
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARNESSING TEMPORAL DATABASES FOR SYSTEM-
ATIC EVALUATION OF FACTUAL TIME-SENSITIVE
QUESTION-ANSWERING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Facts change over time, making it essential for Large Language Models (LLMs) to
handle time-sensitive factual knowledge accurately and reliably. Although factual
Time-Sensitive Question-Answering (TSQA) tasks have been widely developed,
existing benchmarks often face manual bottlenecks that limit scalable and com-
prehensive TSQA evaluation. To address this issue, we propose TDBench, a new
benchmark that systematically constructs TSQA pairs by harnessing temporal
databases and database techniques, such as temporal functional dependencies, tem-
poral SQL, and temporal joins. We also introduce a new evaluation metric called
time accuracy, which assesses the validity of time references in model explanations
alongside traditional answer accuracy for a more fine-grained TSQA evaluation.
Extensive experiments on contemporary LLMs show how TDBench enables scal-
able and comprehensive TSQA evaluation while reducing the reliance on human
labor, complementing current TSQA evaluation approaches that largely center on
Wikipedia/Wikidata by enabling LLM evaluation on application-specific data.

1 INTRODUCTION

Facts are not static – they evolve over time (Jensen et al., 1996). As Large Language Models (LLMs)
are increasingly integrated into real-world applications (Jiao et al., 2024), their abilities to manage
time-sensitive factual knowledge have become crucial for ensuring both accuracy and reliability (Yuan
et al., 2024). For example, when asked, “Who is the current president of the U.S.?”, an LLM must
accurately distinguish between past and present presidents to avoid providing outdated or incorrect
responses, which can mislead users and undermine trust (Huang et al., 2024).

To assess LLMs’ abilities to handle time-sensitive factual knowledge, many Time-Sensitive Question
Answering (TSQA) benchmarks have been developed (Chen et al., 2021; Dhingra et al., 2022; Kasai
et al., 2023; Tan et al., 2023; Vu et al., 2023; Kim et al., 2024; Zhao et al., 2024; Zhu et al., 2025).
These benchmarks primarily assess two LLM capabilities: (1) temporal reasoning, the ability to
understand various temporal contexts within questions (e.g., “before 2019”, “during the 5th Winter
Olympics”) and (2) temporal alignment, the ability to provide answers that reflect current factual
knowledge in the real world (e.g., being aware of the current president).

However, existing factual TSQA benchmarks often lack a systematic design, relying heavily on
manual efforts for benchmark construction and maintenance. Assessing temporal reasoning ability re-
quires creating diverse temporal contexts such as “before 2019” or “during the 5th Winter Olympics”,
which typically relies on human writers (Kasai et al., 2023; Wei et al., 2023; Vu et al., 2023). Using
predefined question templates can automate part of this process (e.g., “before [YEAR]”), but it still
requires human efforts to design templates and often uses a small, fixed set that compromises diversity
(e.g., 9 templates used in Dhingra et al. (2022), 16 used in Margatina et al. (2023); see more details in
Sec. 5). In addition, the evolving nature of time-sensitive knowledge requires continual updates of
TSQA benchmarks, posing a benchmark maintenance challenge. For instance, RealTimeQA (Kasai
et al., 2023) manually curated weekly news (e.g., CNN) to incorporate new world facts, but updates
have recently ceased due to the high costs of manual curation (Uddin et al., 2024).

To tackle these manual bottlenecks, we propose TDBench, a benchmarking framework designed for
a more systematic TSQA evaluation. Unlike existing TSQA benchmarks, TDBench eliminates the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

/

TSQA Construction

① Knowledge Selection
for TSQA pairs

② Temporal SQL
Query Generation

SELECT name
FROM MyDB
WHERE country=‘Sweden’
AND role=‘Monarch’
AND {NOW() BETWEEN
 start AND end}

Temporal
Database

TSQA
Pairs

Schema
• country
• role
• gender
• name
• start
• end Encode temporal context

③ Conversion to
Natural Language

Question

SQL-to-text via LLM

Run query to database

SQL Query

Answer

Temporal
Functional

Dependency

<country>, <role>
determines <name>
at any time point

Question: Who is currently serving as the monarch of Sweden?
Gold Answer: {country: ‘Sweden’, …, name: ‘Carl XVI Gustaf’, start: ‘1973-09-15’, …} (*as of 2025)

LLM Response (*actual response of Gemma2-27B):
Since June 2016, Carl XVI Gustaf has been the current monarch of Sweden. Answer: Time:

TSQA Evaluation

Figure 1: Overview of TDBench framework. TDBench systematically constructs Time-Sensitive QA
(TSQA) pairs by (1) selecting factual knowledge via temporal functional dependencies, (2) generating
temporal SQL queries with diverse temporal contexts, and (3) converting queries into natural language
QA pairs using an LLM and the database. During evaluation, TDBench automatically verifies both
the final answer and time references in LLM responses, capturing cases where the model hallucinates
in the explanation despite providing the correct answer. TDBench supports diverse TSQA scenarios,
including temporal alignment and temporal reasoning tasks – see more framework details in Sec. 3.

need for human labor in designing temporal contexts or question templates. Instead, TSQA pairs
are automatically generated from an input data source, namely, temporal databases – extensions
of conventional databases that are well-established for managing time-sensitive knowledge (Jensen
et al., 1996). These temporal databases can be user-defined or sourced from general platforms like
Wikipedia, allowing users to flexibly construct TSQA benchmarks based on their own interests.

Our key idea is to utilize database techniques such as Temporal Functional Dependencies (TFDs),
temporal Structured Query Language (SQL), and temporal joins for automatic TSQA construction.
As shown in Fig. 1, TDBench framework proceeds in three steps: (1) selecting factual knowledge via
TFDs, which pinpoint attributes whose values can be uniquely determined at any timepoint (e.g., a
name of a country’s president) and thus can be suitable for the TSQA task; (2) generating temporal
SQL queries via temporal SQL operators (e.g., BETWEEN, DATEDIFF), which encodes various
temporal contexts based on 13 mutually exclusive and exhaustive temporal relations (Allen, 1983);
and (3) translating SQL queries into natural language QA pairs using an LLM and the database.
Through these steps, TDBench automates TSQA construction and simplifies maintenance; updating
the underlying database automatically refreshes the generated QA pairs. We also show how temporal
joins increase TSQA complexity by generating implicit temporal contexts (e.g., “during the 5th
Winter Olympics”), which can test LLMs’ advanced reasoning abilities such as event–event reasoning
(Tan et al., 2023), while eliminating the need of additional manual curation (Tan et al., 2023).

Alongside the QA construction, we introduce a new metric called time accuracy to support a more
fine-grained TSQA evaluation. During QA tasks, LLMs can often hallucinate in explanations while
providing correct answers (Ji et al., 2023; Oh et al., 2024). We find this phenomenon manifests in
TSQA tasks as inaccurate time references, as illustrated in Fig. 1; a model correctly identifies the
current monarch of Sweden, but hallucinates his start date. Since traditional answer-only evaluations
cannot capture such errors, we use time accuracy to verify the validity of time references as well as
final answers, enabling automatic verification with SQL-based temporal constraints.

Extensive experiments demonstrate how TDBench enables a scalable and comprehensive TSQA
evaluation while reducing human labor. We assess several popular LLMs – GPT-3.5 (OpenAI,
2022), GPT-4 (OpenAI, 2023), GPT-4o (OpenAI, 2024), Llama3.1-70B (Dubey et al., 2024), Mixtral-
8x7B (Jiang et al., 2024), Gemma2-27B (Team et al., 2024), Qwen2-72B (Bai et al., 2023), and
Granite3.1-8B (Granite Team, 2024) – across various TSQA tasks, including temporal alignment,
temporal reasoning, and multi-hop settings with implicit temporal contexts. By leveraging TDBench’s
generalization to arbitrary domains, we move beyond the previous Wikipedia/Wikidata-centric TSQA
evaluation and uncover LLM performances in application-specific domains (e.g., medical, legal),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which can fall outside the scope of public platforms. In addition, our time accuracy metric reveals
that LLMs largely hallucinate on time references despite providing correct answers, where the
accuracy of both the answer and time references is on average 21.7% lower than just answer accuracy
in our experiments. Diverse SQL-generated temporal contexts highlight specific weaknesses in
understanding temporal constraints (e.g., LLMs underperforming for ‘finish’ compared to ‘start’),
identifying LLMs’ temporal blind spots that are not clearly observed in other benchmarks.

Summary of Contributions (1) We propose TDBench, a new benchmark that systematically con-
structs TSQA pairs by harnessing temporal databases and database techniques. (2) We emphasize the
need for assessing model explanations, introducing time accuracy to capture invalid time references
for more reliable TSQA evaluation. (3) We conduct extensive experiments on contemporary LLMs,
demonstrating how TDBench enables a scalable and comprehensive evaluation while reducing human
labor and complements existing TSQA approaches centered on Wikipedia/Wikidata.

2 BACKGROUNDS

Table 1: An example temporal database
Leader(country, role, name, gender, start, end).
country role gender name start end

USA President M Bush 2001 2009
USA President M Obama 2009 2017
U.K. Monarch F Elizabeth 1952 2022

Temporal Database Temporal databases (Jensen
& Snodgrass, 2018) extend conventional relational
databases with the concept of time. Both types of
databases store structured data, where information
is organized into a fixed schema with predefined
attributes (i.e., columns) and corresponding values
(i.e., rows or tuples). While conventional relational
databases typically retain only the latest state of each entity, temporal databases are specifically
designed to capture time-varying information by storing historical states with associated timestamp
attributes. In this work, we focus on temporal databases following the uni-temporal data model,
which stores the valid time interval of each row using two timestamp attributes (e.g., start and end in
Table 1). We demonstrate how the structured nature of these temporal databases enables systematic
time-sensitive question generation by explicitly tracking when facts hold true.

Temporal Functional Dependency and Join Temporal databases possess two unique properties:
1) temporal functional dependencies (TFDs) and 2) temporal joins. TFDs generalize functional
dependencies (FDs) defined in conventional databases1, which denote relationships between two
sets of attributes X and Y where the X values determine the Y values (i.e., X → Y). TFDs
extend this notion with a time dimension, requiring the dependency to hold at every timepoint (i.e.,
X

T→ Y ; Jensen et al. (1996)). For instance, country, role T→ name holds in Table 1, which ensures
that each country has a unique role-holder at any given year. Temporal joins similarly incorporate
time when combining two or more tables. We mainly focus on temporal natural joins, which only
join tuples with overlapping validity intervals. In the following sections, we leverage these properties
to effectively evaluate LLM responses. Formal definitions of both properties are presented in Sec. A.

3 TDBENCH

We introduce TDBench, a benchmarking framework for systematic Time-Sensitive Question-
Answering (TSQA) evaluation. We first explain the QA construction process (Sec. 3.1), which
automatically generates TSQA pairs given an input temporal database to address manual bottlenecks
in benchmark construction and maintenance. We then explain the evaluation process (Sec. 3.2), intro-
ducing a newly proposed metric called time accuracy for a more fine-grained TSQA evaluation. We
finally discuss how to increase TSQA complexity by generating implicit temporal contexts (Sec. 3.3).

3.1 QA CONSTRUCTION

Our key idea is to harness temporal database techniques to systematize the QA construction process.
As shown in Fig. 1, TDBench proceeds in the following three steps, yielding several benefits.

➀ Knowledge Selection for TSQA Pairs Given a temporal database, we use Temporal Functional
Dependencies (TFDs; Sec. 2) to automatically select attribute sets for constructing TSQA pairs.

1FD and TFDs are defined by the database owner. These properties are typically imposed in databases to
help identify data inconsistencies and improve data integrity (Jensen et al., 1996).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Illustration of the meet relation between temporal intervals a and b, from which we generate
the SQL condition and temporal context. Diverse temporal contexts can be constructed by sampling
different values for a and b. In this example, a denotes a president’s term, and March 20, 2001 and
half a year correspond to b.end and b.length, respectively. See Table 10 for all 13 temporal relations.

Relation Interval Diagram SQL Condition Example Temporal Context

a meet b a.end = b.end - b.length A president who ends exactly
half a year before March 20, 2001

Given a TFD X
T→ Y satisfied in a database relation r, we specify r.X values in the question and

use the corresponding r.Y values as the answers, since X values determine Y values at any time by
the TFD definition. For example, country, role T→ name leads to the question “Who is the [role] of
the country [country]”? with the answer [name], where [role], [country], and [name] are placeholders
for attribute values. As TFDs are part of the design theory of temporal databases, this FD-based logic
generalizes to arbitrary schemas of temporal databases, enabling systematic knowledge selection.

