
Workshop at the 7th Symposium on Advances in Approximate Bayesian Inference (non-archival), 2025 1–13

Learning Graph Structure for GNNs via Marginal Likelihood

Anita Yang anitay@is.s.u-tokyo.ac.jp

Thomas Möllenhoff thomas.moellenhoff@riken.jp

Ken-ichi Kawarabayashi k keniti@nii.ac.jp

Mohammad Emtiyaz Khan emtiyaz.khan@riken.jp

Abstract

Learning graph structures for Graph Neural Networks (GNNs) can improve their perfor-
mance, but it is challenging to design a good structure-learning objective that can provide
sufficient flexibility while avoiding overfitting. Here, we propose to use marginal likelihood
to learn the graph structure. We adopt the standard Laplace’s method to approximate
the marginal likelihood and optimize it using the Straight Through Estimator. This sim-
ple scheme yields good results on standard benchmarks for graph structure learning. The
method can learn generic graph structures and eliminates the effort needed to design the
objective. Our work makes it easier to learn graph structures for GNNs.

1. Introduction

Graph neural network (GNN) (Gori et al., 2005; Scarselli et al., 2008; Kipf andWelling, 2017;
Hamilton et al., 2017; Velickovic et al., 2018) can exploit the graph structure of the data,
but the structure may be noisy and incorrect. Even when it is not, it may not be suitable for
the chosen GNN architecture. For example, graphs with long-distance interactions or are
heterophilic (dissimilar nodes tend to be connected) tend to perform poorly on most GNNs
(Zhu et al., 2020; Alon and Yahav, 2021; Topping et al., 2022; NT and Maehara, 2019; Oono
and Suzuki, 2019; Li et al., 2018). A common remedy is to change the architecture to suit
the data (Li et al., 2019; Chen et al., 2020a; Xu et al., 2018; Liu et al., 2020; Pei et al.,
2020; Zhu et al., 2020) but this still cannot resolve noisy and incorrect graph structures.
Learning the graph structure, on the other hand, can fix noisy structures and align them
with the chosen GNN architecture.

Test Acc. = 69.2%
log Marglik = -40.2

Test Acc. = 94.2%
log Marglik = -24.9

Figure 1: Using the original structure (left) results in worse performance than the learned
graph structure (right). The marginal likelihood correlates with the test accuracy.

© A. Yang, T. Möllenhoff, K.-i. Kawarabayashi & M.E. Khan.

Yang Möllenhoff Kawarabayashi Khan

Learning good graph structures for GNN is a promising avenue of research but not with-
out its challenges: the exponential search space for graph means that a good regularization
method is necessary to make learning tractable and ensure generalizability of the learned
graph. Previous works rely on assumptions about the target graph structure (e.g. sparsity,
connectivity, etc.). These methods are difficult to implement (e.g. designing custom loss
functions (Yang et al., 2019; Chen et al., 2020b; Jin et al., 2020)) and prone to be overly
restrictive (e.g. from defining graph structure prior (Zhang et al., 2019; Wang et al., 2021;
Ma et al., 2019; Pantelis et al., 2020; Hasanzadeh et al., 2020)).

Here, we propose to use marginal likelihood as a simple solution to learn the graph
structure. Motivated by Bayesian model selection (MacKay, 1995) where a higher marginal
likelihood indicates a more likely model, we apply the same principle for graph structures:
a better graph structure corresponds to larger marginal likelihood on the GNN parameters
(as exemplified in Figure 1). As a proxy for generalization, marginal likelihood implicitly
regularizes the structure learning process without requiring assumptions about the target
structure, allowing generic graph structures to be learned. In practice, we use Laplace
approximation of the marginal likelihood and Straight Through Estimator (STE) (Ben-
gio et al., 2013) to learn discrete graph structures. We refer to our method as: Laplace
Approximation-based Graph (LAG) structure learning. We showed that the GCN imple-
mentation of LAG outperforms other GCN-based graph structure learning (GSL) methods
(Chen et al., 2020b; Franceschi et al., 2019) and matches the performance of Transformer-
based GSL method (Wu et al., 2022) on standard benchmark datasets.

