply our method to Tiny ImageNet, in
addition to CIFAR-10, CIFAR-100, and STL. This dataset contains 100,000 images of size 64 ×
63× 3 and 200 classes and is very diverse. In this section, we report the results of encouraging PAG
using Class Mean on a ResNet-18 (we set λ = 2) and train for 50 epochs, and report the results in
Tab. 5. These empirical findings testify to the connection between PAG and robustness in a more
general content dataset and demonstrate our method’s scalability.

Table 5: Accuracy on Tiny ImageNet using ResNet-18

Method Arch. Clean AutoAttack L2

Vanilla ResNet-18 61.19% 02.37%
SBG 50.04% 19.21%

E VISUALIZATION

E.1 PAG GROUND-TRUTH VISUALIZATION

We provide visualization of our “ground-truth” sources for Perceptually Aligned Gradients in Figure
6. In the top three rows, we show the results of the heuristic-based methods. As these gradients
derive from the subtraction of two images, a ghosting effect can be seen. However, in Score-Based
Gradients, the modifications focus on the object, and features of the target class can be observed
(i.e., horse features). The nature of SBG resembles the one in Adversarial Training, as can be seen
in the bottom row – focus on the object itself.

E.2 VIT ON CIFAR-10

We show a qualitative demonstration of the Perceptually Aligned Gradients results on CIFAR-10
using ViT in Figure 7. As can be seen, similar to ResNet’s results, the vanilla model does not show
PAG at all. The heuristic sources lead to some improvement, while our Score-Based Gradients ap-
proach leads to better PAG than AT. That demonstrates the connection between PAG and robustness,
as SBG shows better PAG and improved adversarial robustness.

2https://github.com/chengyangfu/pytorch-vgg-cifar10

16

https://github.com/chengyangfu/pytorch-vgg-cifar10


Under review as a conference paper at ICLR 2023

Original Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

OI

CM

NN

SB

AT

Figure 6: Visualization of PAG “ground-truth” gradients of different sources.
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Figure 7: Visualization of PAG on CIFAR-10 dataset using ViT.

F IMPLEMENTATION DETAILS

F.1 TOY DATASET

Data: We experiment with our approach on a 2-dimensional synthetic dataset to demonstrate its
effects. To this end, we construct a dataset consisting of 6,000 samples from two classes, where
each class contains exactly 3,000 examples. Our samples, x = [x1, x2], reside on the straight line
x2 − 2x1 = 0 in the 2-dimensional space R2, where each class y ∈ {0, 1} follows a Gaussian
mixture distribution. Each class contains three modes, and each of them contains 1000 samples
drawn from a Gaussian distribution (x1 ∼ N(c, 1), x2 = 2 ∗ x1, where c is the mode center). The
modes centers are set to be {−50,−10, 30} and {−30, 10, 50}. This way, the cardinal manifold
assumption according to which high-dimensional images reside on a lower-dimensional manifold
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Ruderman (1994) holds. We generate a balanced test set from the same distribution consisting of
600 samples and use it to evaluate performance.

Architecture and Training: We use a 2-layer fully-connected network (2 → 32 → 2) with ReLU
non-linearity. We train it twice – using the standard cross-entropy training and our proposed method
with NN realization. We do so for 100 epochs with a batch size of 128, using Adam optimizer, a
learning rate of 0.01, and the same seed for both training processes.

Computational Resources: We use a single Tesla V100 GPU.

Evaluation: As detailed in the paper, we test the performance of the models using standard and
adversarial evaluation. For the standard one, we draw 600 test samples from the same distribution
as the train set and measure the accuracy. As for the adversarial one, we use an L2-based 10-step
PGD with ϵ = 15 and a step size of 2. Note that this choice of ϵ guarantees in our settings that the
allowed threat model is too small for actually changing a sample of a certain class to the other one,
making it a valid threat model.

F.2 REAL DATASETS

Data: As for our real datasets experiments, we use CIFAR-10 and STL that contain images of size
32 × 32 × 3 and 96 × 96 × 3, respectively. For each realization, before the training procedure,
we construct a dataset by computing C targeted gradients for each training sample (C = 10 for
CIFAR-10 and STL) for reproducibility and consistency purposes.

To obtain our Score-Based Gradients (SBG) we follow the implementation of (Nichol & Dhariwal,
2021)3 for training a class-conditioned diffusion model for CIFAR-10 and STL datasets. We use
their CIFAR-10 architecture for CIFAR-10, and their ImageNet architecture for STL, adapting the
image size by a simple bicubic interpolation. In particular, for a C-classes dataset, we train a single
class-conditioned diffusion model with C + 1 classes, where the additional class represents the
absence of class information and thus models the unconditional score function. Instances of this
class are drawn with probability 1/C and they originate uniformly from each of the C classes. After
training such a model, we use it to distill gradients according to Eq. (7).

Training: For both datasets, we train a ResNet-18 for 100 epochs, using SGD with a learning rate
of 0.01, a momentum of 0.9, and a weight decay of 0.0001. In addition, we use the standard aug-
mentations for these datasets – random cropping with padding of 4 and random horizontal flipping
with a probability of 0.5. We use a batch size of 64 for CIFAR-10 and 32 for STL. As for the ViT,
we use a an implementation adjusted to CIFAR-104, containing 6.3 million parameters. We present
in Tab. 6 the best choices of λ – the coefficient of our PAG promoting auxiliary loss term in all the
tested datasets and methods. The values of λ suggest that higher values should be applied for better
gradient sources (e.g., SBG’s ideal λ is higher than the heuristic methods).

As for our baselines, we use the same training hyperparameters mentioned above. Regarding the
AT, we use 7 steps PGD using step size of 1.5 ∗ ϵ

7 , and follow the base implementation presented in
(Zhang et al., 2019)5 and extend it to ℓ2.

Table 6: Values of the hyperparameter λ.

Method CIFAR-10 STL
RN-18 ViT RN-18

One Image 0.5 0.1 0.25
Class Mean 0.4 0.1 0.2
Nearest Neighbor 0.4 0.1 0.4
SBG 2 2 1

Computational Resources: We use two NVIDIA RTX A4000 16GB GPUs for each experiment.

3https://github.com/openai/improved-diffusion
4https://github.com/omihub777/ViT-CIFAR
5https://github.com/yaodongyu/TRADES
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Evaluation: We use the de-facto standard evaluation library of AutoAttack (Croce & Hein, 2020a)6.

Code: We attach our anonymized code to the submission, and will publicly release it along with our
trained models upon acceptance.

F.3 ENHANCING ADVERSARIAL TRAINING VIA PAG

To test whether our approach is capable of further enhancing adversarial training, we apply it as an
auxiliary loss. We use ResNet-18, train it on CIFAR-10 using AT with 7-steps PGD and introduce
our loss with λ = 0.2. We conclude the results in Tab. 7.

Table 7: Enhancing Adversarial Training via PAG

Method Clean AutoAttack L2 AutoAttack L∞

AT 86.79 60.82 19.63
AT + PAG 85.54 61.73 23.52

G RUNTIME COMPARISON WITH ADVERSARIAL TRAINING

As our method does not compute adversarial example (an iterative process), it is faster than adver-
sarial training. To quantify this, we conduct a runtime comparison using ResNet-18 and CIFAR-10
dataset and reveal that our method is faster than AT-PGD-7 and AT-PGD-20 by x2.13 and x6.14,
respectively.

6https://github.com/fra31/auto-attack
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