➁ Temporal SQL Query Generation We propose the Genqueries algorithm to generate
temporal Structured Query Language (SQL) queries using the TFD-selected attributes. SQL is used
to interact with databases to manage and query data. Rather than directly generating natural language
questions, generating questions via temporal SQL queries allows us to utilize built-in temporal
operators, reducing the manual effort to design temporal contexts. Genqueries first (1) builds a
base query using the TFD-selected attributes and then (2) adds temporal constraints, as shown in
Fig. 1. For (1), the X attributes are used in the WHERE clause for the question, and the Y attributes
are used in the SELECT clause for the answer (e.g., country, role T→ name yields SELECT name
WHERE country=‘USA’ AND role=‘president’). For (2), SQL conditions are generated
based on 13 mutually exclusive and exhaustive temporal relations from the database literature (Allen,
1983) – before, after, meet, met-by, overlap, overlapped-by, equal, start, started-by, finish, finished-by,
during, and contains. For example, Table 2 shows the temporal SQL condition and the temporal
context corresponding to the meet relation, where a time interval a ends exactly when a time interval
b starts. The resulting temporal condition is appended to the base query as a temporal constraint. We
present the full set of SQL conditions and the pseudocode of Genqueries in Sec. B.

➂ Conversion to Natural Language QA Pairs We convert the generated queries into natural
language QA pairs by using an LLM and the underlying database. For questions, we use GPT-4o (Ope-
nAI, 2024) as an SQL-to-text translator via system prompts, which we observe to achieve 91.5%
accuracy in our setup based on LLMs’ strong zero-shot performance in SQL-to-text tasks (Zhang
et al., 2024a) – see detailed setups (e.g., actual prompt and temperature) and error analyses in Sec. B.3.
For answers, we simply run the generated SQL queries on the database. In this way, we obtain
linguistically diverse questions from an LLM while ensuring that the answers follow the underlying
database, as shown in Table 3. We show more examples of generated QA pairs in Sec. B.3.

Benefits Compared to prior approaches, TDBench offers many benefits by harnessing both database
techniques and LLMs for QA construction. Using TFDs in step ➀ enables dynamic benchmarking
that is also convenient, eliminating the need for manual data pre-processing to identify time-related
attributes (Gupta et al., 2023; Zhao et al., 2024). Using temporal SQL in step ➁ eliminates the human
labor to write customized, domain-specific templates while expanding time constraints to the full set
of 13 interval relations, instead of the typically used 4-6 types (mainly “in [year]”, “from [year1]
to [year2]”, “before”, and “after” (Chen et al., 2021; Dhingra et al., 2022)). Lastly, we demonstrate
how step ➂ (i.e., LLM-generated questions, DB-grounded answers) greatly reduces hallucination and
inference costs compared to LLM-only approaches (Kim et al., 2024) – see more details in Sec. D.8.

3.2 EVALUATION

Using the generated QA pairs, TDBench evaluates not only final answers via traditional answer
accuracy, but also explanations via a newly proposed time accuracy metric to offer a fine-grained
TSQA evaluation. We explain the definition and the verification of the proposed time accuracy metric,
along with the various TSQA evaluation scenarios supported by TDBench.

Definition of Time Accuracy We define time accuracy as the correctness of time references –
specifically the start and end dates in our setup – that serve as rationales for temporal reasoning

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 3: A single SQL query generates multiple QA pairs by translating into diverse natural language
questions with the same answer. To evaluate both answer and time accuracy, the SQL query also
outputs a relation-specific time reference (e.g., end for the ‘meet’ relation), defined in Table 10.

SQL Query (relation=‘meet’) Generated QA

SELECT name, end FROM Leader
WHERE Country=‘Brazil’ AND
Role=‘President’ AND
date(end) = date(‘2019-05-01’,
‘-4 month’)

[Questions] “Who was the president of Brazil whose term
ended exactly four months before May 1, 2019?”, “Can you
provide the president of Brazil who finished their term four
months prior to May 1, 2019?”...
[Answer] Michel Temer [Time reference] 2019-01-01 (end)

[Model Response] The answer is Michel Temer (answer), whose term ended in January 1, 2019 (time reference).

required in a time-sensitive question. For example, the questions in Table 3 require reasoning over
the president’s end date, where the model should mention “January 1, 2019” in the explanation given
the constraint “four months before May 1, 2019”. If a question requires both a start and an end date,
but the model gets only one correct, the time accuracy is 50%. See the formal definition in Sec. B.4.

Verification of Time Accuracy TDBench supports automatic verification of time accuracy by
utilizing the SQL-generated temporal constraints, which explicitly encode the temporal reasoning
logic (e.g., “date(end) = date(‘2019-05-01’), -4 month” in Table 3 indicates that the end date is
required for reasoning). We thus define relation-specific criteria that specifies which time references
to verify: start date for ‘after’, ‘met-by’, ‘started-by’, end date for ‘before’, ‘meet’, ‘finished-by’, and
both dates for the remaining seven relations, as summarized in Table 10. To facilitate evaluation, we
prompt target LLMs to explicitly state time references used in their reasoning during the TSQA task.
Since model responses may include unrelated time information (e.g., “As of 2025, the answer is. . . ”),
we employ an LLM-based judge rather than exact matching to verify time references, achieving
91.1% accuracy under manual inspection – see more details and error analyses in Sec. B.5. We also
demonstrate how the time accuracy metric can be supported in other TSQA benchmarks in Sec. 4.1.

Evaluation Scenarios TDBench supports various TSQA evaluation scenarios: (1) evaluation
of temporal alignment, which tests whether the LLM is up-to-date with current world knowledge.
As this scenario grounds questions to a temporal constraint “current,” we use only the “overlap”
relation in Genqueries (Table 10); (2) evaluation of temporal reasoning, which assesses the LLM’s
understanding of diverse temporal contexts, where we use all 13 interval relations in Genqueries;
(3) evaluation of open-book/closed-book settings, which differs by the presence of additional context
that can aid the QA task. In the open-book setting, we append both relevant and irrelevant rows from
the database to the question, whereas such context is removed in the closed-book setting (see Sec. B.6
for an example QA). We note that these scenarios are enabled by the expressiveness of temporal
SQL, which also allows natural extensions to broader scenarios – see how to extend Genqueries
to incorporate non-temporal data attributes or other tasks such as event-counting in Sec. B.2.

3.3 EXTENSION WITH IMPLICIT TEMPORAL CONTEXTS

We can further increase the complexity of the generated questions by performing temporal joins
(Sec. 2) of tables within the SQL queries. In particular, temporal joins induce implicit event-event
reasoning (Tan et al., 2023) that requires models to identify two or more temporally overlapping
events. For example, performing a temporal join between Leaders(country, role, gender, name, start,
end) and Olympic(country, city, game_edition, start, end) on the common column ‘country’ pairs
Olympic host countries with their national leaders at that time, where a question such as “q1: Who was
the president of the host country during the 1988 Summer Olympics?” can be generated. TDBench
naturally extends from single tables to joined tables and can generate such questions, since TFDs
in the joined table can be derived via standard FD and TFD inference rules (Jensen et al., 1996);
for example, game_edition→ country (in Olympic) and TFD country, role

T→ name (in Leader)
yields a new TFD game_edition, role T→ name, which can be converted to q1 via Genqueries.
The verification process is the same as that for single-table questions. While other, more complex
implicit temporal contexts could be constructed, we emphasize that TDBench offers an automatic
way to generate these implicit contexts – moving beyond prior work that typically relies on manual
construction (Tan et al., 2023; Wei et al., 2023; Wu et al., 2024; Jia et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 4: Performance evaluation of eight LLMs on the temporal alignment TSQA task. We report the
proportion of correct responses under two evaluation settings: answer-only (A) and answer and time
(AT), along with their difference (∆ = A−AT). Wikipedia results are reported in aggregate, and
domain-specific results are broken down by subdomain. Best results are shown in bold.

Wikipedia Law Carbon Tax Heritage Netflix
Model A AT ∆ A AT ∆ A AT ∆ A AT ∆ A AT ∆

GPT-3.5 47.5 22.4 25.1 84.3 39.9 44.3 19.9 8.4 11.4 62.7 26.5 36.2 29.3 19.1 10.1
GPT-4 44.5 29.6 14.9 82.4 52.3 30.0 32.0 23.9 8.1 74.5 44.5 30.0 32.4 26.4 6.1
GPT-4o 73.9 48.8 25.1 84.3 54.0 30.3 72.1 43.1 29.0 72.5 53.3 19.2 32.9 25.9 7.0
Llama3.1-70B 64.6 56.7 7.9 84.6 44.9 39.7 57.6 39.7 17.8 75.5 39.7 35.8 35.6 28.6 7.0
Mixtral-8x7B 42.9 30.9 12.0 74.1 42.2 32.0 28.3 16.5 11.8 35.6 18.1 17.5 20.7 17.1 3.6
Gemma2-27B 69.3 32.8 36.5 84.3 29.8 54.6 73.1 25.2 47.8 69.2 22.0 47.2 36.0 27.7 8.3
Qwen2-72B 62.7 34.1 28.6 84.0 34.2 49.9 57.2 27.6 29.6 53.5 20.2 33.3 22.5 19.4 3.1
Granite3.1-8B 49.6 26.1 23.5 90.1 28.6 61.4 45.1 0.0 45.1 42.0 4.5 37.5 19.6 14.9 4.7

Average 56.9 35.2 21.7 83.5 40.7 42.8 48.2 23.1 25.1 60.7 28.6 32.1 28.6 22.4 6.2

4 EXPERIMENTS

We perform extensive experiments to demonstrate how TDBench enables diverse and fine-grained
temporal evaluation of LLMs. More detailed settings (e.g., system prompts) are provided in Sec. C.

LLMs Compared We compare GPT-3.5 (OpenAI, 2022), GPT-4 (OpenAI, 2023), GPT-4o (OpenAI,
2024), Llama3.1-70B (Dubey et al., 2024), Mixtral-8x7B (Jiang et al., 2024), Gemma2-27B (Team
et al., 2024), Qwen2-72B (Bai et al., 2023), and Granite3.1-8B (Granite Team, 2024). We set all the
temperature parameters to zero to exclude randomness in the LLM responses.

Datasets We use temporal databases from two types of sources: (1) Wikipedia covering domains
such as Countries, Athletes, Organizations, and Olympics, which are commonly addressed in existing
TSQA benchmarks (Chen et al., 2021; Dhingra et al., 2022; Mousavi et al., 2024), generating 6,177
questions; and (2) other platforms such as Kaggle, covering areas including same-sex marriage laws,
carbon taxation, UNESCO heritage, and Netflix shows to model domain-specific scenarios in Legal,
Environmental, Cultural, and Social contexts, generating 1,704 questions. More details on datasets,
including schemas, used TFDs, and subcategories of questions, are provided in Sec. C.2.

Performance Measures We mainly use the following three performance evaluation metrics.
• Answer accuracy (A): Portion of responses with correct answers.
• Time accuracy (T): Portion of responses with correct time references, evaluated using relation-

specific criteria (Table 10). If two time references are expected (e.g., start and end dates), partial
credit (50%) is given when only one is correct. Granularity (e.g., year, month) varies by dataset.

• Answer-Time accuracy (AT): Portion of responses with both correct answers and time references.
Here, we do not give partial credit (i.e., only consider 100%) when evaluating time accuracy.

4.1 EVALUATION OF TEMPORAL ALIGNMENT

We evaluate the temporal alignment of LLMs, assessing the ability to answer up-to-date questions
that reflect current world knowledge (Dhingra et al., 2022; Kasai et al., 2023; Mousavi et al., 2024).

Performance Variations when Accounting for Time Accuracy Table 4 shows notable performance
variations across domains under two evaluation settings: A (answer-only) and AT (answer and time).
While the models generally achieve high A by retrieving correct up-to-date answers, they often fail
to generate accurate time references, resulting in a 21.7% average performance drop in AT on the
Wikipedia dataset. This gap reveals the limitation of traditional answer-only evaluation, indicating that
a large portion of factually inconsistent responses with incorrect time references can be overlooked –
see actual cases in Sec. D.1. We also observe domain-specific LLM performances; GPT-4o performs
best in domains such as law, carbon tax, and UNESCO heritage, while Llama3.1-70B excels in the
Netflix domain – demonstrating TDBench’s applicability beyond Wikipedia-based data.

