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ABSTRACT

Anomaly detection (AD) is a critical task across domains such as cybersecurity and
healthcare. In the unsupervised setting, an effective and theoretically-grounded
principle is to train classifiers to distinguish normal data from (synthetic) anoma-
lies. We extend this principle to semi-supervised AD, where training data also
include a limited labeled subset of anomalies possibly present in test time. We
propose a theoretically-grounded and empirically effective framework for semi-
supervised AD that combines known and synthetic anomalies during training. To
analyze semi-supervised AD, we introduce the first mathematical formulation of
semi-supervised AD, which generalizes unsupervised AD. Here, we show that syn-
thetic anomalies enable (i) better anomaly modeling in low-density regions and (ii)
optimal convergence guarantees for neural network classifiers — the first theoreti-
cal result for semi-supervised AD. We empirically validate our framework on five
diverse benchmarks, observing consistent performance gains. These improvements
also extend beyond our theoretical framework to other classification-based AD
methods, validating the generalizability of the synthetic anomaly principle in AD.

1 INTRODUCTION

Anomaly detection (AD) — the task of identifying data that deviate from expected behavior — is
central in many domains, from daily usage in manufacturing (Bergmann et al., 2019) and content
moderation (Chen et al., 2022) to high stakes domains like cybersecurity (Tavallaee et al., 2009; Lee
et al., 1999) and healthcare (Quinlan, 1987; Guvenir et al., 1998). Despite its broad applicability,
most AD research focuses on unsupervised AD, where only normal data are available during training.
When limited anomalies are also available during training, many unsupervised methods do not
handle this additional information and remove these “known” training anomalies (e.g., Kim et al.
(2020); Chen et al. (2017); Zhang et al. (2022); Qiu et al. (2021); Shenkar & Wolf (2022); Xiao &
Fan (2024)). Ideally, models should incorporate these known anomalies during training while still
detecting “unknown anomalies” (i.e., anomaly types absent during training) during test time. Can
unsupervised AD principles generalize to semi-supervised AD?

We address this question by focusing on a key principle from unsupervised AD: training classifiers
to distinguish normal data from (randomly generated synthetic) anomalies. This principle has both
theoretical justification and empirical success in unsupervised settings (Steinwart et al., 2005; Zhou
et al., 2024; Sipple, 2020), yet its effectiveness and validity in the semi-supervised regime remain
unexplored.

At first glance, mixing synthetic with known anomalies might dilute the known anomaly signal —
the anomaly class during training contains both known and synthetic anomalies. Synthetic anomalies
may also contaminate regions with normal data. However, we claim that synthetic anomalies are key
in semi-supervised AD. In this work, we propose that adding synthetic anomalies during training
is a theoretically-grounded and empirically effective framework for semi-supervised AD.

Theoretically, we provide the first mathematical formulation of semi-supervised AD (Figure 1).
This formulation reveals the benefits of synthetic anomalies: they (i) label low density regions of
normal data as anomalous and (ii) improve model learning. The former suggests that our formulation
models AD well, while the latter allows us to prove the first theoretical learning guarantees for
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Figure 1: Mathematical Formulations. Different tasks based on the common test h1/h2. Our
semi-supervised anomaly detection formulation combines known anomaly information h− with the
density level set estimation formulation from unsupervised anomaly detection.

semi-supervised AD with neural networks. Our theoretical model also recommends the number of
synthetic anomalies to add, mitigating issues of dilution and contamination of real training data.

We also demonstrate that our theoretical framework of adding synthetic anomalies translates into a
practical and effective implementation, evaluating our framework on five real-world datasets. We
observe that synthetic anomalies can improve performance on both known and unknown anomalies.
This improvement is not only seen for our theoretical model, but also for other state-of-the-art
classification-based AD methods. These analyses on theoretical guarantees and empirical evaluations
on diverse datasets and AD methods demonstrate the feasibility of adding synthetic anomalies in
semi-supervised AD. We summarize our contributions below:

• We propose a theoretically-governed and empirically effective framework for semi-
supervised AD, adding synthetic anomalies to the anomaly class for binary classification
during training.

• We provide the first mathematical formulation for semi-supervised AD which generalizes
unsupervised AD to allow for known anomalies.

• We show that adding synthetic anomalies to the anomaly class during training sidesteps two
potential problems of anomaly modeling and ineffective learning.

• To show effective learning, we prove the optimal convergence of the excess risk of our
neural network binary classifiers, the first theoretical result in semi-supervised AD.

• Our experiments demonstrate that adding synthetic anomalies improves performance. This
improvement extends beyond our concrete example of vanilla binary classifiers to other
classification-based AD methods, highlighting our method’s generalizability.

2 RELATED WORKS

Semi-Supervised AD Unlike unsupervised AD methods which assume all training data are normal,
other methods have been able to leverage on the known anomaly sample during training with some
empirical success (Han et al., 2022; Ruff et al., 2020; Pang et al., 2019; Zhou et al., 2022; Lau
et al., 2024b;a; Goyal et al., 2020; Yamanaka et al., 2019; Pang et al., 2019; Dong et al., 2024;
Zhao et al., 2023). For instance, Han et al. (2022) shows that even with 1% labeled anomalies,
methods incorporating supervision empirically outperform unsupervised AD methods. However,
there is currently no mathematical formulation of the goal of semi-supervised AD, let alone a
theoretically-grounded approach towards it. Without a mathematical formulation, unsupervised and
semi-supervised AD remain as research areas with disjoint scopes.

Auxiliary Data Using auxiliary data for (unsupervised) AD is popular in applied domains, such
as generating anomalies from normal data (Fan et al., 2001; Cao et al., 2024; Dong et al., 2024). In
our work, we wish to understand the general theoretical underpinnings of AD, so we avoid using
domain-specific knowledge. The first general theory for unsupervised AD with synthetic anomalies
used uniformly random data as synthetic anomalies for support vector machine (SVM) classification
(Scott & Nowak, 2006). Sipple (2020) experimented with neural networks instead, while Cai &
Fan (2022) used another neural network for anomaly generation and Hendrycks et al. (2019) used
open-source data as anomalies for image AD. Correspondingly, Zhou et al. (2024) provided the
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theoretical analysis for neural networks using synthetic anomalies. However, these works are for
unsupervised AD, not semi-supervised AD.

3 FORMULATING ANOMALY DETECTION

In this section, we provide a general AD formulation assuming full knowledge of anomalies. Then,
we explore a potential formulation of semi-supervised AD that relaxes this assumption.

3.1 BACKGROUND: MODELING ANOMALY DETECTION AS BINARY CLASSIFICATION

First, consider a binary classification problem between Y = 1 (normal class) and Y = −1 (anomaly
class). Let µ be a known probability measure on our domain X ⊆ Rd. Without loss of generality,
let X = [0, 1]d. Assume data from the normal and anomaly classes are drawn respectively from
unknown distributions Q and W on X , where Q has density h1 with respect to µ, and W has density
h2 with respect to µ.

Let s ∈ (0, 1) denote the proportion of normal data on X such that P(Y = 1) = s and P(Y =
−1) = 1 − s. Let P be a probability measure on X × Y such that the marginal distribution on
X is PX = sQ + (1 − s)W . For any classifier sign(f) induced by a function f : X → R, its
misclassification error is given as R(f) = P(sign(f(X)) ̸= Y ). The best we can do is obtain the
Bayes classifier, denoted by fc, which minimizes the misclassification error, i.e., R(fc) = R∗ :=
inff :X→R measurable R(f). Like other settings (Zhang, 2004), the Bayes classifier fc is explicitly given
as fc(X) = sign(fP (X)) (discussed in Appendix B), where fP is the regression function

fP (X) := E[Y |X] =
s · h1(X)− (1− s) · h2(X)

s · h1(X) + (1− s) · h2(X)
, ∀X ∈ X . (1)

The Bayes classifier can also be defined with the likelihood ratio test (Bartlett et al., 2006; Hastie,
2009)

1

(
h1(X)

h2(X)
≥ ρ

)
(2)

for threshold ρ = P(Y=−1)
P(Y=1) . However, in AD, we set threshold ρ based on desired type I and II errors.

We proceed to define the AD error of function f : X → R. Define the set of data classified as
normal as {f > 0} := {X : f(X) > 0}. Let s = 1

1+ρ and the classical Tsybakov noise condition
(Tsybakov, 1997; 2004)

PX({X ∈ X : |fP (X)| ≤ t}) ≤ c0t
q, ∀t > 0, (3)

hold with some c0 > 0 and noise exponent q ∈ [0,∞). Then, for any measurable function f : X → R,
we extend Steinwart et al. (2005) (proven in Appendix E.1) to derive a bound on the AD error

Sµ,h1,h2,ρ(f) := µ
(
{f > 0}∆

{
h1/h2 > ρ

})
≥ Cq(R(f)−R∗)

q
q+1 . (4)

Here, ∆ denotes the symmetric difference, Sµ,h1,h2,ρ(f) measures how well {f > 0} matches the
ground-truth set {h1/h2 ≥ ρ} := {X : h1(X)/h2(X) ≥ ρ} (as in equation 2). Cq is a positive
constant depending on c0 and q. From (4), we see Sµ,h1,h2,ρ(f) → 0 if R(f) − R∗ → 0. This
implies that the excess risk R(·)−R∗, a standard error metric for binary classification, serves as a
surrogate for Sµ,h1,h2,ρ(·) and, thus, provides a viable error metric for AD (similar to Steinwart
et al. (2005)). In other words, to solve AD, we can solve a standard binary classification problem.

However, the test-time anomaly density h2 is not known in AD. Unsupervised AD (i.e., only normal
data during training) gets around this challenge with a density level set estimation formulation (Ruff
et al., 2021)

{h1 ≥ ρ} := {X : h1(X) ≥ ρ}. (5)
This formulation (5) can be interpreted as a likelihood ratio test between h1 and a constant, because
it is a special case of (2) with h2 ≡ 1. In contrast, for semi-supervised AD, we would like to set h2 to
reflect our partial knowledge through our known anomaly sample.

The question we seek to answer is — is it possible to apply this generalization to semi-supervised
AD? If so, what should h2 be to model semi-supervised AD? Straightforwardly, we can set h2 to be
the known anomaly density. However, we proceed to show two potential issues with this approach.
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Figure 2: Problem and Proposed Method. We present two cases of potential issues (pink regions)
from using the known anomaly density as h2 (i.e., set h2 = h−). Sample 1D density plots and 2D data
plots are provided. Circles are normal data while triangles are anomalies. The first row demonstrates
the issue of wrongly modeling anomalies as normal, while the second row demonstrates the issue of
insufficient regularity of learning, with the example of zero margin between normal data and known
anomalies. Our solution of adding synthetic anomalies addresses these issues. In the first row, the
pink region is populated with anomalies, so we can correctly model it as anomalous. In the second
row, synthetic anomalies smoothen the regression function, which improve learning.

3.2 TWO POTENTIAL ISSUES WITHOUT SYNTHETIC DATA

For concreteness, let our training data contain normal samples T = {(Xi, 1)}ni=1
i.i.d.∼ Q and

anomalies T− = {(X−
i ,−1)}n−

i=1
i.i.d.∼ V , where V ̸= W is an unknown distribution with density h−.

The straightforward approach is to use T− during training (i.e., without synthetic anomalies),
implicitly setting h2 = h−. However, we proceed to show two potential issues with this approach.

The first potential issue is the “false negative modeling” problem, where anomalies are modeled
as normal data. This may happen in regions where normal density h1 is low, but known anomaly
density h− is even lower, leading to h1(X)/h2(X) exploding. In other words, low-density regions
of h1 can still be classified as normal. This is undesirable. Take a medical application. Refer to the
density plot in the first row of Figure 2 and let x refer to blood pressure. Let h1 refer to normal patients
and h2 (known anomalies) refer to sick patients with high blood pressure. Consider a “test-time”
patient with low blood pressure X (see pink region on the left of h1 in Figure 2). Here, h1(X) ≫
h2(X), so this patient will be modeled as normal. However, we wish to model low blood pressure
as anomalous because the probability of a normal patient with low blood pressure h1(X) is low.

The second potential issue is the “insufficient regularity of learning” problem, where the
trained neural network classifier can produce high error. This can arise from the discontinuity
of the regression function fP , making it challenging to learn the optimal classifier. Our novel
observation is that, without synthetic anomalies in training data, the regression function is
prone to discontinuity, which impacts effective learning. Proposition 3.1 (proven in Appendix E.2)
illustrates a general scenario (see Figure 2 and Appendix D for examples), where fP is discontinuous
despite both h1 and h− being continuous.
Proposition 3.1 (Separable Data with Zero Margin). Let r > 0 and X be the union of two intersecting,
closed subdomains X1 and X− with interior(X1 ∩ X−) = ∅. Suppose h1 ∈ Cr(X ) has support X1

and h− ∈ Cr(X ) has support X−. For h2 = h−, the regression function reduces to

fP (X) =

{
h1(X)
h1(X) = 1, if X ∈ interior(X1),

−h−(X)
h−(X) = −1, if X ∈ interior(X−),

which is discontinuous on X . Moreover, for any continuous function f : X → R, the approximation
error is at least ∥f − fP ∥L∞[0,1]d ≥ 1.

Next, we show that the discontinuity of fP poses a difficulty for classification by neural networks.
We consider feedforward rectified linear unit (ReLU) neural networks. We outline notation below.
Definition 3.2. Let σ(x) = max{0, x} be the ReLU activation function. A ReLU network f : X →
R with L ∈ N hidden layers and width vector p = (p1, . . . , pL) ∈ NL, which indicates the width in
each hidden layer, is defined in the following compositional form:

f(X) = a · σ
(
W (L) . . . σ

(
W (1)X + b(1)

)
. . .
)
+ b(L), (6)

4
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where X ∈ X = [0, 1]d is the input, a ∈ RpL is the outer weight, W (i) is a pi × pi−1 weight matrix
with p0 = d, and b(i) ∈ Rpi is a bias vector, for i = 1, . . . , L. Let σk be the ReLUk function, a
generalization of ReLU for k ∈ N, defined by σk(x) = (max{0, x})k. Define the “approx-sign
function” στ : R → [0, 1], with a bandwidth parameter τ > 0, as

στ (x) =
1

τ
σ(x)− 1

τ
σ(x− τ)− 1

τ
σ(−x) +

1

τ
σ(−x− τ). (7)

We also define the generalized approx-signk function as σk
τ (x) := 1

k!τk

∑k
ℓ=0(−1)ℓ

(
k
ℓ

)
σk(x −

ℓτ) − 1
k!τk

∑k
ℓ=0(−1)ℓ

(
k
ℓ

)
σk(−x − ℓτ) for k ∈ N. Here, the approx-sign function is designed

to approximate the sign function (as τ → 0). Meanwhile, k ∈ N is a parameter controlling the
smoothness of ReLU (and the approx-sign activation function), generalizing our analysis beyond the
original non-smooth ReLU function. We defer discussions and visualizations to Appendix C.2.

The following novel theorem presents an upper bound for the excess risk of a function σk
τ (f) induced

by the output activation σk
τ in terms of the bandwidth τ and the approximation error.

Theorem 3.3. Assume the Tsybakov noise condition (3) holds for some exponent q ∈ [0,∞) and
constant c0 > 0. For any measurable function f : X → R, there holds

R
(
σk
τ (f)

)
−R(fc)︸ ︷︷ ︸

excess risk

≤ 4c0
(
kτ + ∥f − fP ∥L∞[0,1]d︸ ︷︷ ︸

approximation error

)q+1
.

Theorem 3.3 shows that the smaller the approximation error, the smaller the excess risk in clas-
sification. We discuss the significance of this theorem in Remark C.3 and prove it in Appendix
F.