2. Graph Structure Learning for GNNs

Consider a semi-supervised node classification problem with N nodes. For each node, we
observe a vector xi ∈ Rd and the corresponding one-hot label vector yi ∈ {0, 1}C , where
C is the number of classes. The relational data is represented as a N ×N binary (0 or 1)
adjacency matrix A0, with entry 1 indicating an edge. Collectively, we can denote the data
by D = (X,Y,A0), where X ∈ RN×d has x⊤

i as rows and Y ∈ {0, 1}N×C has y⊤
i as rows.

2.1. Graph Convolutional Networks (GCN)

Let us consider a simple Graph Convolutional Network (GCN) (Kipf and Welling, 2017).
GCN embed the graph structure into the latent node representation, denoted by Z(l) ∈
RN×dl for the l’th layer with width dl. This is done by using the following propagation
through multiple layers, starting with Z(0) = X, and then following: Z(l) = σ

(
Â0Z

(l−1)Θ(l)
)
.

Here, σ(·) is a non-linear activation function (such as ReLU). The weights of each layer
are denoted by Θ(l) ∈ Rdl−1×dl . Collectively, we denote them by θ. The matrix Â0 is the
‘augmented’ adjacency matrix: Â0 = D̃− 1

2 (A0 + IN)D̃− 1
2 , where D̃ is the degree matrix of

A0 + IN . The prediction Ŷ is obtained by applying the softmax function in the last layer.
The parameters θ are learned in a standard way by minimizing the empirical loss

L(θ;D) =
Ntrain∑
i=1

ℓ
(
Y, Ŷ(θ)

)
+ r(θ), (1)

where ℓ(·, ·) is often chosen to be the cross-entropy loss between the true labels and its
predictions. The regularizer r(θ) can either be explicit or implicit.

2

2.2. Learning Graph Structures

The setup above assumes that the graph structure A0 is given and reflects useful relation-
ships among the nodes. However, this may not always be true because the data is often
noisy and incorrect. Even when it is not, learning graph structure might be useful as the
chosen architecture (e.g. GCN) may not be suitable for the graph. Learning graph structure
then would only keep and add relevant relationships, and avoid introducing new noise.

Throughout, we will denote the unknown graph structure by A, which is initialized with
A0 (either given or constructed via k-Nearest Neighbor algorithm), but will subsequently be
learned during training. This problem where A and θ are to be learned together is known
as the Graph Structure Learning problem (GSL) (an overview is in Appendix A).

3. Method

We introduce the Laplace Approximation-based Graph (LAG) structure learning algorithm,
a GNN-agnostic bilevel optimization method, that maximizes the marginal likelihood. The
key components of LAG are Laplace approximation that makes marginal likelihood calcu-
lation tractable and Straight Through Estimator (STE) to learn discrete graph structures.

3.1. Laplace Approximation of Marginal Likelihood

The marginal likelihood is intractable to compute for neural networks. We chose to use
Laplace approximation MacKay (1995), which Immer et al. (2021) has shown as effective
for online hyperparameter learning. We define the loss function for learning A as the
negative log Laplace approximated marginal likelihood of θ, and denote it as LMarglik(θ,A).
Minimizing LMarglik(θ,A) is equivalent to maximizing the marginal likelihood. Using the
analytical result of the Laplace approximated marginal likelihood, the loss is given as:

LMarglik(θ,A) = L(θ;D) + 1

2
log(|Hθ|) + C, (2)

where L(θ;D) is the empirical risk (Eq. 1), Hθ is the Hessian defined as ∇2
θL(θ;D), and C

is a constant. Calculation of Hθ is generally not feasible, we have opted to use the diagonal
Generalized Gauss-Newton (GGN) approximation (detailed in Appendix B).

3.2. Learn Discrete Graphs via STE

The graph structure A cannot be learned directly using gradient descent on LMarglik(θ,A)
(Eq. 2) because A is discrete and non-differentiable. We address this by using the Straight
Through Estimator (STE) (Bengio et al., 2013). STE uses the binary adjacency matrix A
in the forward pass while accumulating gradient on the continuous adjacency matrix A′ in
the backward pass. We use a threshold of 0.5 on A′ to obtain A.

