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ABSTRACT

Model merging has emerged as an efficient and flexible paradigm for multi-task
learning, with numerous methods being proposed in recent years. However, these
state-of-the-art techniques are typically evaluated on benchmark suites that are
highly favorable to model merging, and their robustness in more realistic settings
remains largely unexplored. In this work, we first investigate the vulnerabilities of
model-merging methods and pinpoint the source-model characteristics that crit-
ically underlie them. Specifically, we identify two factors that are particularly
harmful to the merging process: (1) disparities in task vector norms, and (2) the
low confidence of the source models. To address this issue, we propose DisTaC
(Distillation for Task vector Conditioning), a novel method that pre-conditions
these problematic task vectors before the merge. DisTaC leverages knowledge
distillation to adjust a task vector’s norm and increase source-model confidence
while preserving its essential task-specific knowledge. Our extensive experiments
demonstrate that by pre-conditioning task vectors with DisTaC, state-of-the-art
merging techniques can successfully integrate models that exhibit these harmful
traits, where they would otherwise fail, and achieve significant performance gains.
The source code is availableat ht tps: //anonymous . 4open.science/r/
DisTaC-D782

1 INTRODUCTION

The recent wave of open-sourcing both large pretrained models (Devlin et al., 2019; Rombach et al.,
2022; Achiam et al., 2023; Grattafiori et al., 2024) and their fine-tuned downstream variants (Wolf
etal., 2019; Taori et al., 2023) has put an unprecedented variety of neural networks within easy reach
of anyone. This democratization has, in turn, accelerated research on model merging (Wortsman
et al., 2022b;a; Ilharco et al., 2023; Yadav et al., 2023; Akiba et al., 2025), techniques that create
new, customized models by integrating existing fine-tuned models without the need for additional
large-scale training. In particular, a flurry of recent methods aims to build multi-task models by
merging networks that have been fine-tuned independently for each task, rather than retraining a
single shared model from scratch (Ilharco et al., 2023; Yadav et al., 2023; Ortiz-Jimenez et al., 2023;
Wang et al., 2024; Yoshida et al., 2025; Gargiulo et al., 2025). Many of these techniques require
only minimal extra training or none at all. Compared with conventional multi-task learning (MTL),
they offer two key advantages: (i) they eliminate the need to aggregate all task-specific labeled data
in one location, sidestepping data-access constraints, and (ii) they make it easy to add or edit the
model’s skill on a particular task after deployment (Yang et al., 2024a).

On established benchmarks, these approaches have shown promising gains, in some cases approach-
ing the performance of traditional MTL (Gargiulo et al., 2025). Yet those benchmarks are built under
conditions that are highly idealized for model merging; how robust current merging methods remain
in more practical, pessimistic settings is still largely unknown. Bridging this gap is a prerequisite
for real-world application.

To that end, we first pinpointed where generic multi-task model merging pipelines break down. Our
analysis reveals two especially harmful factors: (1) differences in task vector norms and (2) low
prediction confidence of source models. Figure la illustrates the vulnerability of recent merging
methods to these factors using CLIP (Radford et al., 2021) with a ViT-B-32 (Dosovitskiy et al.,
2021) backbone on the eight vision tasks defined in Section 5.1: blue bars show the effect of training
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Figure 1: Failure Cases of Multi-Task Model Merging. All results were obtained using CLIP
with a ViT-B-32 backbone on the eight vision tasks. (a) Comparison of normalized accuracy after
merging models from different fine-tuning configurations averaged over eight vision tasks. The gray
bar represents the conventional setting (a uniform learning rate of 10~5 with hard labels). The blue
bar indicates the result of merging after training just one task with a learning rate (LR) of 10~%. The
yellow bar shows the result when all tasks were trained with label smoothing (LS). Both the blue
and yellow configurations show a significant performance degradation compared to the conventional
setting. (b) Change in the task vector norm after fine-tuning with different learning rates for the same
number of steps across eight vision tasks. The gray bar uses a learning rate of 10~°, matching the
conventional benchmark, while the blue bar uses 10~%. We observe a 5 to 7-fold difference in
the resulting task vector norms. (c) Change in the entropy of the model’s predictive probabilities
after fine-tuning with or without label smoothing across eight vision tasks. The vertical axis is on a
logarithmic scale. Training with label smoothing increases the entropy by three orders of magnitude.

models with different learning rates, thereby altering task vector norms (see Figure 1b), while yellow
bars show the effect of label smoothing (Miiller et al., 2019) (LS), which reduces model confidence
(see Figure 1c). In the plot, the horizontal axis lists the merging methods, and the vertical axis
reports the average normalized accuracy (Norm. ACC) across the eight tasks, defined as the post-
merge accuracy relative to the pre-merge accuracy obtained by individual models for each task. In
both cases, every method’s performance degrades substantially compared to the standard baseline,
represented by the gray bars (a uniform learning rate of 10~° with hard labels), with a maximum
24% drop in Norm. ACC.

These failure modes often arise in real-world deployments. For instance, differences in task vec-
tor norms can stem from varied learning rates, fine-tuning steps, or weight decay used during the
individual fine-tuning of each task (Devlin et al., 2019; Wightman et al., 2021). Low confidence
often results from techniques such as LS, Mixup (Zhang et al., 2017), and focal loss (Lin et al.,
2017). We therefore contend that models should be pre-conditioned before merging to remove their
latent harmfulness. To this end, we propose Distillation for Task-vector Conditioning (DisTaC)
a lightweight knowledge distillation (KD) procedure that tackles both issues using only unlabeled
data: To correct task vector—norm disparities, DisTaC first rescales each vector to a chosen target
norm and then restores any performance lost through this scaling by distilling knowledge from the
original model. To address low source-model confidence, it trains the student with a higher temper-
ature than the teacher (Ty, > Ti), so the student ultimately produces lower-entropy predictions,
that is, predictions that are more confident.

Algorithm 1 combines these two conditioning steps, allowing them to be carried out in a single
pass. Because DisTaC leverages the already-trained task vectors as the initialization for KD and
relies solely on unlabeled data, it incurs minimal computational overhead and imposes only modest
practical requirements, yet markedly improves the robustness of existing model merging techniques
in challenging scenarios.

Empirically, on eight vision tasks with ViT-B-32/L-14 backbones, DisTaC increased post-merge ac-
curacy by up to 20.8 percentage points and restored the best-performing TSVM merge’s normalized
accuracy from 68% to 92% under low-confidence conditions, thereby matching the conventional
“ideal” benchmark performance (i.e., merging high-confidence models with uniform task vector
norms), all with minimal computational cost. Our contributions are as follows:

* We identify two failure modes in model merging: (i) the task vector norms of the source
models differ (Section 3.1), and (ii) the source models’ outputs are low-confidence or even
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well-calibrated (i.e., their predicted probabilities match the true frequency of correctness)
(Section 3.2). We provide theoretical explanations and empirical results for each of these
phenomena.

* We propose DisTaC, a distillation method of source model’s weights under appropriate
conditions (Section 4), and demonstrate that it mitigates aforementioned failure modes
(Section 5.2.1). Our DisTaC is a computationally efficient method, as it requires only a
small number of training steps and relies solely on unlabeled data (Section 5.2.2).

* From our analysis, we present two guidelines for model merging: (i) when the task vec-
tor norms differ, it is better to shrink the larger vector rather than stretch the smaller one
(Section 6.1); and (ii) when the source models have low confidence, it is more effective
to make them overconfident before merging, and then apply a calibration method to the
merged model (Section 6.2).