From Proposition 3.1 and Theorem 3.3, we can see that if the regression function is discontinuous,
the approximation error is high (at least 1), which may lead to vacuous excess risk bounds1

(i.e., excess risk can be high and is not guaranteed to converge). Lacking theoretical guarantees,
the Bayes classifier cannot be effectively learned. Due to (i) an undesirable formulation and (ii)
lack of theoretical guarantees, we see that h2 = h− is not ideal. In the next section, we propose a
semi-supervised AD method to mitigate these two issues.

4 OUR PROPOSED METHOD: SEMI-SUPERVISED AD WITH SYNTHETIC
ANOMALIES

4.1 OVERVIEW OF OUR METHOD

Building on the previous classification framework and inspired by the connection between density
level set estimation and synthetic anomalies, we propose to add synthetic anomalies to mitigate
the two aforementioned issues (Figure 2). In addition to samples T and T−, we generate a set of
synthetic anomalies T ′ = {(X ′

i,−1)}n′

i=1, where each X ′
i is sampled i.i.d. from µ = Uniform(X ).

Our full training dataset becomes T ∪ T− ∪ T ′, which we use to train a ReLU network classifier.

4.2 MITIGATING ISSUE 1: FALSE NEGATIVE MODELING PROBLEM

Let s̃ ∈ (0, 1) denote a mixture parameter. By introducing synthetic anomalies, we are implicitly
changing the density function representing the anomaly class to

h2 = s̃h− + (1− s̃), (8)

which corresponds to a mixture. Here, a proportion s̃ of anomalies are drawn from known anomaly
density h−, and the remaining proportion (1 − s̃) of (synthetic) anomalies are drawn from the
distribution µ. We see that (in (8)) h2 is bounded away from 0 due to the constant term 1− s̃ > 0,
preventing h1/h2 from exploding even when h1 is small. Hence, low probability density normal
data will not be modeled as anomalous even in regions where h2 is small.

1The bound could be vacuous because excess risk is always at least 1.
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Remark 4.1. When h− is constant, known anomalies are drawn from the uniform distribution,
providing no additional prior on how anomalies can arise. This uninformative case also arises when
mixture parameter s̃ = 0. In both cases, h2 will be constant, and (2) reduces to the density level
set estimation problem {h1 > ρ} of unsupervised AD. In other words, our semi-supervised AD
framework is a generalization of unsupervised AD that allows for known anomaly supervision.

4.3 MITIGATING ISSUE 2: INSUFFICIENT REGULARITY OF LEARNING PROBLEM

Adding synthetic anomalies from the uniform distribution can also improve the smoothness of the
regression function. Later in Section 4.4, we use this fact to show how we can effectively learn the
Bayes classifier. While Proposition 3.1 illustrated that the regression function fP can be discontinuous
despite h1 and h2 being continuous, our next novel result shows that adding synthetic anomalies
ensures continuity of regression function fP under the same conditions.
Proposition 4.2. Suppose the condition stated in Proposition 3.1 holds. If we add synthetic anomalies
from µ = Uniform(X ) (i.e., h2 = s̃h− + (1− s̃) with s̃ ∈ (0, 1)), the regression function is

fP (X) =
s · h1(X)− (1− s)s̃ · h−(X)− (1− s)(1− s̃)

s · h1(X) + (1− s)s̃ · h−(X) + (1− s)(1− s̃)
,

which is Cr continuous.

For concreteness, we present 2 examples in Appendix D to illustrate how synthetic anomalies enhance
the smoothness of regression function fP .

Previously, from Proposition 3.1, we know that if fP is discontinuous, no ReLU neural network can
approximate it well. Conversely, if fP is continuous, a well-established body of research has proved
that ReLU neural networks can approximate it to any desired accuracy (e.g., Theorems 1 and 2 in
Yarotsky (2017), Theorem 5 in Schmidt-Hieber (2020), Theorem 1.1 in Shen et al. (2022)). However,
we cannot directly use existing results because the i.i.d. assumption is violated — anomalies are
not drawn i.i.d. from h2, but they are drawn from h− (known anomalies) and µ (synthetic anomalies)
separately. We proceed to derive a novel theoretical result that accommodates this non-i.i.d. setting.

4.4 PROPOSED NEURAL NETWORK WITH SYNTHETIC ANOMALIES AND THEORETICAL
GUARANTEES

We proceed to show that our method achieves minimax optimal convergence of the excess risk (and
consequently, the AD error metric), the first theoretical guarantee in semi-supervised AD.

We adopt ReLU neural networks. We construct a specific class of ReLU neural networks (i.e., our
hypothesis space) to learn the Bayes classifier fc well. We introduce some notation to formally define
this hypothesis space.
Definition 4.3. Let ∥W (i)∥0 and |b(i)|0 denote the number of nonzero entries of W (i) and b(i) in the
i-th hidden layer, ∥p∥∞ denote the maximum number of nodes among all hidden layers, and ∥θ∥∞
denote the largest absolute value of entries of {W (i), b(i)}Li=1. For L,w, v,K > 0, we denote the
form of neural network we consider in this work by

F(L,w, v,K) :=
{
f of the form of (6) : ∥p∥∞ ≤ w,

∑L
i=1

(
∥W (i)∥0 + |b(i)|0

)
≤ v, ∥θ∥∞ ≤ K

}
.

With στ given in (7), we define our hypothesis space Hτ with τ ∈ (0,1] to be functions
generated by Hτ := span{στ ◦ f : f ∈ F(L∗,w∗, v∗,K∗)} for specific L∗, w∗, v∗,K∗ > 0.
Definition 4.4. To make computation feasible, it is common to adopt some convex, continuous loss
to replace the 0-1 classification loss function. Among all functions in Hτ , we specifically consider
the empirical risk minimizer (ERM) w.r.t. Hinge loss ϕ(x) := max{0, 1− x} defined as

fERM := arg min
f∈Hτ

εT,T−,T ′(f), (9)

where the empirical risk w.r.t. ϕ is

εT,T−,T ′(f) :=
s

n

n∑
i=1

ϕ (f(Xi)) +
(1− s)s̃

n−

n−∑
i=1

ϕ(−f(X−
i )) +

(1− s)(1− s̃)

n′

n′∑
i=1

ϕ(−f(X ′
i)),

(10)
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which uses normal data, known anomalies and synthetic anomalies from a uniform distribution. Note
that n and n− denote the number of normal and (real) anomalous training samples respectively, and
n′ denotes the number of synthetic anomalies we generate.

The following theorem shows that the excess risk of the ERM, fERM (9), trained on normal data,
known anomalies and synthetic anomalies, converges to 0 at an optimal rate (up to a logarithmic
factor) as the number of training data increases.
Theorem 4.5. Let n, n−, n′ ≥ 3, nmin = min{n, n−, n′}, d ∈ N, α > 0. Assume the Tsybakov noise
condition (3) holds for noise exponent q ∈ [0,∞) and constant c0 > 0, and the regression function fP

is α-Hölder continuous. Consider the hypothesis space Hτ with N =

⌈(
nmin

(log(nmin))4

) d
d+α(q+2)

⌉
, τ =

N−α
d ,K∗ = 1, and L∗, w∗, v∗ depending on N,α, d given explicitly in Appendix G. For any

0 < δ < 1, with probability 1− δ, there holds,

R(sign(fERM))−R(fc) = O
(
(log nmin)

4

nmin

) α(q+1)
d+α(q+2)

.

The full proof and explicit excess risk bound are given in Appendix G. Theorem 4.5 tells us that

when nmin = min{n, n−, n′} increases, the excess risk converges to 0 at a rate O
(
(nmin)

− α(q+1)
d+α(q+2)

)
(dropping the logarithmic factor). This rate matches the minimax rates in the literature (Audibert
& Tsybakov, 2007) because nmin captures the minimum sample size across normal, anomalous and
synthetic training data. Applying Theorem 4.5 to (4), we obtain with probability 1 − δ, the AD
error Sµ,h1,h2,ρ(sign(fERM)) = O

(
(nmin)

− αq
d+α(q+2)

)
. As the number of training data grows, the

AD error converges to 0, suggesting that ReLU network can solve semi-supervised AD effectively.
Next, we conduct experiments with real-world data to evaluate the practical efficacy of synthetic
anomalies.

5 EXPERIMENTS

5.1 SET-UP

In this section, we evaluate the area under the precision-recall curve (AUPR) of neural networks
with vanilla classification (VC) (Han et al., 2022). We also test other AD methods (mentioned in
order of their proximity in modeling VC): ES (VC with modified activation function) (Lau et al.,
2024b;a), DROCC (VC but with adversarial synthetic anomalies) (Goyal et al., 2020), ABC (VC
with autoencoder structure) (Yamanaka et al., 2019) and DeepSAD (Ruff et al., 2020) (autoencoder
with latent hypersphere classification). All methods are evaluated with and without our proposed
method of including randomly sampled synthetic anomalies (SA). VC-SA models our theoretical
framework. Here, we are interested in 2 research questions (RQs). RQ1. Do synthetic anomalies
improve performance of VC (i.e., VC-SA versus VC)? RQ2. [Generalizability] Do synthetic
anomalies improve performance of other state-of-the-art methods? Results for RQ1 and RQ2 are
reported in Tables 1a and 1b respectively. To avoid diluting the known anomaly supervision signal
and contaminating the normal data during training, we avoid adding too many synthetic anomalies.
Based on Theorem 4.5, we add n′ = n + n− number of synthetic anomalies. We explained our
choice of n′ and other hyperparameters in Appendix H.5.2.

As a note, we also evaluate 9 methods, each composing a binary classifier on an unsupervised AD
method. These methods first do unsupervised AD to identify data that belong to the training classes,
and then binary classifiers differentiate normal from known anomalous data given that the data are
known. However, they consistently produce random (i.e., poor) performance and are unsuitable. We
defer further details and discussions to Appendix H.4.

Dataset We summarize our five diverse real-world evaluation datasets spanning across tabular,
image and language benchmarks. More details are in Appendix H.2. Our tabular datasets comprise
NSL-KDD (cybersecurity) (Tavallaee et al., 2009), Thyroid (medical) (Quinlan, 1987) and Arrhythmia
(medical) (Guvenir et al., 1998). MVTec (Bergmann et al., 2019) and AdvBench (Chen et al., 2022)
are our image and language AD datasets respectively. Here, anomalies arise naturally from cyber-
attacks, medical sickness, manufacturing defects and harmful text. For all datasets, we train with
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Table 1: AUPR↑ results with and without synthetic anomalies for (a) our theoretical model
(vanilla classification, VC) and (b) other AD models. Table 1b is a continuation of Table 1a, but
separated as a different subtable to highlight the different RQs they are answering. Other models
are arranged from left to right in order of how close they are to VC. More often than not, synthetic
anomalies (-SA suffix) generally improve results for VC and other AD models closer to the left
(ES and DROCC). Performance gains are seen for both unknown (unk.) and known anomalies.
Meanwhile, autoencoder-based methods ABC and DeepSAD have more mixed results.

(a) RQ1. AUPR↑ for our VC model.

Dataset Type Anom. Random VC VC-SA (Ours)

NSL-
KDD

Unk.
DoS 0.431 0.345±0.036 0.793±0.055

Probe 0.197 0.180±0.010 0.649±0.078
RA 0.218 0.543±0.019 0.609±0.050

Known PE 0.007 0.609±0.001 0.486±0.146

Thyroid Unk. Hyper. 0.023 0.565±0.465 0.817±0.039
Known Sub. 0.053 0.512±0.380 0.751±0.020

Arrhyth. Unk. All 0.751 0.854±0.030 0.846±0.003

MVTec
(Image) Unk.

Bottle 0.683 0.996±0.001 0.997±0.000
Cable 0.577 0.795±0.013 0.868±0.005

Capsule 0.789 0.908±0.005 0.947±0.002
Carpet 0.714 0.998±0.000 0.999±0.000
Grid 0.682 0.999±0.000 1.000±0.000

Hazelnut 0.565 0.954±0.004 0.943±0.009
Leather 0.695 1.000±0.000 1.000±0.000

Metal Nut 0.756 0.982±0.001 0.975±0.006
Pill 0.817 0.925±0.002 0.950±0.009

Screw 0.699 0.839±0.044 0.844±0.033
Tile 0.670 0.980±0.007 0.997±0.000

Transistor 0.333 0.786±0.026 0.872±0.010
Wood 0.732 0.984±0.008 0.991±0.008
Zipper 0.758 0.995±0.002 0.998±0.001

Adv-
Bench
(Text)

Unk.

satnews 0.082 0.798±0.028 0.232±0.030
CGFake 0.130 0.097±0.004 0.080±0.002
jigsaw 0.130 0.185±0.040 0.340±0.011

EDENCE 0.113 0.102±0.008 0.721±0.082
FAS 0.140 0.087±0.002 0.126±0.007

Known

LUN 0.074 0.762±0.032 0.532±0.027
amazon_lb 0.107 0.123±0.017 0.824±0.036

HSOL 0.030 0.042±0.009 0.731±0.015
assassin 0.022 0.048±0.003 0.533±0.062
enron 0.080 0.211±0.037 0.361±0.015

(b) RQ2. AUPR↑ for other methods.

ES ES-SA DROCC DROCC-SA ABC ABC-SA DeepSAD DeepSAD-SA

0.716±0.083 0.794±0.005 0.930±0.015 0.856±0.067 0.935±0.002 0.940±0.013 0.899±0.001 0.842±0.001
0.423±0.030 0.690±0.053 0.577±0.037 0.634±0.205 0.900±0.018 0.860±0.006 0.871±0.001 0.823±0.003
0.565±0.036 0.583±0.035 0.663±0.081 0.582±0.062 0.546±0.034 0.507±0.010 0.391±0.001 0.520±0.003
0.606±0.021 0.618±0.027 0.201±0.004 0.168±0.036 0.226±0.065 0.054±0.013 0.058±0.003 0.018±0.000

0.501±0.006 0.588±0.032 0.064±0.056 0.115±0.018 0.092±0.001 0.154±0.003 0.221±0.004 0.161±0.005

0.823±0.027 0.826±0.027 0.051±0.004 0.045±0.002 0.034±0.000 0.039±0.000 0.053±0.000 0.049±0.000

0.826±0.017 0.853±0.003 0.815±0.016 0.842±0.005 0.896±0.002 0.890±0.004 0.863±0.000 0.873±0.001
0.999±0.000 0.999±0.000 0.999±0.003 0.999±0.000 0.987±0.009 0.994±0.005 0.973±0.001 0.954±0.002
0.816±0.005 0.852±0.008 0.785±0.006 0.856±0.009 0.843±0.002 0.917±0.002 0.799±0.003 0.802±0.006
0.911±0.002 0.949±0.002 0.907±0.005 0.956±0.002 0.964±0.009 0.976±0.001 0.933±0.000 0.925±0.001
0.998±0.000 0.999±0.000 0.999±0.001 1.000±0.000 0.994±0.001 0.995±0.000 0.990±0.000 0.983±0.000
0.995±0.004 0.998±0.001 0.959±0.014 0.997±0.000 0.992±0.011 1.000±0.000 0.965±0.001 0.968±0.003
0.935±0.036 0.958±0.005 0.911±0.059 0.941±0.003 0.934±0.063 0.952±0.002 0.810±0.002 0.792±0.005
1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.977±0.006 1.000±0.000 0.998±0.000 0.998±0.001
0.988±0.002 0.974±0.010 0.983±0.001 0.973±0.006 0.969±0.002 0.974±0.001 0.943±0.001 0.941±0.001
0.918±0.007 0.915±0.043 0.898±0.035 0.948±0.003 0.968±0.002 0.971±0.002 0.944±0.001 0.947±0.000
0.844±0.014 0.797±0.102 0.830±0.005 0.867±0.008 0.754±0.027 0.933±0.005 0.709±0.002 0.725±0.003
0.997±0.000 0.998±0.000 0.997±0.000 0.998±0.000 0.996±0.000 0.998±0.000 0.991±0.000 0.989±0.000
0.780±0.019 0.815±0.066 0.795±0.014 0.884±0.012 0.851±0.017 0.900±0.008 0.836±0.000 0.840±0.003
0.986±0.001 0.995±0.002 0.992±0.002 0.996±0.002 0.980±0.001 0.997±0.001 0.979±0.001 0.977±0.001
0.995±0.002 0.995±0.003 0.998±0.001 0.998±0.001 0.994±0.001 0.999±0.000 0.990±0.000 0.988±0.000

