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ABSTRACT

Facts change over time, making it essential for Large Language Models (LLMs) to
handle time-sensitive factual knowledge accurately and reliably. Although factual
Time-Sensitive Question-Answering (TSQA) tasks have been widely developed,
existing benchmarks often face manual bottlenecks that limit scalable and com-
prehensive TSQA evaluation. To address this issue, we propose TDBench, a new
benchmark that systematically constructs TSQA pairs by harnessing temporal
databases and database techniques, such as temporal functional dependencies, tem-
poral SQL, and temporal joins. We also introduce a new evaluation metric called
time accuracy, which assesses the validity of time references in model explanations
alongside traditional answer accuracy for a more fine-grained TSQA evaluation.
Extensive experiments on contemporary LLMs show how TDBench enables scal-
able and comprehensive TSQA evaluation while reducing the reliance on human
labor, complementing current TSQA evaluation approaches that largely center on
Wikipedia/Wikidata by enabling LLM evaluation on application-specific data.

1 INTRODUCTION

Facts are not static – they evolve over time (Jensen et al., 1996). As Large Language Models (LLMs)
are increasingly integrated into real-world applications (Jiao et al., 2024), their abilities to manage
time-sensitive factual knowledge have become crucial for ensuring both accuracy and reliability (Yuan
et al., 2024). For example, when asked, “Who is the current president of the U.S.?”, an LLM must
accurately distinguish between past and present presidents to avoid providing outdated or incorrect
responses, which can mislead users and undermine trust (Huang et al., 2024).

To assess LLMs’ abilities to handle time-sensitive factual knowledge, many Time-Sensitive Question
Answering (TSQA) benchmarks have been developed (Chen et al., 2021; Dhingra et al., 2022; Kasai
et al., 2023; Tan et al., 2023; Vu et al., 2023; Kim et al., 2024; Zhao et al., 2024; Zhu et al., 2025).
These benchmarks primarily assess two LLM capabilities: (1) temporal reasoning, the ability to
understand various temporal contexts within questions (e.g., “before 2019”, “during the 5th Winter
Olympics”) and (2) temporal alignment, the ability to provide answers that reflect current factual
knowledge in the real world (e.g., being aware of the current president).

However, existing factual TSQA benchmarks often lack a systematic design, relying heavily on
manual efforts for benchmark construction and maintenance. Assessing temporal reasoning ability re-
quires creating diverse temporal contexts such as “before 2019” or “during the 5th Winter Olympics”,
which typically relies on human writers (Kasai et al., 2023; Wei et al., 2023; Vu et al., 2023). Using
predefined question templates can automate part of this process (e.g., “before [YEAR]”), but it still
requires human efforts to design templates and often uses a small, fixed set that compromises diversity
(e.g., 9 templates used in Dhingra et al. (2022), 16 used in Margatina et al. (2023); see more details in
Sec. 5). In addition, the evolving nature of time-sensitive knowledge requires continual updates of
TSQA benchmarks, posing a benchmark maintenance challenge. For instance, RealTimeQA (Kasai
et al., 2023) manually curated weekly news (e.g., CNN) to incorporate new world facts, but updates
have recently ceased due to the high costs of manual curation (Uddin et al., 2024).

To tackle these manual bottlenecks, we propose TDBench, a benchmarking framework designed for
a more systematic TSQA evaluation. Unlike existing TSQA benchmarks, TDBench eliminates the
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FROM MyDB
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determines <name>
at any time point

Question: Who is currently serving as the monarch of Sweden?
Gold Answer: {country: ‘Sweden’, …, name: ‘Carl XVI Gustaf’, start: ‘1973-09-15’, …} (*as of 2025)

LLM Response (*actual response of Gemma2-27B): 
Since June 2016, Carl XVI Gustaf has been the current monarch of Sweden. Answer:        Time:  

TSQA Evaluation

Figure 1: Overview of TDBench framework. TDBench systematically constructs Time-Sensitive QA
(TSQA) pairs by (1) selecting factual knowledge via temporal functional dependencies, (2) generating
temporal SQL queries with diverse temporal contexts, and (3) converting queries into natural language
QA pairs using an LLM and the database. During evaluation, TDBench automatically verifies both
the final answer and time references in LLM responses, capturing cases where the model hallucinates
in the explanation despite providing the correct answer. TDBench supports diverse TSQA scenarios,
including temporal alignment and temporal reasoning tasks – see more framework details in Sec. 3.

need for human labor in designing temporal contexts or question templates. Instead, TSQA pairs
are automatically generated from an input data source, namely, temporal databases – extensions
of conventional databases that are well-established for managing time-sensitive knowledge (Jensen
et al., 1996). These temporal databases can be user-defined or sourced from general platforms like
Wikipedia, allowing users to flexibly construct TSQA benchmarks based on their own interests.