3.3. Laplace Approximation-based Graph (LAG)

Our proposed method LAG (outlined in Algorithm 1) is a GNN agnostic method that uses
bilevel optimization approach to learn the model parameters θ and the graph structure A
jointly. The inner objective learns θ to minimize the empirical loss (Eq. 1), and the outer
objective learns A to maximize the marginal likelihood.

3

Yang Möllenhoff Kawarabayashi Khan

Algorithm 1: Laplace Approximation-based Graph (LAG) Structure Learning

Input: training data D = (X,Y,A0), burn-in epoch B, cut-off epoch C, update freq
F , graph structure learning rate γ, steps K

Output: learned binary adjacency matrix A, learned GNN parameters θ
1 A,A′ ← A0

2 for each epoch do
3 θ ← trainGNNEpoch(A,D) {minimize Eq. 1}
4 if in between B and C, every F then
5 for K steps do
6 compute LMarglik(θ,A) with HGGN

θ {from Eq. 2}
7 gA′ ← ∇A′LMarglik(θ,A);
8 A′ ← A′ + γ

||gA′ ||2 gA′ ;

9 A← STE(A′) {discretize adjacency matrix}
10 end

11 end

12 end
13 return A,θ

The GNN parameters θ is first trained over B burn-in epochs using an initial graph A0

(either given or constructed e.g. kNN graph). For every F epochs after the burn-in period
and before the cut-off epoch C: at epoch t, the model parameters θ and the graph structure
A are updated as follows:

θt = argmin
θ
L(θ;At), At+1 = argmin

A
LMarglik(θt,A), (3)

where L(θ;At) is defined in Equation (1) and LMarglik(θt,A) is defined in Equation (2).
At+1 is obtained over K steps with constant step-length (i.e. normalized learning rate γ).

4. Experiments

We demonstrate the effectiveness of LAG in solving the GNN graph structure learning
problem here. We implemented LAG with GCN and refer to it as LAG-GCN. Using LAG-
GCN, we show that: (1) Marginal likelihood is an effective objective for learning graph
structures (Section 4.1), (2) LAG-GCN outperforms other GCN-based GSL methods while
matching the performance of a transformer-based GSL method (Section 4.2).

Datasets. Our experiments use standard benchmark datasets: Planetoid (Cora and
Citeseer) and WebKB (Cornell, Texas and Wisconsin) (detailed in Appendix C).

Setup. We consider both cases when the initial graph A0 is and is not given. In the
later case, we construct the initial graph using kNN algorithm with k = 3. For each run, the
dataset is randomly split 10 times with 60% training, 20% validation and 20% test nodes
and repeated 10 times. The hyperparameters are included in Appendix D.

4

0 50 100 150 200 250 300 350 400
Epochs

0

1

2

3

4

Lo
ss

validation

train

0

2

4

6

8

lo
g

M
ar

gl
ik

×102

log marglik

(a) LAG-GCN training progress.

Learned
graphs

(b) GCNs trained with learned
graphs from LAG-GCN.

Figure 2: LAG-GCN trained on Texas dataset (with original graph initialization) shows
that (a) the marginal likelihood correlates with the validation loss, and (b) the
learned graphs (earlier to later) objectively improve the performance of GCN.

4.1. Marginal Likelihood as Graph Learning Objective

Marginal likelihood has been shown to reflect model’s generalizability (MacKay, 1992;
Minka, 2000; Fong and Holmes, 2020). From the training progress of LAG-GCN, shown
in Figure 2(a) for Texas dataset, the marginal likelihood closely matches the shape of the
validation loss of the learned model and graph structure. Indicating that marginal likeli-
hood correlates with the generalizability of both the GNN model and the learned graph
structures. This is further confirmed in Figure 2(b) where we used the checkpoint graph
structures during LAG-GCN training to train GCNs: GCNs with better graph structures
(higher marginal likelihood and at later epochs) attain higher test accuracies.

Comparison of the test performance of vanilla GCN and LAG-GCN in Figure 3 shows
that LAG overall improves the performance of GCN when the initial graph structure is
suboptimal as in the case of WebKB original graphs (in Figure 3(a)) and kNN graph
initializations (Figure 3(b)) – indicating effectiveness of the marginal likelihood objective.