0.585±0.037 0.540±0.023 0.283±0.010 0.367±0.031 0.151±0.031 0.082±0.003 0.080±0.000 0.074±0.000
0.275±0.031 0.229±0.016 0.150±0.012 0.163±0.011 0.104±0.007 0.091±0.004 0.090±0.000 0.084±0.001
0.845±0.017 0.825±0.030 0.754±0.028 0.715±0.055 0.668±0.086 0.532±0.060 0.107±0.001 0.169±0.002
0.080±0.001 0.079±0.001 0.101±0.004 0.109±0.005 0.149±0.018 0.156±0.010 0.159±0.001 0.137±0.001
0.737±0.010 0.756±0.021 0.619±0.044 0.712±0.014 0.555±0.127 0.090±0.006 0.032±0.000 0.025±0.000

0.356±0.009 0.375±0.014 0.335±0.022 0.406±0.019 0.410±0.056 0.319±0.011 0.144±0.002 0.114±0.000
0.427±0.054 0.444±0.070 0.154±0.008 0.311±0.085 0.078±0.032 0.026±0.001 0.023±0.001 0.021±0.000
0.360±0.027 0.387±0.039 0.195±0.012 0.308±0.078 0.163±0.031 0.121±0.009 0.076±0.000 0.079±0.000
0.714±0.029 0.760±0.026 0.594±0.011 0.645±0.038 0.319±0.176 0.303±0.044 0.108±0.000 0.102±0.000
0.122±0.003 0.138±0.005 0.119±0.002 0.125±0.006 0.097±0.004 0.101±0.002 0.131±0.000 0.137±0.001

normal data and one type of “known” anomaly, and evaluate on normal data and the remaining
anomalies in the dataset (mostly unknown anomalies). For instance, NSL-KDD has benign (normal)
network traffic and 4 types of attacks (anomalies) during training and testing: Denial of Service
(DoS), probe, remote access (RA), and privilege escalation (PE). To simulate semi-supervised AD,
we use RA as known anomalies and the other 3 as unknown anomalies. To convert image and
text data to tabular form, we use 1024-dimensional DINOv2 embeddings (Oquab et al., 2023) and
384-dimensional BERT sentence embeddings (Reimers & Gurevych, 2019) respectively.

In total, we have 24 unknown categories and 7 known categories. Due to the small dataset size of
Arrhythmia and MVTec, known anomalies are used only in training and not testing, and all unknown
anomaly types are grouped together as a large unknown anomaly class for evaluation. We emphasize
more on unknown anomaly evaluation because unknowns characterize the AD problem more than
knowns (see the common density level set estimation formulation in Section 3). Nevertheless, we
also include known categories to gauge if synthetic anomalies will dilute known anomaly training
signal, or if they can improve known anomaly performance.

In addition to the AUPR results presented here, we provide the corresponding AUROC results in
Table 3 in Appendix H.1, comparing performance of neural networks across all datasets with and
without synthetic anomalies. The AUROC results generally demonstrate the superior performance of
the VC model when synthetic anomalies are included.

5.2 DISCUSSION

RQ1. Is VC-SA better than VC? Across all 5 datasets, VC-SA generally outperforms VC. VC-
SA expectedly has better performance on unknown anomalies (better on 19/24 unknown anomaly
categories), with synthetic anomalies providing supervision signal to classify unknown regions as
anomalous (Figure 3). Interestingly, VC-SA outperforms VC on known anomalies on 5/7 of known
anomaly categories (PE from NSL-KDD, subnormal from Thyroid and 5 categories from AdvBench).
Adding synthetic anomalies improves our modeling of density level set estimation (Case 1 in Figure
2), so improving (unsupervised) AD is not necessarily negatively correlated with improving known
anomaly performance, as seen here. Overall, VC-SA performs better than VC.
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Figure 3: Visualization. Synthetic anomalies oc-
cupy regions with unknown anomalies (top right),
training the model to classify unknown anomalies
as anomalous.

RQ2. How beneficial is adding random syn-
thetic anomalies? Across datasets, synthetic
anomalies had the most number of performance
gains in MVTec image AD regardless of method.
This dataset has the highest dimension and
fewest training samples. Here, known anoma-
lies are the least dense, suggesting that the added
synthetic anomalies increased the anomaly sig-
nal for improved performance.

Of other methods, ES and DROCC are the clos-
est to VC and, likewise, benefit from adding
synthetic anomalies. ES-SA outperforms ES
in 16/24 (and tied 3) unknown and 7/7 known
anomaly categories, while DROCC-SA outper-
forms DROCC in 19/24 (and tied 3) unknown and 5/7 known anomaly categories. Consistent
performance gains demonstrate that adding synthetic anomalies generalize well to other classifier-
based AD methods.

Meanwhile, ABC and DeepSAD enforce autoencoder (i.e., encoder-decoder) structures. ABC is the
next closest to VC, using a binary classification objective with an autoencoder structure. ABC-SA
outperforms ABC in 18/24 unknown anomaly categories, but most (14) improvements come from
one dataset (MVTec); performance on other datasets are mixed. DeepSAD is the least similar to VC
with a two-stage training procedure: first training an autoencoder, then using the encoder for binary
classification. DeepSAD-SA outperforms DeepSAD in only 9/24 (and tied 1) unknown anomaly
categories and is the only model where adding synthetic anomalies is not better. Notably, DeepSAD
has good performance on DoS and probe anomalies in NSL-KDD, which are easy anomalies (Lee
& Stolfo, 2000), but struggles on other anomalies (e.g., Thyroid and AdvBench). Here, DeepSAD
already underperforms, and adding synthetic anomalies may not be the solution for that. Moreover,
only 2/7 known anomaly categories are better for both ABC-SA vs. ABC and DeepSAD-SA vs.
DeepSAD, suggesting that synthetic anomalies dilute known anomaly training signal for these
autoencoder models.

Table 2: Ablations for NSL-KDD for the width w,
depth L and proportion of synthetic anomalies n′

to real training data r := n+ n−. AUPR↑ of our
vanilla classifier reported across attacks (anoma-
lies).

Unknown Anomalies Known
Model\Attack DoS Probe RA PE

Random 0.431 0.197 0.218 0.007

w = 300 0.756±0.048 0.658±0.106 0.584±0.025 0.309±0.026
w = 678 (Ours) 0.793±0.055 0.649±0.078 0.609±0.050 0.486±0.146
w = 1500 0.772±0.034 0.547±0.068 0.602±0.025 0.486±0.077

L = 2 (Ours) 0.793±0.055 0.649±0.078 0.609±0.050 0.486±0.146
L = 3 0.720±0.023 0.337±0.063 0.581±0.035 0.560±0.116
L = 8 0.431±0.000 0.197±0.000 0.218±0.000 0.007±0.000
L = 17 0.431±0.000 0.197±0.000 0.218±0.000 0.007±0.000

n′ = 0r 0.345±0.036 0.180±0.010 0.543±0.019 0.609±0.001
n′ = 0.001r 0.744±0.009 0.651±0.049 0.598±0.030 0.513±0.082
n′ = r (Ours) 0.793±0.055 0.649±0.078 0.609±0.050 0.486±0.146
n′ = 5r 0.801±0.026 0.649±0.070 0.633±0.063 0.431±0.158
n′ = 20r 0.763±0.051 0.503±0.152 0.553±0.087 0.298±0.070

Ablations Due to space constraints, we leave
details in Appendix H.5, summarizing ablations
across 3 key hyperparameters: width, depth and
number of synthetic anomalies (Table 2). Wider
and deeper networks provide higher expressivity,
but we observe vanishing gradients in the latter.
Performance is not as sensitive to width. Mean-
while, more synthetic anomalies (even a small
amount amount) improves unknown anomaly
performance, but contaminates the supervision
signal from known anomalies, hence affecting
known anomaly performance. Therefore, in our
experiments, we choose depth and width to bal-
ance expressivity (determined by data dimension
and number of samples), and n′ = n+ n−.

6 CONCLUSION

Semi-supervised AD paves a way to incorporate known anomalies; we establish the first mathematical
formulation of semi-supervised AD, which generalizes the unsupervised setting. Here, synthetic
anomalies enable (i) anomaly modeling in low-density regions and (ii) optimal convergence guarantees
for neural network classifiers — the first theoretical guarantee for semi-supervised AD. Experiments
on five diverse benchmarks reveal consistent performance gains for our theoretical model and other
classification-based AD methods. These theoretical and empirical results highlight that using synthetic
anomalies in AD is generalizable.
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APPENDIX

A LIMITATIONS AND EXTENSIONS

We discuss two potential extensions to further our current work.

First, we acknowledge our mathematical formulation is not the only approach to formulate semi-
supervised AD. Another intuitive formulation is a constrained optimization problem, such as minimiz-
ing the error of estimating the density level set subject to an upper bound on the misclassification on
known anomalies. We opted for our mathematical framework because it generalizes unsupervised AD
in an elegant manner and admits statistical guarantees. A future research direction is to understand if
different approaches of semi-supervised AD are the same or fundamentally different.
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Second, our empirical results show improvements on mainly on unsupervised AD methods. Although
we do see classification-based methods (VC, ES and DROCC) perform well in general with synthetic
anomalies, we do not observe that one AD method is definitively better than the rest. We suspect
that different datasets present anomalies that are anomalous in different ways. Future work should
understand how synthetic anomalies can complement existing methods, such as understanding how
to generate synthetic anomalies more effectively (e.g., DROCC uses synthetic anomalies that are
adversarial), along with theoretical guarantees.

B DISCUSSIONS ON THE BAYES CLASSIFIER, AND THE BAYES RULE
MINIMIZING GENERALIZATION ERROR

Recall that s ∈ (0, 1) represents the proportion of normal data on X . For a pair of random variable
(X,Y ) ∈ X ×Y , we define P(Y = 1) = s and P(Y = −1) = 1− s. For any function f on X ×Y ,
we have ∫

X×Y
f(X,Y )dP = s

∫
X
f(X, 1)h1dµ+ (1− s)

∫
X
f(X,−1)h2dµ. (11)

From (11), we derive the conditional class probability function as

η(X) := P(Y = 1|X) =
s · h1(X)

s · h1(X) + (1− s) · h2(X)
. (12)

We can also derive the regression function, denoted by fP , given as

fP (X) := E[Y |X]

= 1 · P(Y = 1|X) + (−1) · P(Y = −1|X)

=
s · h1(X)− (1− s) · h2(X)

s · h1(X) + (1− s) · h2(X)
, ∀X ∈ X .

Both η and fP are fundamental in characterizing the classification problem and assessing the
performance of neural network classifiers.

Throughout this work, we adopt the hinge loss, defined as

ϕ(u) := max{1− u, 0},

which is one of the most widely used convex loss functions in binary classification. While the 0− 1
loss is the most natural choice for binary classification, minimizing the empirical risk w.r.t. it is
computationally intractable (NP-hard) due to its non-convex and discontinuous nature (Bartlett et al.,
2006). To overcome this challenge, convex surrogate loss functions V : X × Y → [0,∞) are often
employed to make computation feasible. Among these, learning a neural network classifier with
hinge loss is relatively straightforward owing to the gradient descent algorithm (Molitor et al., 2021;
George et al., 2024).

The generalization error for f : X → R w.r.t. the hinge loss ϕ and the probability measure P is
defined as

ε(f) =

∫
X×Y

ϕ(Y f(X))dP

=

∫
X

∫
Y
ϕ(Y f(X))dP (Y |X)dPX

=

∫
X
[ϕ(f(X))P(Y = 1|X) + ϕ(−f(X))P(Y = −1|X)] dPX

=

∫
X
[sϕ(f(X))h1(X) + (1− s)ϕ(−f(X))h2(X)]dµ.

The following proposition establishes that the Bayes classifier fc also minimizes the generalization
error. In fact, fc can be defined explicitly to be

fc(X) = sign(fP (X)).

Its proof is given below.
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Proposition B.1. The generalization error ε(f) is minimized by the Bayes rule; that is, for all
X ∈ X ,

fc(X) = sign(fP (X))

= sign(s · h1(X)− (1− s) · h2(X))

=

{
1, if s · h1(X)− (1− s) · h2(X)) ≥ 0,

−1, if s · h1(X)− (1− s) · h2(X)) < 0.

Proof of Proposition B.1. A minimizer f∗ of ε(f) can be found by taking its value f∗(X) at every
X ∈ X to be a minimum of the convex function Φ = ΦX defined by

Φ(u) = s · h1(X)ϕ(u) + (1− s) · h2(X)ϕ(−u), u ∈ R. (13)

Notice that the hinge loss ϕ(u) = max{1 − u, 0} is not differentiable at u = 1. Thus, to find a
minimizer of the function Φ, we need to look at its one-sided derivatives.

Let ϕ′
−(u) and ϕ′

+(u) denote the left derivative and right derivative of ϕ(u), respectively. The
one-sided derivatives of the hinge loss ϕ(u) are

ϕ′
−(u) =

{
−1, if u ≤ 1,

0, if u > 1,
and ϕ′

+(u) =

{
−1, if u < 1,

0, if u ≥ 1.
(14)

Moreover, the left derivative of ϕ(−u) is

ϕ′
−(−u) = lim

x→0−

ϕ(−(u+ x))− ϕ(−u)

x

= lim
x→0−

−ϕ(−u− x)− ϕ(−u)

−x

= −ϕ′
+(−u).

It follows that the left derivative of the function Φ is given by

Φ′
−(u) = s · h1(X)ϕ′

−(u) + (1− s) · h2(X)ϕ′
−(−u)

= s · h1(X)ϕ′
−(u)− (1− s) · h2(X)ϕ′

+(−u)

=


(1− s) · h2(X), if u > 1,

(1− s) · h2(X)− s · h1(X), if − 1 < u ≤ 1,

−s · h1(X), if u ≤ −1.

Similarly, the right derivative of the function Φ is given by

Φ′
+(u) = s · h1(X)ϕ′

+(u) + (1− s) · h2(X)ϕ′
+(−u)

= s · h1(X)ϕ′
+(u)− (1− s) · h2(X)ϕ′

−(−u)

=


(1− s) · h2(X), if u ≥ 1,

(1− s) · h2(X)− s · h1(X), if − 1 ≤ u < 1,

−s · h1(X), if u < −1.

It follows that a minimizer u∗ of Φ must be on [−1, 1]. Also, the convexity of Φ implies that a
minimizer u∗ must satisfies

Φ′
−(u

∗) =

{
(1− s) · h2(X)− s · h1(X) ≤ 0, if − 1 < u∗ ≤ 1,

−s · h1(X) ≤ 0, if u∗ = −1.
(15)

and

Φ′
+(u

∗) =

{
(1− s) · h2(X) ≥ 0, if u∗ = 1,

(1− s) · h2(X)− s · h1(X) ≥ 0, if − 1 ≤ u∗ < 1.
(16)

We consider all the possible cases:

• If (1− s) · h2(X)− s · h1(X) < 0, the minimizer u∗ must be 1; this is because (1− s) ·
h2(X)− s · h1(X) ≥ 0 for all u∗ ∈ [−1, 1).
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• Similarly, if (1− s) · h2(X)− s · h1(X) > 0, the minimizer u∗ must be −1; this is because
(1− s) · h2(X)− s · h1(X) ≤ 0 for all u∗ ∈ (−1, 1].

