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Abstract

Recent success in developing increasingly general purpose agents based on sequence
models has led to increased focus on the problem of deploying computationally limited
agents within the vastly more complex real-world. A key challenge experienced in
these more realistic domains is highly non-Markovian dependencies with respect to
the agent’s observations, which are less common in small controlled domains. The
predominant approach for dealing with this in the literature is to stack together a window
of the most recent observations (Frame Stacking), but this window size must grow with
the degree of non-Markovian dependencies, which results in prohibitive computational
and memory requirements for both action inference and learning. In this paper, we are
motivated by the insight that in many environments that are highly non-Markovian with
respect to time, the environment only causally depends on a relatively small number
of observations over that time-scale. A natural direction would then be to consider
meta-algorithms that maintain relatively small adaptive stacks of memories such that it
is possible to express highly non-Markovian dependencies with respect to time while
considering fewer observations at each step and thus experience substantial savings
in both compute and memory requirements. Hence, we propose a meta-algorithm
(Adaptive Stacking) for achieving exactly that with convergence guarantees and quantify
the reduced computation and memory constraints for MLP, LSTM, and Transformer-
based agents. Our experiments utilize the classic T-Maze domain, which gives us direct
control over the degree of non-Markovian dependencies in the environment. This allows
us to demonstrate that an appropriate meta-algorithm can learn the removal of memories
not predictive of future rewards and achieve convergence in the stack management policy
without excessive removal of important experiences.

1 Introduction

Reinforcement learning (RL) agents are typically formulated under the Markov assumption: the
agent’s current observation contains all information needed for optimal decision-making (Puterman,
2014). In practice, however, real-world environments are often partially observable—the agent’s
immediate observation is an incomplete snapshot of the true state. This leads to non-Markovian
dependencies over time, where past observations contain critical context for future decisions. Notably,
Abel et al. (2021) proved that there exist certain tasks (for example expressed as desired behaviour
specifications) that cannot be captured by any Markovian reward function. In other words, no
memoryless reward can incentivise the correct behaviour for those tasks—agents must rely on
histories of observations to infer hidden state information and resolve non-Markovian dependencies.
This theoretical insight underlines that non-Markovian tasks are not just harder, but sometimes
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Figure 1: Learning what to remember using Adaptive Stacking. (left) Modification to the standard RL
loop. (right) Performance of PPO on a Passive-TMaze with random lengths in [2, 16]. The stack size
k needed for FrameStack is k*, which scales with the maze length, whereas only x = 2 are needed.

fundamentally require memory beyond the scope of standard Markov formulations. We are interested
in such settings in big worlds (Javed & Sutton, 2024), where only a relatively small subset of past
observations are relevant for optimal decision-making, but they are separated by large spans of time.

While RL has shown great success in a variety domains (Arulkumaran et al., 2017; Cao et al., 2024),
handling such temporal dependencies remains a challenge especially for computationally limited
agents operating in big worlds (Javed & Sutton, 2024). In practice, the most common approach to
address this problem is Frame Stacking (FS), which is a FIFO short-term memory wherein a fixed
context window of the most recent k* observations (and actions) are concatenated. This is then used
directly as policy input, or first used to infer hidden states typically using active inference (Friston,
2009; Sajid et al., 2021) or sequence models like recurrent neural networks (Hochreiter & Schmid-
huber, 1997; Hausknecht & Stone, 2015), Transformers (Vaswani et al., 2017; Chen et al., 2021),
and state space models (Gu et al., 2021; Samsami et al., 2024). Given knowledge of the nature of the
temporal dependencies, for example when they are expressible as reward machines (Icarte et al., 2022;
Bester et al., 2023), prior works also use such histories of observations and program synthesis to learn
abstract state machines that compactly represent the memory and temporal dependencies (Toro Icarte
etal., 2019; Hasanbeig et al., 2024). While such approaches based on FS are very effective in domains
with short-term dependencies, such as in Atari games (Mnih et al., 2013) where 4 frames are enough
to capture the motion of objects, they quickly become impractical in domains where relevant informa-
tion may have occurred in an unknown large number of steps (Ni et al., 2023). Importantly, increasing
k* causes an exponential increase in the dimensionality of the observation space, leading to both a
severe increase in compute and storage, and potentially poor sample efficiency and generalisation.'

However, many tasks may not actually require remembering everything—often only a sparse subset
of past observations is truly relevant for making optimal decisions. This insight aligns with findings in
cognitive neuroscience: working memory in humans is known to have limited capacity and is thought
to employ a selective gating mechanism that retains task-relevant information while filtering out
irrelevant inputs (Unger et al., 2016). For example, a driver listening to a traffic report will update only
the few road incidents relevant to her route into memory and ignore other trivial reports. Similarly, an
RL agent with constrained memory should learn what to remember and what to forget. If the agent
can identify which observations carry information critical for future reward, it could store just those
and safely discard others, drastically reducing the burden on its memory and computation. Ideally,
this is possible without sacrificing performance, but instead actually improving generalisation.

Driven by this insight, we make the following main contributions: 1. Adaptive Stacking: We propose
Adaptive Stacking (AS), a general meta-algorithm that learns to selectively retain observations in
a working memory of fixed size x (Figure 1). When s < k¥, this significantly improves compute
and memory efficiency. It also leads to an exponential reduction in the size of the search space,
which has implications for sample efficiency and generalisation. 2. Theoretical analysis: We then

!'See Appendix A for a detailed overview of related works.
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prove that agents using this approach are guaranteed to converge to an optimal policy in general
when using unbiased value estimates, and in particular when using TD-learning—the predominant
learning approach—under general assumptions. This enables practical trade-offs under the same
resource constraints, such as the use of smaller memory to enable larger policy networks and the use
of partial—instead of full—observations for better generalisation. 3. Empirical analysis: We run
several experiments in a variety of T-maze tasks—a canonical memory benchmark—using standard
RL algorithms like Q-learning and PPO. Results demonstrate that AS generally leads to better
memory management and sample efficiency than FS with x memory (when k* is unknown), while
having comparable sample efficiency to FS with £* memory (when k* is given by an oracle).

2 Problem Setting

The Environment. We are interested in non-Markovian environments, which can be modelled as
a Non-Markovian Decision Process (NMDP). Here, an agent interacts in an environment receiving
observations z; € X at each step ¢t € {0,1,...,7} and producing action a; € A, where T is the
length of an episode (or the lifetime of the agent in non-episodic settings). The agent’s action causes
the environment to transition to a new observation z;4; € & and also provides the agent with a scalar
reward 7,411 € R. The environment is k£*-order Markovian (i.e. a £*-order Markov Decision Process
(Puterman, 2014)), meaning that £* € N is the smallest number such that the probability function
Pr(ziy1,me1|Tei—ge, ar) is stationary regardless of the agent’s policy, where ¢k includes the
last k* observations.? If k* = 1, then this is a standard Markov Decision Processes (MDP). We are
interested in designing realistic computationally limited agents that can perform in environments
where £* is very large. Note that our setting closely mirrors that of partially observable Markov
decision processes (POMDP) (Kaelbling et al., 1998) where the last k£* observations constitute a
sufficient statistic of the state of the environment. In our work, discussion of the environment state is
not necessary as we make no attempt to build a formal belief state as is commonly done in POMDPs.
The notion of a memory state that we focus on building can be far more compact at scale.

The Agent. The agent acts in the environment using a policy m(as|%.t—g+ ), which can be char-
acterised by a value function V™ (24 =) = Eo o (2sr,res)~Pr >0V ret1|Te—k+]. The
agent’s objective is to learn an optimal policy 77* that maximizes their long-term accumulated reward,
characterised by the optimal value function V*(x4.;—g+) = max, V7 (zs.—k+ ). However, the agent
must learn 7* with finite computational resources including a working memory w (i.e. RAM) of finite
capacity (in bits) |w| < |w|*, and computational resources c of finite capacity (in allowable floating
point operations per environment step) |¢| < |c|* split across both inference and learning. The size
and architecture of the agents parameters # must be chosen such that the two resource limits are
always respected. Most recent progress in Al has been driven by sequence models (e.g. Transformers
or RNNs), which in our setting would learn a policy of the form 7y (a¢|zs.:—r). A fully differentiable
sequence model has at least a linear dependence with respect to the sequence length £ of the working
memory size |w| € (k) and computation |¢| € Q(k) (for both inference and learning). For the
popular Transformer architecture, it is actually even worse |c| € Q(k?).