4.2. Comparison of LAG-GCN with other GSL methods

We compare LAG-GCN with other GCN-based GSL methods: Learning Discrete Structures
(LDS) (Franceschi et al., 2019) and Iterative Deep Graph Learning (IDGL) (Chen et al.,
2020b), and Transformer-based GSL method: NodeFormer (Wu et al., 2022). Briefly, LDS
models the edges with Bernoulli and learns the graph with validation data; IDGL treats
the structure learning problem as a similarity metric learning problem using learned node
embeddings; NodeFormer use node pairs. The results are shown in Figure 3.

LAG-GCN in general outperforms LDS and IDGL. Under the kNN graph initialization
setting, LAG-GCN outperforms LDS and IDGL across all the datasets. With original graph
initialization, although IDGL perform slightly better on Planetoid, LAG-GCN boasts a
significant improvement on the WebKB datasets, with average of 13.88% and 19.28% higher
accuracies than LDS and IDGL, respectively.

5

Yang Möllenhoff Kawarabayashi Khan

GCN LDS IDGL NF LAG
GCN

82

83

84

85

86

87

88

89

90
Cora

GCN LDS IDGL NF LAG
GCN

73

74

75

76

77

78

Citeseer

GCN LDS IDGL NF LAG
GCN

40

50

60

70

80

Cornell

GCN LDS IDGL NF LAG
GCN

50

60

70

80

Texas

GCN LDS IDGL NF LAG
GCN

40

50

60

70

80

Wisconsin

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 A

cc
ur

ac
y

(%
)

Planetoid WebKB

(a) Original graph initialization

GCN LDS IDGL NF LAG
GCN

64

66

68

70

72

74

76

78
Cora

GCN LDS IDGL NF LAG
GCN

64

66

68

70

72

74
Citeseer

GCN LDS IDGL NF LAG
GCN

55

60

65

70

75

80

85

90
Cornell

GCN LDS IDGL NF LAG
GCN

55

60

65

70

75

80

85

90

Texas

GCN LDS IDGL NF LAG
GCN

65

70

75

80

85

90

Wisconsin

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
(%

)

Planetoid WebKB

(b) kNN (k = 3) graph initialization

Figure 3: Comparison of LAG-GCN with GCN and other GSL methods using (a) original
and (b) kNN graph initialization. Overall, LAG-GCN outperforms GCN and
other GCN-based GSL methods LDS and IDGL, while matching the performance
of Transformer-based GSL method NodeFormer, even with just a simple GCN
model (tabulated results in App. E).

Even with a simple GCN model, LAG-GCN can match the performance of NodeFormer.
Although under original graph initialization (in Figure 3(a)), LAG-GCN performed on par
or lower than NodeFormer, with kNN graph initialization (in Figure 3(b)), LAG-GCN
generally performs better than NodeFormer across all datasets: increasing average test
accuracy by 3.27% on Planetoid and 2.09% on WebKB.

5. Conclusion

We proposed marginal likelihood as a simple objective for learning graph structures for
GNN. We implemented Laplace Approximation-based Graph (LAG) structure learning, us-
ing Laplace approximation of the marginal likelihood and Straight Through Estimator
(STE) to learn discrete graphs. Experiments on GCN-based LAG (LAG-GCN) shows the
effectiveness of learning with marginal likelihood; LAG-GCN generally outperforms GCN
and other GCN-based GSL methods (Franceschi et al., 2019; Chen et al., 2020b), while
matching the performance of Transformer-based GSL method (Wu et al., 2022), despite the
architectural disadvantage. In the future, we aim to improve the scalability of LAG.

6

References

Uri Alon and Eran Yahav. On the bottleneck of Graph Neural Networks and its practical
implications. In International Conference on Learning Representations, 2021.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. ArXiv, 2013.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimi-
sation for deep learning. In Proceedings of the International Conference on Machine
Learning, 2017.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
Graph Convolutional Networks. In Proceedings of the International Conference on Ma-
chine Learning, 2020a.

Yao Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for Graph
Neural Networks: Better and robust node embeddings. Advances in Neural Information
Processing Systems, 33, 2020b.