• If (1− s) ·h2(X)− s ·h1(X) = 0, the function Φ is just constant on [−1, 1] so a minimizer
u∗ can be any number on [−1, 1]. We take u∗ = 1.

This completes the proof.

C REMARKS ABOUT THEORETICAL ANALYSIS

C.1 REMARKS ABOUT THE TSYBAKOV’S NOISE CONDITION

Here, we provide a detailed discussion and elaboration on the well-known Tsybakov noise condition,
which is utilized in this work to model the classification problem.
Remark C.1. Throughout this work, we assume the Tsybakov noise condition (see, e.g., (Mammen
& Tsybakov, 1999; Tsybakov, 2004)), which is a common assumption imposed in the literature in
classification. This condition describes the behavior of the regression function fP (X) = E[Y |X]
(with parameter q) around the decision boundary {x : fP (x) = 0}. Specifically, it assumes that for
some constant c0 > 0 and q ∈ [0,∞),

PX({X ∈ X : |fP (X)| ≤ t}) ≤ c0t
q, ∀t > 0, (17)

where q is commonly referred to as the noise exponent. Intuitively, bigger q means there is a higher
chance that fP (X) is bounded away from 0, which is favorable for classification. If q approaches ∞,
the regression function fP is bounded away from 0 for PX -almost all x ∈ X . Conversely, smaller q
implies that there is a plateau behavior near the boundary 0, which is considered a difficult situation
for classification. Note that the assumption becomes trivial for q = 0 because every probability
measure satisfies (17) by taking the constant c0 = 1.

Equivalently, the noise condition can be stated in terms of η(X) = P(Y = 1|X) as

PX({X ∈ X : |2η(X)− 1| ≤ t}) ≤ c0t
q. (18)

The statements (17) and (18) are equivalent because

fP (X) = η(X)− (1− η(X)) = 2η(X)− 1.

See (Tsybakov, 2004; Audibert & Tsybakov, 2007; Bartlett et al., 2006) for further discussion on this
assumption.

C.2 REMARKS ABOUT THE “APPROX-SIGN" FUNCTION

Remark C.2. Recall that σk is the ReLUk activation function with k ∈ N, which is the generalization
of ReLU defined as

σk(x) = (max{0, x})k.
These higher-order variants of the ReLU functions preserve the non-negativity and sparsity of ReLU
while introducing smoother transitions near the origin. See Figure 4 for a plot comparing σ(x), σ2(x),
and σ3(x).

Recall the "approx-sign" function στ : R → [0, 1], defined previously in equation (7) with a
bandwidth parameter τ > 0, as

στ (x) =
1

τ
σ(x)− 1

τ
σ(x− τ)− 1

τ
σ(−x) +

1

τ
σ(−x− τ),

which simplifies to the piecewise form:

στ (x) =


1, if x ≥ τ,
x
τ , if x ∈ [−τ, τ),

−1, if x < −τ.

We see that this function is a linear combination of four scaled ReLU units. Moreover, it is a smoothed
sign function that transitions linearly between −1 and 1 within the interval [−τ, τ). Outside this
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Figure 4: Plot of the ReLU function σ(x) = max(0, x) and its squared and cubed variants, σ2(x)
and σ3(x), illustrating their increasing smoothness and growth rates for x > 0.

Figure 5: Comparison of the sign function and “approx-sign" functions. smoothed localized ap-
proximations. The left-hand plot shows the discontinuous sign function, defined as sign(x) = −1
for x < 0 and 1 for x ≥ 0. The right-hand plot displays the functions “approx-sign" functions:
στ (x), σ2

τ (x), and σ3
τ (x). These functions are considered the smoothed localized approximations of

the sign function. They are constructed using combinations of scaled ReLU σ(x) and their powers
σ2(x), σ3(x) to create increasingly smooth and localized bump-like functions. In this example, we
set τ = 0.1.

interval, it behaves like the standard sign function. As τ → 0, στ (x) converges to the sign function.
We use the function στ to approximate the sign function.

We also define higher-order approximations σk
τ (x), which are smoother versions of στ (x), constructed

using σk functions for k ∈ N. Specifically, the function σk
τ (x) is defined as

σk
τ (x) :=

1

k!τk

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
σk(x− ℓτ)− 1

k!τk

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
σk(−x− ℓτ).

See Figure 5 for visual comparison using τ = 0.1.

C.3 SIGNIFICANCE AND IMPLICATIONS OF THEOREM 3.3

Remark C.3. Here, we discuss and highlight the novelty of Theorem 3.3. In binary classification, the
generalization error ε(f) is minimized by the Bayes rule (as shown in Proposition B.1). The Bayes
classifier fc = sign(fP ) is typically discontinuous.

Existing literature often estimates the excess generalization error ε(f)− ε(fc) by the L1 norm (w.r.t.
marginal distribution on X ) of the difference between f and fc (Chen et al., 2004; Lin et al., 2017).
However, due to the discontinuous nature of fc, the L1 error usually decays slowly to zero.
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In contrast, Theorem 3.3 shows that as long as the error in approximating the regression function fP
(instead of fc) converges fast to zero, the excess generalization error (and consequently the excess
risk R(f)−R(fc) will also converge fast to zero.

Our results leverage Tsybakov’s noise condition to establish a relationship between the excess
generalization error of f and the approximation error ∥f − fP ∥L∞ . Since the regression function
fP is smooth (particularly when synthetic anomalies are incorporated during training), errors of
approximating this smooth regression function can be small and decay fast, as supported by many
existing results in approximation theory (e.g., (Yarotsky, 2017; Shen et al., 2022)). This novel
approach offers an alternative estimate of the excess generalization error in classification, leveraging
on both the noise condition and the smoothness of the regression function.

D EXAMPLES

In this section, we present two examples, each based on specific choices of the density functions
h1 and h−, to illustrate two key points: (i) how the resulting regression function fP can be
discontinuous, and (ii) how the inclusion of synthetic anomalies can improve the smoothness of
fP .
Example D.1. Here, let us consider a simple example of h1, h− and the corresponding regression
function.

Let H be the univariate hat function on [−1, 1] given by

H(x) = max{1− |x|, 0},

where it peaks at x = 0 and linearly decreases to 0 at x = −1 and x = 1. We let

h1(X) = 4H(4X − 3)

and
h−(X) = 4H(4X − 1)

be two hat functions supported on [0, 1/2] and [1/2, 1] respectively. From Figure 6, we see that
both functions are exactly zero outside their respective supports. Also, the intersection of [0, 1/2]
and [1/2, 1] has an empty interior. This presents a specific example that corresponds to the general
scenarios illustrated in Proposition 3.1.

Figure 6: The plot showcases the density functions h− and h1 given in Example D.1, which are two
hat functions supported on [0, 1/2] and [1/2, 1], respectively.

When s̃ = 0 without synthetic data (i.e., h2(X) = h−(X)), the regression function is given by

fP (X) =

{
−1, if X ∈ [0, 1/2],

1, if X ∈ (1/2, 1],

which is a function discontinuous on [0, 1].
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On the other hand, if we include synthstic anomalies in training and let h2(X) = s̃h−(X) + (1− s̃)
for some s̃ > 0, the regression function becomes

fP (X) =


−1, if X ∈ [0, 1/2],
16s(X−1/2)−(1−s)s̃
16s(X−1/2)+(1−s)s̃ , if X ∈ (1/2, 3/4],
16s(1−X)−(1−s)s̃
16s(1−X)+(1−s)s̃ , if X ∈ (3/4, 1],

which is continuous. In particular, observe that for X ∈ (1/2, 3/4),

f ′
P (X) =

32s(1− s)s̃

(16s(X − 1/2) + (1− s)s̃)
2

and the Lipschitz constant (C1 seminorm) of fP equals 32s
(1−s)s̃ . We can see that the regularity of fP

gets better as s̃ becomes bigger. Figure 7 provides a visual illustration of the resulting regression
function for various choices of s̃ > 0. We can see that the larger the s̃, the smoother the fP .

Figure 7: A comparison of the regression function fP (X) for varying parameter values s̃ = 0, s̃ =
0.1, s̃ = 0.5, s̃ = 0.8. The case s̃ = 0 corresponds to the absence of synthetic anomalies and results
in a discontinuous function with a jump from −1 to 1. Increasing the parameter s̃ (i.e., adding more
synthetic anomalies) results in progressively smoother functions. Here, we take s = 0.5.

The above example considers one-dimensional density functions. We now proceed to present an
example involving d-dimensional density functions, demonstrating how the inclusion of synthetic
anomalies can improve the smoothness of the resulting regression function. The example is given
below.
Example D.2. Consider the univariate hat function defined on the interval [−1/2, 1/2] given by

max{2− 4|x|, 0}, (19)

where it peaks at x = 0 and linearly decreases to 0 at x = −1/2 and x = 1/2. Now consider a
d-dimensional function where each dimension is a hat function, that is,

H(X) = H(X1, · · · , Xd) =

d∏
i=1

H(Xi) =

d∏
i=1

max{2− 4|Xi|, 0}. (20)

This function is non-zero only within the region Xi ∈ [−1/2, 1/2] for all i, and smoothly decays to
zero as any |Xi| approaches 1/2. We can easily verify that this function is Lipschitz continuous (i.e.,
C1 continuous).

Suppose the normal density function h1 is given by

h1(X) = H(X + (1/2, 0, 0, · · · , 0)), (21)

and suppose the real anomaly density function h− is given by

h−(X) = H(X − (1/2, 0, 0, · · · , 0)). (22)
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If h2 = h− without synthetic data, the regression function is

fP (X) =
s · h1(X)− (1− s) · h−(X)

s · h1(X) + (1− s) · h−(X)

=

{
s·h1(X)
s·h1(X) = 1, if X ∈ [−1/2, 0)× [−1/2, 1/2]d−1,

− (1−s)·h−(X)
(1−s)·h−(X) = −1, if X ∈ (0, 1/2]× [−1/2, 1/2]d−1.

We can see that fP is not continuous on the line segment X1 = 0. With the choice h2 = h−,
the regression function has lost its Lipschitz continuity. Learning a discontinuous function by
neural network is generally difficult in theory. However, if we include synthetic anomalies and set
h2 = s̃h− + (1− s̃) for s̃ > 0, then the regression function becomes

fP (X) =
s · h1(X)− (1− s) · h−(X)− (1− s)(1− s̃)

s · h1(X) + (1− s) · h−(X) + (1− s)(1− s̃)

We can verify that this regression function is Lipschitz continuous. In fact, because we have the
positive constant term (1− s)(1− s̃) in the denominator, it helps in maintaining the smoothness of
fP .

E PROOFS OF PROPOSITION AND EQUATION

We present the proofs of Proposition and Equation in this section.

E.1 PROOF OF EQUATION (4)

We first present the following lemma that showcases how the Tsybakov noise condition relates to
our data distribution on the domain X . This lemma will be instrumental in proving the statement of
Equation (4).
Lemma E.1. Let µ be a known probability measure on X . Let Q and W be distributions on X such
that Q has a density h1 with respect to µ, and W has a density h2 with respect to µ. For s ∈ (0, 1),
the Tsybakov noise condition (3) with noise exponent q ∈ [0,∞) is satisfied if and only if∫

{
X∈X :

∣∣∣h1(X)

h2(X)
− 1−s

s

∣∣∣≤( 1−s
s )t

} h2(X)dµ = O(tq). (23)

In other words, h1

h2
has 1−s

s -exponent q.

Proof of Lemma E.1. In our problem setting, we observe that the regression function depends on
both densities h1 and h2. For X with h2(X) > 0, the regression function can be expressed as

fP (X) =
s · h1(X)

h2(X) − (1− s)

s · h1(X)
h2(X) + (1− s)

.

Note that the case h2(X) = 0 means fP (X) = 1 and the point X is outside the domain stated in (3).
It follows that for t ∈ (0, 1/4), |fP (X)| ≤ t if and only if

1− s

s
· 1− t

1 + t
≤ h1(X)

h2(X)
≤ 1− s

s
· 1 + t

1− t
, (24)

which is the same as

−1− s

s
· 2t

1 + t
≤ h1(X)

h2(X)
− 1− s

s
≤ 1− s

s
· 2t

1− t
. (25)

Thus, for t ∈ (0, 1/4), we have

PX({X ∈ X : |fρ(X)| ≤ t}) =

∫
{X∈X :|fρ(X)|≤t}

dPX

=

∫
Xt

[s · h1(X) + (1− s) · h2(X)]dµ

=

∫
Xt

(
s · h1(X)

h2(X)
+ (1− s)

)
h2(X)dµ,
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where Xt :=
{
X ∈ X : − 1−s

s · 2t
1+t ≤

h1(X)
h2(X) −

1−s
s ≤ 1−s

s · 2t
1−t

}
.

Then, we can get an upper bound for the measure by observing

s · h1(X)

h2(X)
≤ (1− s)

1 + t

1− t
≤ (1− s)

1 + 1/4

1− 1/4
=

5(1− s)

3
≤ 2(1− s);

on Xt and enlarging the domain Xt as

PX({X ∈ X : |fρ(X)| ≤ t}) =

∫
Xt

(
s · h1(X)

h2(X)
+ (1− s)

)
h2(X)dµ

≤ 3(1− s)

∫
{
X∈X :

∣∣∣h1(X)

h2(X)
− 1−s

s

∣∣∣≤ 1−s
s 3t

} h2(X)dµ.

A lower bound can be derived by observing

s · h1(X)

h2(X)
≥ (1− s)

1− t

1 + t
≥ (1− s)(1− 1/4) =

3(1− s)

4

on Xt and reducing the domain Xt as

PX({X ∈ X : |fρ(X)| ≤ t}) =

∫
Xt

(
s · h1(X)

h2(X)
+ (1− s)

)
h2(X)dµ

≥ 3(1− s)

2

∫
{
X∈X :

∣∣∣h1(X)

h2(X)
− 1−s

s

∣∣∣≤ 1−s
s 2t

} h2(X)dµ.

The proof of Lemma E.1 is complete.

With Cq =
c
1/q
0

2q (q + 1)1+1/q, Equation (4) follows after Lemma E.1 and Proposition 1 from
(Tsybakov, 2004).

E.2 PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. Recall that in Proposition 3.1, we consider the domain X to be a union of
two closed subdomains X1 and X− such that the intersection of X1 and X− is nonempty and has an
empty interior. Suppose h1 vanishes on X− but its support equals X1 (i.e., h1 > 0 on interior(X1)),
and h− vanishes on X1 but its support equals X− (i.e., h− > 0 on interior(X−)).

If no synthetic anomalies are generated, the resulting regression function fP is given as

fP (X) =
s · h1(X)− (1− s) · h−(X)

s · h1(X) + (1− s) · h−(X)

=

{
h1(X)
h1(X) = 1, if X ∈ interior(X1),

−h−(X)
h−(X) = −1, if X ∈ interior(X−).

In particular, we notice that fP is discontinuous at the intersection of X1 and X− (there is a jump
from 1 to −1). Take an arbitrary point X∗ in this intersection.

For any continuous function f : X → R, the function f takes its value f(X∗) at X∗. If f(X∗) ≥ 0,
we take a sequence {X(n)}n∈N in interior(X1) tending to X∗, then

lim
n→∞

(
f
(
X(n)

)
− fP

(
X(n)

))
= f(X∗)− (−1) ≥ 1.