2 PRELIMINARIES

Notation. Let f(-;0) : X — R be a neural network for a C-class classification task, parame-
terized by a vector & € R?. The network maps an input vector z € X C R” to a C-dimensional
logit vector. We target a multi-task scenario comprising 71" supervised tasks. Let O, € R? be
the parameters of an open-source pretrained backbone. For each task ¢ € {1,...,T}, we obtain a

model that has already been fine-tuned on the corresponding labeled dataset D; = {(a:t,i, Yti) };Zl,

yielding task-specific weights 8; € R?. Each label y; ; € {0, 1} is a one-hot vector indicating the
ground-truth class.

2.1 MODEL MERGING FOR MULTI-TASK LEARNING

Recent model merging techniques operate on the task vectors (Itharco et al., 2023) 7 := 0; — Ope
and obtain a single multi—task model by linearly combining them:
T
Oni = Ope + > Piy, )
t=1

where each P, € R%*? is a method-specific matrix that mitigates inter-task interference.
In the following, we explain the P; used in each merging method.

Uniform averaging: P, = . I,.

Task arithmetic (Ilharco et al., 2023): P, = A\; I;, where \; € R.

Ties-Merging (Yadav et al., 2023): P, = At Miies,t Ig, where Ay € R, mipies ¢ € {0, 1}d. M Ties ¢
is determined by the norm of each weight parameter to mitigate inter-task conflicts.

Consensus Merging (Wang et al., 2024): P, = X\ Micons.t La, Where Ay € R, mcons ¢ € {0, 1}4.
The framework is the same as Ties-Merging, but the binary mask 1mcens; is determined in the
following steps. First, create the TALL mask mtar 1 ¢, which is a binary mask of weights where each

element is set to 1 if the norm of 7 is larger than the weighted distance between 7; and Zle T:.
Then, create 1mcqns,c, Where each element is set to 1 if the corresponding element of mutar ¢ is 1 in
at least k tasks, reflecting agreement among the source models regarding the importance.

TSVM (Gargiulo et al., 2025) cannot be expressed within the framework of Eq. (1). Instead, it
suppresses task interference by whitening the matrices U, and V obtained from the singular value
decomposition of the task vectors 7 = UtEtVtT .

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a model compression and transfer paradigm in which a compact
student network is trained to replicate the behavior of a larger, well-performing teacher network
(Hinton et al., 2015). By minimizing a joint loss that combines ground-truth supervision with a soft-
target signal derived from the teacher’s output distribution, the student acquires the teacher’s dark
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knowledge, namely, fine-grained inter-class relationships encoded in the soft logits, while retaining a
substantially smaller parameter footprint. Formally, for a given input @, let zi; := f(x; Oyr) € R¢
and zy, 1= f(x;0s) € R€ be the output logits from the teacher and student models, parameterized
by O, € R% and O, € R¢, respectively. The KD objective then augments the conventional cross-
entropy loss Lcg with a softened Kullback-Leibler (KL) divergence term:

Lo = (1= €) Lee (2 ) + ¢ Tl KL(0(z1/Tir) || 0(20/ Tow) ) )

where o denotes the softmax, Ti;, Ty > 1 is the distillation temperature, and ¢ € [0, 1] balances
hard versus soft supervision.

3 FAILURE MODES IN MODEL MERGING

3.1 TASK VECTOR NORM DISPARITY

We begin by demonstrating that differences in task vector norms can severely impair model merging.
In practical fine-tuning, practitioners select diverse hyperparameters, including learning rate, number
of training steps, weight decay, and optimizer, each of which influences the distance between the
final weights and their initialization, i.e. the norm of the task vector.

To quantify this effect, we fine-tuned CLIP models with Vision Transformers (ViTs) backbones,
specifically ViT-B-32, on eight vision tasks as introduced in Section 5.1 with two learning rates,
10~° (gray) and 10~ (blue), and plotted the resulting task vector norms in Figure 1b. Across all
tasks, we observe a 5-7x gap between the two settings. Crucially, the difference is not confined to
any particular layer: parameter scales diverge consistently throughout the network, as demonstrated
in Section E.1.

Figure 1a reports the corresponding merge performance. The gray bars denote the baseline where
all eight tasks are fine-tuned with 10~°, while the blue bars show the average over eight experiments
in each of which one task is replaced with a higher learning rate of 10~* and the other seven remain
unchanged. We measure performance using normalized accuracy. Injecting a single high-norm task
vector degrades every merging method, with losses of up to 14%. These results confirm that norm
discrepancies pose a fundamental obstacle to robust task vector merging.

The detrimental effect of norm disparity on model merging can be explained with a straightforward
theoretical analysis formalized as Proposition 1.

Proposition 1. Let 71,7 € R? with || 2| > 0, and define § = ||11||/||72||. Assume 7 L 1. For
Tmerge = T1 + T,

1 ) g
COS(Tmerge,TQ) = \/ﬁ Z 1 ) COS(Tmerge7T1) = 7/14‘62 S 5

Hence, when § < 1, the merge is nearly perfectly aligned with 1o while its alignment with Ty is at

most O(0).

Empirically, task vectors are observed to be approximately orthogonal (Ilharco et al., 2023); assum-
ing orthogonality, we obtain Proposition 1. The proof is given in Appendix B. This result shows that
the merged solution almost entirely inherits the directional characteristics of the high-norm task,
while the contribution of the low-norm task vanishes up to O(d). Under the Neural Tangent Kernel
approximation (Jacot et al., 2018) Af(z) = f(2;60 + Tmeree) — f(2;60) = TnTergCng(zL': 6v),
the functional shift from pre-trained model is determined exclusively by the task vector’s direction.
Thus, the geometric dominance of the high-norm vector implies that the merged model functionally
mimics the high-norm task while failing to preserve the low-norm task’s knowledge, leading to a se-
vere performance drop. Consequently, such norm disparity can cause a severe drop in performance
on the low-norm task and thereby degrade the overall effectiveness of the merged model.

3.2 Low-CONFIDENCE SOURCE MODELS

We now show that low confidence constitutes a second, equally damaging failure mode. Para-
doxically, models that are well calibrated can be fragile from the perspective of model merging;
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conversely, we argue that the more overconfident a source model is, the more robust it becomes to
merging.

A model’s decisiveness can be quantified by the entropy of its predictive distribution. Using the
same experimental configuration as in Section 3.1, we replaced the learning-rate manipulation with
a single change: turning label smoothing on or off. Figure 1c plots the resulting prediction entropies:
the gray bars correspond to training without label smoothing, while the yellow bars use oo = 0.1.
The vertical axis is logarithmic; with label smoothing the entropy increases by up to three orders of
magnitude.

Figure 1a (yellow bars) shows how this reduced confidence affects merging. In all algorithms, the
normalized accuracy decreases markedly by up to 24% compared to the baseline without smoothing.
This degradation exceeds that caused by norm discrepancies in the previous section, underscoring
how harmful low-confidence source models can be. In short, routine training choices that alter confi-
dence (e.g. label smoothing, Mixup, focal loss) can induce large swings in post-merge performance.
These phenomena can also be supported from a theoretical perspective. (Appendix C)

4 KNOWLEDGE DISTILLATION FOR TASK VECTOR CONDITIONING

Here, we propose Distillation for Task vec- - -
tor Conditioning (DisTaC) a KD-based pre- Algorithm 1 DisTaC
conditioning method that eliminates the harm- Require: Pre-trained parameters O, task vec-

ful effects of individual task vectors during tor 7y, scaling factor x;, temperature pair
model merging, as identified in Section 3. (Tter, Tow ), regularization weight 3, unlabeled
dataset D} drawn from the distribution of task
4.1 TASK VECTOR NORM CONDITIONING t, learning rate 1, number of steps K
Ensure: Fine-tuned student parameters 6
First, to correct task vector norm disparity, Dis- ~ 1* 0o < Opre + KT > Anchor point
2: 6+ 6 > Student initialization