E Fong and C C Holmes. On the marginal likelihood and cross-validation. Biometrika, 107
(2):489–496, 2020.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for Graph Neural Networks. In Proceedings of the International Conference on
Machine Learning, 2019.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings of the International Joint Conference on Neural Networks. IEEE,
2005.

Roger B. Grosse and Ruslan Salakhutdinov. Scaling up natural gradient by sparsely fac-
torizing the inverse fisher matrix. In Proceedings of the International Conference on
International Conference on Machine Learning, 2015.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield,
Krishna Narayanan, and Xiaoning Qian. Bayesian Graph Neural Networks with adap-
tive connection sampling. In Proceedings of the International Conference on Machine
Learning, 2020.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Moham-
mad Emtiyaz Khan. Scalable marginal likelihood estimation for model selection in deep
learning. In Proceedings of the International Conference on Machine Learning, 2021.

7

Yang Möllenhoff Kawarabayashi Khan

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust Graph Neural Networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with Graph Convolutional
Networks. In International Conference on Learning Representations, 2017.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can GCNs go
as deep as CNNs? In The International Conference on Computer Vision. IEEE, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper Graph Neural Networks. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2020.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards
unsupervised deep graph structure learning. In Proceedings of the ACM Web Conference,
2022.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for
graph-based semi-supervised learning. 2019.

David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 1992.

David J. C. MacKay. Probable networks and plausible predictions—a review of practical
Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6:469–505, 1995.

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the Inter-
national Conference on International Conference on Machine Learning, 2010.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In Proceedings of the International Conference on International
Conference on Machine Learning, 2015.

Thomas P. Minka. Automatic choice of dimensionality for PCA. In Proceedings of the
International Conference on Neural Information Processing Systems, 2000.

Hoang NT and Takanori Maehara. Revisiting Graph Neural Networks: All we have is
low-pass filters. ArXiv, 2019.

Kenta Oono and Taiji Suzuki. Graph Neural Networks exponentially lose expressive power
for node classification. ArXiv, 2019.

Elinas Pantelis, Edwin V. Bonilla, and Louis C. Tiao. Variational inference for Graph Con-
volutional Networks in the absence of graph data and adversarial settings. In Proceedings
of the International Conference on Neural Information Processing Systems, 2020.

8

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In
International Conference on Learning Representations, 2014.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN:
Geometric Graph Convolutional Networks. In International Conference on Learning Rep-
resentations, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The Graph Neural Network model. IEEE Transactions on Neural Networks, 20
(1):61–80, 2008.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient
descent. Neural computation, 14(7):1723–1738, 2002.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via
curvature. In International Conference on Learning Representations, 2022.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lió, and
Yoshua Bengio. Graph Attention Networks. In International Conference on Learning
Representations, 2018.

Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing Xie.
Graph structure estimation neural networks. In Proceedings of the Web Conference 2021,
2021.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scal-
able graph structure learning transformer for node classification. In Advances in Neural
Information Processing Systems, 2022.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In Proceedings of the International Conference on Machine Learning, 2018.

Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin, Bo Yang, and Yuanfang Guo. Topology
optimization based Graph Convolutional Network. In Proceedings of the International
Joint Conference on Artificial Intelligence, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In Proceedings of the International Conference on In-
ternational Conference on Machine Learning, 2016.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian graph
convolutional neural networks for semi-supervised classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in Graph Neural Networks: current limitations and effective designs.
In Proceedings of the International Conference on Neural Information Processing Systems,
2020.

9

Yang Möllenhoff Kawarabayashi Khan

Appendix A. Graph Structure Learning (GSL)

Graph structure learning (GSL) for GNN involves learning the graph structure A jointly
with the GNN model parameters θ. The difficulty in learning A is due to its exponential
search space. This requires regularizing the graph to ensure tractability in learning and
generalizabiility in the learned graph.

Most structure regularization methods are based on assumptions about the target graph
structure. These methods are difficult to implement and generally too restrictive. Many
works design the loss function to encourage properties like sparsity, homophily and feature
smoothness in the learned graph; for example, Yang et al. (2019); Chen et al. (2020b); Jin
et al. (2020) penalize edges between nodes with large l2-distance between their features.
However, selecting which properties are desirable and designing a good loss function for
them is non-trivial. Other works instead does simple postprocessing after learning the
graph: Chen et al. (2020b); Liu et al. (2022) use k-Nearest Neighbor and ϵ- thresholding to
sparsify the graphs, but such solution runs the risk of oversimplifying the graph.