The Problem. For a fully differentiable sequence model to learn in environments with large k*, we
must then correspondingly decrease the model size |0] so that we can accommodate for the agent’s
limitations in terms of working memory |w|* and computational resources |c|*. However, in many
environments with high £*, only x < k* observations are actually needed to predict the environment
dynamics. Thus £* is only large because the relevant observations are spaced apart by long temporal
distances, not because there are many relevant observations to consider. So then if we learn to
maintain a memory of size k* > k > « with RL, we can improve the efficiency of computation and
working memory by a factor of 2(k*/k) and increase |6] at the same resource budget. Additionally,
such an abstraction will induce a search space reduction by a factor of O(|X|*"~*), which could

2For clarity and without loss of generality, we only consider the history of observations and not the history of actions and
rewards, since these can always be included in the agents observations.
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lead to improvements in sample efficiency and generalisation for a policy using it. In this work, we
consider approaches for achieving this goal with deep sequence models.

3 Adaptive Stacking
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Figure 2: TMaze environment. There are only 4 observations here, corresponding to the color of
the grid cell the agent is in: red [ for goaly, green [] for goals, blue [ for the maze junction,
and grey [] for the maze corridor. The given goal (red or green sampled uniformly) is only shown
at the tail end of the maze, and the corridor has length L. The agent is represented by the black dot
and has four cardinal actions for navigation. (a) Passive-TMaze task. The agent starts at the tail
end of the maze. It then takes one step to the right at every time step regardless of it’s action, until
the junction location where the top and right actions achieve goal; while the down and left actions
achieve goals. (b) Active-TMaze task. The agent starts one step to the right of the tail end of the
maze. It then moves in the cardinal direction corresponding to its action at every time step, or stays
still if the action hits the maze walls—for example taking the up or down actions in the corridor
and the right action at the junction. (c) Minimal memory stack required when using Frame Stacking
vs Adaptive Stacking in the Passive-TMaze. (b) The value gap between the optimal values (using
Frame Stacking with k = k* = L + 2), and the perceived optimal values (using Adaptive Stacking
with k = k = 2) when an agent has observed [[] then [[] under their respective optimal policies in
the Passive-TMaze. The perceived optimal values under an optimal policy is higher than the true
optimal values because of uncertainty over the environment history (Section 3.2).

We propose Adaptive Stacking as a general-purpose memory abstraction for reinforcement learning in
partially observable environments. Adaptive Stacking extends the common frame stacking heuristic
by endowing the agent with control over which past observations to retain in a bounded memory stack
of size k. Rather than passively retaining the most recent & observations, the agent actively decides
which observation to discard—which could be the current observation. This transforms memory
management into a decision-making problem aligned with maximizing reward.

Motivating Examples. Consider the TMaze environment illustrated in Figure 2, a canonical memory
task from neuroscience (O’Keefe & Dostrovsky, 1971) which we adapt similarly to prior benchmark
works (Bakker, 2001; Osband et al., 2019; Hung et al., 2019; Ni et al., 2023): 1. Passive-TMaze task
(Figure 2a): Here, the agent only needs to remember the goal cue in order to pick the correct goal
at the junction cue, and doesn’t need to learn to navigate in the maze (hence k* = L + 2). Frame
Stacking, due to its FIFO nature, forgets the goal signal when the maze is longer than the memory
window (k < L+ 2). In contrast, with an adaptive stacking approach, the agent can learn to retain the
goal-defining observation across time and discard irrelevant grey observations—thereby solving the
task with a much smaller memory budget. 2. Active-TMaze task (Figure 2b): Here, the agent must
both navigate to find the goal color and remember it to navigate to the corresponding goal location.
Hence k* = oo since a non-optimal policy can stay arbitrarily long in the grey corridor, making
the environment non-stationary unless the whole history is kept in memory. An adaptive stacking
approach can learn to discard irrelevant movement observations while retaining the goal cue across
time, mimicking selective attention and long-term binding found in biological agents.
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3.1 RL with Internal Memory Decisions

Formally, Adaptive Stacking induces a new decision process where the agent at each timestep ¢
receives an observation z; € X’ and maintains a memory stack s; = [z;,, Z;,, . . ., %;, | containing k
selected past observations indexed by their timesteps. We will refer to this memory stack as the agent
state (Dong et al., 2022). Upon receiving x4, the agent must execute two actions: an environment
action a; € A (e.g., move left or right), and a memory action i; € {1,...,k} selecting which
memory element to pop. The agent state is then updated as: s;+1 = push(pop(s¢, i¢), Tt41).

In general, this process induces a new POMDP M, = (M,S,Z,u) where M is the orig-
inal POMDP, § is the set of agent states, Z is the set of memory management actions, and
u: S XZIxX — §Sisamemory update function (such as the push-pop stack update). The
agent’s policy is now 7y (a¢,i¢|s:), which can be characterised by a perceived value function
Vit (st) = Eayi)mme, (@isnres)~Pr [Doteo YV Tt1]u(se, i, 2441)] that represents the agent’s
perceived values. Its objective is now to learn an optimal policy 7}, that maximizes its long-term
accumulated reward, characterised by the perceived optimal value function V;*(s;) = max,, V™ (s;)
that represents the agent’s perceived optimal values. We show how to instantiate this process in
Algorithm 1 using Q-learning, but the approach is applicable to any RL algorithm. Importantly, the
approach is also compatible with modern architectures such as Transformers by simply defining
S, Z, and u appropriately—leading to compute and memory benefits as described in the Appendix.
By integrating the memory update into the RL loop (see Figure 1), Adaptive Stacking fits cleanly
into existing learning pipelines and can be trained end-to-end.

In this view, Adaptive Stacking transforms memory selection into a sequential decision-making
problem aligned with the agent’s reward signal. This stands in contrast to passive memory mechanisms
based on Frame Stacking, which indiscriminately process all inputs. This also aligns with cognitive
models of working memory in humans, where attention-gated memory buffers retain only task-
relevant cues while filtering distractors (Unger et al., 2016). However, this raises an important
question: How does selective forgetting affect the standard theoretical guarantees established for the
convergence RL agents—such as value function and policy optimality?

3.2 Value Preserving Optimality

While Adaptive Stacking is designed to learn which past observations to retain, a key theoretical
question is how this compression affects the ability of RL agents to preserve optimal behaviour. Specif-
ically, we want to understand how the perceived value function under Adaptive Stacking relates to
the true value function under full-history policies. We first observe that there is a general relationship
between the adaptive stack perceived value function and the underlying full-history value function:
Vit (se) = meik* Pr(zpi—g+|se, ) V™ (44—~ ) forall sy € S, where Pr(xs. —g+|s¢, T ) is
the asymptotic probability amortized over time that the environment k*-history is ;.. ;= when
the agent state is s; under policy 7 (Singh et al., 1994). This equation shows that the agent’s
perceived value under compressed memory is an expectation over possible latent histories. When the
memory stack discards critical observations, this conditional distribution becomes broader, increasing
uncertainty. However, this loss in value does not necessarily imply a suboptimal policy.

To see this, consider the Passive-TMaze example with corridor length L = 3, so that k* = L+ 2 = 5.
Suppose the agent uses an Adaptive Stacking policy with memory size & = 2. The optimal adaptive
policy 73, illustrated in Figure 5, learns to retain only the green goal indicator and discard irrelevant
grey observations. At timestep ¢ = 1, the memory state is s; = [_IZ]. However, multiple latent histo-
ries are compatible with this state: 4.4~ € {{_]_ R, CT Tl (T 1"} . This gives:

VO = v () + v (CCE) + v (CCCE) = (0 47+ 7).

However, the actual latent history at time ¢ = 1 is x¢.;—,~ = _|_ Il and the true optimal value
is: V*(z4.4—1~) = 7>, This induces a value gap |V* (24 _p+) — Vo 2 (s¢)| > 0, but 73 is still optimal
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since V™2 (Xpt—p+) = V*(2pe—p~), even though s, is not a sufficient statistic of the k*-history
T4t ~. Figure 2d shows the value gap for varying T-Maze lengths. This illustrates a crucial point:
Remark 1 Uncertainty in history may harm value expectations, |V*(z.4—j-) — V. * (s¢)| > 0, but
it does not necessarily harm policy optimality as long as the uncertain differences are irrelevant for
optimal decision making: V*(x4.4—j») = V™ (X4 pr ).

In the TMaze example, discarding some grey cells does not affect the correct action at the junction, so
the policy is optimal even if the perceived value is slightly pessimistic. This leads us to the following
notion of a minimal sufficient memory length:

Definition 1 Define « to be the smallest memory length such that there exists a policy 7}, satisfying
V7 (g ) = V(T ) for all t.

This characterises the minimal task-relevant context size needed to act optimally in environments
with large £*, and motivates the central promise of Adaptive Stacking: optimal memory management
via reward-guided memory decisions.  always exists since in the simplest case we can have k = k*
(Proposition 1), as shown in Figure 2c¢ when the maze length is 2 (when L = 0). Hence, any unbiased
RL algorithm that is guaranteed to converge to optimal policies under Frame Stacking with £ = k* is
also guaranteed to converge to optimal policies under Adaptive Stacking with k& = x (Theorem 1).