Our key idea is to utilize database techniques such as Temporal Functional Dependencies (TFDs),
temporal Structured Query Language (SQL), and temporal joins for automatic TSQA construction.
As shown in Fig. 1, TDBench framework proceeds in three steps: (1) selecting factual knowledge via
TFDs, which pinpoint attributes whose values can be uniquely determined at any timepoint (e.g., a
name of a country’s president) and thus can be suitable for the TSQA task; (2) generating temporal
SQL queries via temporal SQL operators (e.g., BETWEEN, DATEDIFF), which encodes various
temporal contexts based on 13 mutually exclusive and exhaustive temporal relations (Allen, 1983);
and (3) translating SQL queries into natural language QA pairs using an LLM and the database.
Through these steps, TDBench automates TSQA construction and simplifies maintenance; updating
the underlying database automatically refreshes the generated QA pairs. We also show how temporal
joins increase TSQA complexity by generating implicit temporal contexts (e.g., “during the 5th
Winter Olympics”), which can test LLMs’ advanced reasoning abilities such as event–event reasoning
(Tan et al., 2023), while eliminating the need of additional manual curation (Tan et al., 2023).

Alongside the QA construction, we introduce a new metric called time accuracy to support a more
fine-grained TSQA evaluation. During QA tasks, LLMs can often hallucinate in explanations while
providing correct answers (Ji et al., 2023; Oh et al., 2024). We find this phenomenon manifests in
TSQA tasks as inaccurate time references, as illustrated in Fig. 1; a model correctly identifies the
current monarch of Sweden, but hallucinates his start date. Since traditional answer-only evaluations
cannot capture such errors, we use time accuracy to verify the validity of time references as well as
final answers, enabling automatic verification with SQL-based temporal constraints.

Extensive experiments demonstrate how TDBench enables a scalable and comprehensive TSQA
evaluation while reducing human labor. We assess several popular LLMs – GPT-3.5 (OpenAI,
2022), GPT-4 (OpenAI, 2023), GPT-4o (OpenAI, 2024), Llama3.1-70B (Dubey et al., 2024), Mixtral-
8x7B (Jiang et al., 2024), Gemma2-27B (Team et al., 2024), Qwen2-72B (Bai et al., 2023), and
Granite3.1-8B (Granite Team, 2024) – across various TSQA tasks, including temporal alignment,
temporal reasoning, and multi-hop settings with implicit temporal contexts. By leveraging TDBench’s
generalization to arbitrary domains, we move beyond the previous Wikipedia/Wikidata-centric TSQA
evaluation and uncover LLM performances in application-specific domains (e.g., medical, legal),
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which can fall outside the scope of public platforms. In addition, our time accuracy metric reveals
that LLMs largely hallucinate on time references despite providing correct answers, where the
accuracy of both the answer and time references is on average 21.7% lower than just answer accuracy
in our experiments. Diverse SQL-generated temporal contexts highlight specific weaknesses in
understanding temporal constraints (e.g., LLMs underperforming for ‘finish’ compared to ‘start’),
identifying LLMs’ temporal blind spots that are not clearly observed in other benchmarks.

Summary of Contributions (1) We propose TDBench, a new benchmark that systematically con-
structs TSQA pairs by harnessing temporal databases and database techniques. (2) We emphasize the
need for assessing model explanations, introducing time accuracy to capture invalid time references
for more reliable TSQA evaluation. (3) We conduct extensive experiments on contemporary LLMs,
demonstrating how TDBench enables a scalable and comprehensive evaluation while reducing human
labor and complements existing TSQA approaches centered on Wikipedia/Wikidata.