Variational methods face the same problem. Variational GSL regularize the graph struc-
ture through prior on the structure. (Zhang et al., 2019), for example, assumes the optimal
graph is a mixed-membership stochastic block model (MMSBM) graph and defined the prior
on the parameters of the MMSBM model. In Pantelis et al. (2020), each edge is modeled as
a Bernoulli distribution and a prior is defined over them using the input adjacency matrix.
Defining a good prior for the problem is difficult, and can also be restrictive.

Appendix B. Approximation of the Hessian

B.1. Generalized Gauss-Newton (GGN)

Generalized Gauss-Newton (GGN) extends the Gauss-Newton matrix approximation to
general loss function (Schraudolph, 2002; Martens, 2010) and approximates the Hessian
w.r.t the parameters. The GGN matrix is given by:

Hθ ≈ HGGN
θ =

N∑
i=1

[J⊤
θ HLJθ]i +Pθ, (4)

where Jθ ∈ RC×P is the Jacobian matrix w.r.t to the parameters, and HL and Pθ are the
Hessian of the negative log -likelihood and -prior, respectively. More specifically, HL :=
−∇2

ff log p(y|f) is the Hessian of the (cross-entropy) loss w.r.t to the predictions f , therefore
has dimension C × C, while the Hessian of the negative log-prior Pθ := −∇2

θθ log p(θ|M)
has dimension P × P . So the resultant GGN matrix is P × P and the complexity is
O(NPC2 +NCP 2).

B.2. Empirical Fisher (EF)

The empirical Fisher (EF) (Martens and Grosse, 2015; Grosse and Salakhutdinov, 2015)
estimates the Fisher information matrix using the data D, and is defined as:

Hθ ≈ HEF
θ =

N∑
i=1

g⊤
θ,igθ,i +Pθ, (5)

10

where gθ,i ∈ RP×1 is the gradient of the log-likelihood gθ,i := ∇θ log p(Di|θ,M), and
g⊤
θ,igθ,i ∈ RP×P is the outer product. The resultant EF matrix is P ×P and the complexity

is O(NP 2). For various matching pairs (such as linear activation function and square error,
sigmoid and cross-entropy, and softmax and negative log-likelihood), the Fisher information
matrix and GGN are equivalent (Pascanu and Bengio, 2014). Hence the argument for EF
as an approximation for the Hessian (Bottou et al., 2018).

B.3. Block and Diagonal Approximation

While the GGN and EF approximations allow for more manageable computation of the
Hessian, practically storing and computing the determinant of a P × P matrix is still not
feasible. A solution is to make block diagonal or diagonal approximations of the Hessian.
Since the Hessian is typically diagonal dominant, such an approximation is reasonable.
Block diagonal approximation of the Hessian is calculated through Kronecker factorization
of the Fisher matrix (Martens and Grosse, 2015) or the GGN matrix (Botev et al., 2017);
that is, for each layer l of the neural network: [Hθ]l ≈ E[Ql]⊗E[Gl], where Ql ∈ Rdl−1×dl−1

matrix is calculated from the input activations to the l-th layer, and Gl ∈ Rdl×dl is based
on the gradient of the output (dl corresponds to the output dimension of the l-th layer).
Diagonal approximation further reduces computation by only using the diagonal entries of
the Hessian.

Appendix C. Dataset

Experiments were conducted on 5 graph datasets (Table 1). The Planetoid datasets contain
Cora and Citeseer (Yang et al., 2016) citation networks where nodes represent documents
and edges represent citation links. While WebKB datasets have Cornell, Texas and Wis-
consin (Pei et al., 2020) where nodes repesent web pages and edges representing hyperlinks.
The node features across all the datasets are bag-of-word representation of the documents/
web pages.

Dataset Nodes Edges Classes

Cora 2,708 10,556 7
Citeseer 3,327 4,732 6
Cornell 183 295 5
Texas 183 309 5
Wisconsin 251 499 5

Table 1: Datasets statistics

11

Yang Möllenhoff Kawarabayashi Khan

Appendix D. Hyperparameters

The hyperparameters used for LAG-GCN are shown here.