Proposition 1 If k = k¥, then there exists a 7} such that V7 (s¢) = V*(@py—p- ) forall s, € S.

Theorem 1 Let A be an RL algorithm that converges under Frame Stacking with k > k*. If A uses
unbiased value estimates to learn optimal policies, then it also converges under Adaptive Stacking
with k > k observations, assuming the policy class is sufficiently expressive.

Hence, an agent can use unbiased RL algorithms such as REINFORCE to learn optimal Adaptive
Stacking policies (provided the value estimates are also convex). However, such algorithms often
suffer from large variance (Sutton & Barto, 2018). To address this, we also provide convergence
guarantees using TD-learning in Appendix C.4, which is used by state-of-the-art algorithms like
PPO (Schulman et al., 2017). This shows that an agent does not need to be able to predict states nor
disambiguate trajectories to learn useful value estimates. When the memory length & is sufficiently
large (k > k), this ensures convergence to an optimal policy despite non-Markovian dynamics. This
has significant implications for compute and memory efficiency when using sequence models like
Transformers. Transformers incur compute costs of 2(k?) and working memory costs of (k) due to
self-attention over long contexts (Narayanan et al., 2021; Anthony et al., 2023). Adaptive Stacking
reduces these to (x2) and (k) respectively, by retaining only reward-relevant observations of
length k < k*—thereby yielding substantial efficiency gains in both inference and training shown in
Table 4. See Appendix I for derivations.

4 Experiments

We evaluate Adaptive Stacking on variants of the T-Maze task (Figure 2) to assess both learning
performance and memory management. We compare against two baselines: FrameStack with k =
(insufficient memory) and k = k* (oracle memory)?, and report three metrics: (1) Rewards regret:
difference in achieved values between the optimal and learn policies, (2) Memory regret: number
of steps when the goal cue is absent from the memory stack (excluding the top of the stack which
corresponds to the current observation), and (3) Returns: cumulative discounted rewards. All error
bars represent one standard deviation across a number of random seeds (V).

3In the active maze, k* is infinite since a non-optimal policy could stay arbitrarily long in the grey corridor. Hence, Frame
Stacking with £ = k£* = oo is unable learn in the continual active maze since there are no environment resets (and hence
memory resets), violating the assumption of infinite exploration needed for most algorithms (like Q-learning). Given this, we
instead use k = L + 2 for this experiment.
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Continual TMaze with Q-learning. We first evaluate in a continual Passive-TMaze and Active-
TMaze, where episodes do not terminate, and rewards are only given at goal transitions. This stresses
the agent’s ability to persist and discard information appropriately. Results (Figures 3 and 4) show that
Adaptive Stacking achieves high returns and low reward regret, consistent with theoretical predictions.
When x = k*, all methods perform similarly. But when £ < k*, AS retains significantly lower mem-
ory regret than FS(k), learning to preserve goal cues over long delays. Note that FS(k*), even in the
Passive-Tmaze, still incures some memory regret since the top of the stack is not used for this metric.

Architecture-agnostic performance. To evaluate whether Adaptive Stacking depends on a specific
sequence model, we compare returns across MLP, LSTM, and Transformer policies using PPO in the
Passive-TMaze (Figure 1 right). In this experiment, the task is episodic with variable corridor lengths
(L € [0, 14]) per episode. We observe consistent relative performance: AS significantly outperforms
FS with k = x and achieves comparable training returns to the oracle FS(k*) baseline, regardless
of architecture. This highlights that our approach is architecture-agnostic and complements various
model classes, including attention- and recurrence-based policies. See the Appendix for learning
curves and additional results using MLPs, LSTMs and Transformers.
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Figure 3: Continual Passive-TMaze with Q-learning (Vs = 20). AS matches the oracle FS(k*) in
returns and memory usage, while outperforming FS(x) especially for long-term dependencies.
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Figure 4: Continual Active-TMaze with Q-learning (/V,.s = 20). AS learns to both recall and discard
task-relevant observations, achieving near-oracle returns with lower memory regret than FS(x).

5 Conclusion

We have introduced Adaptive Stacking, a general-purpose meta-algorithm for learning to manage
memory in partially observable environments. Unlike standard frame stacking, which blindly retains
recent observations, Adaptive Stacking allows agents to learn which observations to remember or
discard via reinforcement learning. We showed that this yields theoretical guarantees on policy
optimality under both unbiased optimization and TD-based learning, even when using a significantly
smaller memory than required for full observability. Experiments across multiple TMaze tasks
confirm that Adaptive Stacking matches the performance of oracle memory agents while using far
less memory, and substantially outperforms naive baselines under tight memory budgets. This offers
a promising path toward scalable, memory-efficient RL in large, partially observable environments.
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6 Broader Impacts

We propose a general-purpose method for improving memory efficiency in reinforcement learning. On
the positive side, this could broaden access to advanced RL systems by reducing their computational
and memory demands, which is especially beneficial in low-resource settings such as education,
mobile robotics, and emerging economies. It may also enhance agent interpretability by encouraging
sparse and task-relevant memory use. On the negative side, more memory-efficient agents could
be more easily deployed in surveillance or autonomous systems with limited oversight, potentially
increasing the risk of misuse or unintended harm. Furthermore, optimising for memory efficiency
may lead to implicit biases in what the agent chooses to remember or forget. Future work should
explore safeguards for memory gating decisions, particularly in safety-critical domains.
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A Related Work

While the classical RL framework assumes a Markov Decision Process (MDP), a large number of
real-world decision-making problems such as meta-learning, robust RL, temporal credit assignment,
and generalization, are naturally cast as POMDPs (Ni et al., 2021; 2023). These tasks often require
reasoning over long histories of observations rather than relying solely on current state information,
necessitating agents with memory or other mechanisms for long-term temporal inference.

Agents without working memory. Foundational work has shown that settings that violate the
Markov property introduce substantial complexity. For example, Singh et al. (1994) and Talvitie &
Singh (2011) demonstrated that applying standard TD-learning in POMDPs leads to biased value
estimates. Given this, Singh et al. (1994) proposed stochastic policies over observations to obtain
higher returns compared to deterministic policies, and Talvitie & Singh (2011) introduced prediction
profile models—non-generative models focusing on predicting only task-relevant events. More
fundamentally, Abel et al. (2021) proved that there exist tasks whose optimal behavior cannot be
induced by any Markovian reward function. Consequently, these tasks are not just more difficult,
but fundamentally non-Markovian demanding memory for optimal performance. Classical solutions
attempt to address this problem by maintaining a belief state (distribution over states) as a sufficient
statistic of the history (Kaelbling et al., 1998; Friston, 2009; Sajid et al., 2021). However, exact
belief-state planning is intractable for complex environments, so modern RL agents rely on learned
memory or state representations to approximate the hidden state without full state estimation.

Agents with sequence models. A common practical solution to partial observability is Frame
Stacking—concatenating the most recent k& observations to form a proxy for the state (Mnih et al.,
2013). While effective in environments with short temporal dependencies (such as Atari), FS scales
poorly with the memory horizon: increasing k exponentially expands the input space. To address this,
recurrent neural networks (RNNs) such as Long Short Term Memories (LSTMs) and Gated Recurrent
Units (GRUs) have been employed (Hausknecht & Stone, 2015), offering a learned internal state
representation. Yet, these architectures often struggle in long-horizon tasks due to gradient vanishing,
limited capacity, and sensitivity to training dynamics (Singh et al., 1994; Ni et al., 2021). Recent
improvements such as Javed et al. (2023; 2024) have focused on better RNNSs training methods (like
real-time recurrent learning) and temporal difference estimation methods like SwiftTD to improve
the learning speed and stability of online RL. In a separate line of works, Transformers have been
increasingly applied to RL settings—inspired by their success in natural language processing (NLP)
(Vaswani et al., 2017). Self-attention allows these models to learn to focus on relevant past events and
scale to longer memory horizons. Parisotto et al. (2020) proposed GTrXL, demonstrating improved
stability over LSTMs. Chen et al. (2021) introduced the Decision Transformer, a sequence model for
offline RL. Most relevant to this work, Ni et al. (2023) rigorously studied the separation of memory
length and credit assignment. They showed that Transformers can remember cues over a relatively
large number of steps in synthetic T-Maze tasks, but struggle with long-term credit assignment. These
works still depend on maintaining a memory stack of length £* using FS to learn optimal policies.