TaC harmonizes the norms while preserving
single-task accuracy. A naive countermeasure o -
is to adjust the norm by scaling the task vector, 4 Sample mini-batch 5; C Dy’
i.e. replacing Ty with x;7; using a scalar scaling 5 L0

factor ;. Unfortunately, this constant rescal- 6: for all z; € B; do

ing offers no guarantee of performance reten- 7 Zier <= [ (@13 Opre + T1)
tion and can severely degrade accuracy relative 8 Zau ¢ f(xy; 0)

3:fork=1,2,...,K do

to the pre-merge model. 9: Sier <= 0 (2ter/Ter)
10: Sstu U(zstu/Tstu)
We therefore propose to recover the lost perfor- . L+« L+ TmrTsmKL( SmH Sslu)
mance through KD: starting from Oy + /474, 1. end for
we treat the pre-merge model as the teacher and 5. L+ L+ 5|6 — 62
distill its predictions into the rescaled student 5] 2 .
. 14: 00 —nVeyL > Gradient step
using only unlabeled data from the same task 15 end for

as the one underlying 7;. Since DisTaC relies
solely on unlabeled data, it uses soft-target dis-
tillation only, i.e., we fix ( = 1 in Eq. 2, omitting the cross-entropy loss entirely.

Although one might instead fine-tune @y + ~;7; with labeled examples, obtaining a sufficiently
large supervised corpus at merge time is typically impractical. By contrast, access to unlabeled data
is commonly assumed during model merging (Yang et al., 2024b; Yan et al., 2025; Yoshida et al.,
2025), and KD imposes only mild additional requirements.

To prevent the task vector norm from drifting far from 6. + ;7 during KD, we include an /,
regularizer on their difference, as shown in Algorithm 1.

4.2 SOURCE MODEL CONFIDENCE CONDITIONING

To mitigate low-confidence issues, DisTaC aims to increase each source model’s confidence before
merging, thereby rendering the model more robust to the merge. Here the student and the teacher
are identical at initialization, i.e. 8; = 6. + 7. We set the student temperature Ty, higher than the
teacher temperature 7., so that the student, trained on a higher-entropy distribution, is pushed toward
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Table 1: Comparison of post-merge accuracy across fine-tuning configurations and the effect
of DisTaC. Absolute accuracy is displayed in a large font size, whereas normalized accuracy ap-
pears in parentheses in a smaller font. “Individual” denotes the average performance of the source
models on their respective tasks, and “MTL” represents the performance of conventional MTL.
When the task vector norms diverge (Norm Mismatch) or the source models exhibit low confi-
dence (Low Confidence), performance consistently degrades relative to the standard benchmark
setting (Original). Under these conditions, DisTaC effectively pre-conditions the source models,
achieving performance comparable to Original even in both stringent settings.

Method Original Norm Mismatch Low Confidence
ViT-B-32 ViT-L-14 | ViT-B-32 ViT-L-14 | ViT-B-32 ViT-L-14
Pre-trained 47.3 65.1 47.3 65.1 47.3 65.1
Individual 89.9 93.7 89.3 93.3 89.8 94.0
MTL 87.8 92.6 - - - -
Task arithmetic 70.4 (7800 84.01893) | 63.6(718) 78.6842) | 51.0583) 66.9(71.5)
Task arithmetic ~ + DisTaC - - 70.0782) 83.9®9.6) | 63.6(722) 77.6(83.3)
TIES 74.038200 85.00019) | 59.164) T4.0795) | 54.5@6200 68.3(73.0)
TIES + DisTaC - - 7318100 84.40902) | 68.7779 79.4854)
Consensus TA 74.8828) 8531907 | 68.877.00 82.087.6) | 54.6(620) 68.6(732)
Consensus TA + DisTaC - - 737822 8490907 | 67.7765  80.0(85.8)
EMR-Merging 88.50984) 93.0099.6) | 80.088.7) 87.6(93.6) | 39.2us.1  27.4@G0.1)
EMR-Merging  + DisTaC - - 88.1973 92790 | 70.3(192 92.3(98.1)
TSVM 83.3924) 90.5063) | 72.2@802 84.890.7) | 60.7184) 71.6(76.4)
TSVM + DisTaC - - 82.991.8) 90.3(966) | 81.5091.8 89.7(%9.2)
1so-CTS 81.0897) 904064 | 78.11862 90.896.9) | 72.5@11)  80.8(86.0)
Iso-CTS + DisTaC - - 80.38899 90.1096.1) | 69.0¢78.1) 86.1(91,5)
WUDI-Merging 855939 91.7¢977 | 4925260 57908 | 38.0¢08  28.0(29.2)
WUDI-Merging + DisTaC - - 84.4932) 9140975 | 73.86833) 91.6(97.3)

a lower-entropy (more confident) output when the temperature is later reset to 1. Consequently, the
distilled student becomes more confident than its teacher.

One may worry that the over-confidence harms model reliability in practice. However, standard post-
hoc calibration methods (e.g. temperature scaling) can mitigate over-confidence, whereas merging
with an underconfident model leads to large performance drops that make the merged model im-
practical. A detailed discussion appears in Section 6.2.

Unified algorithm. The two conditioning strategies above are unified by Algorithm 1. When both
norm disparity and low-confidence coexist, they can be mitigated simultaneously by choosing an
appropriate scaling factor x; and temperature pair (Tie;, Tyw)-

5 EXPERIMENT

5.1 SETUP

We conducted experiments in a multi-task setting following Ilharco et al. (2023). Specifically, we
adopted eight vision tasks: Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber
et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), RESISC45 (Cheng et al.,
2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011). Our models applied ViT-
B-32 and ViT-L-14 to CLIP. We evaluated post-merge performance using absolute accuracy and
normalized accuracy under the two aforementioned failure modes: the case with diverged task vector
norms (Norm Mismatch) and the case with low-confidence source models (Low Confidence).
The detailed settings for each scenario followed those described in Section 3. We adopted four
merging methods as baselines: task arithmetic (Ilharco et al., 2023), Ties-Merging (TIES) (Yadav
et al., 2023), Consensus Merging (Consensus TA) (Wang et al., 2024), EMR-Merging (Huang et al.,
2024), TSVM (Gargiulo et al., 2025), Iso-Merging (Iso-CTS) (Marczak et al., 2025), and WUDI-
Merging (Cheng et al., 2025). For DisTaC, knowledge distillation was run for K = 500 steps. In the
Norm Mismatch regime we assign a task—specific scaling coefficient ; individually for each of the
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Figure 2: Evolution of DisTaC over steps. Results are averaged over the eight vision tasks with
ViT-B-32; the error band shows one standard deviation around the mean. (a) Norm Mismatch:
the blue curve plots normalized test accuracy relative to the teacher, and the green curve shows the
percentage change in the task vector norm from the DisTaC initialization. Within roughly 100 steps,
accuracy recovers to (or exceeds) the teacher’s level while the task vector norm remains virtually
unchanged from its x;-adjusted target. (b) Low Confidence: the blue curve again reports nor-
malized test accuracy, whereas the orange curve tracks the test prediction entropy. About 100 steps
suffice to drive the entropy substantially lower, yet the teacher-level accuracy is fully preserved.

eight norm—disparity configurations: the task vector with the largest ¢-norm is rescaled so that, after
scaling, its norm equals the mean norm of the remaining seven task vectors. A neutral temperature
pair is then used, (Ticr, Tyw) = (10, 10). In the Low Confidence regime we instead fix x; = 1 and
sharpen the student by adopting a more asymmetric temperature pair, (Zier, Tyw) = (1,10). More
detailed settings can be found in Appendix D.