Integrating Time Accuracy into Existing Benchmarks We show how the proposed time accuracy
metric can be beneficial when integrated into existing temporal alignment TSQA benchmarks (Dhin-
gra et al., 2022; Margatina et al., 2023; Mousavi et al., 2024), enabling more fine-grained evaluation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 5: Comparison of LLM performances across
multiple-, unique-, and no-answer (“None”) question
types, evaluated on the Wikipedia dataset in the open-
book setting. We report only A for the None type, as no
time reference applies to no-answer cases.

Multiple Unique None
Model A T AT A T AT A

GPT-3.5 34.4 41.9 20.1 43.3 67.8 36.8 17.9
GPT-4 60.3 77.8 49.8 61.7 82.9 49.9 45.0
GPT-4o 58.1 67.3 42.2 67.8 68.7 43.7 62.4
Llama3.1-70B 48.6 45.7 29.4 69.1 51.8 33.2 44.2
Mixtral-8x7B 36.2 57.6 24.1 49.9 78.1 36.6 7.8
Gemma2-27B 49.7 56.1 29.1 61.9 63.6 41.7 20.0
Qwen2-72B 48.3 62.5 37.7 63.4 86.4 57.0 49.1
Granite3.1-8B 22.5 41.9 14.8 46.9 51.2 25.8 25.1

equal

after

start
started-by

before

finish
finished-by

overlapped-by

overlap
contain

met-by
meet

during

70

GPT
-3.5

GPT
-4
GPT

-4o
Llam

a3
Mixt

ral
Gem

ma2Qwe
n2
Gran

ite3

60

50

40

30

20

80

Figure 2: LLM performances on 13 tem-
poral relations in the open-book setting.

These benchmarks use open-ended QA templates (e.g., “The president of Italy is __”) and solely
evaluate the final answer. To integrate T and assess model explanation as well, we simply modify the
system prompt to elicit start date references from the model, without altering the original benchmark.
In Sec. D.2, we provide a detailed case study with Dyknow (Mousavi et al., 2024), where we extend
the benchmark with T and observe an F1-score of 0.96 for temporally aligned responses (i.e., both
answer and time reference are correct), improving benchmark correctness against human verifications.

4.2 BREAKDOWN OF TEMPORAL REASONING PERFORMANCE

We now evaluate the temporal reasoning ability of LLMs to understand diverse temporal conditions,
analyzing performance by answer cardinality, temporal constraint type, and temporal span.

Performance by Answer Cardinality We evaluate LLM performances across different answer set
sizes, expanding the traditional setup with a single answer. Depending on the generated temporal
context, TDBench can yield multiple-answer or no-answer questions as well as single-answer
questions. For example, a no-answer question might ask, “Which president of the U.S. ended their
term exactly half a year before January 20, 2001?”, where no such president exists. Table 5 shows
that models like GPT-4o perform robustly across question types, whereas models like Mixtral and
GPT-3.5 show notable gaps, particularly underperforming on no-answer questions. For example, a
model incorrectly answers “Bill Clinton” (term ended on January 20, 2001), likely due to matching the
string “January 20, 2001” in the question rather than reasoning over “exactly half a year.”, indicating
that models may rely more on surface cues than true temporal reasoning.

Performance by Temporal Constraint Type We assess how well the LLMs handle different types
of temporal constraints using the 13 distinct temporal relations. Fig. 2 shows that LLMs perform
best on ‘equal’ relation-based constraints (e.g., “in 2025”) – likely due to their prevalence in training
data – while struggling with ‘contain’ and ‘overlap’, which require precise temporal reasoning over
both start and end dates (e.g., started before January 1, 1985, and ended after December 30, 1992 for
‘contain’). Interestingly, LLMs tend to comprehend start constraints (e.g., ‘start’, ‘started-by’) more
accurately than end constraints (e.g., ‘finish’, ‘finished-by’), which may stem from the autoregressive
nature of LLMs that prioritizes earlier tokens in generation.

Performance by Temporal Span We evaluate LLM performance across different temporal
spans under the closed-book setting, assessing how well LLMs utilize internal time-sensitive factual
knowledge without external context. Fig. 3 shows the results for a single domain (Countries) (see
Sec. D.3. for aggregated results across multiple domains) where we observe a gradual performance
increase from 1985 to 2010, with a notable jump in the 1990–1995 interval. As this trend appears
consistently across all models, we suggest it reflects shared characteristics of training data rather than
model-specific behavior, where the 1990–1995 period may be better represented in the training data.

4.3 EVALUATION OF MULTI-HOP QUESTIONS

We assess LLM performance on multi-hop questions. As described in Sec. 3.3, these questions
have implicit temporal contexts generated via temporal joins, and we construct 2-hop and 3-hop

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: LLM performances across different time spans
(1985-2025) in the closed-book setting. Additional results
on multiple domains are presented in Sec. D.3.

Table 6: Performance comparison on
multi-hop questions where Hi denotes
the hallucination rate at the (i+1)-th hop
given the correct i-th hop. Full results
with 2-hop questions are in Table 27.

3-hop
Model A AT H1 H2

GPT-3.5 33.8 33.8 8.5 7.6
GPT-4 57.1 52.5 10.8 0.5
GPT-4o 90.4 87.9 26.3 0.0
Llama3.1-70B 82.8 80.8 38.2 4.5
Mixtral-8x7B 60.1 49.0 19.5 10.6
Gemma2-27B 48.0 43.9 26.5 24.7
Qwen2-72B 68.2 59.1 35.1 5.6
Granite3.1-8B 11.1 11.1 10.3 77.8

questions by joining the Olympic and Country datasets. For the 2-hop setting, we use the TFD
game_edition, role T→ name, where models should infer (1) the host country and time from a given
Olympic name (e.g., 1988 Summer Olympics), and (2) the leader of the host country (e.g., president)
at that time. For the 3-hop setting, we use game_round, role T→name, where models should infer
(1) the Olympic name from the round number (e.g., 24th Summer Olympics), (2) the host country
and time, and (3) the leader at that time. An example QA is shown in Sec. B.3.

Performance by Reasoning Hops To effectively assess the reasoning process, we introduce Hi,
which measures the conditional probability of hallucination where a model answers the i-th hop
correctly, but hallucinates on the (i+1)-st hop. Alongside the overall performances captured by A
and AT, Table 6 shows the step-wise performances captured by Hi, revealing the most challenging
hop for each model. For example, GPT-4o and Llama3.1-70B hallucinate more at the first hop (i.e.,
higher H1), while Granite3.1-8B hallucinates more at the second hop (i.e., higher H2) in the 3-hop
setting. These model-specific challenges highlight the value of TDBench’s multi-hop generation
capability, which enables a fine-grained diagnosis of intermediate reasoning failures.

Table 7: Performance comparison on multi-
hop questions when applying RAG, CoT, and
Time-CoT. Best- and second-best performing
methods for each model are highlighted in
bold and underline, respectively.

Model Original RAG CoT Time-CoT

GPT-3.5 63.1 71.2 39.4 15.2
GPT-4 67.2 35.4 92.4 93.9
GPT-4o 79.3 89.9 92.9 95.5
Llama3.1-70B 83.8 73.2 92.9 91.9
Mixtral-8x7B 72.7 60.1 67.2 71.2
Gemma2-27B 77.8 40.9 83.8 78.8
Qwen2-72B 65.2 78.8 77.8 85.4
Granite3.1-8B 50.5 54.5 70.2 72.2

Impact of Performance Improvement Techniques
To mitigate reasoning errors in multi-hop settings,
we evaluate the effectiveness of prompting strategies
known to support model reasoning. Specifically, we
compare RAG (Lewis et al., 2020), which augments
prompts with retrieved Wikipedia passages; Chain-
of-Thought (CoT) (Wei et al., 2022), which guides
models to generate intermediate reasoning steps; and
Time-CoT (Yin & Hu, 2024), a recent CoT variant
designed for temporal reasoning – see CoT and Time-
CoT prompts in Sec. D.4. As shown in Table 7, CoT
and Time-CoT generally outperform RAG, which
often retrieves relevant yet temporally misaligned
contexts (see a case study in Sec. D.4). Between CoT
and Time-CoT, no single method consistently outperforms the other, with effectiveness varying by
model; see similar results with single-hop questions in Sec. D.4.

4.4 CORRECTNESS OF TDBENCH

Table 8: Correctness of TDBench
against manual verification. Fine-
grained results are in Table 23.

Methods P R F1

Temporal alignment 0.98 0.96 0.97
Temporal reasoning 0.87 0.91 0.88
Multi-hop 0.95 0.87 0.91

We evaluate the correctness of TDBench across three task types
(Sec. 4.1 – Sec. 4.3). We compare TDBench’s evaluation results
with manual verification on 125 randomly sampled responses
per task, using precision (P), recall (R), and F1-score (F1); see
Sec. D.5 for metric definitions and details of manual verifica-
tion. As shown in Table 8, TDBench achieves high agreement
with manual verification, demonstrating the effectiveness of
database-driven techniques for LLM benchmarking.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 MORE ANALYSES

To further evaluate the applicability and robustness of TDBench, we conduct additional analyses: (1)
evaluation on synthetic medical data, demonstrating how TDBench can be applied beyond real-world
facts (Sec. D.6); (2) evaluation of task-specific TSQA methods, which underperform relative to the
general-purpose models in the main experiments (Sec. D.7); and (3) comparison with LLM-based
TSQA methods, which generate TSQA pairs by directly feeding raw data into LLMs, but can be more
susceptible to hallucination and incur higher inference costs when processing the raw data (Sec. D.8).

5 RELATED WORK

Table 9: Comparison with TDBench against
template-based factual TSQA benchmarks.
We cover 13 temporal relations (Op #), with-
out relying on the fixed set of templates (Temp
#) while verifying both answers (A) and time
references (T) during evaluation (Eval).

Method Op # Temp # Eval

Dhingra et al. (2022) 1 (Equal) 9 A
Margatina et al. (2023) 1 (Equal) 16 A
Tan et al. (2023) 6 23 A
Mousavi et al. (2024) 1 (Equal) 27 A

TDBench (Ours) 13 (Unlimited) A, T

Factual Time-Sensitive Question-Answering TD-
Bench differs from prior factual TSQA benchmarks
in three main aspects: data source, QA construction,
and evaluation methodology. Prior TSQA studies
heavily centers on Wikidata (Jia et al., 2018; Chen
et al., 2021; Dhingra et al., 2022; Margatina et al.,
2023; Tan et al., 2023; Mousavi et al., 2024; Luo
et al., 2025; Zhu et al., 2025; Islakoglu & Kalo, 2025)
or Wikipedia (Jang et al., 2022; Kim et al., 2024; Wu
et al., 2024; Xiong et al., 2024). While some recent
work target tabular data (Gupta et al., 2023; Zhao
et al., 2024), they remain limited to Wikipedia tables
and often require additional Wikipedia page content
for QA construction, restricting generalization beyond Wikipedia. In contrast, TDBench is not
constrained by Wikidata/Wikipedia domains, enabling generalization to arbitrary temporal databases
by building on database design principles such as TFDs. In terms of QA construction, existing
benchmarks often rely on manually curated (Chen et al., 2021; Wei et al., 2023; Kasai et al., 2023;
Gupta et al., 2023; Vu et al., 2023; Jia et al., 2024) or template-based QA (Table 9), which often
covers limited temporal relations. In contrast, TDBench does not rely on manual construction or a
fixed set of templates, while covering a richer set of temporal relations via temporal SQL. There are
also LLM-based methods that generate TSQA pairs by processing raw databases via natural language
prompting (Kim et al., 2024; Zhao et al., 2024), but TDBench enables more controlled and precise
data processing by employing SQL-based data querying. Lastly, to our knowledge, we are the first to
address the automatic evaluation of invalid model explanations in TSQA tasks.