2 BACKGROUNDS

Table 1: An example temporal database
Leader(country, role, name, gender, start, end).
country role gender name start end

USA President M Bush 2001 2009
USA President M Obama 2009 2017
U.K. Monarch F Elizabeth 1952 2022

Temporal Database Temporal databases (Jensen
& Snodgrass, 2018) extend conventional relational
databases with the concept of time. Both types of
databases store structured data, where information
is organized into a fixed schema with predefined
attributes (i.e., columns) and corresponding values
(i.e., rows or tuples). While conventional relational
databases typically retain only the latest state of each entity, temporal databases are specifically
designed to capture time-varying information by storing historical states with associated timestamp
attributes. In this work, we focus on temporal databases following the uni-temporal data model,
which stores the valid time interval of each row using two timestamp attributes (e.g., start and end in
Table 1). We demonstrate how the structured nature of these temporal databases enables systematic
time-sensitive question generation by explicitly tracking when facts hold true.

Temporal Functional Dependency and Join Temporal databases possess two unique properties:
1) temporal functional dependencies (TFDs) and 2) temporal joins. TFDs generalize functional
dependencies (FDs) defined in conventional databases1, which denote relationships between two
sets of attributes X and Y where the X values determine the Y values (i.e., X → Y ). TFDs
extend this notion with a time dimension, requiring the dependency to hold at every timepoint (i.e.,
X

T→ Y ; Jensen et al. (1996)). For instance, country, role T→ name holds in Table 1, which ensures
that each country has a unique role-holder at any given year. Temporal joins similarly incorporate
time when combining two or more tables. We mainly focus on temporal natural joins, which only
join tuples with overlapping validity intervals. In the following sections, we leverage these properties
to effectively evaluate LLM responses. Formal definitions of both properties are presented in Sec. A.

3 TDBENCH

We introduce TDBench, a benchmarking framework for systematic Time-Sensitive Question-
Answering (TSQA) evaluation. We first explain the QA construction process (Sec. 3.1), which
automatically generates TSQA pairs given an input temporal database to address manual bottlenecks
in benchmark construction and maintenance. We then explain the evaluation process (Sec. 3.2), intro-
ducing a newly proposed metric called time accuracy for a more fine-grained TSQA evaluation. We
finally discuss how to increase TSQA complexity by generating implicit temporal contexts (Sec. 3.3).

3.1 QA CONSTRUCTION

Our key idea is to harness temporal database techniques to systematize the QA construction process.
As shown in Fig. 1, TDBench proceeds in the following three steps, yielding several benefits.

➀ Knowledge Selection for TSQA Pairs Given a temporal database, we use Temporal Functional
Dependencies (TFDs; Sec. 2) to automatically select attribute sets for constructing TSQA pairs.

1FD and TFDs are defined by the database owner. These properties are typically imposed in databases to
help identify data inconsistencies and improve data integrity (Jensen et al., 1996).

3
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Table 2: Illustration of the meet relation between temporal intervals a and b, from which we generate
the SQL condition and temporal context. Diverse temporal contexts can be constructed by sampling
different values for a and b. In this example, a denotes a president’s term, and March 20, 2001 and
half a year correspond to b.end and b.length, respectively. See Table 10 for all 13 temporal relations.

Relation Interval Diagram SQL Condition Example Temporal Context

a meet b a.end = b.end - b.length A president who ends exactly
half a year before March 20, 2001

Given a TFD X
T→ Y satisfied in a database relation r, we specify r.X values in the question and

use the corresponding r.Y values as the answers, since X values determine Y values at any time by
the TFD definition. For example, country, role T→ name leads to the question “Who is the [role] of
the country [country]”? with the answer [name], where [role], [country], and [name] are placeholders
for attribute values. As TFDs are part of the design theory of temporal databases, this FD-based logic
generalizes to arbitrary schemas of temporal databases, enabling systematic knowledge selection.