5.2 RESULTS

5.2.1 MERGING PERFORMANCE

Table 1 summarizes the results. Absolute accuracy is displayed in a larger font, whereas normalized
accuracy appears in parentheses in a smaller font. As noted in Section 3, all methods exhibit a
substantial and consistent performance decline relative to the conventional configuration (Original)
under both failure modes, revealing a clear vulnerability (white rows). The rows highlighted in gray
show the performance obtained by first applying DisTaC for pre-conditioning and then merging.
DisTaC consistently enhances merge performance, yielding gains of up to 35.8% absolute accuracy
for ViT-B-32 and 63.6% for ViT-L-14. Moreover, for EMR-Merging, which achieves the highest
merge performance, DisTaC raises the accuracy under both failure modes to a level comparable
with the Original configuration in most cases, indicating that the intended merge performance is
robustly maintained even in challenging scenarios.

5.2.2 EFFICIENCY OF DISTAC

Here, we present how the single-task performance on each task, the task vector norm, and the pre-
diction entropy change during the KD process of DisTaC, as well as the computational cost required
for sufficiently thorough training.

Figure 2 shows the average over eight vision tasks of the training history when KD by DisTaC is
applied to ViT-B-32. The blue curve denotes the test accuracy relative to the teacher’s test accuracy,
the green curve the task vector norm relative to its value at the initialization point, and the orange
curve the test prediction entropy.

First, Figure 2a depicts the training history under the Norm Mismatch setting in Table 1. It achieves
performance comparable to, or even surpassing, the teacher model’s test performance within 500
steps, while the /5 regularizer of DisTaC keeps the task vector norm to roughly 1.1x that of the
initialization point, @y + k7, at the end of the 500 steps.

Of particular interest is that DisTaC occasionally surpasses the teacher model’s test performance.
We identify two factors underlying this phenomenon. The first is the scale given by x;. In particular,
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we observed that reducing «; can sometimes improve generalization performance. That is, the
DisTaC initialization point already outperforms the teacher model, and we observed this in every
instance in which the teacher model was exceeded. This phenomenon of the student outperforming
the teacher is confirmed in (Furlanello et al., 2018), where it has been shown that a student can
surpass the teacher by repeating KD between identical architectures. Furthermore, in this case,
since KD is performed while keeping the student’s norm smaller than the teacher’s, it is plausible
that a regularization effect similar to weight decay is being exhibited.

Next, Figure 2b presents the training history under the Low Confidence setting in Table 1. Within
500 steps, particularly during the first 100 steps, it achieves a substantial reduction in prediction
entropy while maintaining test accuracy at a level nearly equivalent to that of the teacher model.

6 DISCUSSION

6.1 STRETCHING VS. SHRINKING TASK VECTORS

When task vectors differ significantly in norm, 120
a natural question arises: Should shorter vec-
tors be stretched to match longer ones, or
should longer vectors be shrunk to match the
shorter ones? Our findings support the latter;
we advocate shrinking the longer vectors.

100
80

60
There are several reasons for this. First, it is
conceivable that model performance is more ro-
bust to scaling down a task vector than scaling
it up. Figure 3 shows how test accuracy varies

40

20
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across vision tasks when applying different 0 0

scaling factors «; to the task vector, i.e., eval- 00 05 1.0 15 20 25 3.0
uating Oy + ;7 for k; € [0.0,3.0]. Shrinking Ki

the task vector (k; < 1.0) retains performance — Cars DTD — EuroSAT — GTSRB

comparable to or even better than the original — MNIST — RESISC45 SVHN - — SUN397

fine-tuned model across a broad range. In con-  Figure 3: Effect of scaling task vectors on test
trast, stretching beyond x; = 1.0 degrades ac- accuracy. For each of the eight vision tasks (ViT-
curacy, and by x; = 3.0, the model under- B-32), we evaluate the model Oy + £ T as the
performs even the zero-shot baseline across all ~ scaling factor r; varies from 0.0 to 3.0. Model
tasks. A similar trend was also observed for performance is more robust to shrinking the task
ViT-L-14 (see Section E.3). vector than to stretching it, suggesting that when
harmonizing task vector norms, longer vectors

As sh lier in Fi 1b, real-world fine-
S SOWR €arfier 1 Figure real-worlc ine should be shrunk to match shorter ones.

tuning pipelines often result in over 5X varia-
tion in task vector norm due to differing learn-
ing rates or training durations. In such cases, stretching small-norm vectors to match larger ones
risks disrupting the pretrained model’s useful representations and is therefore undesirable.

Furthermore, Ilharco et al. (2023) observed that merging task vectors with smaller norms tends
to yield better performance. A likely explanation is that smaller displacements remain within the
local linear regime around @y, where first-order approximations hold more accurately. This also
aligns with the NTK perspective discussed in Ortiz-Jimenez et al. (2023); Yoshida et al. (2025),
under which merging remains valid and weight disentanglement is preserved near the pretrained
initialization. Notably, Theorem 3.1 in Wei et al. (2025a) demonstrates that the performance gap
between the merged model and the fine-tuned model is proportional to the product of the learning
rate and the number of fine-tuning steps. This theoretical insight aligns with our claim that shrinking
task vectors is preferable.

Taken together, these observations strongly suggest that when normalizing task vectors for merging,
it is preferable to shrink the longer ones rather than stretch the shorter ones.
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Figure 4: Impact of label smoothing on confidence calibration and merge performance. (a) Av-
erage reliability diagram for ViT-B-32 across eight vision tasks under different label-smoothing
strengths .. Without label smoothing (o« = 0, dark purple) the model is strongly overconfident;
as « increases to 0.01 the model becomes well-calibrated, and at « = 0.1 it turns underconfident.
(b) Test normalized accuracy obtained when the corresponding source models are merged. Merge
performance decreases monotonically with larger «, revealing a clear trade-off: lower confidence
comes at the cost of lower accuracy after merging.

6.2 CONFIDENCE RELIABILITY IN MODEL MERGING

As noted in Section 3.2, successful model merging often conflicts with maintaining reliable confi-
dence estimates in both the source and merged models. Figure 4 illustrates this trade-off by sweeping
the label-smoothing strength « used during fine-tuning of the source models.

First, the calibration curves in Figure 4a show that a model trained without label smoothing (dark-
purple line) is strongly overconfident, which is consistent with the well-known tendency of modern
deep networks (Guo et al., 2017). As « increases from 0.01 to 0.1 (red — yellow), the models
become well-calibrated and eventually underconfident, matching the observations of Miiller et al.
(2019). Figure 4b then reports the normalized accuracy obtained when these source models are
merged. Accuracy decreases monotonically with larger o, revealing an inverse correlation between
label-smoothing strength and merge performance.

In short, current merging methods perform best when the source models are deliberately overcon-
fident. To retain reliable confidence after merging, we therefore advocate applying post-hoc cali-
bration, such as temperature scaling (Guo et al., 2017), to the merged model rather than trying to
calibrate the sources beforehand.

7 CONCLUSION

We presented DisTaC, a lightweight and practical pre-conditioning method for task vectors that im-
proves the robustness of model merging in multi-task learning. Our analysis identified two major
failure modes of norm disparity and low source-model confidence that frequently occur in real-world
merging scenarios. DisTaC addresses both issues simultaneously via KD on unlabeled data, requir-
ing only minimal computational cost and no access to task labels. Through extensive experiments,
we demonstrated that DisTaC not only recovers performance degraded by task vector scaling, but
also enhances confidence in the source models without sacrificing generalization. Furthermore, we
showed that DisTaC enables state-of-the-art merging methods to succeed in challenging cases where
they would otherwise fail. Our findings highlight the importance of task vector conditioning, and
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we believe that DisTaC provides a simple yet powerful tool to make model merging more reliable
and broadly applicable.