Agents agnostic to sequence models. Several works attempt to bypass the exponential blow-up in
agent states by learning compact, predictive memory representations for arbitrary sequence models.
Allen et al. (2024) introduced A-discrepancy, a measure of the deviation between TD targets with and
without bootstrapping. They prove that this discrepancy is zero in fully observed MDPs and positive
in POMDPs, offering a diagnostic and learning signal for memory sufficiency. Alternative strategies
include learning which observations are worth remembering. Most closely related to our work is
the Act-Then-Measure framework (Krale et al., 2023), which lets agents actively choose when to
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observe their state, balancing the cost of memory against its value. However, these works still use
Frame Stacking when the stack is full, and hence can be seamless integrated with learning-based
memory selection methods such as our Adaptive Stacking method. Finally, Abel et al. (2023) recently
considers bounded agents in general—agents with finite memory or computational resources—and
provide frameworks for understanding convergence in this setting.

Agents with episodic memory. Beyond recurrence and attention, researchers have developed more
explicit neural memory systems to handle partial observability. These include external memory
modules and learned differentiable storage that the agent can read and write to. For instance, Graves
et al. (2014) introduced the Neural Turing Machine, which augments a neural network with an
addressable memory matrix. Such architectures can, in principle, be used in RL to memorize
arbitrarily long sequences (Graves et al., 2014). Similarly, (Parisotto & Salakhutdinov, 2017)
proposed the Neural Map, a 2D structured memory for agents to store and retrieve information
over long navigation trajectories. Memory-augmented agents, including those with differentiable
neural dictionaries or key-value memory banks such as retrieval augmented generations (RAGs), have
shown the ability to recall events much later in an episode than traditional networks (Lewis et al.,
2020; Gao et al., 2023; Goyal et al., 2022). These approaches demonstrate that more sophisticated
memory mechanisms can improve an agent’s performance in environments requiring long-term
information retention (Osband et al., 2019; Morad et al., 2023), although they often come with
increased complexity, training difficulty, and require disk space memory. Hence, these works can be
combined with our adaptive stacking strategy to improve their use of working memory (RAM).

B Algorithms

state action
———
ao—rlght X1 al—nght ) a,= rlght X3 a3—r1ght X4
= n D:- precae —=- OIT]
V=0 V=0

(a) Frame Stacking. At every time step, the agent pops the last observation in the memory stack in order free up
space to push the new observation into the stack.

state action
4 10:3 3+ 2+ 1 11:0 3 2 1 12:0 3 2 1 13:0
V=Y y=rirty vty vty v=1
3 3 3

(b) Adaptive Stacking. At every time step, the agent chooses which observation in the memory stack to pop in
order to free up space to push the new observation into the stack.

Figure 5: Illustration of Frame Stacking and Adaptive Stacking with £ = 4 in the passive-TMaze
with £* = L 4+ 2 = 5. Frame Stacking eventually forgets the goal trigger when the context length is
not large enough (k < k*), while Adaptive Stacking is able to remember the goal trigger by choosing
to forget irrelevant grey observations. In this figure, [l corresponds to an empty memory slot.
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Algorithm 1: Q-Learning: Adaptive Stacking

Input : discounting v = 0.99, learning rate o = 0.01, exploration € = 0, memory length &
Initialise : value function Q(s, (a,1)) = Rmax
foreach episode do

Get initial observation zg € X

Initialise observation stack so < [zo]x // e.9. So = [zo,xo] 1f k=2

foreach timestep t = 0,1, ..., T while episode is not done do

(anig) argmax, » Q(s, (a,i)) wp.1—¢
o a random action w.p. €

Execute a;, get reward r;; and next observation x;;
Remove observation from stack s;11 < pop(st, i)
Push observation into stack sy11 < push(s¢41,Ti41)

Q(st, (ar,ir)) <= (reg1 + vy max(qiy Q(se41, (a,1))) — Q(se, (ar, ie))

C Theoretical Results

We begin by restating the key definitions and then give precise statements and proofs for our theoretical
results.

C.1 Preliminaries and Notation

Let the underlying non-Markovian environment be a k£*-order MDP over observations x; € X, with
full-history value

oo
h
V* (@pp—pe) = mEXE[E Y Tttht1 ’ zt:t—k*vﬂ'}-
h=0

Under Adaptive Stacking (AS) with memory size k, the agent memory state is s; = [z, ..., Z;,]
and its value under policy my, is

Vit (se) ZE{Z V' T ‘ StﬂTk] = Y Pr(weie | s6,m) V¥ (@p—pe), (1)

h=0 Tiit—k*

where V7" (24,4~ ) is the full-history value of 7 using Frame Stacking (FS).

We define
k= min{k € N: 37}, with V™ (2p_p+ ) = V" (2gq—p) Yt}
C.2 Proof of Proposition 1

Proposition 1 If k = k¥, then there exists a policy 7}, such that V™ (s) = V*(2py_p- ) for all t.

Proof When k = k*, the Adaptive Stacking agent can simply retain the last k* observations in order,
equivalently to Frame Stacking. Thus, no important information is discarded, and the agent can
follow an optimal full-history policy 7} on s; = [z, T4—1, ..., T;—k-|. Hence,

s 7_‘_;;) _ 1 ifsy = xpppe,
’ 0 otherwise,

Pr(l‘t:t—k*

1mply1ng kaz (St) = Vﬂ-z (St) = Vﬂ—’: (xt:tfk*) = V* (irt:tfk:*)- |
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C.3 Proof for Theorem 1

Theorem 1 in the main paper stated that traditional RL algorithms that converge under Frame Stacking
with & > k* also converge under Adaptive Stacking, provided they use unbiased value estimates to
learn optimal policies. We first formally state this unbiased convergence assumption:

Assumption C.1 (Unbiased Convergence) Let A be an RL algorithm that converges under Frame
Stacking with k > k*. Assume that for any memory length k € N, A also converges to a k-order
policy
T (Tet—k) = argmax YTk (Teg—r) Y,
Tk

where V™ (24:t—1 ) is an unbiased estimator of the true return:

E [V (2-1)] = V™ (@),

We now restate the result more formally and provide a detailed proof.

Theorem 1 Let A be an RL algorithm that satisfies Assumption C.1. Then for any k > k, A
converges to an optimal Adaptive Stacking policy m; such that:

V™ (Tpp—pr) = max V™ (xpp—pr) V.

Proof Adaptive Stacking with memory size k induces a new decision process M, in which the agent
new observation is the memory state s; € Sk, a stack of k£ underlying environment observations. This
process can be treated as a POMDP, where the true underlying state is the latent history xy.;—j~.

By definition of &, there exists at least one k-order policy 7 with k > « that achieves the optimal
value on all underlying latent histories:

V™ (xp4—pr) = V*(xp4—pr) forall t.

Since 7, acts on s; € Sy, and implicitly induces a distribution over latent histories x.;—g~, its value
in the induced process is as shown in Equation 1. By construction of 7y, we have V™ (z4.4_j~) =
V*(@4p—p ), s0:

Vkﬂ-k(St): Z Pr(xt:t_k,*

Tt —k*

St, 7Tk) V*(Sﬁt:t—k*) = Ext:t,k* [V*(xt:t—k*) | St}-

This implies that the policy 75 achieves the best possible value in the induced process My, given that
it is optimal over latent histories.

Now, because A uses unbiased estimates of V™ (z1.;_,) and converges to the policy that maximizes
expected return under such estimates (by Assumption C.1), and since & > « implies such a policy
exists, it follows that A converges to 7, that satisfies:

VT (pp—pr) = V* (Tpp—p) V.

The critical observation from Theorem 1 is that convergence to an optimal policy is not limited to
k > k*, but to any k > k, where « is the minimal sufficient memory required to disambiguate
value-relevant latent histories. The key assumption for this result is that A optimizes return estimates
that are unbiased with respect to the true value under the full history, for example as achieved by
Monte Carlo policy gradient methods like REINFORCE (Sutton & Barto, 2018).

We emphasize that this result does not extend to TD-based methods (which use biased targets), and is
handled separately in Section C.4.
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C.4 Proof for TD-Learning convergence

We now prove that if two policies have an ordering over value functions in the induced memory
POMDP M, and the memory representation is value-consistent, then the same ordering holds over
the original latent histories.

Assumption C.2 (Value-Consistency) Let 7, be an Adaptive Stacking policy over memory states
st € Si. We say the memory representation is value-consistent with respect to wy, if for any s; € Sk
and any two latent histories .4+, X}, such that

Pr(zp—k | st,7k) >0 and  Pr(wh,_ s« | s¢,7) > 0,

it holds that:
v (mt:tfk* ) = V7 (xffztfkr* )

Theorem 2 (Partial-order Preserving) Ler k € N and let 7, 7% be two policies under Adaptive
Stacking such that for all memory states s; € Si.:

Vi (s1) < Vi (s0).