Table 2: Hyperparameters of LAG-GCN with original graph structure initialization.

Hyperparameter Cora Citeseer Cornell Texas Wisconsin

n epochs 200 100 1000 400 400
n epoch burnin 50 50 10 10 10
n epoch cutof 150 100 900 350 400
weight decay 5.0 · 10−5 5.0 · 10−5 5.0 · 10−4 5.0 · 10−4 5.0 · 10−4

lr 0.001 0.001 0.01 0.03 0.02
lr adj 0.8 1.5 10 10 10
hidden channels 64 64 64 128 128
momentum adj 0.9 0.9 0.9 0.9 0.9
residual conn False False True True True
norm - - layer layer layer

Table 3: Hyperparameters of LAG-GCN with kNN graph structure initialization.

Hyperparameter Cora Citeseer Cornell Texas Wisconsin

n epochs 200 400 1000 400 600
n epoch burnin 20 50 10 10 10
n epoch cutof 1000 350 900 350 500
weight decay 5.0 · 10−5 5.0 · 10−5 5.0 · 10−4 5.0 · 10−4 5.0 · 10−4

lr 0.001 0.001 0.01 0.03 0.005
lr adj 0.8 1.0 10 10 10
hidden channels 64 64 64 128 128
momentum adj 0.9 0.9 0.9 0.9 0.9
residual conn False False True True True
norm - - layer layer layer

12

Appendix E. Experimental Results (Tabulated)

We show the tabulate results of the experiments from Figure 3.

Table 4: Mean test accuracy in % (± standard error) with original graph structure initial-
ization (Corresponding to Figure 3(a)).

Dataset Cora Citeseer Cornell Texas Wisconsin

GCN 88.53 ± 0.37 75.25 ± 0.39 52.49 ± 2.47 53.92 ± 2.12 49.49 ± 1.58

LDS 86.96 ± 0.38 74.67 ± 0.26 54.28 ± 1.66 57.92 ± 2.01 61.62 ± 1.11
IDGL 88.19 ± 0.24 76.33 ± 0.36 48.62 ± 1.79 57.84 ± 2.03 51.18 ± 2.01

NodeFormer 86.94 ± 0.75 75.07 ± 0.20 75.14 ± 2.19 75.22 ± 1.90 79.80 ± 1.49

LAG-GCN 88.43 ± 0.32 74.88 ± 0.34 68.89 ± 2.26 71.05 ± 2.65 75.53 ± 2.46

Table 5: Mean test accuracy in % (± standard error) with kNN graph initialization (Cor-
responding to Figure 3(b)).

Dataset Cora Citeseer Cornell Texas Wisconsin

GCN 64.93 ± 0.37 70.62 ± 0.32 71.76 ± 2.13 75.86 ± 2.47 73.43 ± 1.28

LDS 72.22 ± 0.36 66.82 ± 0.48 69.92 ± 2.17 70.08 ± 2.20 71.82 ± 1.33
IDGL 69.43 ± 0.60 71.68 ± 0.39 74.84 ± 2.80 74.05 ± 2.73 74.12 ± 1.41

NodeFormer 71.01 ± 1.02 70.58 ± 0.34 74.68 ± 2.15 74.57 ± 1.89 82.35 ± 1.46

LAG-GCN 75.45 ± 0.43 72.70 ± 0.24 74.00 ± 2.79 80.70 ± 2.19 83.16 ± 2.35

13

	Introduction
	Graph Structure Learning for GNNs
	Graph Convolutional Networks (GCN)
	Learning Graph Structures

	Method
	Laplace Approximation of Marginal Likelihood
	Learn Discrete Graphs via STE
	Laplace Approximation-based Graph (LAG)

	Experiments
	Marginal Likelihood as Graph Learning Objective
	Comparison of LAG-GCN with other GSL methods

	Conclusion
	Graph Structure Learning (GSL)
	Approximation of the Hessian
	Generalized Gauss-Newton (GGN)
	Empirical Fisher (EF)
	Block and Diagonal Approximation

	Dataset
	Hyperparameters
	Experimental Results (Tabulated)