In the same way, if f(X∗) < 0, we have another sequence {X(n)}n∈N approaching X∗ such that

lim
n→∞

(
f
(
X(n)

)
− fP

(
X(n)

))
= f(X∗)− 1 < −1.

Then ∥f − fP ∥L∞[0,1]d ≥ 1. This concludes the proof.
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F PROOF OF THEOREM 3.3

We present the proof of Theorem 3.3 in this section.

Proof of Theorem 3.3. The k-order forward difference of a function g is defined as

∆k
τg(x) =

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
g(x+ ℓτ),

which can be written as an integral sum

∆k
τg(x) =

∫ τ

0

· · ·
∫ τ

0

g(k)(x+ t1 + · · ·+ tk)dt1 · · · dtk

Recall the ReLUk function given by σk(x) = (max{0, x})k. Also recall the function σk
τ defined for

some 0 < τ ≤ 1 as

σk
τ (x) =

1

k!τk

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
σk(x− ℓτ)− 1

k!τk

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
σk(−x− ℓτ).

Note that the k-th derivative of the ReLUk function is

(σk)(k)(x) =

{
k!, if x > 0,

0, if x < 0.

If x ≥ 0, we know σk(−x− ℓτ) = 0 for every ℓ ∈ N and 0 < τ ≤ 1. Thus, for x ≥ 0, we have

σk
τ (x) =

1

k!τk

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
σk(x− ℓτ)

=
1

k!τk

k∑
ℓ=0

(−1)k−ℓ

(
k

k − ℓ

)
σk(x− kτ + ℓτ)

=
1

k!τk
∆k

τ (σ
k)(x− kτ)

=
1

k!τk

∫ τ

0

· · ·
∫ τ

0

(σk)(k)(x− kτ + t1 + · · ·+ tk)dt1 · · · dtk

=
1

τk

∫ τ

0

· · ·
∫ τ

0

1{t1+···+tk>kτ−x}dt1 · · · dtk.

We can see from the above expression that σk
τ (0) = 0, σk

τ (x) = 1 for x ≥ kτ , and σk
τ (x) is strictly

increasing for x ∈ [0, kτ ]. Similarly, for x < 0, we know that σk
τ (x) = −1 for x ≤ −kτ , and σk

τ (x)
is strictly increasing for x ∈ [−kτ, 0]. Then,

σk
τ (x) =

{
1, if x ≥ kτ,

−1, if x ≤ −kτ

and |σk
τ (x)| ≤ 1 for x ∈ (−kτ, kτ). Moreover, sign(σk

τ (x)) = sign(x).

Notice that the convex Hinge loss ϕ(x) = max{0, 1−x} is Lipschitz continuous on R with Lipschitz
constant 1 because |ϕ(x1)− ϕ(x2)| ≤ |x1 − x2| for all x1, x2 ∈ R.
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For any function g such that |g(X)| ≤ 1, we have ϕ(Y g(X)) = 1 − Y g(X), and the excess
generalization error between such a g and the Bayes classifier fc is

ε(g)− ε(fc) =

∫
X

∫
Y
1− Y g(X)− (1− Y gc(X))dP(Y |X)dPX

=

∫
X

∫
Y
−Y (g(X)− fc(X))dP(Y |X)dPX

=

∫
X
(g(X)− fc(X))

∫
Y
−Y dP(Y |X)dPX

=

∫
X
(fc(X)− g(X))(1 · P(Y = 1|X)− 1 · P(Y = −1|X))dPX

=

∫
X
(fc(X)− g(X))(2η(X)− 1)dPX .

Notice that 2η(X)− 1 > 0 if and only if fc(X) = sign(fP (X)) = sign(2η(X)− 1), so we have

ε(g)− ε(fc) =

∫
X
|g(X)− fc(X)||2η(X)− 1|dPX

=

∫
X
|g(X)− fc(X)||fP (X)|dPX .

Now take g = σk
τ (f). Let ω := ∥f−fP ∥L∞[0,1]d . We consider two cases separately: (i) |fP (X)| ≤ ω

and (ii) |fP (X)| > ω. Note that

|σk
τ (f(X))− fc(X)| ≤ |σk

τ (f(X))|+ |fc(X)| ≤ 1 + 1 = 2, ∀X ∈ X . (26)

For the case |fP (X)| ≤ ω, it follows from the Tsybakov noise condition (17) (with q ∈ [0,∞) and
constant c0 > 0) that ∫

{x∈X :|fP (X)|≤ω}
|σk

τ (f(X))− fc(X)||fP (X)|dPX

(26)

≤ 2ω

∫
{x∈X :|fP (X)|≤ω}

dPX

= 2ω · PX({X ∈ X : |fP (X)| ≤ ω})
(17)

≤ 2ω · c0ωq

= 2c0ω
q+1.

Next, for the other case |fP (X)| > ω, since |f(X)− fP (X)| ≤ ω for all X ∈ X , we know

sign(σk
τ (f(X))) = sign(f(X)) = sign(fP (X)) = fc(X).

If we have σk
τ (f(X)) ∈ {−1, 1}, then∣∣σk

τ (f(X))− fc(X)
∣∣ = 0 (27)

must holds. Also, if |σk
τ (f(X)) | < 1, then

|f(X)| < kτ (28)

and

|fP (X)| = |fP (X)− f(X) + f(X)| ≤ ω + |f(X)| ≤ ω + kτ. (29)
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Thus, we have ∫
{x∈X :|fP (X)|>ω}

∣∣σk
τ (f(X))− fc(X)

∣∣ |fP (X)|dPX

(27)
=

∫
{x∈X :|fP (X)|>ω,|σk

τ (f(X))|<1}

∣∣σk
τ (f(X))− fc(X)

∣∣ |fP (X)|dPX

(26),(29)

≤ 2(kτ + ω)PX

({
x ∈ X : |fP (X)| > ω, |σk

τ (f(X)) | < 1
})

≤ 2(kτ + ω)PX

({
x ∈ X : |σk

τ (f(X)) | < 1
})

(28)
= 2(kτ + ω)PX ({x ∈ X : |f(X)| < kτ})
≤ 2(kτ + ω)PX ({x ∈ X : |fP (X)| < kτ + ω})
(17)

≤ 2(kτ + ω) · c0(kτ + ω)q

= 2c0(kτ + ω)q+1.

Now combining the above error bounds, we get

ε
(
σk
τ (f(X))

)
− ε(fc)

=

∫
X

∣∣σk
τ (f(X))− fc(X)

∣∣ |fP (X)|dPX

=

∫
{x∈X :|fP (X)|≤ω}

∣∣σk
τ (f(X))− fc(X)

∣∣ |fP (X)|dPX

+

∫
{x∈X :|fP (X)|>ω}

∣∣σk
τ (f(X))− fc(X)

∣∣ |fP (X)|dPX

≤ 2c0ω
q+1 + 2c0(kτ + ω)q+1

≤ 4c0(kτ + ω)q+1

= 4c0
(
kτ + ∥f − fP ∥L∞[0,1]d

)q+1
.

The proof follows from the well-known comparison theorem in classification (Zhang, 2004) asserts
that for the Hinge loss ϕ and any measurable function f : X → R, the following inequality holds:

R(f)−R(fc)︸ ︷︷ ︸
excess risk

≤ ε(f)− ε(fc)︸ ︷︷ ︸
excess generalization error

. (30)

G PROOF OF THEOREM 4.5

Let T = {(Xi, 1)}ni=1 be the set of real normal data given, where each Xi are drawn i.i.d. from an
unknown distribution Q. Let T− = {(X−

i ,−1)}n−

i=1 be the set of real anomalies given, where each
X−

i are drawn i.i.d. from another unknown distribution W . Additionally, let T ′ = {(X ′
i,−1)}n′

i=1
be the set of synthetic anomalies generated from µ = Uniform(X ). We merge these data together
T ∪T−∪T ′ = {(Xi, 1)}ni=1∪{(X−

i ,−1)}n−

i=1∪{(X ′
i,−1)}n′

i=1 to train the ReLU network classifier.
Theorem 4.5 proves that as the number of training data (n, n−, n′) increases, the ReLU network
classifier achieves a theoretically grounded accuracy in anomaly detection.

G.1 EXPLICIT EXCESS RISK BOUND

Before presenting the proof, we restate the theorem with an explicit excess risk bound, along with the
corresponding parameters L∗, w∗, v∗,K∗.
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Recall our hypothesis space Hτ defined in Definition 4.3 with some 0 < τ ≤ 1. Also recall the
empirical risk minimizer w.r.t. Hinge loss ϕ trained on T ∪ T− ∪ T ′:

fERM

= arg min
f∈Hτ

εT,T−,T ′(f)

= arg min
f∈Hτ

 s

n

n∑
i=1

ϕ (1 · f(Xi)) +
(1− s)s̃

n−

n−∑
i=1

ϕ(−1 · f(X−
i )) +

(1− s)(1− s̃)

n′

n′∑
i=1

ϕ(−1 · f(X ′
i))

 .

Theorem G.1 (Restatement of Theorem 4.5). Let n, n−, n′ ≥ 3, nmin = min{n, n−, n′}, d ∈ N, α >
0. Let m ≥ 1 be an integer. Assume the Tsybakov noise condition holds for some noise exponent q ∈

[0,∞) and constant c0 > 0. Consider the hypothesis space Hτ with N =

⌈(
nmin

(log(nmin))4

) d
d+α(q+2)

⌉
,

τ = N−α
d , K∗ = 1, L∗ = 8 + (m + 5)(1 + ⌈log2(max{d, α})⌉), w∗ = 6(d + ⌈α⌉)N, v∗ =

141(d+ α+ 1)3+dN(m+ 6) .

For any 0 < δ < 1, with probability 1− δ, there holds,

R(sign(fERM))−R(fc) ≤ C

(
log

(
6

δ
max{n, n−, n′}

))(
(log nmin)

4

nmin

) α(q+1)
d+α(q+2)

,

where C is a positive constant independent of n or δ.

G.2 ERROR DECOMPOSITION

The well-known Comparison Theorem in classification (Zhang, 2004) asserts that for the Hinge loss
ϕ and any measurable function f : X → R, the following inequality holds:

R(f)−R(fc)︸ ︷︷ ︸
excess risk

≤ ε(f)− ε(fc)︸ ︷︷ ︸
excess generalization error

. (31)

This result implies that, to establish an upper bound on the excess risk of a classifier f , it suffices to
bound its excess generalization error, ε(f)− ε(fc).

The proof of Theorem 4.5 begins with a standard error decomposition of ε(fERM)− ε(fc).

Lemma G.2 (Error Decomposition of ε(fERM)− ε(fc)). Let fH be any function in our hypothesis
space Hτ . There holds

ε(fERM)−ε(fc) ≤ {ε(fERM)−εT,T−,T ′(fERM)}+{εT,T−,T ′(fH)−ε(fH)}+{ε(fH)−ε(fc)}. (32)

The above lemma decomposes the excess generalization error ε(fERM)−ε(fc) into three components.
The first two components — {ε(fERM)− εT,T−,T ′(fERM)} and {εT,T−,T ′(fH)− ε(fH)} — are com-
monly considered the estimation errors, whereas the last component {ε(fH)− ε(fc)} approximation
error does not depend on the training data.

Moving forward, we will derive upper bounds for these three error terms, starting with the approxi-
mation error.

Proof of Lemma G.2. We express ε(fERM)− ε(fc) by inserting empirical risks as follows

ε(fERM)− ε(fc)

= {ε(fERM)− εT,T−,T ′(fERM)}+ {εT,T−,T ′(fERM)− εT,T−,T ′(fH)}
+{εT,T−,T ′(fH)− ε(fH)}+ {ε(fH)− ε(fc)}.

We see that both fERM and fH lie on Hτ . By the definition of fERM, we know that fERM minimizes
the empirical risk over Hτ . Thus, we have εT,T−,T ′(fERM) − εT,T−,T ′(fH) ≤ 0 for all fH ∈ Hτ .
This yields the expression (32).
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G.3 BOUNDING THE APPROXIMATION ERROR

In this subsection, we focus on deriving an upper bound for the approximation error. To achieve
this, we leverage a result from (Schmidt-Hieber, 2020), which demonstrates that ReLU networks are
capable of universally approximating any Hölder continuous function. For clarity, we first provide a
formal definition of Hölder continuity.

We denote by Cm(X ) with m ∈ N, the space of m-times differentiable functions on X . Throughout
this work, we consider the domain X = [0, 1]d; however, this can be extended to any compact subset
of Rd. For any positive value α > 0, let [α]− = ⌊α− 1⌋ ∈ N ∪ {0}. Let β = (β1, . . . , βd) ∈ Nd

0 be
an index vector, where N0 = N ∪ {0}. We define |β| = β1 + . . .+ βd and xβ = xβ1

1 · · ·xβd

d for an
index vector β. For a function f : X → R and a index vector β ∈ Nd

0, let the partial derivative of f
with β be

∂βf =
∂|β|f

∂xβ
=

∂|β|f

∂xβ1

1 · · · ∂xβd

d

.

The result from (Schmidt-Hieber, 2020) specifically consider function

f ∈ Hα,r
(
[0, 1]d

)
:= {f ∈ C [α]−

(
[0, 1]d

)
: ∥f∥Hα([0,1]d) ≤ r}.

Here, Hα,r
(
[0, 1]d

)
is a closed ball of radius r > 0 in the Hölder space of order α > 0 w.r.t. the

Hölder norm ∥ · ∥Hα([0,1]d) given by

∥f∥Hα([0,1]d) =
∑

|β|1≤[α]−

{
∥∂βf∥C([0,1]d) + sup

x ̸=y∈[0,1]d

∣∣∂βf(x)− ∂βf(y)
∣∣

|x− y|α−[α]−

}
.

Lemma G.3 (Theorem 5 in (Schmidt-Hieber, 2020)). Let α, r > 0. For any Hölder continuous
function f ∈ Hα,r([0, 1]d) and for any integers m ≥ 1 and N ≥ max

{
(α+ 1)d, (r + 1)ed

}
, there

exists a ReLU neural network
f̂ ∈ F(L∗, w∗, v∗,K∗)

with depth
L∗ = 8 + (m+ 5)(1 + ⌈log2(max{d, α})⌉),

maximum number of nodes
w∗ = 6(d+ ⌈α⌉)N,

number of nonzero parameters

v∗ = 141(d+ α+ 1)3+dN(m+ 6),

and all parameters (absolute value) are bounded by K∗ = 1 such that∥∥∥f̂ − f
∥∥∥
L∞([0,1]d)

≤ (2r + 1)(1 + d2 + α2)6dN2−m + r3αN−α
d . (33)

We define our hypothesis space Hτ based on the construction in Lemma G.3, with the goal of ensuring
that its functions are well-suited to approximate the regression function fP , assumed to be α-Hölder
continuous. Recall the "approx-sign" function στ : R → [0, 1], defined previously in equation (7)
with a bandwidth parameter τ > 0. Hτ is defined as

Hτ := span {στ ◦ f : f ∈ F(L∗, w∗, v∗,K∗)}

with parameters L∗, w∗, v∗,K∗ given in Lemma G.3, and τ to be determined later.

To estimate the term ε(fH)− ε(fc), we apply the upper bound provided in Theorem 3.3 with k = 1.
For any measurable function f : X → R, there holds

ε (στ (f))− ε(fc) ≤ 4c0
(
τ + ∥f − fP ∥L∞[0,1]d

)q+1
.