If both policies induce value-consistent memory representations (Assumption C.2), then for all latent
histories Ty.4_j=:
1 2
VT (2gp g ) SV (Tpop—pr )

Proof By Equation 1, the expected return under ;. in the induced memory process is:

Vit (se) = Z Pr(z.— - Staﬂ;;)vﬂ;c(xt:t—k*)-

Tt —k*

Under Assumption C.2, for each ¢ € {1,2}, all latent histories z.;_+ consistent with a memory
state s; have equal value:

VT (44—~ ) = ci(s¢), aconstant.
Hence, the above expectation reduces to:
Ve (se) = ci(se).

Therefore, the ordering assumption implies:

1 2

c1(s¢) = VT (@) S VT (2 pr) = ca(se),
for all 2.4+ such that Pr(zs.s—p- | s¢,me) > 0.
1 2

Thus, the partial ordering V}"*(s;) <V, *(s;) implies:

Vﬁ’i (xt:tfk*) < Vﬂi (@g:p—p+) forall xyp_pe.

We now prove that Temporal Difference (TD) learning converges to the optimal policy under Adaptive
Stacking, provided that £ > « and the memory representation is value-consistent.

Theorem 3 Let k > k, and suppose Q-learning under standard learning assumptions (Robbins &
Monro, 1951) is applied to the induced decision process My, under a fixed exploratory policy that
ensures persistent exploration. If policies in My, are value-consitent, then:
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1. The Q-function Q(s, a, i) converges with probability 1 to a fixed point Q(& a,1).

2. The greedy policy with respect to Q is optimal. That is, w};(s;) € argmaxq, ;) Q(st, a, 1) achieves
the optimal value V* (4.4 — g+ ).

Proof Since the agent operates over the induced process My, its effective state is s; € Si. The
Q-learning update rule is:

Qiey1(5t, at,1¢) < Qi(8¢, ar,it) + o {Tt+1 + 7(%13;?() Qi(st41,0",7") — Qu(se,ae,14) |

where s;41 = push(pop(st, it), :+1) is the updated memory stack, and o is a learning rate satisfy-

ing the standard conditions:
Sa=oo, Yaf<oo
t t

Under the assumption that all (s, a, %) tuples are visited infinitely often, and rewards are bounded,
Theorem 2 of Singh et al. (1994) guarantees that (s, a, i) converges to the fixed point Q(s, a, 7).

Since k > r, by definition of , there exists a policy 7} such that for all latent histories ..
VT (2pg—pe) = VT (Tpp—pr )

Because memory length k is sufficient to represent all task-relevant distinctions (the disambiguation
required for value prediction), we know from Theorem 2 that under the value-consistency assumption,
the policy 7;; that is greedy with respect to () in the induced process M, will also be optimal in the
underlying latent space:

T (S¢) € arg max Q(se,a,i) = V(2py_pe) = V(@) VL.

a,t

Thus, Q-learning in the adaptive stacking process not only converges, but yields an optimal policy
over the original environment when k& > k. |

D Value-Consistency Assumption in Popular Benchmarks

In this section, we analyze common RL benchmarks to determine when our Value-Consistency (VC)
Assumption C.2 holds. Recall that this assumption requires that all full histories x;.;—~ mapping to
the same agent memory state s; under policy 7, must share the same expected return V7™ (2.4 g+ ).
This often holds in goal-reaching or sparse-reward settings, but can be violated in tasks with dense or
history-sensitive rewards (such as unobservable reward machines).

Table 1 summarizes our analysis, and we provide justification for each task below.

T-Maze (Classic) (Bakker, 2001): The agent observes a goal cue at the start, traverses a corridor,
and makes a binary decision at a junction. Here, k* = T = 70, since full observability only comes
from the initial and final steps. However, x = 2 suffices: the initial cue and position are enough to
act optimally. VC holds since all consistent histories that lead to the same stack (for example, seeing
“green”) yield the same value.

TMaze Long (Beck et al., 2020): Structurally identical to Classic T-Maze but with longer horizon
T = 100. Again, k* =T, k = 2, and VC holds for the same reason.

Reacher-POMDP (Yang & Nguyen, 2021): The goal is revealed only at the first step, so £* must
capture that first observation. Any policy only needs to retain that goal and act accordingly, so kK = 2
suffices. VC holds since differing histories that preserve the same goal state will yield the same value
estimate.
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Task T k* K Assumption C.2 (VC) Holds?
T-Maze (Classic) 70 70 2 v': Only goal cue matters
(Bakker, 2001)

TMaze Long 100 100 2 v': Only goal cue matters

(Beck et al., 2020)

Reacher-POMDP 50 Long 2 v': Only goal cue matters

(Ni et al., 2021)

PyBullet-P 1000 2 2 v': Only previous position matters
(Ni et al., 2021)

HeavenHell 20 T 2 v': Only goal cue matters
(Esslinger et al.,

2022)

PsychLab 600 T Long v': Passive episodic recall
(Fortunato et al.,

2019)

Repeat First 832 2 2 v': Only previous optimal action matters

(Morad et al., 2023)

Passive Visual Match 600 T Long v': Only goal cue and apples affects return
(Hung et al., 2018)

MiniGrid-Memory 1445 <51 2 v': Position suffices after goal cue
(Chevalier-Boisvert

etal., 2018)
Memory Cards 50 2 Long  v': Only current card pairs affect rewards

(Esslinger et al.,

2022)
Memory Length 100 T 2 v': Observation i.i.d. per timestep

(Osband et al., 2020)
Memory Maze 4000 Long Long v': Only current transition affect rewards

(Pasukonis et al.,

2022)
Ballet 1024 >464 > 464 V': Rewards unaffected by previous actions

(Lampinen et al.,

2021)
Mortar Mayhem 135 T T

(Pleines et al., 2023)

v': Rewards unaffected by previous actions
Autoencode 312 312 156 v': Rewards unaffected by previous actions

v

X

(Morad et al., 2023)
Numpad 500 T N?

(Parisotto et al., 2020)
Reward Machines 1000 T T

(Icarte et al., 2022)

Passive T-Maze 64 64 2 v
(Episodic) (Ours)
Passive T-Maze 106 64 2 v
(Continual) (Ours)
v
v

: Rewards unaffected by previous actions

: Rewards affected by previous actions

: Only goal cue matters
: Only goal cue matters

Active T-Maze 100 00 2
(Episodic) (Ours)

Active T-Maze 106 00 2
(Continual) (Ours)

: Only goal cue matters

: Only goal cue matters

Table 1: Evaluation of Value-Consistency (VC) assumption across popular RL benchmark tasks. T is
the maximum episode horizon or total training steps (for continual settings). k£* is the memory length
required to make the environment Markov; Long means a relatively large proportion of the episode
must be remembered to make optimal value predictions. « is the minimal memory length required to
achieve optimal return. Finally, VC Holds states whether Value-Consistency is satisfied.
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PyBullet-P (Ni et al., 2021):  This environment occludes the velocity component, but full observ-
ability is achieved after two steps (position and estimated velocity). Thus, k* = 2 = k. VC holds as
only immediate transitions affect return.

HeavenHell (Esslinger et al., 2022): The agent visits an oracle early in the episode which defines
the correct terminal target. The memory requirement is k* = 7" = 20, but once the cue is retained,
K = 2 ensures optimality. VC holds because different paths to the same cue yield identical future
returns.

PsychLab (Fortunato et al., 2019): Involves passive image memorization, typically from the
beginning of an episode. £* = T' = 600, but memorizing the image is sufficient (x = Long). VC
holds due to deterministic mapping from memory state to return.

Repeat First (Morad et al., 2023): Rewards depend on repeating the first action. £* = T, but
x = 2 suffices by retaining just the first action. VC holds since the memory state is value-determining.

Passive Visual Match (Hung et al., 2018): The goal color is observed passively at the start.
The main reward depends only on whether the agent chooses the matching color at the end (plus
intermediate rewards from collecting apples). k* =T = 600, but x = T'. VC holds since the goal
cue and nearby apples fully determines return.

MiniGrid-Memory (Chevalier-Boisvert et al., 2018):  To plan efficiently, the agent must memorize
a cue seen early and traverse a grid. The worst-case £* < 51 and x = 2 for simple cue-based planning.
VC holds because position and cue suffice. In practice, if the position is not given, it can be estimated
using path intergration.

Memory Cards (Esslinger et al., 2022): The agent must match cards based on values seen in
earlier steps. k* = 2, but k = Long due to potential card permutations. VC holds because matching
decisions are memory-conditional, not trajectory-sensitive.

Memory Length (Osband et al., 2020): Observations are i.i.d. at each step. £* =T = 100, but
optimality requires only x = 2. VC holds since memory state compresses all relevant statistics.

Memory Maze (Pasukonis et al., 2022): Agent must collect colored balls in order. The reward
depends only on the current pickup. k* = Long, x = Long. VC holds since rewards depend only on
present state and target.