Using SQL for QA Systems In QA systems, Text-to-SQL has been a primary research area (Qin
et al., 2022; Hong et al., 2024), with the goal of (1) translating natural language questions into SQL
queries and (2) retrieving answers from databases that serve as knowledge sources, thereby improving
QA performance (Pasupat & Liang, 2015; Zhong et al., 2017; Yu et al., 2018; Rajkumar et al., 2022;
Liu et al., 2022; Gao et al., 2023). In contrast, our methodology adopts an SQL-to-Text approach (Xu
et al., 2018; Câmara et al., 2024; Zhang et al., 2024b), translating SQL queries into natural language
questions. We perform this task for the purpose of generating QA pairs, rather than enhancing LLM
performance through SQL-based retrieval. In particular, our distinction is to use temporal SQL – an
extension of standard SQL with expressive temporal operators – to generate time-sensitive questions
tailored to TSQA tasks, as well as other database techniques such as TFDs and temporal joins.

6 CONCLUSION

We proposed TDBench, which utilizes temporal databases and database techniques for systematic
evaluation of factual TSQA. By leveraging database techniques, TDBench reduces the manual
effort traditionally required in benchmark construction and maintenance, such as designing temporal
contexts or updating QA pairs with new world knowledge. We also introduced a new metric called
time accuracy for fine-grained TSQA evaluation, designing TDBench to automatically verify both the
final answers and the time references by using SQL-based temporal constraints. Experiments revealed
that a large portion of factually inconsistent responses with invalid time references can be overlooked
in the answer-only evaluation setting, while uncovering model-specific weaknesses across constraint
types, answer cardinality, and reasoning hops. We believe TDBench offers a new direction for TSQA
evaluation by moving beyond Wikipedia/Wikidata and enabling domain-specific benchmarking.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We believe our research addresses an important aspect of Trustworthy AI by evaluating the accuracy
and reliability of LLMs under time-sensitive factual scenarios. In particular, we surface the issue of
LLM hallucination in both final answers and time references, which can mislead users and undermine
trust. By providing a systematic benchmarking framework to detect such cases, TDBench contributes
toward building more reliable and transparent LLMs. As a dynamic framework, the choice of the
database in TDBench inherently determines the benchmark content. We assume that it is the user’s
responsibility to ensure their chosen databases meet ethical standards and exclude harmful or private
material. All datasets used in this study are publicly available and free of sensitive or harmful content.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the details of experimental setups in the
supplementary material, including the proposed TDBench algorithm, system prompts, LLM hyperpa-
rameters (e.g., temperature), and details of datasets used in our study. In addition, we will release
the GitHub repository for the TDBench framework, containing code and scripts for reproducing our
results and documentation for extending the benchmark to new datasets.

THE USE OF LARGE LANGUAGE MODELS

LLMs were mainly utilized as evaluation targets in this work. We also used LLMs to assist in
the writing process (e.g., refining phrasing, enhancing clarity), but we did not employ LLMs for
generating core research ideas or technical content.

REFERENCES

James F Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26
(11):832–843, 1983.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Vanessa Câmara, Rayol Mendonca-Neto, André Silva, and Luiz Cordovil. A large language model ap-
proach to sql-to-text generation. In 2024 IEEE International Conference on Consumer Electronics
(ICCE), pp. 1–4. IEEE, 2024.

Wenhu Chen, Xinyi Wang, and William Yang Wang. A dataset for answering time-sensitive questions.
arXiv preprint arXiv:2108.06314, 2021.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. Time-aware language models as temporal knowledge bases. Transactions of
the Association for Computational Linguistics, 10:257–273, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

IBM Granite Team. Granite 3.0 language models, October 2024. URL https://github.com/
ibm-granite/granite-3.0-language-models/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Vivek Gupta, Pranshu Kandoi, Mahek Bhavesh Vora, Shuo Zhang, Yujie He, Ridho Reinanda, and
Vivek Srikumar. Temptabqa: Temporal question answering for semi-structured tables. arXiv
preprint arXiv:2311.08002, 2023.

10

https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang,
Wenhan Lyu, Yixuan Zhang, et al. Trustllm: Trustworthiness in large language models. arXiv
preprint arXiv:2401.05561, 2024.

Duygu Sezen Islakoglu and Jan-Christoph Kalo. Chronosense: Exploring temporal understanding in
large language models with time intervals of events. arXiv preprint arXiv:2501.03040, 2025.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim,
and Minjoon Seo. Temporalwiki: A lifelong benchmark for training and evaluating ever-evolving
language models. arXiv preprint arXiv:2204.14211, 2022.

Christian S Jensen and Richard T Snodgrass. Temporal database., 2018.

Christian S Jensen, Richard T Snodgrass, and Michael D Soo. Extending existing dependency theory
to temporal databases. IEEE Transactions on Knowledge and Data Engineering, 8(4):563–582,
1996.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1–38, 2023.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and Gerhard Weikum. Tem-
pquestions: A benchmark for temporal question answering. In Companion Proceedings of the The
Web Conference 2018, pp. 1057–1062, 2018.

Zhen Jia, Philipp Christmann, and Gerhard Weikum. Tiq: A benchmark for temporal question
answering with implicit time constraints. In Companion Proceedings of the ACM Web Conference
2024, pp. 1394–1399, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Junfeng Jiao, Saleh Afroogh, Yiming Xu, and Connor Phillips. Navigating llm ethics: Advancements,
challenges, and future directions, 2024. URL https://arxiv.org/abs/2406.18841.

Jungo Kasai, Keisuke Sakaguchi, yoichi takahashi, Ronan Le Bras, Akari Asai, Xinyan Velocity Yu,
Dragomir Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime QA: What’s the answer
right now? In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=HfKOIPCvsv.

Yujin Kim, Jaehong Yoon, Seonghyeon Ye, Sangmin Bae, Namgyu Ho, Sung Ju Hwang, and Se-
Young Yun. Carpe diem: On the evaluation of world knowledge in lifelong language models.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 5401–5415, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.302. URL
https://aclanthology.org/2024.naacl-long.302/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou. Tapex:
Table pre-training via learning a neural sql executor. In The Tenth International Conference on
Learning Representations, 2022.

11

https://arxiv.org/abs/2406.18841
https://openreview.net/forum?id=HfKOIPCvsv
https://aclanthology.org/2024.naacl-long.302/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sigang Luo, Yinan Liu, Dongying Lin, Yingying Zhai, Bin Wang, Xiaochun Yang, and Junpeng
Liu. Etrqa: A comprehensive benchmark for evaluating event temporal reasoning abilities of large
language models. In Findings of the Association for Computational Linguistics: ACL 2025, pp.
23321–23339, 2025.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.546. URL https://aclanthology.org/2023.acl-long.
546/.

Katerina Margatina, Shuai Wang, Yogarshi Vyas, Neha Anna John, Yassine Benajiba, and Miguel
Ballesteros. Dynamic benchmarking of masked language models on temporal concept drift with
multiple views. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics, pp. 2881–
2898, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.eacl-main.211. URL https://aclanthology.org/2023.eacl-main.211/.

Seyed Mahed Mousavi, Simone Alghisi, and Giuseppe Riccardi. DyKnow: Dynamically verify-
ing time-sensitive factual knowledge in LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
8014–8029, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.471. URL https://aclanthology.org/2024.
findings-emnlp.471/.

Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, and Steven Euijong
Whang. Erbench: An entity-relationship based automatically verifiable hallucination benchmark
for large language models. arXiv preprint arXiv:2403.05266, 2024.

OpenAI. Chatgpt. https://chat.openai.com, 2022.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. arXiv
preprint arXiv:1508.00305, 2015.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu
Cao, Jian Sun, Luo Si, et al. A survey on text-to-sql parsing: Concepts, methods, and future
directions. arXiv preprint arXiv:2208.13629, 2022.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: how knowledge-
able are large language models (llms)? aka will llms replace knowledge graphs? arXiv preprint
arXiv:2308.10168, 2023.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. Towards benchmarking and improving the temporal
reasoning capability of large language models. arXiv preprint arXiv:2306.08952, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Md Nayem Uddin, Amir Saeidi, Divij Handa, Agastya Seth, Tran Cao Son, Eduardo Blanco,
Steven R Corman, and Chitta Baral. Unseentimeqa: Time-sensitive question-answering beyond
llms’ memorization. arXiv preprint arXiv:2407.03525, 2024.

12

https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.eacl-main.211/
https://aclanthology.org/2024.findings-emnlp.471/
https://aclanthology.org/2024.findings-emnlp.471/
https://chat.openai.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search engine
augmentation. arXiv preprint arXiv:2310.03214, 2023.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al. Survey on factuality in large language models:
Knowledge, retrieval and domain-specificity. arXiv preprint arXiv:2310.07521, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yifan Wei, Yisong Su, Huanhuan Ma, Xiaoyan Yu, Fangyu Lei, Yuanzhe Zhang, Jun Zhao, and Kang
Liu. Menatqa: A new dataset for testing the temporal comprehension and reasoning abilities of
large language models. arXiv preprint arXiv:2310.05157, 2023.

Xiaobao Wu, Liangming Pan, Yuxi Xie, Ruiwen Zhou, Shuai Zhao, Yubo Ma, Mingzhe Du, Rui
Mao, Anh Tuan Luu, and William Yang Wang. Antileak-bench: Preventing data contamination
by automatically constructing benchmarks with updated real-world knowledge. arXiv preprint
arXiv:2412.13670, 2024.

Siheng Xiong, Ali Payani, Ramana Kompella, and Faramarz Fekri. Large language models can learn
temporal reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 10452–10470, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.563. URL https://aclanthology.org/
2024.acl-long.563/.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. Sql-to-text generation with
graph-to-sequence model. arXiv preprint arXiv:1809.05255, 2018.

Reda Yacouby and Dustin Axman. Probabilistic extension of precision, recall, and f1 score for more
thorough evaluation of classification models. In Proceedings of the first workshop on evaluation
and comparison of NLP systems, pp. 79–91, 2020.

Baosheng Yin and Naiyu Hu. Time-cot for enhancing time reasoning factual question answering in
large language models. In 2024 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Chenhan Yuan, Qianqian Xie, Jimin Huang, and Sophia Ananiadou. Back to the future: Towards
explainable temporal reasoning with large language models. In Proceedings of the ACM on Web
Conference 2024, pp. 1963–1974, 2024.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. Benchmarking the text-to-sql capability of large language models: A
comprehensive evaluation. arXiv preprint arXiv:2403.02951, 2024a.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. Benchmarking the text-to-sql capability of large language models: A
comprehensive evaluation, 2024b. URL https://arxiv.org/abs/2403.02951.

Bowen Zhao, Zander Brumbaugh, Yizhong Wang, Hannaneh Hajishirzi, and Noah A Smith. Set
the clock: Temporal alignment of pretrained language models. arXiv preprint arXiv:2402.16797,
2024.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning, 2017. URL https://arxiv.org/abs/1709.
00103.

13

https://aclanthology.org/2024.acl-long.563/
https://aclanthology.org/2024.acl-long.563/
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhiyuan Zhu, Yusheng Liao, Zhe Chen, Yuhao Wang, Yunfeng Guan, Yanfeng Wang, and Yu Wang.
Evolvebench: A comprehensive benchmark for assessing temporal awareness in llms on evolving
knowledge. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 16173–16188, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX – FORMAL DEFINITIONS OF FDS AND TFDS

Continuing from Sec. 2, we introduce formal definitions on temporal functional dependencies (TFDs)
and temporal joins. Let R and S be temporal relation schemas where two timestamps Ts and Te

denote the start and end timestamps of each relation, respectively.

R = (A1, . . . , An, C1, . . . , Ck, Ts, Te)

S = (B1, . . . , Bm, C1, . . . , Ck, Ts, Te)

For an effective illustration, let {Ai}ni=1 and {Bi}mi=1 denote the unique attributes of schemas R and
S, respectively, and let {Ci}ki=1 represent the attributes shared by both.

We first introduce the definition of temporal FDs (Jensen et al., 1996) below.
Definition A.1 (Temporal functional dependencies). Let X and Y be sets of non-timestamp attributes
of a temporal relation schema R, and let t1 and t2 be arbitrary times, with t1 not exceeding the
current time. A temporal functional dependency, denoted as X T→ Y , exists on R if, for all meaningful
instances r of R – that is, database states that are valid, consistent, and free of contradictions – the
following holds:

∀t1, t2, ∀u1, u2 ∈ τt2(ρt1(r)), u1[X] = u2[X] =⇒ u1[Y] = u2[Y],
where ρt1(r) selects tuples valid at t1, and τt2(·) further restricts the result to tuples visible at t2.

The above definition formally states that for any valid time intervals [t1, t2], if two tuples u1 and u2

share the same values for X , these tuples must also share the same values for Y .