8 LIMITATION

Our study is limited to CLIP-based vision tasks, and we have not evaluated DisTaC on other modal-
ities or architectures. While we focus on the two main failure modes of norm disparity and low
source-model confidence, we do not explore all possible causes of task interference. Addition-
ally, DisTaC assumes access to unlabeled data for distillation, which can at times be challenging
due to potential security constraints. Nevertheless, we emphasize that DisTaC achieves over 96%
of ideal performance even when using extremely small datasets or data with severe distribution
shifts, demonstrating strong robustness in such settings (see Appendix E.5). Furthermore, other ap-
proaches, such as Yang et al. (2024b); Yan et al. (2025), also rely on the availability of unlabeled
data. Despite these limitations, we believe that our experiments directly support our main claims on
failure modes and are sufficient to demonstrate the effectiveness of our approach.
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A RELATED WORK

A.1 MODEL MERGING AND TASK ARITHMETIC

Research on integrating multiple neural network models by performing operations on their param-
eters has been widely conducted, starting with Utans (1996). These techniques enable a model to
learn diverse tasks with less time and computational resources, and have become increasingly im-
portant in recent years as the number of model parameters has grown dramatically. For instance,
in early approaches to model merging, models with the same architecture were fine-tuned and then
merged by averaging their parameters (Wortsman et al., 2022a; Choshen et al., 2022). More sophis-
ticated methods have since been proposed, such as Fisher Merging (Matena & Raffel, 2022), which
is based on maximizing the posterior probability of the model, and RegMean (Jin et al., 2023),
which minimizes the distance between output activations before and after merging. In contrast, task
arithmetic (Ilharco et al., 2023) focuses on the task vector, defined as the difference in parameters
between a fine-tuned model and a pre-trained model, and performs addition and subtraction of task
vectors in parameter space. This approach offers the advantage of allowing flexible, localized mod-
ifications to the model and has found applications across diverse tasks (Tang et al., 2024; Su et al.,
2024; Yoshikawa et al., 2025; Naganuma et al., 2025).

Recent research on task arithmetic has theoretically analyzed the simple addition of task vectors and
proposed multiple methods to address its shortcomings. Approaches aimed at improving the prop-
erties of task vectors focus on the linearity in fine-tuning (Ortiz-Jimenez et al., 2023; Yoshida et al.,
2025). These methods, based on the Neural Tangent Kernel (NTK) (Jacot et al., 2018), treat the
model’s output as linear during fine-tuning in order to reflect vector operations in parameter space
onto the model’s inputs and outputs. Meanwhile, several studies have been conducted from the
perspective of mitigating interference between task vectors. TIES-Merging (Yadav et al., 2023) em-
phasizes the removal of redundant elements and the consideration of sign in each vector dimension.
AdaMerging (Yang et al., 2024b), on the other hand, automatically adjusts merging coefficients per
task and per layer to reduce task interference and enhance robustness through test-time adaptation.
Wang et al. (2024) introduced a framework for pinpointing the parameters that carry information
shared across tasks and, on that basis, proposed Consensus Merging, which builds task-wise masks
that align more closely with inter-task consensus than the masks used in TIES-Merging. While
traditional multi-objective optimization can be computationally prohibitive, Li et al. (2025) amor-
tized this cost by leveraging quadratic approximations to identify diverse Pareto-optimal merging
solutions. More recently, Wei et al. (2025b) reformulated model merging as minimizing the loss
gap between the merged model and each task-specific model, introducing DOGE with subspace
projection and task-aware scaling. TSVM (Gargiulo et al., 2025) interprets task interference as non-
orthogonality among the layer-wise singular vectors of the task vectors; by whitening those singular
directions, TSVM further improves merge quality.

Despite these advances, Ilharco et al. (2023) and nearly all follow-up studies on multi-task model
merging benchmark their methods under highly idealized settings, leaving real-world failure modes
largely unexplored. In this work, we show that (i) discrepancies in task vector norms and (ii) low
source-model confidence are key sources of interference. We introduce DisTaC as a simple pre-
conditioning step that mitigates both problems before merging.

A.2 KNOWLEDGE DISTILLATION

DisTaC addresses the limitations of existing task arithmetic methods by incorporating knowledge
distillation. Knowledge distillation is a technique proposed for transferring knowledge from a
teacher model to a smaller student model (Hinton et al., 2015). Although initially intended for
model compression (Hinton et al., 2015; Kim et al., 2018; Sanh et al., 2020), it has also been ap-
plied in contexts such as self-distillation, where repeated distillation between models of the same
architecture leads to performance improvement (Furlanello et al., 2018; Zhang et al., 2019; Zhang
& Sabuncu, 2020). Among these applications, several studies have explored generating models that
can handle multiple tasks by distilling knowledge from single or multiple teacher models (Luo et al.,
2019; Hao et al., 2023; Xu et al., 2023). These approaches achieve distillation by mapping the pa-
rameters of multiple teacher models into a shared space for the student model. Conversely, it is also
possible to distill models with different architectures individually to obtain task vectors, which can
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then be merged using task arithmetic (Merugu et al., 2025). DisTaC adopts the latter approach and
resolves the issue of variability in the norms of task vectors by obtaining them through distillation.

Applying distillation to task arithmetic requires addressing the impact of soft targets. Numerous
studies have analyzed the effects of label smoothing in the context of knowledge distillation (Miiller
et al., 2019; Shen et al., 2021; Chandrasegaran et al., 2022; Zheng & YANG, 2024). In this study,
we demonstrate that fine-tuning with soft targets significantly affects the models obtained through
model merging, and propose a method to mitigate this effect by increasing the confidence of the
student model.

B PROOF FOR PROPOSITION 1

Let § = ||11]|/||72|| and assume 71 L 7. Then

I Timergel|” = 171 + 72)1* = [7lf* + [172]1* = (1 + %) | .

For the cosine similarity with 75, we compute
Tmerge * T2 _ HTQ H2 _ 1
| Tmergell[| 72l (1+02)||m)2 V14062

Using the inequality (1 + 62)~1/2 > 1 — %52 for § > 0, we obtain the lower bound.

COS(Tmerge; 7-2) - ‘

Similarly, for the cosine similarity with 71,

. 2 )
COS(Tmerge, 7_1) Tmcrgc T1 o HTl H

Crmergelllmll A+ 82) [Imllllm)] VI8
Since 6/v/1 + 02 < 4, the claim follows.

Hence, when 0 < 1, the merged vector is nearly aligned with 7o while its alignment with 7y is
suppressed by a factor of O(9). O

C THEORETICAL INSIGHTS INTO TASK VECTOR MERGING FOR MODELS
OPTIMIZED WITH DISTINCT OBJECTIVES

This appendix provides a step-by-step derivation of the theoretical results concerning the effect of
calibration penalties on the arithmetic merging of task vectors. We demonstrate how calibration can
introduce a first-order degradation in cross-entropy (CE) performance upon merging, an effect not
observed when merging standard CE-trained task vectors.

C.1 NOTATION AND ASSUMPTIONS

We use the following notation. For task i, the standard cross-entropy (CE) objective is
JFE(6) = ~E(y)~p,[logpo(y | )]
We also consider a calibrated objective that augments CE with a generic penalty C;(0) ! weighted
by A; > 0:
JEAL(0) = JFE(0) + X Ci(6).
For either objective x € {CE, CAL}, the task-specific optimum is denoted
07 = arg mein J7(0).

Throughout, we assume the objectives J-F and J“AL are C? in a neighborhood of a fixed base pa-
rameter Oy. Let H; := VQJl-CE(Oo) denote the CE Hessian at 8 and assume H, is positive-definite,
ensuring that 6 lies in a locally convex region of the CE landscape. For notational convenience we
write the gradients at 6 as

g = VJE(8)), b; := VCi(y).