Assuming fP ∈ Hα,r([0, 1]d) (i.e., fP is a α-Hölder continuous), we choose f ∈ F(L∗, w∗, v∗,K∗)
such that

∥f − fP ∥L∞([0,1]d) ≤ (2r + 1)(1 + d2 + α2)6dN2−m + r3αN−α
d .
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We see that στ (f) = fH ∈ Hτ and we have

ε(fH)− ε(fc) ≤ 4c0
(
τ + (2r + 1)(1 + d2 + α2)6dN2−m + r3αN−α

d

)q+1
.

We restrict τ ≤ min{N2−m +N−α
d , 1}. We choose cr,α,d = 4c0(1 + (2r + 1)(1 + d2 + α2)(6d +

3α))q+1. Then, we have

ε(fH)− ε(fc) ≤ cr,α,d
(
N2−m +N−α

d

)q+1
. (34)

G.4 BOUNDING THE ESTIMATION ERROR

In this subsection, we focus on deriving an upper bound of the estimation error term {ε(fERM) −
εT,T−,T ′(fERM)}+ {εT,T−,T ′(fH)− ε(fH)}.

We first rewrite this error term by inserting ε(fc) and εT,T−,T ′(fc) as

ε(fERM)− εT,T−,T ′(fERM) + εT,T−,T ′(fH)− ε(fH)

= ε(fERM)− ε(fc)− {εT,T−,T ′(fERM)− εT,T−,T ′(fc)} (35)
+ εT,T−,T ′(fH)− εT,T−,T ′(fc)− {ε(fH)− ε(fc)}. (36)

Next, we will bound the two terms (35) and (36) respectively. We will first handle the error term (36).

Step 1: Bound the term εT,T−,T ′(fH)− εT,T−,T ′(fc)− {ε(fH)− ε(fc)}.

Here, we define three random variables given by

A(X) := ϕ(fH(X))− ϕ(fc(X)) over (X , Q), (37)

and
B(X) := ϕ(−fH(X))− ϕ(−fc(X)) over (X ,W ), (38)

and
C(X) := ϕ(−fH(X))− ϕ(−fc(X)) over (X , µ). (39)

Then, we can write εT,T−,T ′(fH) − εT,T−,T ′(fc) − {ε(fH) − ε(fc)} as a function of these three
random variables A,B, and C as follows:

εT,T−,T ′(fH)− εT,T−,T ′(fc)− {ε(fH)− ε(fc)}

=
s

n

n∑
i=1

ϕ (1 · fH(Xi)) +
(1− s)s̃

n−

n−∑
i=1

ϕ(−1 · fH(X−
i )) +

(1− s)(1− s̃)

n′

n′∑
i=1

ϕ(−1 · fH(X ′
i))

−

 s

n

n∑
i=1

ϕ (1 · fc(Xi)) +
(1− s)s̃

n−

n−∑
i=1

ϕ(−1 · fc(X−
i )) +

(1− s)(1− s̃)

n′

n′∑
i=1

ϕ(−1 · fc(X ′
i))


−
(
s

∫
X
ϕ(fH(X))dQ+ (1− s)s̃

∫
X
ϕ(−fH(X))dW + (1− s)(1− s̃)

∫
X
ϕ(−fH(X))dµ

)
+

(
s

∫
X
ϕ(fc(X))dQ+ (1− s)s̃

∫
X
ϕ(−fc(X))dW + (1− s)(1− s̃)

∫
X
ϕ(−fc(X))dµ

)

= s

(
1

n

n∑
i=1

A(Xi)− EQ[A(X)]

)
+ (1− s)s̃

 1

n′

n′∑
i=1

B(X−
i )− EW [B(X)]


+(1− s)(1− s̃)

 1

n′

n′∑
i=1

C(X ′
i)− Eµ[C(X)]

 .

Moving on, we will apply the classic one-sided Bernstein’s inequality to estimate (i):
1
n

∑n
i=1 A(Xi) − EQ[A(X)], (ii): 1

n′

∑n′

i=1 B(X−
i ) − EW [B(X)], and (iii): 1

n′

∑n′

i=1 C(X ′
i) −

Eµ[C(X)], respectively, and obtain a high probability upper bound of εT,T−,T ′(fH)−εT,T−,T ′(fc)−
{ε(fH)− ε(fc)}. The result is given in the Lemma below:
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Lemma G.4. Suppose the Tsybakov’s noise condition holds for some q ∈ [0,∞] and constant c0 > 0.
For any 0 < δ < 1, with probability 1− δ

2 , we have

εT,T−,T ′(fH)− εT,T−,T ′(fc)− {ε(fH)− ε(fc)}

≤ Cq

(
log

(
4

δ

))(
s

1
q+2

(
1

n

) q+1
q+2

+ ((1− s) · s̃)
1

q+2

(
1

n−

) q+1
q+2

+ ((1− s) · (1− s̃))
1

q+2

(
1

n′

) q+1
q+2

)
(40)

+
(ε(fH)− ε(fc))

2
, (41)

where Cq is a positive constant depending only on q and c0.

Proof of Lemma G.4. The classic one-sided Bernstein’s inequality states that, for a random variable
A with mean E[A] and variance Var[A] = σ2 satisfying |A− E[A]| ≤ M for some M > 0 almost
surely, the following holds for a random i.i.d. sample {Xi}ni=1 and any t > 0,

P

(
E[A]− 1

n

n∑
i=1

A(Xi) > t

)
≤ exp

{
− nt2

2(σ2 + 1
3Mt)

}
. (42)

To apply Bernstein’s inequality to random variables A (37), B (38), and C (39), we need to first
derive upper bounds for their variances. A previous result in Lemma C.3 in (Zhou et al., 2024) states
that for any function f : X → [−1, 1] and some y ∈ {−1, 1}, if the Tsybakov’s noise condition
holds, we have

EPy
X

[
{ϕ(yf(X))− ϕ(yfc(X))}2

]
≤ 5

sy
(c0)

1
q+1 (ε(f)− ε(fc))

q
q+1 , (43)

where
sy = s for y = 1 and sy = 1− s for y = −1, (44)

and
dP y

X = h1dµ for y = 1 and dP y
X = h2dµ for y = −1.

We can see that (43) presented an upper bound for the second moment of ϕ(yf(X))− ϕ(yfc(X)).
Then, we know the variance of ϕ(yf(X))− ϕ(yfc(X)) is

Var[ϕ(yf(X))− ϕ(yfc(X))] ≤ 5

sy
(c0)

1
q+1 (ε(f)− ε(fc))

q
q+1 .

Then the variance σ2 of the random variable A (for y = 1) and B,C (for y = −1) is bounded by

σ2 ≤ 5

sy
(c0)

1
q+1 (ε(f)− ε(fc))

q
q+1 .

Now we are in a position to apply the one-sided Bernstein’s inequality (42). For any t > 0, there
holds, with probability at least 1− exp

(
− nt2

2(σ2+2t/3)

)
,(

1

n

n∑
i=1

A(Xi)− EQ[A(X)]

)
≤ t.

For 0 < δ < 1, we set

1− exp

(
− nt2

2(σ2 + 2t/3)

)
= 1− δ

6
,

and we solve t for the quadratic equation:

log

(
6

δ

)
=

nt2

2(σ2 + 2t/3)
.
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The positive solution to this quadratic equation of t is given by

t∗ =

4
3 log

(
6
δ

)
+
√

16
9 log2

(
6
δ

)
+ 8nσ2 log

(
6
δ

)
2n

≤ 2

3n
log

(
6

δ

)
+

2

3n
log

(
6

δ

)
+

√
2σ2 log

(
6
δ

)
√
n

≤ 4

3n
log

(
6

δ

)
+ 4

√
log
(
6
δ

)
√
ns

(c0)
1

2(q+1) (ε(fH)− ε(fc))
q

2(q+1) .

We further apply the Young’s inequality for product (Young, 1912) to the above estimate of t∗, and
we get

t∗ ≤ 4

3n
log

(
6

δ

)
+

(
q + 2

2(q + 1)

)4

√
log
(
6
δ

)
√
ns

(c0)
1

2(q+1)


2(q+1)
q+2

+
ε(fH)− ε(fc)

2(q+1)
q

.

In other words, we know for probability at least 1− δ
6 , there holds

(
1

n

n∑
i=1

A(Xi)− EQ[A(X)]

)

≤ 4

3n
log

(
6

δ

)
+

(
q + 2

2(q + 1)

)4

√
log
(
6
δ

)
√
ns

(c0)
1

2(q+1)


2(q+1)
q+2

+
ε(fH)− ε(fc)

2(q+1)
q

.

We adopt the same approach and we obtain that, for probability at least at least 1− δ
6 , there holds

 1

n−

n−∑
i=1

B(X−
i )− EW [B(X−)]



≤ 4

3n− log

(
6

δ

)
+

(
q + 2

2(q + 1)

)4

√
log
(
6
δ

)√
n−(1− s))

(c0)
1

2(q+1)


2(q+1)
q+2

+
ε(fH)− ε(fc)

2(q+1)
q

and

 1

n′

n′∑
i=1

C(X ′
i)− Eµ[C(X ′)]



≤ 4

3n′ log

(
6

δ

)
+

(
q + 2

2(q + 1)

)4

√
log
(
6
δ

)√
n′(1− s))

(c0)
1

2(q+1)


2(q+1)
q+2

+
ε(fH)− ε(fc)

2(q+1)
q

.
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Combining the above estimates, we know, for probability at least 1− δ
2 ,

εT,T−,T ′(fH)− εT,T−,T ′(fc)− {ε(fH)− ε(fc)}

= s

(
1

n

n∑
i=1

A(Xi)− EQ[A(X)]

)
+ (1− s)s̃

 1

n′

n′∑
i=1

B(X−
i )− EW [B(X)]


+(1− s)(1− s̃)

 1

n′

n′∑
i=1

C(X ′
i)− Eµ[C(X)]


≤ 4

3

(
s

n
+

(1− s)s̃

n− +
(1− s)(1− s̃)

n′

)
log

(
6

δ

)
+4

2(q+1)
q+2 (c0)

1
q+2

(
log

(
6

δ

)) q+1
q+2

·

(
s

1
q+2

(
1

n

) q+1
q+2

+ (1− s)
1

q+2 s̃

(
1

n−

) q+1
q+2

+ (1− s)
1

q+2 (1− s̃)

(
1

n′

) q+1
q+2

)

+

(
q

2(q + 1)

)
(ε(fH)− ε(fc))

≤ Cq

(
log

(
6

δ

))
·

(
s

1
q+2

(
1

n

) q+1
q+2

+ ((1− s) · s̃)
1

q+2

(
1

n−

) q+1
q+2

+ ((1− s) · (1− s̃))
1

q+2

(
1

n′

) q+1
q+2

)

+
(ε(fH)− ε(fc))

2
,

where Cq is a positive constant depending only on q and c0. Note that in the last inequality, we have
used the facts that s ≤ s

1
q+2 , 1− s ≤ (1− s)

1
q+2 , s̃ ≤ s̃

1
q+2 , 1− s̃ ≤ (1− s̃)

1
q+2 for all s, s̃ ∈ (0, 1)

and q > 0. We have also used the fact that 1
n ≤

(
1
n

) q+1
q+2 , 1

n− ≤
(

1
n−

) q+1
q+2 , 1

n′ ≤
(

1
n′

) q+1
q+2 for all

n, n−, n′ ∈ N and q > 0.

Step 2: Bound the term ε(fERM)− ε(fc)− {εT,T−,T ′(fERM)− εT,T−,T ′(fc).

Here, we will proceed to estimate the error term ε(fERM)−ε(fc)−{εT,T−,T ′(fERM)−εT,T−,T ′(fc)},
which is given in (35). We will derive an upper bound for this error term using a concentration
inequality in terms of covering numbers.

For ϵ > 0, denote by N (ϵ,H) := N (ϵ,H, ∥ · ∥∞) the ϵ-covering number of a set of functions H
with respect to ∥ · ∥∞ := ess supx∈X |f(x)|. More specifically, N (ϵ,H) is the minimal M ∈ N such
that there exists functions {f1, . . . , fM} ∈ H satisfying

min
1≤i≤M

∥f − fi∥∞ ≤ ϵ, ∀f ∈ H. (45)

In particular, we seek to estimate the covering number of our hypothesis space Hτ defined in
Definition 4.3. Hτ is the class of ReLU neural networks we use to learn the Bayes classifier.
Lemma G.5 (Corollary C.6 from (Zhou et al., 2024)). Consider the hypothesis space Hτ de-
fined in Definition 4.3 with hyperparameter 0 < τ ≤ 1, and integers m ≥ 1 and N ≥
max

{
(α+ 1)d, (r + 1)ed

}
. For any 0 < ϵ ≤ 1, the ϵ-covering number of Hτ satisfies

logN (ϵ,Hτ ) ≤ cα,dm
2N log((τϵ)−1mN), (46)

where cα,d is a positive constant independent of r,m,N, τ or ϵ.

Next, by utilizing this estimate of ϵ-covering number of Hτ , we derive the following upper bound for
the error term ε(fERM)− ε(fc)− {εT,T−,T ′(fERM)− εT,T−,T ′(fc).
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Lemma G.6. Let α, r > 0, and integers m ≥ 1 and N ≥ max
{
(α+ 1)d, (r + 1)ed

}
. Suppose

the Tsybakov’s noise condition (3) holds for some 0 ≤ q ≤ ∞ and constant c0 > 0. Also let
τ ≥ max

{
1
n ,

1
n− , 1

n′

}
. For any 0 < δ < 1 and n, n−, n′ ≥ 3, with probability 1− δ

2 , we have

ε(fERM)− ε(fc)−
(
εT,T−,T ′(fERM)− εT,T−,T ′(fc)

)
≤ Cq,α,d

(
log

(
6

δ

)
+ 3m2N log

(
max{n, n−, n′}mN

)) q+2
q+1

·
(
max

{
s

n
log
(n
s

)
,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+2
q+1

+
ε(fERM)− ε(fc)

2
,

where Cq,α,d is a positive constant depending only on q, c0, α, and d.

Proof of Lemma G.6. Consider a fixed function f : X → [−1, 1]. For s, s̃ ∈ (0, 1), we apply the
one-sided Berstein’s inequality (42) to following three random variables:

a(X) = s(ϕ(fH(X))− ϕ(fc(X))) over (X , Q),

and
b(X) = (1− s)s̃(ϕ(−fH(X))− ϕ(−fc(X))) over (X ,W ),

and
c(X) = (1− s)(1− s̃)(ϕ(−fH(X))− ϕ(−fc(X))) over (X , µ).

We can see that, almost surely, |a| ≤ 2s and thereby |a− E[a]| ≤ 4s , |b| ≤ 2(1− s)s̃ and thereby
|b−E[b]| ≤ 4(1−s)s̃, and |c| ≤ 2(1−s)(1− s̃) and thereby |c−E[c]| ≤ 4(1−s)(1− s̃). Moreover,
by applying a similar argument in the proof of Lemma G.4, we know when the noise condition for
some 0 ≤ q ≤ ∞ holds, the variances of these random variables can be bounded by

Var[a] ≤ 5s2

s
(c0)

1
q+1 (ε(f)− ε(fc))

q
q+1 = 5s(c0)

1
q+1 (ε(f)− ε(fc))

q
q+1

and

Var[b] ≤ 5(1− s)s̃2(c0)
1

q+1 (ε(f)− ε(fc))
q

q+1

and

Var[c] ≤ 5(1− s)(1− s̃)2(c0)
1

q+1 (ε(f)− ε(fc))
q

q+1 .

We then apply the one-sided Bernstein’s inequality to each of these random variables. We combine
the estimates together and get

ε(f)− ε(fc)− (εT,T ′(f)− εT,T ′(fc))(
(ε(f)− ε(fc))

q
q+1 + ϵ

q
q+1

)1/2 ≤ 2ϵ1−
q

2(q+1) , ∀ϵ > 0

with probability at least

1− exp

− nϵ2−
q

q+1

s
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)
 − exp

− n−ϵ2−
q

q+1

(1− s)s̃
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)


− exp

− n′ϵ2−
q

q+1

(1− s)(1− s̃)
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)
 .