Ballet (Lampinen et al., 2021): Agent observes sequences of dances and selects a correct dancer.
Though the reward is episodic, the agent actions occur only post-observation. k* > 464, k > 464.
VC holds because the same memory state determines the post-dance plan.

Mortar Mayhem (Pleines et al., 2023): Memorizing a command sequence and executing it.
k* =T =135, k = T. VC holds due to value depending solely on correctly recalling the command
sequence.

Autoencode (Morad et al., 2023): Agent reproduces observed sequence in reverse. k* = 311,
K = 156 (half the trajectory). VC holds since the value depends only on accuracy of reproduction.

Numpad (Parisotto et al., 2020):  Agent must press a sequence of pads. k* = T = 500, k = N2.
VC holds: as long as the memory contains the correct order, the actual transition path is irrelevant.

Our Passive and Active T-Maze (in Episodic and Continual settings): In all our TMaze variants,
the goal cue is shown at the tail of the maze and the return depends only on whether the goal is
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reached. £* matches the maze traversal length for the Passive-TMaze, but is infinite for the active
maze since a non-optimal policy could stay arbitrarily long in the grey corridor, and x = 2. VC holds
robustly, even under stochastic start states or corridor lengths.

D.1 Unobservable Reward Machines Counter-Example

While the Value-Consistency Assumption holds in many benchmark settings (Table 1), it fails in
environments where the true reward function depends not just on environment observations, but on
dynamic latent trajectory properties such as event sequences which change based on the agent policy.
This is most notably the case in environments that use reward machines (Icarte et al., 2018; Vaezipoor
et al., 2021; Icarte et al., 2022; Tasse et al., 2024)—finite state automata over temporal logic formulae
that determine rewards or sub-goals based on the sequence of states visited.

For example, consider the task "Deliver coffee to the office without breaking decorations" in a the
office grid-world environment (Icarte et al., 2022). The task is encoded as a reward machine over
three atomic propositions: peofree (the agent visits the coffee location), pofce (the agent visits the
office location), pgecor (the agent steps on any decoration tile). The agent starts at some initial location
and must: visit the coffee location first, then visit the office location, without ever triggering pgecor- A
reward of +1 is given only if the full trajectory satisfies the temporal formula:

(F(pcoffee A X(Fpofﬁce))) A (G_‘pdecor)~

Why VC Fails. In the native environment, the agent’s observations are just its (z, y) location—there
is no explicit record of whether the coffee has been visited, or if a decoration tile was stepped on.
Consequently, two different trajectories can lead to the same agent observation s; = (z,y) and
memory stack s; = [z;,,...,2;,]. Yet these trajectories may differ in reward-relevant history, for
example, one might have stepped on a decoration earlier while another didn’t. Since the reward for
reaching the office depends on whether the coffee was collected and no decorations were touched in
the past—which is unobservable from s; alone—the condition:

VT (2pg—pe) = VT (x;:tfk*)

does not hold for histories .;—x+, z}., . that lead to the same agent state s,. Therefore, Assump-
tion C.2 is violated. Other common temporal logic tasks that violate VC include:

* "Collect key A before key B, then go to door": reward depends on the order of events, not the final
state.

* "Don’t revisit any state": any policy that loops violates the reward constraint, but the current
memory may not capture visit counts.

» "Eventually visit both goal zones A and B, but never touch lava": again, whether lava was touched
can be lost under memory compression.

The VC assumption breaks because environment-level memory states s; are not sufficient statistics
for the reward machine’s state. The true reward depends on a latent automaton state that evolves with
trajectory-dependent triggers—this is equivalent to acting in a cross-product MDP over (z,y) X u,
where wu is the internal automaton state.

Can the Failure Be Benign? Despite the theoretical violation, practical agents can still learn to
behave correctly using Adaptive Stacking when: The reward machine state can be inferred from a
small set of key observations; The agent learns to preserve these key triggers (for example, the first
visit to coffee or decoration tiles); The failure to preserve value consistency leads to pessimistic value
estimates, but not incorrect action selection.

Hence, reward machine tasks represent a natural and important class of environments where the VC
assumption breaks due to latent trajectory-dependent semantics. This distinction is useful for future
work aiming to blend Adaptive Stacking with automaton inference, or for delineating the boundaries
of where value-consistent abstraction is theoretically sound.
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E Experimental Details

All experiments use two variants of the T-Maze task (Passive and Active). In each variant, we consider
both continual mode—where the agent steps automatically and episodes never terminate—and
episodic mode—where the agent chooses navigation actions and an episode ends upon reaching
a goal. Corridor lengths L vary from 2 up to 62. At each time step the agent receives a single
categorical observation (cell color) and maintains a working memory of fixed size x. We compare
three memory management schemes:

1. Adaptive stacking of size s, where at each step the agent chooses which slot to overwrite,

2. Frame stacking with k£ = k (insufficient) or £ = k£* (oracle).

All agents were implemented in PyTorch and Gymnasium. Tabular Q-learning used in-memory arrays,
and PPO used Stable-Baselines3. Finally, all experiments were ran on CPU only Linux servers.

E.1 Recorded Metrics

Every 100 environment steps we log:
1. Return: cumulative discounted reward.
2. Reward regret: V*(xp.4—pr ) — V™ (@pp—kr ).

3. Memory regret: steps when the goal cue is absent from the memory stack, excluding the top of the
stack which corresponds to the current observation.

4. Active regret: steps when the goal cue is observed but not stored.

5. Passive regret: steps when the goal cue is in memory but then discarded.
Plots report mean and 1 standard deviation over N, independent seeds.
E.2 Tabular Q-Learning (Continual and Episodic)

We run a standard e-greedy tabular Q-learning agent in both Passive and Active T-Maze, under
continual or episodic modes. Hyperparameters are listed in Table 2.

Table 2: Q-Learning hyperparameters

Parameter Value

Discount factor vy 0.99

Learning rate o 0.1
Exploration € fixed 0.01
Total steps 106

Logging frequency every 100 steps

E.3 Proximal Policy Optimization (Episodic and Continual)

We evaluate PPO with MLP, CNN, LSTM and Transformer policies in both Passive and Active
T-Maze, under episodic or continual modes. Table 3 details the optimizer settings.

Each policy network receives the k-length memory stack as input and outputs two probability
distributions: one over environment actions and one over memory-slot indices. The final policy is
obtained by sampling each head independently.

MLP

1. Input: one-hot encoding of each of the k observations, concatenated into a vector.
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Table 3: PPO hyperparameters

Parameter Value

Total timesteps 108
Discount factor ~y 0.99

GAE )\ 0.95
Rollout length n_steps 128
Minibatch size 128

Epochs per update 10

Learning rate 3x 1074
Clip range 0.2

Entropy coefficient 0.0 (default)
Value loss coefficient 0.5 (default)
Logging frequency every 100 steps

2. Hidden layers: three fully-connected layers of 128 units.
3. Outputs:

(a) Env-action head: linear layer to |.4] logits.

(b) Memory-action head: linear layer to k logits.

LSTM

1. Input embedding: each observation is embedded into a 128-dim vector.
2. Sequence model: single-layer LSTM with 128 hidden units processes the £ embeddings.
3. Readout: final hidden state of size 128.

4. Outputs: two linear heads (as above) mapping the 128-dim readout to action logits.

Transformer

1. Input embedding: each observation is embedded into 128-dim, plus learned positional embeddings
for positions 1, ..., k.