"For example, a detailed description of evaluating focal loss can be found in Kimura & Naganuma (2025).
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C.2 THEORETICAL PRELIMINARIES FOR THE MAIN RESULT
C.2.1 DERIVATION OF THE STANDARD TASK VECTOR

The optimal parameter vector F for the standard cross-entropy loss satisfies the first-order opti-
mality condition, which states that the gradient at this point is zero.

VJCE(OCE) = 0. 3)

Using the definition of the task vector, we can write S = @y + 7CE. Substituting this into the
optimality condition yields:
VIE (O +77F) =0. ©))

We now perform a first-order Taylor series expansion of the gradient function VJZ-CE(~) around the
point 6.
VIEE (O + ) = VIE(8) + VAT (00) 77" + O %), 5)
Using our established notation for the gradient (g;) and the Hessian (H;) at 6y, this becomes:
g+ Hir "+ O(| %) = 0. (©)

For fine-tuning scenarios where the task-specific solution OiCE is close to the pre-trained model 6,
the norm of the task vector ||7CF || is small. We can therefore neglect the higher-order terms.

g + Hi " ~0. (7)
Since H; is assumed to be positive-definite, it is invertible. We can solve for the task vector TiCEZ

Hi7 " = -, (8)
which gives the well-known result from a single Newton-Raphson step:

°F = —H 'g,. 9)

7

C.2.2 DERIVATION OF THE CALIBRATED TASK VECTOR

We now apply the same procedure to the calibrated objective function JCAY(8).

Gradient and hessian at the base point. First, we compute the gradient and Hessian of JCA(0)
at the base point 8. The gradient is:

VIS (80) = V (JEE(O) + A Ci()) | (10)
= VJE(8o) + \iVCi(60) (11)
— g + \b. (12)

Let A; := V2C;(0o) be the Hessian of the calibration term. The Hessian of the calibrated objective,
which we denote by H;, is:

i = V2T 00) = 7 (IP°0) + AC0) |, a3)
= V2ICE(00) + \iV2Ci(00) (14)
= H; + N A;. as)

CAL

Neumann series expansion of H, *. To solve for the calibrated task vector 7, we need the

inverse of the calibrated Hessian, H. i_l. For a small penalty weight \;, we can approximate this
inverse. We begin by factoring out H;:

Hy=H; + \jA; = H; (I +H7Y(\A)) = Hi (T+MH7HA,) . (16)
The inverse is then given by I;fi_l = (I+ )\iHi_lAi)*lHi_l. We can expand the term
(I + M\;H;"A;)~"! using a Neumann series (Horn & Johnson, 2012), (I + X)~' = >272° (- X)F,
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which converges if the spectral radius of X is less than 1. Assuming )\; is sufficiently small such
that ||\ H; ' A;|| < 1, we have:

(T+NH7PA) Y =T = NH7PA + (VGHA)? — (17)
=1 NH7'A +00\). (18)
Substituting this back into the expression for Hi_l:

H7' = (I —NH YA+ 002)H ! 19)
=H ' - NH'AHT +00\?). (20)

Solving for 7CAL.  The calibrated task vector 7°A" is found by applying the first-order optimality

condition to JZAL and linearizing around 6y:

VICAL(OAL) = VIEAL(80) + V2 ICA (00)r AL + O AP =0, @)
Using the expressions from B1 and ignoring higher-order terms:
(g + Aibi) + Hir A ~ 0. (22)
Solving for TiCAL gives:
M R —H T (g + Aib). (23)
Now, we substitute the approximation for H i_l from equation 20:
TN A (H = NHTAGHT + O(N) (g + Aibs) (24)
=— (H;'g, + NH "oy — NH VA H g, — N H7VAHT ') + O(A) (25)
= —H g = NH by + N H U AH g+ O(X)). (26)
We recognize the first term as the standard task vector, 7°® = —H, 'g,. The expression becomes:
AL = O8N H T + N HVAH g+ O(ND). 27)

In many practical scenarios, especially after extensive pre-training, the initial gradient norm ||g,||
is small. Consequently, the term \; H; " A; H; 'g,, which is of order O();||g;||), is often negligible
compared to the term —\; H, i_lbi, which is O();). Under this simplifying assumption, we can define
the first-order correction due to calibration as:

8= —NH; 'b,. (28)

This allows us to express the calibrated task vector as a simple perturbation of the standard task
vector:
T =708 1 6+ OO, Nillgil)- (29)

(2

C.2.3 TASK VECTOR MERGING

We consider merging two task vectors using a simple linear combination with positive coefficients
«, B > 0. We define two types of merged parameters:

0515@6 =0y + arF + BryE (30)
Orovge = 00 + ar A 4+ AL, 31

Taylor expansion of the CE loss for merged vectors. Our goal is to evaluate the CE loss JiCE not
at its own optimum, but at the merged parameter points. We use a second-order Taylor expansion of
JEE(6) around p:

JCE(0) — JCE(00) = g/ (0 — 0o) + %(9 —6o) " H;(6 — o) + O(]|6 — 6, |*). (32)
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Merging of CE vectors. Let AG°F = 0SE 0y = arF + 7. The change in CE loss for

merge
task 7 is:

T Otege) — I (00) = g (" + Br5") + O(||7]1?). (33)

Let’s analyze the first-order term in the expansion. Using g, = —H, iTZ-CE from equation 7:
gl (ar® + B13%) = ag] " + Bg 5" (34)
— Oz(—HZTCE)T CE +B( Z7_CE)T7_CE (35)
a( CE)TH TCE ﬁ(TiCE)THiTQCE. (36)
The term for task ¢ itself (¢ = 1 and analyzmg 7CE, or i = 2 and analyzing 7 F) is
—a(rCE)THiw PP = —a||7CF|%,.. Since Hj is positive-definite, this self-term is strictly nega-

tive. The cross-term’s sign is indefinite. However, the dominant contribution to the loss change is
typically negative and of order O(]|7]|?), indicating that merging CE vectors does not increase the
loss at first order.

Merging of calibrated vectors. Let AGCAL = 9SAL — 9 = a7 AL + BrIAL. The change in

merge
loss is:
T Orse) — I (00) = g (a0 + Br74) + O(||7]7, 2%). 37)
We substitute 704 &~ 70F + §;:
g/ (arM 4+ BroA) ~ gl (a(r7F + 61) + B(r5F + 82)) (38)
=g/ (o + B15") + a(g] 61) + B(g/ 82) . (39)

Original term, O(||7]|2) Additional term, O (A[|T]])

Let’s analyze the additional term introduced by calibration. Using the definitions of g; and ¢;:
g 0; = (—Hm ") (=N H; 'by) = X (v7F) THH; b, (40)

This term is first-order in A; and its sign is not guaranteed to be negative. If this term is positive, it
can cause an increase in the CE loss. Since its magnitude is O(A||7||), it can dominate the O(||7||?)
terms when ||7|| is small, leading to a net increase in the CE loss.

C.3 MAIN RESULT AND PROOF

Proposition 2. Under the assumptions stated, if the vectors {g;r 0;}j=1,2 are not both zero or strictly
negative, then there exist merge coefficients v, B > 0 such that for at least one task i € {1, 2},

JCE <HCAL ) JCE (00E )

merge merge

This difference is of first order in the calibration weights A1, \o.