Specifically, we consider our hypothesis space Hτ and its covering number estimate N (ϵ,Hτ ), as
given in (46) for any ϵ > 0. Building on a similar result from Lemma C.8 in (Zhou et al., 2024), if
the noise condition holds for some 0 ≤ q ≤ ∞, we have for any ϵ > 0,

ε(f)−ε(fc)−(εT,T ′(f)− εT,T ′(fc)) ≤ 5ϵ1−
q

2(q+1)

(
(ε(f)− ε(fc))

q
q+1 + ϵ

q
q+1

) 1
2

, ∀f ∈ Hτ
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with probability at least

1−N (ϵ,Hτ )

{
exp

{
− nϵ2−

q
q+1

s
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)}

+exp

{
− n−ϵ2−

q
q+1

(1− s)s̃
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)}

+exp

{
− n′ϵ2−

q
q+1

(1− s)(1− s̃)
(
10(c0)

1
q+1 + 2ϵ1−

q
q+1

)}}
≥ 1− exp{cα,dm2N log((τϵ)−1mN)}{

exp

{
− nϵ2−

q
q+1

s
(
10(c0)

1
q+1 + 2

)}+ exp

{
− n−ϵ2−

q
q+1

(1− s)s̃
(
10(c0)

1
q+1 + 2

)}

+exp

{
− n′ϵ2−

q
q+1

(1− s)(1− s̃)
(
10(c0)

1
q+1 + 2

)}}.
We choose τ satisfying τ ≥ max{ 1

n ,
1
n− , 1

n′ }. Then we know τ−1 ≤ n , τ−1 ≤ n−, and τ−1 ≤ n′.
We set the above confidence bound to be at least 1 − δ/2. Then, we find ϵ > 0 that satisfies the
following three inequalities:

exp

cα,dm
2N log(ϵ−1nmN)− nϵ2−

q
q+1

s
(
10(c0)

1
q+1 + 2

)
 ≤ δ

6

and

exp

cα,dm
2N log(ϵ−1n−mN)− n−ϵ2−

q
q+1

(1− s)s̃
(
10(c0)

1
q+1 + 2

)
 ≤ δ

6

and

exp

cα,dm
2N log(ϵ−1n′mN)− n′ϵ2−

q
q+1

(1− s)(1− s̃)
(
10(c0)

1
q+1 + 2

)
 ≤ δ

6
.

Following the proof of Lemma C.8 in (Zhou et al., 2024), we know ϵ satisfying all the above three
inequalities can be given by

ϵ =

(
max

{
Bs log

(
n
s

)
n

,
B−(1− s)s̃

n− log

(
n′

(1− s)s̃

)
,
B′(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

,

(47)
where cq = 10(c0)

1
q+1 + 2, B := cq

(
2cα,d

2− q
q+1

m2N + log
(
6
δ

)
+ cα,dm

2N log(nmN)
)

,

B− := cq

(
2cα,d

2− q
q+1

m2N + log
(
6
δ

)
+ cα,dm

2N log(n−mN)
)

, and B′ :=

cq

(
2cα,d

2− q
q+1

m2N + log
(
6
δ

)
+ cα,dm

2N log(n′mN)
)

. Note that

B ≤ cq,α,d

(
log

(
6

δ

)
+m2N(1 + log(nmN))

)
, (48)

where cq,α,d = cq

(
2cα,d

2− q
q+1

+ cα,d

)
≥ 1 is a positive constant depending only on q, c0, α, and d. We

also note that

B− ≤ cq,α,d

(
log

(
6

δ

)
+m2N(1 + log(n−mN))

)
(49)
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and

B′ ≤ cq,α,d

(
log

(
6

δ

)
+m2N(1 + log(n′mN))

)
. (50)

Next, we take f = fERM ∈ Hτ . We take ϵ chosen in (47). We apply Young’s inequality for products
(Young, 1912), and with probability at least 1− δ

2 ,

ε(fERM)− ε(fc)−
(
εT,T−,T ′(fERM)− εT,T−,T ′(fc)

)
≤ 5ϵ1−

q
2(q+1)

(
(ε(fERM)− ε(fc))

q
q+1 + ϵ

q
q+1

) 1
2

≤ 5
2(q+1)
q+2

·

(
max

{
Bs log

(
n
s

)
n

,
B−(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
B′(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+
ε(fERM)− ε(fc)

2

≤ 5
2(q+1)
q+2

(
max{B,B−, B′}

) q+1
q+2

·

(
max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+
ε(fERM)− ε(fc)

2
.

We then apply the upper bounds of B (48), B− (49), and B′ (50) and get, with probability at least
1− δ

2 ,

ε(fERM)− ε(fc)−
(
εT,T−,T ′(fERM)− εT,T−,T ′(fc)

)
≤ Cq,α,d

(
log

(
6

δ

)
+m2N(log(nmN) + log(n−mN) + log(n′mN))

) q+1
q+2

·

(
max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+
ε(fERM)− ε(fc)

2

≤ Cq,α,d

(
log

(
6

δ

)
+ 3m2N log(max{n, n−, n′}mN)

) q+1
q+2

·

(
max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+
ε(fERM)− ε(fc)

2
,

where Cq,α,d is a positive constant depending only on q, c0, α, and d.

G.5 COMBINING ERROR BOUNDS TOGETHER

Assume n, n−, n′ ≥ 3. Let τ ≥ max
{

1
n ,

1
n− , 1

n′

}
and τ ≤ min{N2−m + N−α

d , 1}. Suppose
Tsybakov’s noise condition holds for some q ∈ [0,∞] and constant c0 > 0. For any 0 < δ < 1, with
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probability at least 1− δ, we have

ε(fERM)− ε(fc)

≤ {ε(fERM)− εT,T−,T ′(fERM)}+ {εT,T−,T ′(fH)− ε(fH)}+ {ε(fH)− ε(fc)}

≤ Cq,α,d

(
log

(
6

δ

)
+ 3m2N log(max{n, n−, n′}mN)

) q+1
q+2

·

(
max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+
ε(fERM)− ε(fc)

2

+Cq

(
log

(
6

δ

))
·

(
s

1
q+2

(
1

n

) q+1
q+2

+ ((1− s) · s̃)
1

q+2

(
1

n−

) q+1
q+2

+ ((1− s) · (1− s̃))
1

q+2

(
1

n′

) q+1
q+2

)

+
(ε(fH)− ε(fc))

2
+ (ε(fH)− ε(fc)),

where we recall that Cq,α,d is a positive constant depending only on q, c0, α, and d; and Cq is a
positive constant depending only on q and c0.

We multiply both sides of the inequality by 2 and substitute the estimate of the final term, ε(fH)−ε(fc)
(i.e., the approximation error term), from (34). This yields

ε(fERM)− ε(fc)

≤ 2Cq,α,d

(
log

(
6

δ

)
+ 3m2N log(max{n, n−, n′}mN)

) q+1
q+2

·

(
max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}) q+1
q+2

+2Cq

(
log

(
6

δ

))
·

(
s

1
q+2

(
1

n

) q+1
q+2

+ ((1− s) · s̃)
1

q+2

(
1

n−

) q+1
q+2

+ ((1− s) · (1− s̃))
1

q+2

(
1

n′

) q+1
q+2

)
+3cr,α,d

(
N2−m +N−α

d

)q+1
.

We select the smallest m ∈ N such that N2−m ≤ N−α
d . This condition translates to:

m =

⌈(
1 +

α

d

) logN

log 2

⌉
.

With this choice of m, it follows that:

N2−m +N−α
d ≤ 2N−α

d .

We also know that
s

n
log
(n
s

)
≤ log n

n
and

(1− s)s̃

n− log

(
n−

1− s)s̃

)
≤ log n−

n−

and
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)
≤ log n′

n′ .
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Then, we have

max

{
s log

(
n
s

)
n

,
(1− s)s̃

n− log

(
n−

(1− s)s̃

)
,
(1− s)(1− s̃)

n′ log

(
n′

(1− s)(1− s̃)

)}

≤ max

{
log n

n
,
log n−

n− ,
log n′

n′

}
≤ log(min{n, n−, n′})

min{n, n−, n′}
.

For brevity, we let nmin := min{n, n−, n′}. It follows that with probability at least 1− δ,
ε(fERM)− ε(fc)

≤ 2Cq,α,d

(
log

(
6

δ

)
+ 3m2N log(max{n, n−, n′}mN) + 6Cq log

(
6

δ

)) q+1
q+2
(
log(nmin)

nmin

) q+1
q+2

+3cr,α,d 2q+1N−α(q+1)
d .

We choose N ∈ N to be the smallest integer satisfying(
N

(log(nmin))
4

nmin

)
≥ N−α

d , (51)

that is,

N =

⌈(
nmin

(log(nmin))4

) d
d+α(q+2)

⌉
. (52)

Then, for some C ′
q,α,d > 0, when nmin ≥ C ′

q,α,d, we have m =
(
1 + α

d

)
logN
log 2 ≤ N and thereby

m2N log(mN) ≤
(
2
(
1 +

α

d

) logN

log 2

)2

N logN2

≤ 8

log 2

(
1 +

α

d

)2
N(logN)3

≤ 8

log 2

(
1 +

α

d

)2
N(log nmin)

3.

Thus, with probability at least 1− δ,
ε(fERM)− ε(fc)

≤ 2C
′′

q,α,d

(
log

(
6

δ

)
+ (log(max{n, n−, n′}))

q+1
q+2

)(
N

(log nmin)
3

nmin

) q+1
q+2

+3cr,α,d 2q+1N−α(q+1)
d ,

where C
′′

q,α,d is a constant depending only on q, α, d.

By the choice of N at (52), we know(
(N − 1)

(log nmin)
4

nmin

) 1
q+2

≤ (N − 1)−
α
N .

So, from N ≤ 2(N − 1), the above estimate yields
ε(fERM)− ε(fc)

≤ C
′′

q,α,d

(
log

(
6

δ

)
+ (log(max{n, n−, n′}))

q+1
q+2

)
2

q+1
q+2 (N − 1)−

α(q+1)
d + 3cr,α,d 2q+1N−α(q+1)

d

≤
(
C

′′

q,α,d

(
log

(
6

δ

)
+ (log(max{n, n−, n′}))

q+1
q+2

)
2

q+1
q+2 · 2

α(q+1)
d + 3cr,α,d 2q+1

)
N−α(q+1)

d

≤ Ĉq,α,d,r

(
log

(
6

δ

)
+ log(max{n, n−, n′})

)(
nmin

(log nmin)4

)− α(q+1)
d+α(q+2)

,
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Table 3: AUPR and AUROC results for our VC model with and without synthetic anomalies (-SA
suffix) across five different datasets.

AUPR AUROC
Dataset Type Anom. Random VC VC-SA (Ours) VC VC-SA (Ours)

NSL-
KDD

Unk.
DoS 0.431 0.345±0.036 0.793±0.055 0.331±0.131 0.807±0.057

Probe 0.197 0.180±0.010 0.649±0.078 0.388±0.096 0.868±0.034
RA 0.218 0.543±0.019 0.609±0.050 0.719±0.026 0.810±0.074

Known PE 0.007 0.609±0.001 0.486±0.146 0.986±0.006 0.988±0.001

Thyroid Unk. Hyper. 0.023 0.565±0.465 0.817±0.039 0.822±0.201 0.964±0.011
Known Sub. 0.053 0.512±0.380 0.751±0.020 0.856±0.192 0.985±0.003

Arrhyth. Unk. All 0.751 0.854±0.030 0.846±0.003 0.630±0.067 0.627±0.010

MVTec
(Image) Unk.

Bottle 0.683 0.996±0.001 0.997±0.000 0.991±0.002 0.994±0.001
Cable 0.577 0.795±0.013 0.868±0.005 0.733±0.019 0.807±0.007

Capsule 0.789 0.908±0.005 0.947±0.002 0.753±0.012 0.839±0.003
Carpet 0.714 0.998±0.000 0.999±0.000 0.996±0.001 0.998±0.000
Grid 0.682 0.999±0.000 1.000±0.000 0.998±0.000 0.999±0.000

Hazelnut 0.565 0.954±0.004 0.943±0.009 0.919±0.008 0.920±0.013
Leather 0.695 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Metal Nut 0.756 0.982±0.001 0.975±0.006 0.938±0.004 0.916±0.017
Pill 0.817 0.925±0.002 0.950±0.009 0.713±0.001 0.801±0.025

Screw 0.699 0.839±0.044 0.844±0.033 0.696±0.064 0.708±0.051
Tile 0.670 0.980±0.007 0.997±0.000 0.970±0.010 0.994±0.001

Transistor 0.333 0.786±0.026 0.872±0.010 0.826±0.007 0.875±0.009
Wood 0.732 0.984±0.008 0.991±0.008 0.957±0.015 0.974±0.024
Zipper 0.758 0.995±0.002 0.998±0.001 0.985±0.005 0.993±0.004

Adv-
Bench
(Text)

Unk.

satnews 0.082 0.798±0.028 0.232±0.030 0.977±0.004 0.793±0.029
CGFake 0.130 0.097±0.004 0.080±0.002 0.390±0.027 0.242±0.019
jigsaw 0.130 0.185±0.040 0.340±0.011 0.637±0.044 0.697±0.008

EDENCE 0.113 0.102±0.008 0.721±0.082 0.473±0.029 0.941±0.017
FAS 0.140 0.087±0.002 0.126±0.007 0.247±0.015 0.494±0.032

Known

LUN 0.074 0.762±0.032 0.532±0.027 0.972±0.004 0.918±0.010
amazon_lb 0.107 0.123±0.017 0.824±0.036 0.612±0.052 0.968±0.006

HSOL 0.030 0.042±0.009 0.731±0.015 0.652±0.044 0.961±0.003
assassin 0.022 0.048±0.003 0.533±0.062 0.761±0.016 0.931±0.002
enron 0.080 0.211±0.037 0.361±0.015 0.765±0.010 0.820±0.013

where Ĉq,α,d,r is a constant depending on q, α, d, r.

Finally, by taking τ = N−α
d , the restrictions τ ≥ max

{
1
n ,

1
n− , 1

n′

}
and τ ≤ min{N2−m+N−α

d , 1}
are both satisfied. This is because max

{
1
n ,

1
n− , 1

n′

}
= 1

nmin
and

τ = N−α
d ≥ 2−

α
d

(
nmin

(log nmin)4

)− α
d+α(q+2)

≥ 2−
α
d (nmin)

− α
d+α(q+2) ≥ 2−

α
d

1
√
nmin

.

This conclude the proof.

H EXPERIMENTS

We run experiments thrice and report the mean and standard deviation in all tables. Randomness is
based on model initialization and data draws (for train/validation splits and synthetic anomalies).

We proceed to provide details on other experimental results for reproducibility and further discussion.

H.1 ADDITIONAL EXPRIMENTAL RESULTS ON AUROC

Here, we further evaluate the performance of the vanilla classification (VC) model with and without
synthetic anomalies using the area under the receiver operating characteristic curve (AUROC)
across all five datasets: NSL-KDD, Thyroid, Arrhythmia, MVTec, and AdvBench. The results are
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Table 4: Dataset details. Dimension is after one-hot encoding or feature extraction. Number of
training data is rounded off to the nearest significant figure. The anomaly ratio represents the
proportion of anomalies relative to the total number of training samples. We evaluated a range
of anomaly ratios across datasets, including approximately 0.0008 (KDD), 0.05 (Thyroid), 0.23
(Arrhythmia), 0.09 (MVTec), and 0.59 (AdvBench).