2. Transformer decoder stack: two layers, model dimension 128, 4 attention heads, feed-forward
dimension 256.

3. Readout: the representation at the final time step.

4. Outputs: two linear heads mapping the 128-dim readout to environment logits and memory-slot
logits.
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F Learning Area Under the Curve Bar Plots
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Figure 6: Episodic Passive-TMaze with PPO and LSTM policy (N,s = 10). AS retains critical cues
despite smaller memory, achieving performance close to FS(k*) and much better than FS(x).
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cues despite smaller memory, achieving performance close to FS(k*) and much better than FS(x).
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Figure 8: Episodic Passive-TMaze (with corridor lengths per episode fixed to max length) with PPO
and MLP policy (Vs = 10). AS retains critical cues despite smaller memory, achieving performance
close to FS(k*) and much better than FS(k).
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Figure 9: Episodic Active-TMaze (with corridor lengths per episode fixed to max length) with PPO
and MLP policy (Vs = 10). As achieves performance close to FS(k*) and much better than FS(x).
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G Learning Curves
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Figure 10: Returns in Continual Passive-TMaze with Q-learning (V,.,; = 20) for varying maze
lengths (L + 2). AS quickly matches the oracle FS(k*) in returns, while outperforming FS(k).
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Figure 11: Returns in Continual Active-TMaze with Q-learning (V,.s = 20) for varying maze lengths
(L + 2). AS quickly matches or exceeds the oracle FS(k*) in returns, while outperforming FS(x).
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Figure 12: Returns in Episodic Passive-TMaze using PPO with an MLP (V,.; = 10) for varying
maze lengths (L + 2). AS is comparable to the oracle FS(k*) in returns, while outperforming FS(x).
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Figure 13: Returns in Episodic Passive-TMaze using PPO with an LSTM (/V,.; = 10) for varying
maze lengths (L + 2). AS is comparble to the oracle FS(k*) in returns, while outperforming FS(x).
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Figure 15: Returns in Episodic Passive-TMaze using PPO with an MLP (NN, = 10) for varying
maze lengths (L + 2). The corridor lengths per episode fixed to max length. AS quickly matches the
oracle FS(k*) in returns, while outperforming FS(k, orange) especially for long-term dependencies.
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Figure 16: Returns in Episodic Active-TMaze with PPO with an MLP (V,.; = 10) for varying maze
lengths (L + 2). The corridor lengths per episode fixed to max length. AS quickly matches the oracle
FS(k*) in returns, while outperforming FS(k, orange).
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Figure 17: Generalisation in the continual Passive-TMaze with Q-learning (/V,.; = 20). After
training for 1 million steps, each agent is restarted at sy and tested for 100 additional steps in varying
maze lengths. We show results averaged over the 20 training runs. We observe that AS leads to
significantly better generalisation than FS(x) and even the oracle FS(k*).
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Figure 18: Generalisation in the continual Active-TMaze with Q-learning (Vs = 20). AS still leads
to significantly better generalisation than even using the oracle FS(k*).
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Figure 19: Generalisation in the episodic Passive-TMaze with PPO and MLP policy (N,s = 10).
After training for 1 million steps, each agent is tested for 2 additional episodes (for each goal color) in
varying maze lengths (the corridor length in each testing episode is fixed to the max length). We show
results averaged over the 10 training runs. We observe that the random corridor lengths during training
leads to consistently good in-distribution generalisation (upper-diagonal), but AS still generally leads
to better out-of-distribution generalisation (lower-diagonal) than even the oracle FS(k*).
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Figure 20: Generalisation in the episodic Passive-TMaze with PPO and LSTM policy (N, = 10).
We observe similar results as Figure 19.
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Figure 21: Generalisation in the episodic Passive-TMaze with PPO and Transformer policy (NV,s =
10). We observe similar results as Figure 19.
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Figure 22: Generalisation in the episodic Passive-TMaze (with corridor lengths per episode fixed
to max length) with PPO and MLP policy (/V,.s = 10). We observe better results for AS and worse
results for FS compared to Figure 19. This is potentially because AS generalises mainly from
explicitly learning which observations to keep in memory, hence training with fixed corridor lengths
simply leads to faster convergence. In contrast, FS mainly relies on the random corridor lengths
during training to generalise.
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Figure 23: Generalisation in the episodic Active-TMaze (with corridor lengths per episode fixed
to max length) with PPO and MLP policy (N,; = 10). We observe similar results as Figure 22,
except for maze lengths of 2. This difference is potentially because maze length 2 has no corridor
(D) observation, which makes it difficult to generalise the correct navigation actions to (and from) it.

I Compute and Memory Requirements for Transformers

In this section we analyse the compute and memory efficiency of Adaptive Stacking compared to
Frame Stacking. We provide compute and memory requirements for MLP, LSTM, and Transformer
models as a function of k, the context length processed by the model. In Table 1 of the main text, we
further extend these results leveraging the fact that for Frame Stacking to learn the optimal policy
k > k* and for Adaptive Stacking to learn the optimal policy k > k.

I.1 MLP Models

Let us consider an MLP encoder model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |.4], an inference batch size of Biyference = 1, and a learning batch
size of Bye,m = B. For uniformity with our analysis of the sequence models, we assume the input
is already provided to the MLP in the form of k£ embeddings of size h, so the total input size is kh.
We also assume a Relu non-linearity for each layer. Additionally, in the case of the Frame Stacking
model, we assume that there is an linear output head with a value for each environment action in 4.
Furthermore, in the case of the Adaptive Stacking model there is another linear output head with a
value for each of the £ memory eviction actions. The number of copies of the model G that needs
to be stored in memory to compute updates during training depends on the learning optimizer. In
the case of SGD, we only need to store a single gradient G = 1, whereas for the popular AdamW
optimizer G = 4.

I.1.1 Producing a Single Action

Compute of Frame Stacking. In the first layer of the network 2kh? 4+ h FLOPs are used for the
linear layer due to the matrix multiplication and addition of bias (one multiply + one add per element
of output). An additional A FLOPs are used for the Relu non-linearity computations. For the next
L — 1 layers, 2h? + 2h FLOPs are used. In the final layer, 2h|.A| FLOPs are used. Therefore, the
total FLOPs for a single action generation is:

[[lanr, = 2kh° + 20 + (L — 1)(2h% + 2h) + 20| A| € Q(k) |

Compute of Adaptive Stacking. For Adaptive Stacking, we do the same amount of computation the
first L layers of the network, one using the standard last layer with output size |.A| and one using a
layer of size k representing the memory action. This then brings the total FLOPs for a single action
generation to:



Finding the FrameStack

[[lanrm, = 2k + 2 + (L — 1)(2h% + 2h) + 2h(|A| + k) € Q(k)

Memory of Frame Stacking. For MLP inference, we do not need to store intermediate activations
after they are used. They are only needed when computing gradients. As such, we lower bound
the memory needed for action inference by the number of parameters and precision of the model
|w|gmm, > P|0| where |0] = |0|mLp + |0|stack- The weight matrix in the first layer has kh? parameters,
the weight matrix in the middle L — 1 layers each have h? parameters, and the weight matrix in the
last layers has h|.A| parameters. The bias vector in the first L layers each have h parameters, and the
bias vector in the last layer has |.4| parameters. As such, the number of total number parameters is
|0lmLp = kh? + (L —1)h?+ Lh+ (h+1)|.A|. Additionally, the stack itself must store |0|sucx = Phk.
So the total RAM requirement of the model can be lower bounded as:

\ wW]awry > PO = Pk(h% + h) + P(L — 1)h2 + PLh+ P(h+ 1)|A| € Q(k) \

Memory of Adaptive Stacking. The number of parameters in the Adaptive Stacking approach are
the same for the first L layers, with the addition of a final layer with a weight matrix of size hk and a
bias vector of size k. Additionally, the stack itself has the same number parameters as a function of k.
So the total RAM requirement of the model can be lower bounded as:

|W|gmmy > PlO] = PE(h® + h) + P(L — 1)h* + PLh + P(h + 1)(JA| + k) € Q(k)

I.1.2 Producing a TD Update

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|tp = 3B|c|q~n,- This
then brings the total FLOPs for a TD batch update to:

|cltp = 3B (2kh2 +2h 4 (L — 1)(2h% + 2h) + 2h|A> € Q(k)

Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
|¢ltp = 3B|c|g~n,- This then implies that the total FLOPs for a TD batch update to:

lc|tp = 3B (2kh2 + 2h + (L — 1)(2h* + 2h) + 2h(|A| + k)> € Q(k)

Memory of Frame Stacking. During a TD update, we must also store the target network in memory,
which has the same number of parameters as the original MLP. We also must store the activations of
the main network now to compute the gradients. Thus, we can lower bound the memory required as
|wltp > (24 G)P|0lmLp + P B|0|sack + PBhL, meaning the total RAM requirement of the model
can be lower bounded as:

lwltp > (2 + Q) (th2 +P(L —1)h* + PLh+P(h + 1)A|> + PBkh +PBhL € Q(k)
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Memory of Adaptive Stacking. We again have the fact that |w|tp > (2 + G)P|0|mrp + P B|0|swack +
PBhL,but |0y is different for Adaptive Stacking because of the extra final layer for the memory
policy. So the total RAM requirement of the model can be lower bounded as:

lwlrp > (2 +G) (th2 +P(L —1)h* + PLh+ P(h + 1)(|A] + k)) + PBkh + PBhL € Q(k)

1.2 LSTM Models

Let us consider an LSTM encoder model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |.4], an inference batch size of Biyference = 1, and a learning batch
size of Bl ean = B. We assume the input is already provided in the form of k£ embeddings of size h.
Additionally, in the case of the Frame Stacking model, we assume that there is an linear output head
with a value for each environment action in 4. Furthermore, in the case of the Adaptive Stacking
model there is another linear output head with a value for each of the £ memory eviction actions.
The number of copies of the model G that needs to be stored in memory to compute updates during
training depends on the learning optimizer. In the case of SGD, we only need to store a single gradient
G = 1, whereas for the popular AdamW optimizer G = 4.