Proof. We analyze the difference in the CE loss for task ¢ between the two merging strategies. Let
AQCE = 9CE @y and AGCAL = @CAL g,

merge merge

CE(gCAL CE (gCE
J (emerge) J (emerge)
= (J7%(00) + gl A + O(|AO“AY %)) — (J7F(60) + g AOF + O(||AF||))
=g/ (A0 — AGF) + O(||7[|, %) (41)
The difference between the merged displacement vectors is:

AGAT — AOOF = (ar{AM + 5TCAL) (ar® + pr5")

= a(rfA - 70B) 4+ BrfAL — 7CP)
=a(d + (9()\%)) + B(82 + O(A\2))
= ad; + By + O(\?). (42)
Substituting this back, the leading term of the loss difference is:
TP (Oferge) = Ji7F (Ofncege) = (g 81) + B(g] 82). (43)
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The terms g §; and g 8, are scalars of order O(\||7||). Their signs depend on the geometry of
the loss landscapes. Unless both scalars are non-positive for both tasks i = 1,2, we can choose
positive coefficients «, 3 that result in a positive sum for at least one task. For instance, if g, §; > 0
for a given ¢, we can select a small enough § > 0 relative to o > 0 such that the total sum
a(gl 1) + B(g/ 62) is positive.

This positive term is of order O(A||7]|). It dominates the other terms of order O(||7]|?) and O(\?)
when || 7| and X are sufficiently small, leading to a net increase in the CE loss for calibrated merging
compared to standard merging. [

Interpretation This result provides a theoretical basis for the observation that merging task vec-
tors trained with certain penalties can be detrimental. The calibration penalty introduces a linear per-
turbation term §; to the task vector. This term is not necessarily aligned with the descent direction of
the cross-entropy loss J~F. When multiple such vectors are added, these misaligned perturbations
can combine constructively to push the merged parameter vector into a region of higher CE loss.
This increase is of first order in A and can therefore be significant. In contrast, merging pure CE
vectors does not introduce such a first-order degradation term.

D EXPERIMENT DETAILS

All experiments were run on NVIDIA A100 GPUs (40 GB memory each). Fine-tuning jobs used
four GPUs in parallel, whereas all evaluations were performed on a single GPU.

Fine-tuning Details. Our training protocol closely mirrors the public code of Ilharco et al. (2023).
For each task, we fine-tuned CLIP backbones (ViT-B-32 and ViT-L-14) for 2000 updates using
AdamW (Loshchilov & Hutter, 2019) with a weight-decay factor of 0.1. We adopted a cosine-
annealed learning-rate schedule preceded by 200 warm-up steps and used a mini-batch size of 128;
ViT-L-14 training employed gradient accumulation to match this effective batch size. Following the
findings of Ilharco et al. (2023), we kept CLIP’s text encoder frozen and treated the logits obtained
from class-specific prompts (e.g., “a photo of a {classname}”) as a fixed classification head,
updating only the image encoder during fine-tuning. Regarding the learning rate, we used 10~*
only when training task vectors with large norms in the Norm Mismatch setting, and 10~ for all
other cases. In the Low Confidence setting, the label smoothing strength was set to o = 0.1.

Merging Details. For all four merging methods adopted in this study, it is necessary to tune the
task vector coefficient \;. Following Ilharco et al. (2023), we imposed a unified constraint on all ),
and searched the range from 0.0 to 1.0 (in increments such as 0.05) based on validation accuracy.

Distillation Details. The distillation procedure generally followed the fine-tuning settings de-
scribed above, except that the number of steps was set to 500 and the learning rate was fixed at
1075 for all cases. The ¢ regularizer weight 3 was set to 0.5.

D.1 NORMALIZED ACCURACY

The normalized accuracy for a task ¢ on its dataset D, is defined as the ratio of the post-merge
model’s accuracy to the single-task model’s accuracy:

accuracy (@, Dy )

normalized accuracy, = —,
accuracy (60, D;)

where the function accuracy (6@, D) denotes the accuracy of the model f(-; @) on a dataset D.

E ADDITIONAL RESULTS

E.1 NORM COMPARISON ACROSS LAYERS

Figure 5 (weights) and Figure 6 (biases) visualize how the parameter norm of each ViT-B-32 layer
changes when the learning rate is raised from 105 (gray bars) to 10~* (blue bars). The scale shift
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is not confined to a few layers; rather, every block exhibits a consistent multiplicative increase. In
other words, tuning with a larger learning rate stretches the entire task vector almost uniformly,
across both weight matrices and bias terms. This layer-wise coherence implies that any merge-time
correction must adjust the global scale of the model, not merely a subset of layers.
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Figure 5: Layer-wise average task-vector norms for weight parameters in ViT-B-32, averaged
over eight vision tasks. Gray bars correspond to a fine-tuning learning rate of 1075, blue bars to

10~4.
E.2 OTHER CONFIDENCE CALIBRATION METHOD AND MERGING PERFORMANCE

We assessed two additional confidence—calibration techniques—Mixup and focal loss—alongside
label smoothing. For each of the eight vision tasks we fine-tuned ViT-B-32 with Mixup or focal loss
and then merged the resulting task vectors. For Mixup, the interpolation coefficient was sampled
independently at each iteration from the uniform distribution 2/(0, 1). For focal loss, we set the
focusing parameter to v = 10. Table 2 reports the outcomes. Like label smoothing, both Mixup
and focal loss markedly reduced merge accuracy relative to the Original configuration, confirming
that they also raise prediction entropy and thus interfere with model merging. In every case, how-
ever, applying DisTaC restored accuracy to a level on par with Original, demonstrating that DisTaC
reliably conditions confidence even when the source models were calibrated with Mixup or focal

loss.
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Table 2: Impact of confidence—calibration fine-tuning on merge accuracy. Source models (ViT-
B-32) are fine-tuned with three popular calibration techniques—label smoothing (LS), Mixup, and
focal loss—before merging. In every case the resulting merge accuracy drops far below the Original
benchmark, showing that low-confidence sources hamper model merging. When the same models
are first processed with DisTaC, accuracy is restored to a level on par with Original, confirming that
DisTaC’s confidence conditioning is effective across all three calibration schemes.

Method Original | LS Mixup  Focal Loss
Task arithmetic 70.48.0) | 51.0583) 52.3(60.5) 55.563.9)
Task arithmetic + DisTac - 63.6(122) 66.8(75.2) 67.2(76.9)
TIES 74.0820) | 54.506200 55.5(63.9) 59.4 (68.8)
TIES + DisTac - 68.77790 69.5(787) 72.182.4
Consensus TA 74.8@828) | 54.66200 54.8(63.0) 58.9 (68.2)
Consensus TA + DisTac - 67.7765 69.477.8) 71.7 81.7)
TSVM 83.392.4) | 60.7@©8.4 60.969.6) 69.3(79.5)
TSVM + DisTac - 81.5018 80.1(90.0) 81.8(93.0)

E.3 IMPACT OF TASK VECTOR SCALING ON VIT-L-14

We carried out the same scaling experiment (see Figure 3) on the larger ViT-L-14 backbone. As
shown in Figure 7, the trend matches that of Figure 3: shrinking the task vector (A < 1) leaves
single-task accuracy largely unchanged—often even slightly higher—whereas stretching it (A > 1)
rapidly erodes performance. These results further support the recommendation that, when task-
vector norms are mismatched, one should shrink the longer vectors rather than stretch the shorter
ones for robust model merging.
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Figure 7: Effect of scaling task vectors on test accuracy. For each of the eight vision tasks (ViT-
L-14), we evaluate the model 8. + AT as the scaling factor A varies from 0.0 to 3.0. Shrinking
the task vector (A < 1.0) often preserves or even improves accuracy relative to the fine-tuned model
(A = 1.0), while stretching the vector (A > 1.0) leads to sharp degradation. At A = 3.0, performance
falls below that of the zero-shot model on all tasks. These results support shrinking long task vectors
to match shorter ones when resolving norm disparities.