We now introduce the definition of temporal natural join (Jensen & Snodgrass, 2018) below.
Definition A.2 (Temporal natural join). Let r and s be instances of R and S, respectively. The
temporal natural join of r and s, denoted as r ▷◁T s, is defined as:

r ▷◁T s = {z | ∃u ∈ r, ∃v ∈ s (u[C1, ..., Ck] = v[C1, ..., Ck] ∧
z[A1, ..., An] = u[A1, ..., An] ∧ z[B1, ..., Bm] = v[B1, ..., Bm] ∧ z[C1, ..., Ck] = v[C1, ..., Ck]∧
z[Ts, Te] = overlap(u[Ts, Te], v[Ts, Te]) ∧ z[Ts, Te] ̸= ∅)},

where z represents the result tuple, and overlap(u[Ts, Te], v[Ts, Te]) computes the intersection of
the valid time intervals from u and v.

The first two lines ensure that tuples u and v match on the shared attributes {Ci}ki=1 and concatenate
the unique attributes {Ai}ni=1 and {Bi}mi=1, along with a single copy of {Ci}ki=1. The third line
ensures that the join operation is performed only on tuples with overlapping valid time intervals.

B APPENDIX – MORE DETAILS ON TDBENCH FRAMEWORK

Continuing from Sec. 3, we provide more details on the TDBench framework.

B.1 GENERATED SQL CONDITIONS AND TIME ACCURACY CRITERIA

Continuing from Sec. 3 and Sec. 4, we provide more details on SQL conditions generated in TDBench.
We design these conditions based on the interval relations from the database literature (Allen, 1983)
and define the corresponding time accuracy criteria, as shown in Table 10.

SQL Conditions to Generate Up-to-date Questions For Temporal Alignment Task The temporal
alignment task requires grounding questions in a specific temporal condition – “current” – to evaluate
whether LLMs provide up-to-date knowledge. The “current” condition can be generated in various
ways depending on the data format (e.g., by setting the end date to a maximum possible date like
99-99-99 or to NULL). We adopt the NULL format, which can produce more readable predicates (e.g.,
end IS NULL) than the maximum date format (e.g., start < CURRENT_DATE and CURRENT_DATE
< end) and thus can facilitate the following SQL-to-text conversion step (Sec. 3.1). Given the NULL
format, we treat the “current” condition as a special case of the “overlap” relation, where the event
begins before the present and has no defined end, as shown in Table 10.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: Illustration of the 13 temporal relation (Allen, 1983) between temporal intervals a and b,
from which we generate the SQL condition, temporal context, and the corresponding time accuracy
criteria. Diverse temporal contexts can be constructed by sampling different values for a and b. In
these examples, a denotes a president’s term, and September 20, 2000 and March 20, 2001 correspond
to b.start and b.end, respectively. For the “overlap” relation, we design two conditions: one for the
general overlap between time intervals, and another specifically for handling current data (e.g., current
president) where the end timestamp can be unspecified (e.g., NULL) – see Sec. B.1 for more details
on handling current data. We show examples of the generated natural language questions from these
SQL conditions in Sec. B.3.

Relation Interval Diagram SQL Condition Example Temporal Context Criteria

a before b a.end < b.start A president who ends
before September 20, 2000 end

a after b a.start > b.end A president who starts
after March 20, 2001 start

a meet b a.end = b.end - b.length
A president who ends

exactly half a year
before March 20, 2001

end

a met-by b a.start = b.start + b.length
A president who starts

exactly half a year
after September 20, 2000

start

a overlap b

a.start < b.start
∧ b.start < a.end < b.end

A president who starts before
September 20, 2000 and

ends between September 20, 2000
and March 20, 2001

start, end

a.start < b.start
∧ a.end IS NULL

A president who is
currently serving start

a overlapped-by b
a.end > b.end

∧ b.start < a.start < b.end

A president who starts between
September 20, 2000 and

March 20, 2001 and
ends after March 20, 2001

start, end

a equal b a.start = b.start
∧ a.end = b.end

A president who starts in
September, 2000 and
ends in March, 2001

start, end

a start b a.start = b.start
∧ a.end < b.end

A president who starts in
September, 2000 and

ends before March, 2001
start, end

a started-by b
a.start = b.start
∧ a.end > b.end

A president who starts
in September, 2000 start

a finish b
a.start > b.start
∧ a.end = b.end

A president who starts after
September 20, 2000 and

ends in March, 2001
start, end

a finished-by b
a.start < b.start
∧ a.end < b.end

A president who ends
in March, 2001 end

a during b
a.start > b.start
∧ a.end < b.end

A president who starts after
September 20, 2000 and

ends before March 20, 2001
start, end

a contain b
a.start < b.start
∧ a.end > b.end

A president who starts before
September 20, 2000 and

ends after March 20, 2001
start, end

B.2 PSEUDOCODE OF GENQUERIES

Continuing from Sec. 3.1 and Sec. 3.2, we provide the pseudocode of Genqueries (Alg. 1), which
systematically generates temporal SQL queries from an input temporal database.

Algorithm Procedure of Genqueries We explain the Genqueries algorithm (Alg. 1) line
by line. Genqueries begins by initializing an empty list of queries (Line 1). For each tuple in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 The proposed Genqueries algorithm
Input: Temporal database relation s with schema S, list of temporal functional dependencies (TFDs;
Sec. 2) F = {X1

T→ Y1, . . . , Xn
T→ Yn} where Xi and Yi denote sets of attributes in the schema S

for i ∈ n, list of temporal relationsR = {before, after, . . . , contain} shown in Table 10
Output: List of generated temporal SQL queries G

1: G ← ∅
2: for each tuple u ∈ r do
3: for each TFD f : Xi

T→ Yi ∈ F do
4: # Phase 1: Generate base query using a TFD
5: qb ← SELECT Yi FROM s WHERE Xi = u.Xi

6: # Phase 2: Add temporal constraints
7: for each operation r ∈ R do
8: Sample a random time interval b = (ts, te)
9: qt ← qb + r(u, b) according to Table 10

10: G ← G ∪ {qt}
11: end for
12: end for
13: end for
14: return G

the database and each TFD defined in the database (Lines 2–3), we construct a base SQL query by
selecting the Yi attributes conditioned on the Xi attributes of the tuple (Line 4). We then add temporal
conditions to this base query (Line 5) by iterating over a set of predefined temporal operations, such
as “before”, “after”, or “overlap” (Line 6), using the relation-SQL condition mapping in Table 10. For
each operation, we sample a random time interval (Line 7), adding the temporal constraint to the base
query (Line 8), and append the resulting query to the output list (Line 9). After processing all tuples
and TFDs, Genqueries returns the complete set of generated temporal SQL queries (Line 10).

Extending Genqueries We can further extend Genqueries to incorporate more diverse
TSQA evaluation scenarios. While Genqueries primarily utilizes TFD-selected attributes to
automatically construct QA pairs (i.e., using X as the question and Y as the answer for a given TFD
X

T→ Y), Genqueries also supports user-defined extensions where users can manually specify
alternative sets of question and answer attributes. For example, given the relation Leader(country,
role, name, gender, start, end) (Table 1) and the TFD country, role

T→ name, one can extend
the answer to include both name and gender, while still using country, role as the question.
Although this extension requires manual input to specify attribute sets, Genqueries still greatly
simplifies the QA construction process compared to manual construction or template creation. In
addition, SQL’s expressiveness allows flexible extensions to richer question types. For example,
aggregation operators (e.g., GROUP BY, HAVING) enable event-counting questions like “Which
president has been elected for the third time?”, which can be generated from the condition “GROUP
BY... HAVING COUNT(*)=3” and require the model to count specific events throughout history.

B.3 MORE DETAILS ON NATURAL LANGUAGE QA CONVERSION

Continuing from Sec. 3.1, we provide more details on the natural language conversion step, where
we use GPT-4o (OpenAI, 2024) as an SQL-to-text translator.

System Prompt for SQL-to-text The following prompt is an example system prompt used in our
zero-shot setting for SQL-to-text conversion. We set the temperature parameter of GPT-4o to 0.3 to
promote diverse paraphrasing. The prompt instructs the model to convert SQL queries into natural
language questions based on the given schema and generate three different phrasings per query, where
more than three questions can be generated if desired by modifying the prompt accordingly.

The following SQL query is about a relational database Leader(country,
role, name, start, end), where start and end represent date information.
Convert the provided SQL query into a natural language question.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Generate three different questions, each starting with Q:.
Only return the generated questions.

Accuracy of SQL-to-text We assess the accuracy of SQL-to-text conversion in the above setup by
randomly sampling 130 generated questions during the conversion and manually verifying whether
the questions correspond to the underlying query. We observe 91.5% accuracy, consistent with recent
findings that modern LLMs have strong zero-shot performance on SQL-to-text tasks (Zhang et al.,
2024a). We analyze error cases as follows:

• Prime ministers of Japan→ Japanese prime minister: Although a prime minister of a country
may not necessarily be a citizen, the model often assumes nationality based on the position,
making this the most common error type.

• November 1st→ November: In some cases, specific dates (e.g., November 1st) are generalized to
the corresponding month (e.g., November), introducing potential ambiguity.

• Calculation error: When processing temporal operations like DATE(’2006-07-17 00:00:00’, ’-2
months’) in the query, the model occasionally makes date calculation errors. However, such errors
are relatively rare, occurring in fewer than 1% of cases.

Examples of Generated QA pairs In addition to the example QA pairs shown in the main text
(Table 3) generated from the “meet” relation, we present additional examples across temporal
relations. Table 11 and Table 12 show QA pairs derived from the “contains” and “overlap” relations,
respectively, which are two examples of temporal relations rarely covered in prior TSQA benchmarks.
Table 13 shows QA pairs from an additional SQL condition for the “overlap” relation, specifically
designed to target current data (see Sec. B.1 for more details). Table 14 shows multi-hop QA pairs
generated by using temporal joins (Sec. A).

Table 11: A single SQL query (e.g., for the “contain” relation) generates multiple QA pairs by
translating into diverse natural language questions with the same answer. To evaluate both answer
and time accuracy, the SQL query also outputs a relation-specific time reference (e.g., start and
end for the “contain” relation), defined in Table 10.

SQL Query (relation=“contain”) Generated QA

SELECT name, start, end FROM
Leader WHERE Country=‘Japan’
AND Role=‘Emperor’ AND Start
< ‘2019-10-01’ AND End >
‘2024-08-26’

[Questions] “Who was the Emperor of Japan whose term
started before October 1, 2019, and ended after August 26,
2024?”, “What is the name of the Emperor of Japan who began
their role before October 1, 2019, and ended it after August 26,
2024?”...
[Answer] Akihito
[Time reference] 1989-01-07 (start), 2019-05-01 (end)

[Model Response (Gemma2-27B)] Akihito. He reigned from 1989-01-07 to 2019-05-01.

B.4 FORMAL DEFINITION OF TIME ACCURACY

Continuing from Sec. 3.2, we present the formal definition of the proposed time accuracy metric.

We begin by defining the set of time references T , which captures the time references to be verified
in LLM responses. Since we primarily generate questions asking about real world events – each
grounded with a start date and end date – we set T = {ts, te}, where ts and te denote the start and
end dates, respectively.

We then define the question-reference function f : q → T , which maps a question to the time
references to be verified. This function can be flexibly designed based on the temporal contexts
expressed in the question. In our setup, the underlying SQL queries explicitly specify which time
reference are relevant to answer selection process (e.g., an SQL condition such as “start < January
2001” implies reliance on ts). Accordingly, we define f with respect to the temporal relation used in
the SQL query, as summarized in Table 10.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: A single SQL query (e.g., for the “overlap” relation) generates multiple QA pairs by
translating into diverse natural language questions with the same answer. To evaluate both answer
and time accuracy, the SQL query also outputs a relation-specific time reference (e.g., start and
end for the “overlap” relation), defined in Table 10.

SQL Query (relation=“overlap”) Generated QA

SELECT name, start,
end FROM Leader WHERE
Country=‘Germany’ AND
Role=‘President’ AND Start <
‘2003-09-30’ AND End BETWEEN
‘2003-09-30’ and ‘2007-06-30’

[Questions] “Who was the president of Germany who started
their term before September 30, 2003, and ended their term
between September 30, 2003, and June 30, 2007?”, “Can you
list the names of the presidents of Germany whose terms began
before September 30, 2003, and ended between September 30,
2003, and June 30, 2007?”...
[Answer] Johannes Rau
[Time reference] 1999-07-01 (start), 2004-06-30 (end)

[Model Response (Qwen2-72B)] Johannes Rau, who started his term on July 1, 1999, and ended it on June
30, 2004.