While it is well known that RNNs can have inference costs independent of the history length, we note
that this only works in pure testing settings and is not relevant to the continual learning setting we
explore in this work. The issue is that the historical examples must be re-encoded by the RNN if any
update has happened to the network during this sequence.

L.2.1 Producing a Single Action

Compute of Frame Stacking. Each LSTM cell at a given time step performs operations for 4 gates:
the input gate, the forget gate, the output gate, and the candidate cell update. Each gate for each item
in the batch for each time-step requires a matrix multiplication with the input, a matrix multiplication
with the last hidden state, an additive bias vector, and a cost per hidden unit of applying non-linearities.
Thus for each of the L layers we need 8h? + 4h + 16h FLOPs. For the last linear layer at the last
step we need 2h|.A| FLOPs. This then brings the total FLOPs for a single action generation to:

|clammy = kL (8h2 + 20h> + 2h|A| € Q(k)

Compute of Adaptive Stacking. For Adaptive Stacking, we must do two passes through the L layer
LSTM and additionally produce a memory action with a final layer head requiring 2hk FLOPs. This
then brings the total FLOPs for a single action generation to:

|clammy = kL (8h2 + 20h> + 2h(|A| + k) € Q(k)

Memory of Frame Stacking. As with the MLP network, |w|q~r, > P|0| where the total parameters
can be decomposed as |0] = |0|Lstm + |0|activation + |0]stack- The network consists of 4 gates in each
layer, including two matrices with h? parameters and one bias vector with h parameters. So, there
are 8h? + 4h parameters per layer, and L(8h? + 4h) parameters in the L layers. The linear output
layer then contains (h + 1)|.A| parameters. The activation memory only needs to be stored at the
current step during inference, requiring PhL bytes of memory. The stack itself requires Pkh bytes
of memory. So the total RAM requirement of the model can be lower bounded as:

[ [wlar, > PL(8K + 4h) + P(h+ 1)|.A| + PhL + Pkh € Q(k)
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Memory of Adaptive Stacking. The Adaptive Stacking case only adds the additional output layer
for memory actions, which has (h + 1)k total parameters. So the total RAM requirement of the
model can be lower bounded as:

|W|gmry > PL(8K? +4h) + P(h+ 1)(|A| + k) + PhL + Pkh € Q(k)

1.2.2 Producing a TD Update

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|tp = 3B|c|q~nr,- This
then brings the total FLOPs for a TD batch update to:

l¢|tp = 3BEL <8h2 + 20h) +6Bh|A| € Q(k)

Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
leltp = 3B|¢|q~m,- This then implies that the total FLOPs for a TD batch update to:

|cltp = 3BEL <8h2 + 20h> + 6Bh(JA| + k)) € Q(k)

Memory of Frame Stacking. During a TD update, we must also store the target network in memory,
which has the same number of parameters as the original LSTM. We also must store the activations of
the main network for all steps now to compute the gradients. Thus, we can lower bound the memory
required as |w|tp > (2 + G)P|0|Lstm + PB|0|swack + PBkhL, meaning the total RAM requirement
of the model can be lower bounded as:

lwlp > (2+ G) (PL(8h2 +4h) +P(h + 1)A|> + PBkhL + PBkh € Q(k)

Memory of Adaptive Stacking. We again have the fact that |w|rp > (24 G)P|0|Lstm + P B|0|stack +
PBkhL,but |0 sT™ is different for Adaptive Stacking because of the extra final layer for the memory
policy. So the total RAM requirement of the model can be lower bounded as:

lwlmp > (24 G) (7>L(8h2 +4h) +P(h + 1)(|A| + k:)) + PBkhL + PBkh € Q(k)

1.3 Transformer Models

Let us consider an Transformer model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |.A|, an inference batch size of Byference = 1, and a learning batch
size of Bleun = B. We assume the input is already provided in the form of k£ embeddings of size h.
Additionally, in the case of the Frame Stacking model, we assume that there is an linear output head
with a value for each environment action in .4. Furthermore, in the case of the Adaptive Stacking
model there is another linear output head with a value for each of the £ memory eviction actions.
The number of copies of the model G that needs to be stored in memory to compute updates during
training depends on the learning optimizer. For example, in the case of SGD, we only need to store a
single gradient G = 1, whereas for the popular AdamW optimizer G = 4.
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I.3.1 Producing a Single Action

Compute of Frame Stacking. We consider the analysis of the compute required for a typical
Transformer from Narayanan et al. (2021). The compute cost |c| of doing inference of the final hidden
state over a batch size of By,r over tokenized inputs with a context length of & using a Transformer
with L layers and a hidden size of h is 24L By,tkh? + 4L Bysk?h the compute cost of the final logit
layer producing values for each action in A is 2 By,¢h|.A| only applied once per sequence. So we can
lower bound the compute cost of producing a single action (i.e. B,y = 1) as:

[[clanr, > 24Lhk + ALAK + 21 A] € Q(k?) |

It is a lower bound because we do not include any pre-Transformer layers needed to produce
embeddings for the input. We also do not include actions and rewards as part of the interaction
history, which would bring the context length to &’ = 3k — 2. Additionally, we do not include any
recomputation costs that make sense to incur when we are bound by memory rather than compute —
here we assume we are compute bound.

Compute of Adaptive Stacking. For producing a single action with Adaptive Stacking, the new
compute overhead comes from the addition of the memory action head that comprises an extra 2hk
FLOPs. This then brings the total FLOPs for a single action generation to:

[cla~r, > 24LE%k + ALK® + 2h(|A| + k) € Q(K?) |

Memory of Frame Stacking. We now assume that we are memory bound and not compute bound and
include the cost of storing the model of parameter size |6] at precision P where || = |0|Transformer +
|0]stack + |0]activations- In each Transformer layer, there are 4h? parameters used to compute attention,
8h? parameters used in the feedforward network, and 4h parameters used in the layer norm. If biases
are used for all linear layers, there are an additional 9/ parameters — we exclude these for now in
the spirit of lower bounds as they do not change the asymptotic result in terms of & either way. The
output layer then has (h + 1)|.A| parameters, making |0|ransformer = L(12h% + 4h) + (h + 1)|A|.
The memory used for the stack itself is Pkh. Additionally, the cost of activations Pkh L assuming
full re-computations at each step. This results in a lower bound on the working memory cost of
producing a single action:

[ [wlar, > PLOI2K® + 4h) + P(h + D] A]) + PB(L + Dhk € Q(k)

Memory of Adaptive Stacking. The main additional memory overhead of Adaptive Stacking is the
output layer for the memory policy, which has (h + 1)k parameters. This results in a lower bound on
the working memory cost of producing a single action:

| [wlar, > PLO2K + 4h) + P(h+ 1)(JA] + k) + P(L + 1)hk € Q(k) |

L1.3.2 Producing a TD Update

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|tp = 3B|c|q~r,- This
then brings the total FLOPs for a TD batch update to:

cltp > 3B (24Lh2k: +4Lhk? + 2h|A|) € Q(k?)
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Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
leltp = 3B|¢|g~m,- This then implies that the total FLOPs for a TD batch update to:

el > 3B (24Lh2k: + ALK + 2h(| A + k)) € Q(k?)

Memory of Frame Stacking. To analyse the working memory requirements |w| of producing a
single action for a typical Transformer, we follow Anthony et al. (2023). We now assume that we are
memory bound and not compute bound. During a TD update, we must also store the target network
in memory, which has the same number of parameters as the original Transformer. Thus, we can
lower bound the memory required as |w|rp > (2 + G)P |0 Transtormer + P B|0|stack + P B0 activationss
meaning the total RAM requirement of the model can be lower bounded as:

i > (2 + G) (PL(12h2 +4h) +P(h + 1)|A> +PB(L + 1)hk € Q(k)

Memory of Adaptive Stacking. We again have the fact that |w|rp > (2 + G)P|0|Transformer +

P B|0|stack + P B|0]activations> DUt |0| Transformer 1s different for Adaptive Stacking because of the extra
final layer for the memory policy. So the RAM requirement of the model can be lower bounded as:

lwltp > (24 G) <7>L(12h2 +4h) +P(h+ 1)(JA| + k)) + PB(L + 1)hk € Q(k)

Architecture Memory Type  |cla~m, l¢lD  |W]a~n,  |w|TD

MLP or LSTM  Frame Stack Q") Q") QE*) Q)
MLP or LSTM  Adaptive Stack ~ Q(k) Q(k) Q(k) Q(k)

Transformer Frame Stack QE) Q) Q) QEY)
Transformer Adaptive Stack ~ Q(x?%)  Q(k)  Qk?)  Qr)

Table 4: Compute |c| and memory |w| requirements for computing actions a ~ 7y and TD updates.