E.4 SCALING ALONE IS INSUFFICIENT TO OVERCOME NORM MISMATCH

To test whether simple rescaling is sufficient, we revisited the Norm Mismatch scenario and aligned
the longest task vector to the mean norm of the remaining vectors before merging. Figure 8 reports
the resulting normalized accuracy for ViT B-32 on the eight vision tasks: Original (gray), Norm
Mismatch after only scaling (light orange), and Norm Mismatch followed by DisTaC (red). The
z-axis lists the task whose vector was lengthened; “Avg.” is the mean over all tasks.
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Figure 8: Normalized merge accuracy for ViT-B-32 on the eight-task benchmark under three
conditions. Gray: Original. Light-orange: Norm Mismatch after rescaling the longest task vector
to the mean norm of the others. Red: same rescaled vectors followed by DisTaC. Simple scaling
narrows the gap only slightly, whereas DisTaC fully restores accuracy to the Original level. “Avg.”
denotes the average across all tasks.

Scaling alone lifts accuracy slightly but still leaves a sizeable gap to Original. In contrast, apply-
ing DisTaC after scaling recovers the lost performance and matches the baseline across every task.
As explained in Section 6.1, even shrinking a task vector inevitably hurts its single-task accuracy;
DisTaC is therefore essential for restoring that accuracy before merging.

E.5 SENSITIVITY ANALYSIS ON UNLABELED DATA

We conducted experiments to assess DisTaC’s sensitivity to data size and quality.

Robustness to Data Size. We first tested DisTaC’s performance by varying the number of unlabeled
samples per class (100, 200, 300, 400, and 500). Table 3 shows the average relative test accuracy
across all tasks, where 100% represents the test accuracy achieved using the full unlabeled dataset
(2,490 samples per class on average) for DisTaC. For comparison, we included results for distillation
starting directly from the pretrained model (‘“Distill-from-Pretrained”).

The results demonstrate DisTaC’s strong robustness to limited data. DisTaC achieves over 90% of
the full-data test performance with just 300 samples per class in both failure modes, and maintains
over 80% performance even with 100 samples (reaching 96% in the Norm Mismatch case). Com-
pared to distillation from the pretrained model, DisTaC exhibits superior robustness. This highlights
the methodological benefit of initializing distillation from the already scaled task vector (6pc+£¢T¢).

Table 3: Relative test accuracy with varying unlabeled data size per class. The baseline (100%)
corresponds to test accuracy using the full unlabeled dataset.

Method 100 200 300 400 500

Norm Mismatch
Distill-from-Pretrained 71.1 757 83.1 882 89.0
DisTaC 96.0 96.0 97.3 98.6 99.0

Low Confidence
Distill-from-Pretrained 70.1 73.8 812 84.6 &87.6
DisTaC 839 874 905 91.0 950
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Robustness to Data Quality. We next assessed robustness to degraded data quality by introducing
dataset shift via Gaussian blur during distillation. This setup simulates real-world conditions like
variations in weather or camera quality. The blur strength is controlled by the kernel size (fixed at 5)
and the intensity range (o min, Omax), Where a larger o value indicates stronger corruption. Table 4
shows the relative test accuracy against the performance achieved using clean data for distillation.

The analysis confirms DisTaC’s high robustness to quality degradation. DisTaC consistently main-
tains performance, achieving over 90% of the clean-data performance even under the most severe
corruption (omax = 3). In the challenging Low Confidence case, DisTaC maintains near-perfect
accuracy (over 98.5%) regardless of corruption intensity. DisTaC demonstrates superior robustness
compared to the baseline, suggesting that utilizing the original fine-tuned model as the teacher ef-
fectively filters noise present in the unlabeled data.

In conclusion, these experiments confirm that DisTaC possesses sufficient robustness to variations
in both unlabeled data size and quality, supporting its effectiveness for real-world applications.

Table 4: Relative test accuracy under Gaussian blur corruption. Ranges [0yin, Omaz] denote the
blur intensity, with larger values indicating stronger corruption.

Method [0.1,1] [0.1,2] [1,3]

Norm Mismatch
Distill-from-Pretrained 98.1 95.7 90.7
DisTaC 100.4 96.2 91.7

Low Confidence
Distill-from-Pretrained 98.1 97.3 94.7
DisTaC 99.6 98.5 99.9

E.6 COMPUTATIONAL EFFICIENCY OF DISTAC

Table 5: Computational cost of DisTaC on ViT-B-32 averaged over 8§ tasks.

Metric Value
Hardware 2 NVIDIA A100
Batch Size 64 per device
Time per Step ~ 0.0064 s
Total Time (500 steps) ~32s
Peak Memory Usage 7.1 GB

To empirically validate the claim that DisTaC is computationally lightweight, we measured the train-
ing cost using the ViT-B-32 backbone on 2 NVIDIA A100 GPUs. As summarized in Table 5, the
distillation process is extremely efficient. With a batch size of 64, the average training time is ap-
proximately 0.0064 seconds per step across the eight vision tasks. Consequently, the standard 500-
step DisTaC procedure requires only about 3.2 seconds to complete (excluding evaluation time). The
peak GPU memory usage was recorded at 7.1 GB, which includes the overhead for online teacher
inference; this could be further optimized by pre-computing teacher predictions.

E.7 GENERALIZING DISTAC TO NLP

We conducted experiments using RoBERTa-base (RoBERTa-b), RoBERTa-large (RoBERTa-
1) (Zhuang et al., 2021), and Llama2-7b (Touvron et al., 2023) to examine whether our claims ex-
tend beyond vision tasks to the NLP domain. Following Ilharco et al. (2023), we adopt four GLUE
benchmark(Wang et al., 2019) tasks: CoLA, MRPC, RTE, and SST-2. In the NLP experiments, we
evaluate the same settings as in vision: norm disparity and low confidence.

The results are presented in Table 6. In comparison to the original configuration, the normalized
score degrades under both the Norm Mismatch and Low Confidence settings. In instances of norm
mismatch among task vectors, the application of DisTaC effectively reduces interference between
task vectors, thereby enhancing the normalized score from that of task arithmetic without DisTaC
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Table 6: Comparison of post-merge accuracy across fine-tuning configurations and the effect
of DisTaC in NLP. Absolute accuracy is displayed in a large font size, whereas normalized accuracy
appears in parentheses in a smaller font. When the task vector norms diverge (Norm Mismatch)
or the source models exhibit low confidence (Low Confidence), the normalized score degrades
relative to the standard benchmark setting (Original). Under these conditions, DisTaC effectively
pre-conditions the source models, improving performance in both settings.

Method Original Norm Mismatch Low Confidence
RoBERTa-b RoBERTa-l Llama2-7b | RoBERTa-b RoBERTa-l Llama2-7b | RoBERTa-b RoBERTa-1 Llama2-7b

Task arithmetic 60.9(73.5) 68.3 (s2.4) 75.9 @171 56.8(68.5) 46.0(s8.1) 55.364.7) 61.3(72.6) 64.5(73.9) 75.7095.1)
Task arithmetic ~ + DisTaC - - - 59.971.7) 64.4(80.5) 75.091.1) 62.5(74.6) 70.0 823 73.095.9

(e.g., RoBERTa-large exhibits an increase from 58.1 to 80.5, an improvement of 22.4 points in the
normalized score). Furthermore, when the task vectors exhibit low confidence, the implementation
of DisTaC results in an elevation of the normalized score compared to scenarios without DisTaC
(e.g., RoBERTa-large: 73.9 to 82.3, an enhancement of 8.4 points in the normalized score). These
findings indicate that (i) the identified failure modes of norm disparity and low confidence we iden-
tify arise in both vision and language tasks, and (ii) DisTaC conditioning consistently enhances the
outcome of merging for CLIP/ViT, Roberta, and Llama. We posit that these results demonstrate the
cross-modality generalizability of vision and language. Notably, the recovery is stronger at larger
scales (e.g., llama2-7b in Norm Mismatch), suggesting that the method retains its efficacy as model
capacity expands.
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