Table 13: A single SQL query (e.g., for the “overlap” relation to target current data) generates multiple
QA pairs by translating into diverse natural language questions with the same answer. To evaluate
both answer and time accuracy, the SQL query also outputs a relation-specific time reference (e.g.,
start), defined in Table 10.

SQL Query (relation=“overlap”) Generated QA

SELECT name, start
FROM Leader WHERE
Country=‘Netherlands’ AND
Role=‘King’ AND End IS NULL

[Questions] “Who is currently serving as the King of the
Netherlands?”, “What is the name of the individual who is
the reigning King in the Netherlands?”...

[Answer] Willem-Alexander
[Time reference] 2013-04-30 (start)

[Model Response (Llama3.1-70B)] King Willem-Alexander, since April 2013.

Table 14: A single SQL query (e.g., for a joined relation) generates multiple QA pairs by translating
into diverse natural language questions with the same answer. To evaluate both answer and time
accuracy, the SQL query also outputs timestamp attributes (e.g., start, end). ⋊⋉T denote the
temporal join operator, which only joins tuples with overlapping valid time intervals – see formal
definition of temporal join in Sec. A.

SQL Query (temporal join) Generated QA

SELECT name, start, end FROM
Leader ⋊⋉T Olympic WHERE
game_edition=‘7th Winter’
AND Role=‘President’

[Questions] “Who was the president of the host country for
the 7th Winter Olympic Games?”, “Can you provide the name
of the president of the host country during the 7th edition of
the Winter Olympics?”...
[Answer] Giovanni Gronchi
[Time reference] 1955-05-11 (start), 1962-05-11 (end)

[Model Response (GPT-4o)] The 7th Winter Olympic Games were held in Cortina d’Ampezzo, Italy in
February 1956. The President of Italy at that time was Giovanni Gronchi, who served from May 1955 to
May 1962.

We finally define the time accuracy T given a question q as follows:

T(q) =
|{t ∈ f(q)|t ∈ model response}|

|f(q)|
× 100(%). (1)

Note that for temporal relation types requiring multiple time references (e.g., “contain” in Table 11),
partial credit is given when only a subset is correctly included in the model response.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.5 TIME ACCURACY EVALUATION WITH LLM-JUDGE

Continuing from Sec. 3.2, we provide more details on time accuracy evaluation, where we use
Deepseek-R1-14B (Guo et al., 2025) as an LLM-judge.

System Prompt for LLM-Judge The following system prompt shows the instruction for time
accuracy evaluation, consistent with the formal definition in Eq. 1. As shown in the prompt, we opt to
use LLM-Judge to capture various expressions of time references (e.g., “26 Jan 2025”, “2025/01/26”),
which may be missed by exact-match methods that directly compares gold time reference strings
({entity_date}) against the evaluated model response ({response}).

You are given a reference **start date** and **end date**.
Check whether the response correctly includes both dates, even if they
are expressed in a different but equivalent format (e.g., ‘26 Jan 2025’,
‘January 26, 2025’, ‘2025/01/26’, etc.).

- If **both** of the two dates is are correctly mentioned with the
intended meaning (i.e., the start date is described as the start date,
and the end date as the end date), respond with **"Yes"**.
- If **one** of the two dates is correctly mentioned with the intended
meaning, respond with **"Half"**.
- If **neither** date is correctly mentioned with the correct meaning,
respond with **"No"**.
Your answer must be one of: ‘Yes’, ‘Half’, or ‘No’. Be concise.

{entity_date}

Response:
{response}

**Answer:

Accuracy of LLM-Judge in Time Accuracy Evaluation Similarly to the manual verification
setup in Sec. B.3, we assess the effectiveness of LLM-Judge in time accuracy evaluation by randomly
sampling 130 responses and manually verifying whether the evaluation aligns with the instruction
above. We observe 91.1% accuracy, with most errors arising from instruction misinterpretation (e.g.,
assessing end dates when only assessing start dates is required) and date match failures (e.g., failing
to match the gold time reference of “1993-04-28” and “April 1993” in the model response).

We note that using stronger LLMs can further enhance evaluation correctness; for instance, we
observe that using GPT-4o under the same setup yields higher accuracy (95.5%). However, we opt not
to use GPT-4o in our main experiments, as it is one of the evaluated models and may incur potential
bias during evaluation if used as a judge.

B.6 ADDITIONAL CONTEXT CONSTRUCTION

Continuing from Sec. 3.2, we provide more details on context construction used in the open-book
setting. As illustrated in Fig. 4, we append both relevant rows and irrelevant rows from the table with
the gold answer to effectively evaluate LLMs’ temporal reasoning abilities given a time-sensitive
question. Relevant rows are retrieved by (1) removing the temporal condition from the underlying
SQL query of the question and (2) executing the modified query on the database, returning entities
across different periods (e.g., all U.S. presidents when the question asks about the U.S. president in
2019). We randomly sample the irrelevant rows in the table.

C APPENDIX – MORE DETAILS ON EXPERIMENTAL SETUPS

Continuing from Sec. 4, we provide more details on experimental settings, system prompts, and
datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Country	Role	Name	Start	End
—--------	—---	—------	—---	—-
India	President	Sharma	1992-07-25	1997-07-25
India	President	Kovind	2017-07-25	2022-07-25
India	President	Narayanan	1997-07-25	2002-07-25
France	President	Chirac	1995-05-17	2007-05-16
Egypt	Prime Minister	Madbouly	2018-06-14	nan
Austria	Chancellor	Bierlein	2019-06-03	2020-01-07

Relevant
rows

Irrelevant
rows

Open-book QA

Closed-book QA

Q: Who was the President of India that started his term after May 31,
1996, and ended his term between July 1, 2002, and July 31, 2002?

A:

Figure 4: Open-book vs. Closed-book QA in TDBench. The open-book setting provides table rows
as additional context, while the closed-book setting poses only the question.

C.1 EXPERIMENTAL SETUPS AND SYSTEM PROMPTS

Experiment Settings We use the following LLM versions: GPT-3.5 (2024-05-01-preview), GPT-4
(2025-01-01-preview), GPT-4o (2024-02-01), Llama3.1-70B (2024-07-23), Mixtral-8x7B (2023-12-
11), Gemma2-27B (2024-06-27), Qwen2-72B (2023-08-03), and Granite3.1-8B (2024-12-18). All
experiments are conducted on NVIDIA Quadro RTX 8000 GPUs.

System Prompts for TSQA Tasks We use the following system prompts for the TSQA tasks: the
upper prompt is used for the temporal alignment task (Sec. 4.1), and the lower prompt is used for
the temporal reasoning task (Sec. 4.2). As the prompts explicitly require time information in the
rationale, responses that omit such references are marked incorrect in the time accuracy evaluation.
This policy is applied uniformly across all models to ensure consistent and fair TSQA benchmarking,
reflecting our goal of evaluating both final answers and explanations.

Answer the following question. Provide the short direct answer that
includes both the factual answer and the date information (month and
year) of the fact, prefixed with the word ‘since’. Say ‘unsure’ if you
don’t know. Be concise.

Answer the following question. Provide the short direct answer that
includes both the factual answer and rationale with the date information
of the fact. If there is no valid answer, respond with ‘No answer’.
If there is one correct answer, return it as a short sentence.
If there are multiple valid answers, present them clearly as bullet
points. If you are unsure, respond with ‘unsure’. Be concise.

C.2 MORE DETAILS ON DATASETS

Continuing from Sec. 4, we provide more details on the temporal databases used in our experiments.
Table 15 summarizes the schema, selected TFDs, and the number of questions generated from each
dataset. Table 16 presents example questions generated by converting TFDs. Using these datasets,
we construct 2,079 temporal alignment, 6,756 temporal reasoning, and 396 multi-hop questions, with
additional questions readily generable if needed.

Wikipedia We select domains following the conventional TSQA benchmarking literature (Dhingra
et al., 2022; Margatina et al., 2023; Tan et al., 2023; Mousavi et al., 2024), including Country, Athlete,
Organization, and Olympic datasets. We also follow the entity selection step of Mousavi et al. (2024),
which select entities likely to appear in most LLM training corpora to reduce performance variance
caused by entity frequency when retrieving facts (Mallen et al., 2023; Sun et al., 2023). All datasets
were retrieved on 02 January 2025.

Domain-specific To demonstrate the applicability of TDBench beyond Wikipedia-based datasets,
we model domain-specific TSQA scenarios across four contexts: Legal, Environmental, Cultural,
and Social. These domains are represented by datasets on same-sex marriage laws sourced from

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Details of the temporal databases used in our experiments.
Data Source Question # Schema TFD

Wikipedia 6,177

Country(country, role, name, start, end) country, role T→ name

Athlete(name, team, sport, start, end) name, sport T→ team

Organization(org_name, type, role, name,
start, end)

org_name, type, role T→ name

Olympic(game_round, game_edition, city
country, season, game_name, start, end)

game_round, role T→ name (joined)
game_edition, role T→ name (joined)

Domain-specific 1,704

Law(country, law_type, legality, start, end) country, law_type T→ legality

Carbon Tax(jurisdiction, tax_type, instru-
ment_name, status, start, end)

jurisdiction, type T→ status

Heritage(heritage_element, member_state,
status, region, start, end)

heritage_element T→ status

Netflix(title, director, cast, release_year,
popularity, start, end)

title T→ director

Synthetic 1,350
Medical(name, gender, blood_type
medication, doctor, hospital,
insurance_provider, billing_amount)

name, gender, blood_type T→ doctor
name, gender, blood_type T→ medication

Table 16: Examples of base questions generated from TFDs across datasets. The proposed
Genqueries algorithm (Alg. 1) converts the TFDs listed in Table 15 into these base questions and
augments them with diverse temporal constraints.

Data Source Example Questions Generated From TFDs

Wikipedia

• Country: Who is serving as the president of Italy?
• Athlete: What team did Stephen Curry play for in basketball?
• Organization: Which person began their tenure as general secretary at the United Nations

organization?
• Olympic: Can you provide the name of the president of the host country during the 7th

edition of the Winter Olympics?

Domain-specific

• Law: Is joint adoption by same-sex couples legal or illegal in Argentina?
• Carbon Tax: Is the carbon tax mechanism in Finland active?
• Heritage: Is the heritage element “Cheoyongmu” inscribed or proclaimed?
• Netflix: Who directed the most recent release of the movie titled “Attack on Titan”?

Synthetic
• Who was the doctor for Jerry Martin, a male patient with blood type A+?
• Which medication is given to Kenneth Jacobs, a female patient with AB+ blood type?

the ILGA World databases2, a global knowledge base on legal frameworks and human right bodies,
retrieved on 02 January 2025; carbon taxation data sourced from the World Bank Group’s “State and
Trends of Carbon Pricing Dashboard”3, retrieved on 17 October 2024; UNESCO heritage elements
sourced from the official UNESCO website4, retrieved on 17 October 2024; and Netflix TV shows
data sourced from Kaggle5, retrieved on 05 May 2025. For the Netflix dataset, we only consider TV
series that share the same title, but have been remade over time with different directors.

Synthetic We also show how TDBench can be applied to synthetic datasets by using the Medical
dataset, which contains synthetic patient records sourced from Kaggle6, retrieved on 05 May 2025.

2https://database.ilga.org/en
3https://carbonpricingdashboard.worldbank.org/compliance/instrument-detail
4https://whc.unesco.org/en/list/
5https://www.kaggle.com/code/sonawanelalitsunil/netflix-movies-tv-shows-till-2025
6https://www.kaggle.com/datasets/prasad22/healthcare-dataset

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D APPENDIX – MORE EXPERIMENTAL RESULTS

Continuing from Sec. 4, we provide more details on experimental results.

D.1 ERROR ANALYSIS ON TEMPORAL ALIGNMENT EVALUATION

Continuing from Sec. 4.1, we present example error cases in the temporal alignment task, where LLMs
often hallucinate time references while providing correct answers. Table 17 and Table 18 show such
responses from the Heritage and Netflix datasets, respectively, where LLMs generate inaccurate time
references (e.g., “December 2011” and “January 2020”) alongside correct answers (e.g., “Inscribed”
and “Mehmet Ada Öztekin”). These cases indicates that LLMs struggle to accurately align the time
references with the factual answers, highlighting that capturing temporal misalignment in model
explanations can be a critical yet overlooked issue in the current temporal alignment task.