➁ Temporal SQL Query Generation We propose the Genqueries algorithm to generate
temporal Structured Query Language (SQL) queries using the TFD-selected attributes. SQL is used
to interact with databases to manage and query data. Rather than directly generating natural language
questions, generating questions via temporal SQL queries allows us to utilize built-in temporal
operators, reducing the manual effort to design temporal contexts. Genqueries first (1) builds a
base query using the TFD-selected attributes and then (2) adds temporal constraints, as shown in
Fig. 1. For (1), the X attributes are used in the WHERE clause for the question, and the Y attributes
are used in the SELECT clause for the answer (e.g., country, role T→ name yields SELECT name
WHERE country=‘USA’ AND role=‘president’). For (2), SQL conditions are generated
based on 13 mutually exclusive and exhaustive temporal relations from the database literature (Allen,
1983) – before, after, meet, met-by, overlap, overlapped-by, equal, start, started-by, finish, finished-by,
during, and contains. For example, Table 2 shows the temporal SQL condition and the temporal
context corresponding to the meet relation, where a time interval a ends exactly when a time interval
b starts. The resulting temporal condition is appended to the base query as a temporal constraint. We
present the full set of SQL conditions and the pseudocode of Genqueries in Sec. B.

➂ Conversion to Natural Language QA Pairs We convert the generated queries into natural
language QA pairs by using an LLM and the underlying database. For questions, we use GPT-4o (Ope-
nAI, 2024) as an SQL-to-text translator via system prompts, which we observe to achieve 91.5%
accuracy in our setup based on LLMs’ strong zero-shot performance in SQL-to-text tasks (Zhang
et al., 2024a) – see detailed setups (e.g., actual prompt and temperature) and error analyses in Sec. B.3.
For answers, we simply run the generated SQL queries on the database. In this way, we obtain
linguistically diverse questions from an LLM while ensuring that the answers follow the underlying
database, as shown in Table 3. We show more examples of generated QA pairs in Sec. B.3.

Benefits Compared to prior approaches, TDBench offers many benefits by harnessing both database
techniques and LLMs for QA construction. Using TFDs in step ➀ enables dynamic benchmarking
that is also convenient, eliminating the need for manual data pre-processing to identify time-related
attributes (Gupta et al., 2023; Zhao et al., 2024). Using temporal SQL in step ➁ eliminates the human
labor to write customized, domain-specific templates while expanding time constraints to the full set
of 13 interval relations, instead of the typically used 4-6 types (mainly “in [year]”, “from [year1]
to [year2]”, “before”, and “after” (Chen et al., 2021; Dhingra et al., 2022)). Lastly, we demonstrate
how step ➂ (i.e., LLM-generated questions, DB-grounded answers) greatly reduces hallucination and
inference costs compared to LLM-only approaches (Kim et al., 2024) – see more details in Sec. D.8.

3.2 EVALUATION

Using the generated QA pairs, TDBench evaluates not only final answers via traditional answer
accuracy, but also explanations via a newly proposed time accuracy metric to offer a fine-grained
TSQA evaluation. We explain the definition and the verification of the proposed time accuracy metric,
along with the various TSQA evaluation scenarios supported by TDBench.

Definition of Time Accuracy We define time accuracy as the correctness of time references –
specifically the start and end dates in our setup – that serve as rationales for temporal reasoning
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Table 3: A single SQL query generates multiple QA pairs by translating into diverse natural language
questions with the same answer. To evaluate both answer and time accuracy, the SQL query also
outputs a relation-specific time reference (e.g., end for the ‘meet’ relation), defined in Table 10.

SQL Query (relation=‘meet’) Generated QA

SELECT name, end FROM Leader
WHERE Country=‘Brazil’ AND
Role=‘President’ AND
date(end) = date(‘2019-05-01’,
‘-4 month’)

[Questions] “Who was the president of Brazil whose term
ended exactly four months before May 1, 2019?”, “Can you
provide the president of Brazil who finished their term four
months prior to May 1, 2019?”...
[Answer] Michel Temer [Time reference] 2019-01-01 (end)

[Model Response] The answer is Michel Temer (answer), whose term ended in January 1, 2019 (time reference).

required in a time-sensitive question. For example, the questions in Table 3 require reasoning over
the president’s end date, where the model should mention “January 1, 2019” in the explanation given
the constraint “four months before May 1, 2019”. If a question requires both a start and an end date,
but the model gets only one correct, the time accuracy is 50%. See the formal definition in Sec. B.4.