Dataset Data Type Domain Dimension Num. Training Data Anomaly Ratio

NSL-KDD Tabular Cybersecurity 119 70,000 0.0008
Thyroid Tabular Medical 21 4,000 0.05

Arrhythmia Tabular Medical 279 300 0.23
MVTec Image Manufacturing 1024 200-400 0.09

AdvBench Language Harmful Text 384 100,000 0.59

summarized in Table 3, which also includes the previously reported AUPR evaluations from Table 1a
to facilitate direct comparison with the AUROC metrics. Overall, the AUROC results generally align
with the AUPR findings. On the NSL-KDD dataset, for known anomalies, VC-SA performs slightly
worse than VC, while for unknown anomalies, VC-SA shows substantial improvements, especially
as VC falls below random performance on DoS and probe attacks. On the Thyroid dataset, VC-SA
outperforms VC for both known and unknown anomalies, whereas on the Arrhythmia dataset, VC-SA
achieves roughly the same performance as VC for unknown anomalies.

For the MVTec dataset, the results show that the VC-SA consistently outperforms the VC model
in terms of both AUPR and AUROC across all anomaly types. The AUPR values for VC-SA are
extremely close to 1.0 in nearly every category (e.g., Bottle: 0.997 vs. 0.996, Grid: 1.000 vs. 0.999),
and AUROC shows a similar trend, with VC-SA achieving near-perfect accuracy (e.g., Leather:
0.994 vs. 0.991, Zipper: 0.993 vs. 0.985). This demonstrates that adding synthetic anomalies (SA)
substantially boosts the model’s ability to detect true anomalies accurately.

For the AdvBench dataset, the AUPR values show a varied performance between VC and VC-SA
across anomaly types, but the trend in AUROC mostly mirrors the AUPR results. For example, in
the case of satnews, both AUPR (0.232 vs. 0.798) and AUROC (0.793 vs. 0.977) follow the same
pattern where VC outperforms VC-SA. Similarly, for LUN, the VC model has higher AUPR (0.762
vs. 0.532) and AUROC (0.918 vs. 0.964). Overall, while performance differences exist, AUROC
trends generally align with AUPR outcomes in AdvBench.

H.2 DATASETS

Here, we present more details on the datasets we evaluate on. All numerical variables are normalized
to be within 0 and 1 during training. For categorical variables, we one-hot encode them and sample
from this discrete space (rather than in continuous space). During testing, if a datum contains a
variable that is out-of-domain (i.e., not within 0 and 1 after normalization for numerical variables, or
an unseen category for categorical variables), we can automatically assign the datum as anomalous.
We do not encounter this trivial case during our experiments, so do not discuss this further. Details of
each dataset are summarized in Table 4.

H.2.1 TABULAR DATA

NSL-KDD2, our cybersecurity benchmark dataset, has benign (normal) network traffic and 4 types of
attacks (anomalies) during training and testing: Denial of Service (DoS), probe, remote access (RA),
and privilege escalation (PE). To simulate semi-supervised AD, we use RA as known anomalies
and the other 3 as unknown anomalies. We choose RA because it has the fewest training anomalies,
allowing us to stress test our method.

Thyroid3 is a medical dataset with patient vitals. Besides normal data, there are also hyperfunction
and subnormal anomalies. We select subnormal thyroid patient vitals to be known anomalies, while
hyperfunction thyroid patient vitals are left as the unknown anomalies.

2Licensed to “redistribute, republish, and mirror” with reference to Bergmann et al. (2019).
3CC-BY 4.0 license.
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Arryhthmia4 is a medical dataset with patient vitals. There are patients with normal and various
kinds of anomalous heartbeats. We chose left and right BBB as our known anomalies, and the rest as
unknown anomalies. We split the data into train and test datasets with a 0.2 test split. This dataset is
small (see Table 4), so we make a few workarounds. First, for missing data, instead of dropping data,
we use mean imputation, a common imputation method (see Xiao & Fan (2024)). Second, comparing
unknown anomaly categories with few anomalies can have much noise and may not be meaningful,
so we group all unknown anomaly categories into 1 “unknown anomaly” category during evaluation.
Third, we use all known anomalies during training, so we do not evaluate on known anomalies for
testing.

H.2.2 IMAGE DATA

MVTec5 is an industrial manufacturing image dataset. It contains images of manufacturing items.
These images include mostly properly manufactured products (i.e., normal images) and products with
defects (i.e., anomalous images) that are grouped by the type of defect. To simulate semi-supervised
AD, we include a type of defect along with the original working product for 14 different items.
For standardization, we pick the first defect type according to alphabetical order. Due to the small
dataset size (see Table 4), once again, we use all known anomalies during training and exclude known
anomaly evaluation during testing. To convert image data to tabular form, we use 1024-dimensional
DINOv26 (Oquab et al., 2023) (frozen) embeddings, like in Lau et al. (2024b). We use these frozen
embeddings rather than fine-tuning the feature extractor to avoid overfitting.

H.2.3 LANGUAGE DATA

AdvBench7 is a union of 10 smaller text datasets. Each data sample in the dataset corresponds to
a sentence, and with it, a corresponding binary label of harmless (i.e., “normal”) or harmful (i.e.,
“anomalous”). There are 5 types of harms (anomalies): misinformation, disinformation, toxic, spam
and sensitive, each of which describe 2 of the datasets (for a total of 10 datasets). To convert text
into tabular form, we use 384-dimensional BERT8 (Reimers & Gurevych, 2019) (frozen) sentence
embeddings. Comments on using language models zero-shot for AD can be found in Yang et al.
(2025). As a remark, this language dataset is by far the most different from the original tabular
setting we described. Language comprises discrete tokens that are strung together sequentially,
so representing it in tabular form is not a trivial task (let alone, a representation that is compact).
Furthermore, defining what is harmful (i.e., anomalous) is highly contextual. For instance, a piece
of misinformation may not be toxic, and a toxic text may not be misinformation. Due to this under-
constrained nature of detecting harm, we use normal data from all datasets and harmful texts from 1
dataset from each category during training.

H.3 COMPUTE RESOURCES

To enhance reproducibility, we run experiments that a standard consumer-grade workstation can
run. We use 128 GB of memory. We run neural networks on a single NVIDIA GeForce RTX 4090
GPU. Each experimental run takes at most one day to run, but usually within one hour. To run
all experiments (including those without reported results), fewer than 10 days of active compute is
estimated to be needed.

H.4 COMPOSITE METHODS

Composite methods first do unsupervised AD to identify data that belong to the training classes, and
then binary classifiers differentiate normal from known anomalous data given that the data are known.
Concretely, we obtain a score from unsupervised AD on P(x belongs to training class) and a score
from binary classifiers on P(x normal|x belongs to training class). Then, we can obtain a score of

4CC-BY 4.0 license.
5CC BY-NC-SA 4.0 license.
6Apache License.
7Dataset has no license, provided by a Google drive link on https://github.com/thunlp/

Advbench. Paper is published in EMNLP, which has a CC-BY 4.0 license.
8Apache License.
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P(x normal) = P(x from training class)P(x normal|x from training class). We test kernel-based,
tree-based and neural network methods: for unsupervised AD, we use OCSVM (Schölkopf et al.,
1999), Isolation Forest (Liu et al., 2008) and DeepSVDD (Ruff et al., 2018); for binary classifiers, we
use SVM (Cortes & Vapnik, 1995), Random Forests9 (Ho, 1995; Breiman, 2001) and neural networks.
We multiply the score (shifted to be positive) from each unsupervised AD method with each binary
classifier for a composite model (e.g., OCSVM with Random Forest), which produces 3 × 3 = 9
types of composite models. One limitation is that some models (e.g., SVM models, Isolation Forest)
predict scores which are not probabilities. Nevertheless, we can still use their score to preserve
the ranking of anomaly scores. The area under the precision-recall curve (AUPR) metric we use
is a threshold-agnostic metric that allows us to evaluate the separability of anomalies from normal
data in the output space. Although this two-stage approach is logical, it leads to an undesirable
model: normal and known anomalies are modeled as similar, while known and unknown anomalies
are modeled as different by unsupervised AD. Ideally, we would like to model the problem as how
the problem arises: the normal class is different from all the anomalies (Ruff et al., 2020), while
anomalies (known or unknown) may or may not be similar (Ruff et al., 2021).

Composite Models are as poor as Random For brevity, we omit the results of composite models
because they all have random performance for both known and unknown anomalies in both NSL-KDD
and AdvBench datasets, which we used for preliminary experiments. Although they were designed to
inherit the benefits of both unsupervised AD and binary classifiers, they instead inherited errors from
both.

In addition, to evaluate the reasonability of our method of composing scores, we ablated against
different ways of composing scores: (1) normalizing scores to within 0 and 1 (which produces a score
that resembles a probability score) and (2) normalizing scores by their sample variance. However,
these other approaches to compose the output of models still produce random results. Hence, the
straightforward approach of composing scores from unsupervised AD and binary classifiers does
not seem like the the right step forward. It is not unreasonable to believe that the composite models
perform badly because the anomaly scores of different models are fundamentally different. The
difference could lead to an inability to combine the scores, or that the scores are not cohesive due to a
lack of integrated optimization.

H.5 OUR METHOD

The full details can be found in our code implementation, which uses PyTorch for neural network
implementation. Section 4 outlines our training process, with a visualization on the right of Figure 2.
To provide greater clarity, we proceed to be more explicit in how we implement our method.

We set up a binary classification task between the normal and anomaly class. For training, the normal
class has normal data, while the anomaly class has known and synthetic anomalies. Before training
starts, synthetic anomalies are sampled uniformly from the data support X . Specifically, we normalize
all features to be between 0 and 1 and sample synthetic anomalies from [0, 1]d (note that for one-hot
encoded variables, we sample from the discrete support instead). The base model is a ReLU network
that predicts a scalar from 0 to 110 that describes how anomalous each datum is. Model weights are
optimized via gradient descent on the loss.

During testing, the trained network predicts a scalar from 0 to 1 for normal data, known and unknown
anomalies.

In the following two subsections, we outline 2 kinds of hyperparameter choices: how we represented
some theoretical details that are impractical, and other key hyperparameters which may have differed
from the theoretical description.

9We train SVM and Random Forest with balanced class weights.
10In our theoretical model, the output is from -1 to 1, but the output can always be scaled according to match

user preferences.
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H.5.1 IMPLEMENTING THEORY

Our theoretical model in Definition 4.3 has sparsity constraints and have all absolute values bounded
by 1. These constraints are difficult to model during optimization. Hence, we use weight decay
during gradient descent to model the preference towards sparser and smaller solutions.

Without knowledge of parameters like α, we do not have knowledge on what to set depth L∗ and
width w∗ to. In particular, for width, our theoretical model seeks a width of 6(d+ α)N . However, N
can be O(ed), which makes implementation computationally infeasible (e.g., d = 119 for NSL-KDD,
so N > 1051 and the width will be too large for training). Instead, in our experiments, we used
the dimension of the input d and the number of data samples M to guide our choice of the width —
higher dimension and more data should have wider networks for expressivity. We chose widths of
678 for NSL-KDD (d = 119, M ≈ 70, 000), 200 for Thyroid (d = 21, M ≈ 4, 000) and 500 for
Arrhythmia (d = 278, M ≈ 300), 6000 for MVTec (d = 1024, M ≈ 300) and 6000 for AdvBench
(d = 384, M ≈ 100, 000). We comment on depth in the next subsection.

H.5.2 SYNTHETIC ANOMALY COUNTS n′ AND OTHER HYPERPARAMETERS

For most datasets, the number of synthetic anomalies we use is n′ = n+ n−, which equals to the
number of real training data points (i.e., normal data and known anomalies). The choice n′ = n+n−

follows from our main theorem (Theorem 4.5), which shows the convergence rate of the excess risk
depending on nmin = min{n, n−, n′}. This means that increasing n′ further beyond n or n− does
not further improve the convergence rate. However, to ensure that nmin is not limited by n′, we set
n′ = n+ n− in our experiments so that nmin = min{n, n−}. Also, we would like to avoid adding
too many to avoid diluting the known anomaly supervision signal and contaminating the normal data
during training.

Our ablations in Table 2 show that the choice of n′ is not that sensitive for unknown anomaly
performance, achieving a similar AUPR for n′ = 0.001r, r, 5r where r = n + n−. Such results
show that this parameter is generally not too sensitive. For AdvBench, we notice that validation
performance is not perfect, denoting that some anomalies are probably difficult. To avoid overfitting
to known anomalies, we further increase the number of synthetic anomalies to n′ = 3 · (n+ n−).

In our initial experiments, we observe that the network does not converge during training and
remains at high loss. We identify this as a symptom of vanishing (or zero) gradient. To alleviate
this symptom, we make the following 3 changes. First, we make our network shallower, similar to
the idea of structural risk minimization; our theoretical model seeks a depth of 8 + (m + 5)(1 +
log2(max(d, α))) ≥ 8 + 5 · 2 = 18, but we instead choose a depth of 3. The neural network depth
is the main hyperparameter we tune. Second, we change out ReLU activations with leaky ReLU
activations to avoid dead neuron problems. Third, instead of hinge loss, we use logistic loss to avoid
zero loss on some samples. Models are then trained with early stopping on the validation loss.

These changes help with learning. We believe that the first change is the most significant, but keep
the second and third change as well. This flexibility of switching out hyperparameters shows that our
theory is not bound by specific hyperparameter choices and can be applied in general to standard
binary classifiers.

H.6 ARE SYNTHETIC ANOMALIES REPRESENTATIVE OF UNKNOWN ANOMALIES?

Distributionally, the answer is no — our synthetic anomalies are drawn from a uniform distribution,
while unknown anomalies can be drawn from any arbitrary distribution (which is likely more
concentrated than the uniform distribution). In other words, good performance on synthetic anomalies
does not necessitate good performance on unknown anomalies. The extreme case is when unknown
anomalies are adversarial samples deliberately crafted to evade detection. In general, though, we
observe that the model does not perform as well on unknown anomalies as it does on synthetic
anomalies, even if these unknown anomalies are not deliberately crafted to be adversarial. Our
validation AUPR with normal data, known and synthetic anomalies is always high (usually perfect)
but AUPR on unknown anomalies can be low (e.g., models generally struggle on AdvBench dataset).

Nevertheless, our goal is not to create synthetic anomalies that resemble unknown anomalies — if
unknown anomalies were known, we could directly do binary classification. Rather, we build on
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Figure 8: Data visualization of the model trained without synthetic anomalies. Unknown anomalies
are more scattered than the model trained with synthetic anomalies.

density level set estimation to detect unknown anomalies (Section 3). This is why we use validation
loss and not validation performance for early stopping. Geometrically, we hope that synthetic
anomalies can label the unknown regions / “open space” (i.e., regions without data) as anomalous,
so models will be trained to classify those regions as anomalous. Then, when unknown anomalies
appear in these regions, the model will be trained to identify these unknown anomalies as anomalous.
The trade-off is that, apriori, we are unaware of which regions these unknown anomalies will appear
in, so we will need to sample many synthetic anomalies to fill up more of these unknown regions
(especially in higher dimensions), and hence will also require more model expressivity. To illustrate,
in our data visualization in Figure 3, synthetic anomalies are scattered everywhere, some of them in
regions (left of image) where real data are absent. Only a portion of synthetic anomalies are around
the region of unknown anomalies (right of image).

Nonetheless, we observe that unknown anomalies cluster (e.g., bottom left, top of Figure 3), some
quite closely to known anomalies. This clustering is not found in the model trained without synthetic
anomalies (Figure 8). Here, our model has learnt discriminative features that are similar across real
(known and unknown) anomalies.
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