Table 17: Example LLM responses on the temporal alignment task using the Heritage dataset, where
the granularity for time accuracy is year.

[Question] Is the UNESCO heritage element “Cheoyongmu” currently inscribed or proclaimed?
[Answer] Inscribed
[Time reference] November 2009 (start)

[Model Response]
GPT-3.5: Since Inscribed (✓) December 2011 (✗).
GPT-4: Inscribed (✓) since November 2009 (✓).
GPT-4o: Inscribed (✓) since November 2009 (✓).
Llama3.1-70B: Inscribed (✓) since November 2009 (✓).
Mixtral-8x7B: Proclaimed (✗) since December 2017 (✗).
Gemma2-27B: Inscribed (✓) since November 2022 (✗).
Qwen2-72B: “Cheoyongmu” has been inscribed (✓) on UNESCO’s list since 2015 (✗).
Granite3.1-8B: Inscribed (✓) since 2019 (✗)

Table 18: Example LLM responses on the temporal alignment task using the Netflix dataset, where
the granularity for time accuracy is year.

[Question] Which director was involved in the most recent version of “Miracle in Cell No. 7”?
[Answer] Mehmet Ada Öztekin
[Time reference] October 2019 (start)

[Model Response]
GPT-3.5: Since January 2020 (✗), the director of the latest release of “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
GPT-4: Since March 2020 (✗), the director of the most recently released movie “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
GPT-4o: Since October 2023 (✗), the director of the most recent “Miracle in Cell No. 7” movie is

Mehmet Ada Öztekin (✓).
Llama3.1-70B: Lee Hwan-kyung (✗), since January 2019 (✓).
Mixtral-8x7B: Sure, since January 2019 (✓), the director of the latest release of “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
Gemma2-27B: Since August 2023 (✗), the director of the latest release of “Miracle in Cell No. 7” is

Lee Hwan-kyung (✗).
Qwen2-72B: The original film was released in 2013 and a Chinese remake directed by Zhang Lü (✗)

was released in January 2021 (✗).
Granite3.1-8B: The most recent version of ""Miracle in Cell No. 7"" was directed by Lee Jae-gon (✗),

since 2019 (✓).

D.2 INTEGRATING TIME ACCURACY TO EXISTING TSQA BENCHMARKS

Continuing from Sec. 4.1, we provide a detailed case study with Dyknow (Mousavi et al., 2024), one
of the TSQA benchmarks that employs open-ended QA templates (e.g., “The president of Italy is
__”) (Dhingra et al., 2022; Margatina et al., 2023) to assess whether LLMs are temporally aligned
with the current world.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

While Dyknow evaluates LLM responses as correct (Cor.), outdated (Out.), or incorrect (Inc.) based
on the parsed answer, we modify their system prompt to explicitly generate start date references to
incorporate time accuracy. We then assess the correctness of each evaluation method (i.e., with and
without time accuracy) against manual verification on 125 randomly sampled responses per model,
where we recruit five graduate student annotators and distribute a total 1,000 responses from eight
LLMs, ensuring that each response is evaluated by at least two annotators. We measure the correctness
with precision (P), recall (R), and F1-score (F1), standard metrics for classification (Yacouby &
Axman, 2020) with definitions provided below.

• Precision: The proportion of examples labeled as a given class (e.g., correct, outdated, and
incorrect) by the evaluation method that are also judged as the same class by human annotators.

Precision =
True Positives

True Positives + False Positives

• Recall: The proportion of examples judged to a given class (e.g., correct, outdated, and incorrect)
by human annotators that are also labeled as the same class by the evaluation method.

Recall =
True Positives

True Positives + False Negatives

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure of alignment
with human judgment.

F1 Score = 2× Precision× Recall
Precision + Recall

As shown in Table 19, integrating T consistently improves all metrics over the original method,
leading to higher evaluation correctness. These results demonstrate the value of time accuracy as
a complementary evaluation criterion to traditional answer accuracy. We note that the integration
is straightforward for other TSQA benchmarks that employ open-ended question formats similar to
Dyknow (Dhingra et al., 2022; Margatina et al., 2023), requiring only minimal prompt modifications.

Table 19: Comparison of evaluation correctness using DyKnow (Mousavi et al., 2024), with and
without time accuracy (T), against human verification.

Methods P R F1

Correct (↑)
Human 1.00 1.00 1.00
Dyknow 0.67 0.92 0.77
Dyknow + T 0.98 0.95 0.96

Outdated (↓)
Human 1.00 1.00 1.00
Dyknow 0.69 0.78 0.73
Dyknow + T 0.95 0.88 0.91

Incorrect (↓)
Human 1.00 1.00 1.00
Dyknow 0.32 0.60 0.39
Dyknow + T 0.58 0.84 0.64

D.3 TEMPORAL SPAN ANALYSIS AGGREGATED ACROSS MULTIPLE DOMAIN

Continuing from Sec. 4.2, we provide more results on temporal span analysis. In addition to Fig. 3
that shows LLM performances by temporal span evaluated on a single domain, we show aggregated
results in Fig. 5 evaluated on multiple domains: Country, Athletes, and Organizations. Compared to
the single domain results, LLM performances diverge more clearly, suggesting that domain-specific
fluctuations are smoothed out and model-specific behaviors become more evident when multiple
domains are considered. General trends – notable performance drops in recent years (2020-2025)
while having performance peaks in 2010-2015 – are still observed, which are consistent with recent
findings (Dhingra et al., 2022; Mousavi et al., 2024; Zhao et al., 2024).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 5: LLM performances across different time spans (1985-2025) in the closed-book setting,
evaluated on multiple domains: Country, Athletes, and Organizations.

D.4 MORE DETAILS ON EXPERIMENTS WITH PERFORMANCE IMPROVEMENT TECHNIQUES

Continuing from Sec. 4.3, we provide more details on experiments with performance improvement
techniques: RAG (Lewis et al., 2020), CoT (Wei et al., 2022), and Time-CoT (Yin & Hu, 2024).

CoT and Time-CoT Prompts The upper and lower prompts are used for the CoT and Time-CoT
settings, respectively. As illustrated, Time-CoT prompts provide more detailed intermediate steps for
temporal reasoning, such as presenting relevant historical timelines (e.g., sequences of presidential
terms) when compared to standard CoT.

Q: Who was the vice president of the host country for the 31th Summer
Olympic Games?
A: Michel Temer. The 31th Summer Olympic Games were held in August 2016
in Rio. The host country was Brazil. The Vice President of Brazil in
August 2016 was Michel Temer. The answer is Michel Temer.

Q: Can you provide the name of the governor-general of the host country
during the 27th edition of the Summer Olympics?
A: William Deane. The 27th edition of the Summer Olympics were held
in September 2000 in Sydney. The host country was Australia.
The Governor-General of Australia in September 2000 was William Deane.
The answer is William Deane.

Q: Can you identify the president of the host country for the Seoul 1988
Olympics?
A: Roh Tae-woo. The Seoul 1988 Olympics were held in September 1988.
The host country was South Korea. The president of South Korea in
September 1988 was Roh Tae-woo. The answer is Roh Tae-woo.

Q: Who held the position of general secretary in the host country during
the 1980 Olympic Games in Moscow?
A: Leonid Brezhnev. The Moscow 1980 Olympics were held in July 1980.
The host country was Soviet Union. The general secretary of Soviet Union
in July 1980 was Leonid Brezhnev. The answer is Leonid Brezhnev.

Q: Can you identify the president of the host country for the Seoul
1988 Olympics?
A: Let’s think step by step. First, Seoul 1988 Olympic Games were held
in September 1988, South Korea. Then, we need to find out who was
the president of South Korea according to timeline. 1989-1993: Roh
Tae-woo, 1993-1998:Kim Young-sam. Then, we need to focus on the time
-- 1988. So we can obtain the answer is Roh Tae-woo.
Therefore, the answer is Roh Tae-woo.

Q: Who held the position of general secretary in the host country during

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

the 1980 Olympic Games in Moscow?
A: Let’s think step by step. First, Moscow 1980 Olympic Games were
held in July 1980, Soviet Union. Then, we need to find out who was
the general secretary of Soviet Union according to timeline. 1964-1982:
Leonid Brezhnev, 1982-1984: Yuri Andropov. Then, we need to focus on
the time -- 1980. So we can obtain the answer is Leonid Brezhnev.
Therefore, the answer is Leonid Brezhnev.

Q: What is the name of the monarch of the host country for the Oslo 1952
Olympic Games?
A: Let’s think step by step. First, Oslo 1952 Olympic Games were held
in February 1952, Norway. Then, we need to find out who was the monarch
of Norway according to timeline. 1905-1957: Haakon VII, 1957-1991: Olav
V. Then, we need to focus on the time -- 1952. So we can obtain the
answer is Haakon VII. Therefore, the answer is Haakon VII.

Q: Which emperor was in charge of the host country during the Sapporo
1972 Olympic Games?
A: Let’s think step by step. First, Sapporo 1972 Olympic Games were
held in February 1972, Japan. Then, we need to find out who was the
president of Japan according to timeline. 1926-1989: Showa, 1989-2019:
Akihito. Then, we need to focus on the time -- 1972. So we can obtain
the answer is Showa. Therefore, the answer is Showa.

Case Study of Temporally Misaligned RAG We observe that standard RAG methods often fail
to account for temporal cues embedded in the question. Table 20 and Table 21 present illustrative
examples of such temporal misalignments, where retrieved documents from Wikipedia describe the
Olympics from incorrect time periods or provide generic explanations of the Olympics.

Table 20: Retrieved Wikipedia passage describing the 1964 Winter Olympics, given the question
asking about the 7th Winter Olympics (held in 1956).

[Question] Who was the president of the host country for the 7th Winter Olympic Games?

[Retrieved Document] The 1964 Winter Olympics, officially known as the IX Olympic Winter Games
(German: IX. Olympische Winterspiele) and commonly known as Innsbruck 1964 (Austro-Bavarian:
Innschbruck 1964), were a winter multi-sport event which was celebrated in Innsbruck, Austria, from
January 29 to February 9, 1964. ...

Table 21: Retrieved Wikipedia passage describing generic information about the Olympics, given the
question asking about the 4th Summer Olympics.

[Question] Who was the Prime Minister of the host country during the 4th edition of the Summer Olympic
Games?

[Retrieved Document] The modern Olympic Games (Olympics; French: Jeux olympiques) are the world’s
leading international sporting events. They feature summer and winter sports competitions in which
thousands of athletes from around the world participate in a variety of competitions. The Olympic Games
are considered the world’s foremost sports competition, with more than 200 teams, representing sovereign
states and territories, participating. ...

Results on the Single-hop Setting In addition to the multi-hop setting presented in the main
text (Table 7), we provide more results on single-hop questions. Specifically, we apply the same
performance improvement techniques to the questions used in the temporal reasoning task (Sec. 4.2)
under the closed-book setting to examine the effectiveness of each technique – RAG for providing up-
to-date knowledge, and CoT and Time-CoT for improving temporal reasoning – and report the results
in Table 22. Interestingly, all techniques greatly improve performances on None-type questions,
where we observe that models tend to respond with “no answer” more frequently, possibly rejecting
to respond if they are uncertain for their reasoning. In addition, when the additional contexts retrieved
via RAG do not contain the gold answer – due to the temporal misalignment issue discussed above
– we also observe that models tend to respond with “no answer” rather than relying on their own

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

knowledge, which degrades performances on Multiple- and Unique-type questions while improving
performance on None-type questions. As with the multi-hop results, we observe similar performance
between CoT and Time-CoT in the single-hop setting.

Table 22: Comparison of LLM performances with different performance improvement techniques
– RAG, CoT, and Time-CoT – across question types categorized by answer cardinality: Multiple,
Unique, and None, evaluated on the Wikipedia dataset under the closed-book setting. The results are
compared with the original setting (Orig.). We report AT for Multiple and Unique types, and A for
the None-type, as no time reference applies to no-answer cases.

Multiple Unique None
Model Orig. RAG CoT Time-CoT Orig. RAG CoT Time-CoT Orig. RAG CoT Time-CoT

GPT-3.5 12.4 14.2 9.0 0.4 38.7 26.6 26.6 12.7 56.8 54.2 83.9 97.1
GPT-4 20.2 25.1 21.0 30.0 61.3 54.3 65.9 57.3 19.0 39.6 51.6 74.7
GPT-4o 34.5 30.7 24.3 32.6 65.1 59.2 62.9 62.9 37.4 43.2 60.4 50.2
Llama3.1-70B 20.6 8.6 16.5 19.9 59.4 34.5 68.9 48.7 22.0 54.9 25.3 33.3
Mixtral-8x7B 10.9 9.7 8.6 15.4 40.6 30.3 50.9 48.7 28.9 16.5 30.8 26.7
Gemma2-27B 24.3 13.9 19.9 21.3 59.4 45.7 62.2 62.5 6.2 16.8 10.6 12.1
Qwen2-72B 19.1 17.2 13.5 12.7 57.5 51.7 59.2 59.9 20.1 32.6 38.8 39.6
Granite3.1-8B 6.7 4.9 4.9 7.1 34.1 15.7 22.8 20.6 20.9 43.6 76.9 60.1

D.5 MORE DETAILS ON CORRECTNESS ANALYSIS

Continuing from Sec. 4.4, we provide a more fine-grained correctness analysis result. Similarly
to the manual verification setup in Sec. D.2, we manually verify 125 randomly sampled responses
per task and measure the correctness using precision, recall, and F1 score. As shown in Table 23,
TDBench exhibits high agreement with manual verification, achieving higher precision than recall.
This result indicates that TDBench can effectively capture responses with both correct answers and
valid temporal reasoning, while some incorrect explanations – particularly those unrelated to temporal
references – remain challenging to detect.

Table 23: Correctness of TDBench against manual verification across question subcategories, mea-
sured with Precision, Recall, and F1 score – see metric definitions in Sec. D.2.

Task P R F1

Temporal alignment (Average) 0.98 0.96 0.97
Temporal reasoning (Multiple) 0.85 0.88 0.86
Temporal reasoning (Unique) 0.81 0.87 0.83
Temporal reasoning (None) 0.89 0.90 0.90
Temporal reasoning (Average) 0.87 0.91 0.88
Multi-hop (Average) 0.95 0.87 0.91

D.6 EVALUATION ON SYNTHETIC MEDICAL DATA

Continuing from Sec. 4.5, we demonstrate how TDBench can be applied to synthetic datasets, as
long as the underlying tables used in TDBench have TFDs satisfied. We use a synthetic medical
dataset consisting of synthetic records of patients at a hospital, and ask questions about doctors and
medication by using TFDs name, gender, blood_type T→ doctor and name, gender, blood_type T→
medication – see example questions in Sec. C.2.

Table 24 shows improved LLMs performances compared to the performances on real-world factual
questions, particularly for Multiple- and None-type questions. We hypothesize that this improvement
may stem from reduced interference by the model’s internal knowledge. As the data is synthetic and
unfamiliar, models are more likely to focus on the explicit temporal context provided in the prompt,
potentially leading to more accurate temporal reasoning.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 24: Comparison of LLM performances across question types categorized by answer cardinality:
Multiple, Unique, and None, evaluated on the synthetic Medical dataset in the open-book setting. We
report only A for the None-type, as no time reference applies to no-answer cases.

Multiple Unique None
Model A T AT A T AT A

GPT-3.5 97.5 50.4 61.9 35.4 93.6 33.0 100.0
GPT-4 98.8 77.9 77.7 44.4 98.6 43.9 91.0
GPT-4o 97.5 78.6 78.5 59.8 97.2 58.4 100.0
Llama3.1-70B 95.8 68.6 85.8 57.9 76.6 56.4 98.8
Mixtral-8x7B 97.1 55.7 60.8 24.9 90.6 22.9 27.1
Gemma2-27B 94.8 52.1 78.3 48.3 89.8 47.0 100.0
Qwen2-72B 93.5 68.9 66.2 53.5 95.1 52.2 100.0
Granite3.1-8B 88.3 44.8 41.5 17.6 93.5 17.1 100.0

D.7 EVALUATION OF TASK-SPECIFIC TSQA METHODS

Continuing from Sec. 4.5, we provide an additional analysis with task-specific TSQA methods. While
the primary goal of our study is to assess the accuracy and reliability of general-purpose models –
those expected to possess “accurate knowledge” and widely adopted in many tasks as GPT-Judges
for handling factual knowledge (Lin et al., 2021; Sun et al., 2023; Wang et al., 2023) – performance
analysis on task-specific models such as TG-LLM (Xiong et al., 2024) and TempT5 (Tan et al.,
2023) can offer insights in different perspectives. Specifically, we aim to explore (1) performance
differences compared to general-purpose models and (2) the effectiveness of their training methods
when measured with other TSQA pairs beyond the original benchmarks used for their training
(TGQA (Xiong et al., 2024) and TempREASON (Tan et al., 2023) for TG-LLM and TempT5,
respectively), which follow different QA styles.

Table 25: Performance comparison of task-specific TSQA methods. Only A is reported for TempT5
and T5 due to their answer-only format.

Model A AT

Llama3.1-70B 58.4 54.2
Mixtral-8x7B 42.9 30.9
Gemma2-27B 69.3 32.8
TG-LLM 41.0 34.0
Llama2-13B (base model of TG-LLM) 37.0 27.0
TempT5 4.2 N/A
T5-base (base model of TempT5) 0.0 N/A

As shown in Table 25, TG-LLM demonstrates a notable performance improvement over its base
model (i.e., Llama2-13B) and performs comparably to the general purpose model Gemma2-27B;
however, the performance still lags behind the larger Llama family model used in our experiments
(i.e., Llama3.1-70B). In contrast to the good generalization ability shown in TG-LLM, TempT5
greatly struggles with TDBench’s QA pairs, resulting in low performance, likely due to the limited
capacity of its underlying architecture (i.e., T5-base).

D.8 COMPARISON WITH LLM-BASED METHODS

Continuing from Sec. 3.1 and Sec. 4.5, we provide a case study comparing TDBench with LLM-based
methods. While TDBench leverages both database techniques and an LLM for TSQA construction,
one possible approach is to solely use LLMs to directly generate QA pairs from an input data
source (Kim et al., 2024; Zhao et al., 2024). We demonstrate how this LLM-only approach can (1) be
more prone to hallucinations and (2) incur higher inference costs when processing the raw data.

Anlaysis on Hallucination We demonstrate with Zhao et al. (2024), using their system prompt,
shown below. To better reflect realistic multi-attribute reasoning scenarios, we relax one constraint in
the original prompt: each question should contain only one column’s information.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Below is a table in CSV format separated with commas ‘,’. Based on this
table’s information along with its description and abstracts,
please raise up to ten questions that the answers are different
in 2010, 2019, and 2023. After raising the question, please get answers
for those time points from the table. Please make sure the answers
should be totally different without overlapping. Please only raise
questions regarding the latest status of those time points instead of
the history, while also do not explicitly mention the time information
in the question to make them more natural. Do not ask questions
cannot be answered based on the information provided in the table. Make
sure the full and explicit names of related entities are used in
the question based on the description in the prompt and do not use
pronouns.

We use the same LLM (GPT-4) as in their study and provide 50 rows from the Country dataset. The
generated QA pairs are as follows:

• Q1: What name was associated with the role of the Prime Minister of Australia?
A1: Anthony Albanese

• Q2: Who was the Prime Minister of Denmark in 2010?
A2: Lars Løkke Rasmussen

• Q3: Who was the Prime Minister of Denmark in 2019?
A3: Lars Løkke Rasmussen

• Q4: Who was serving as the President of Nigeria in the year when Goodluck Jonathan started his
term?
A4: Goodluck Jonathan

• Q5: Who was serving as the Prime Minister of Denmark when Mette Frederiksen began her term?
A5: Mette Frederiksen

While the model correctly identifies the time-sensitive column based on the table schema (e.g., the
name of the role-holder), the generated QA pairs do not fully adhere to the instructions. For instance,
(Q2, A2) and (Q3, A3) explicitly mention temporal information, violating the guideline to avoid
doing so; (Q2, A2) and (Q3, A3) makes it easy to infer answers from the questions themselves,
compromising the question quality.

This case study indicates that LLM-based QA generation can result in less controlled QA generation,
being vulnerable to hallucinations even when the provided data source is relatively in small-scale (i.e.,
50 rows). In contrast, SQL-based data processing employed in TDBench can ensure more controlled
QA generation, even at scale, thereby reducing the manual effort often required in LLM-based
methods to identify and eliminate hallucinated responses (Kim et al., 2024; Wu et al., 2024).

Analysis on Inference Cost More importantly, SQL-based processing can be more cost-effective.
TDBench only uses the necessary attributes for generating questions via TFDs and discards the rest,
whereas an LLM-only approach typically ingests an entire row. We compare TDBench with an
LLM-only baseline on five datasets used in our experiments (Sec. 4). As a result, Table xx shows that
TDBench uses significantly fewer input tokens while achieving comparable inference time as that of
the LLM-only baseline. We also observe greater cost benefits in larger, real-world datasets like the
Netflix dataset compared to smaller, well-processed datasets like the Leaders dataset, demonstrating
the scalability of TDBench.

Table 26: Comparison of inference time (Time (s)) and input size (Tokens) across datasets, where
each dataset’s column count (#col) is shown. Bold indicates the lower (better) value.

Leaders (#col: 5) Olympic (#col: 7) Environ (#col: 10) Medical (#col: 15) Netflix (#col: 18)

Model Time (s) Tokens Time (s) Tokens Time (s) Tokens Time (s) Tokens Time (s) Tokens

LLM-only 1.79 206 1.89 316 1.47 376 1.81 542 1.91 1,288
TDBench 1.62 161 2.57 177 1.93 169 3.32 299 1.73 138

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.9 FULL EXPERIMENTAL RESULTS

Continuing from Sec. 4.3, we provide full results on the multi-hop setting. Table 27 shows that
Llama3.1-70B outperforms GPT-4o in the 2-hop setting, whereas GPT-4o outperforms Llama3.1-70B
in the 3-hop setting. Interestingly, GPT-4o shows an extremely low hallucination rate (i.e., H1) in the
2-hop setting – which requires identifying the role-holder of the host country of a given Olympic
games – indicating that once the model get the correct host country and time, the model is mostly
able to retrieve the correct role-holder for that time.

Table 27: Performance comparison on multi-hop questions where Hi denotes the hallucination rate
at the (i+ 1)-st hop given that the i-th hop is correct.

2-hop 3-hop
Model A AT H1 A AT H1 H2

GPT-3.5 66.7 63.1 9.1 33.8 33.8 8.5 7.6
GPT-4 88.4 67.2 4.5 57.1 52.5 10.8 0.5
GPT-4o 86.9 79.3 0.0 90.4 87.9 26.3 0.0
Llama3.1-70B 91.9 83.8 68.8 82.8 80.8 38.2 4.5
Mixtral-8x7B 80.8 72.7 45.9 60.1 49.0 19.5 10.6
Gemma2-27B 79.8 77.8 35.1 48.0 43.9 26.5 24.7
Qwen2-72B 78.3 65.2 50.0 68.2 59.1 35.1 5.6
Granite3.1-8B 73.7 50.5 80.4 11.1 11.1 10.3 77.8

30

	Introduction
	Backgrounds
	TDBench
	QA Construction
	Evaluation
	Extension with Implicit Temporal Contexts

	Experiments
	Evaluation of Temporal Alignment
	Breakdown of Temporal Reasoning Performance
	Evaluation of Multi-hop Questions
	Correctness of TDBench
	More Analyses

	Related Work
	Conclusion
	Appendix – Formal Definitions of FDs and TFDs
	Appendix – More Details on TDBench Framework
	Generated SQL Conditions and Time Accuracy Criteria
	Pseudocode of Genqueries
	More details on Natural Language QA Conversion
	Formal Definition of Time Accuracy
	Time Accuracy Evaluation with LLM-Judge
	Additional Context Construction

	Appendix – More Details on Experimental Setups
	Experimental Setups and System Prompts
	More Details on Datasets

	Appendix – More Experimental Results
	Error Analysis on Temporal Alignment Evaluation
	Integrating Time Accuracy to Existing TSQA Benchmarks
	Temporal Span Analysis Aggregated Across Multiple Domain
	More Details on Experiments with Performance Improvement Techniques
	More Details on Correctness Analysis
	Evaluation on Synthetic Medical Data
	Evaluation of Task-specific TSQA Methods
	Comparison with LLM-based Methods
	Full Experimental Results