Verification of Time Accuracy TDBench supports automatic verification of time accuracy by
utilizing the SQL-generated temporal constraints, which explicitly encode the temporal reasoning
logic (e.g., “date(end) = date(‘2019-05-01’), -4 month” in Table 3 indicates that the end date is
required for reasoning). We thus define relation-specific criteria that specifies which time references
to verify: start date for ‘after’, ‘met-by’, ‘started-by’, end date for ‘before’, ‘meet’, ‘finished-by’, and
both dates for the remaining seven relations, as summarized in Table 10. To facilitate evaluation, we
prompt target LLMs to explicitly state time references used in their reasoning during the TSQA task.
Since model responses may include unrelated time information (e.g., “As of 2025, the answer is. . . ”),
we employ an LLM-based judge rather than exact matching to verify time references, achieving
91.1% accuracy under manual inspection – see more details and error analyses in Sec. B.5. We also
demonstrate how the time accuracy metric can be supported in other TSQA benchmarks in Sec. 4.1.

Evaluation Scenarios TDBench supports various TSQA evaluation scenarios: (1) evaluation
of temporal alignment, which tests whether the LLM is up-to-date with current world knowledge.
As this scenario grounds questions to a temporal constraint “current,” we use only the “overlap”
relation in Genqueries (Table 10); (2) evaluation of temporal reasoning, which assesses the LLM’s
understanding of diverse temporal contexts, where we use all 13 interval relations in Genqueries;
(3) evaluation of open-book/closed-book settings, which differs by the presence of additional context
that can aid the QA task. In the open-book setting, we append both relevant and irrelevant rows from
the database to the question, whereas such context is removed in the closed-book setting (see Sec. B.6
for an example QA). We note that these scenarios are enabled by the expressiveness of temporal
SQL, which also allows natural extensions to broader scenarios – see how to extend Genqueries
to incorporate non-temporal data attributes or other tasks such as event-counting in Sec. B.2.

3.3 EXTENSION WITH IMPLICIT TEMPORAL CONTEXTS

We can further increase the complexity of the generated questions by performing temporal joins
(Sec. 2) of tables within the SQL queries. In particular, temporal joins induce implicit event-event
reasoning (Tan et al., 2023) that requires models to identify two or more temporally overlapping
events. For example, performing a temporal join between Leaders(country, role, gender, name, start,
end) and Olympic(country, city, game_edition, start, end) on the common column ‘country’ pairs
Olympic host countries with their national leaders at that time, where a question such as “q1: Who was
the president of the host country during the 1988 Summer Olympics?” can be generated. TDBench
naturally extends from single tables to joined tables and can generate such questions, since TFDs
in the joined table can be derived via standard FD and TFD inference rules (Jensen et al., 1996);
for example, game_edition→ country (in Olympic) and TFD country, role

T→ name (in Leader)
yields a new TFD game_edition, role T→ name, which can be converted to q1 via Genqueries.
The verification process is the same as that for single-table questions. While other, more complex
implicit temporal contexts could be constructed, we emphasize that TDBench offers an automatic
way to generate these implicit contexts – moving beyond prior work that typically relies on manual
construction (Tan et al., 2023; Wei et al., 2023; Wu et al., 2024; Jia et al., 2024).
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Table 4: Performance evaluation of eight LLMs on the temporal alignment TSQA task. We report the
proportion of correct responses under two evaluation settings: answer-only (A) and answer and time
(AT), along with their difference (∆ = A−AT). Wikipedia results are reported in aggregate, and
domain-specific results are broken down by subdomain. Best results are shown in bold.

Wikipedia Law Carbon Tax Heritage Netflix
Model A AT ∆ A AT ∆ A AT ∆ A AT ∆ A AT ∆

GPT-3.5 47.5 22.4 25.1 84.3 39.9 44.3 19.9 8.4 11.4 62.7 26.5 36.2 29.3 19.1 10.1
GPT-4 44.5 29.6 14.9 82.4 52.3 30.0 32.0 23.9 8.1 74.5 44.5 30.0 32.4 26.4 6.1
GPT-4o 73.9 48.8 25.1 84.3 54.0 30.3 72.1 43.1 29.0 72.5 53.3 19.2 32.9 25.9 7.0
Llama3.1-70B 64.6 56.7 7.9 84.6 44.9 39.7 57.6 39.7 17.8 75.5 39.7 35.8 35.6 28.6 7.0
Mixtral-8x7B 42.9 30.9 12.0 74.1 42.2 32.0 28.3 16.5 11.8 35.6 18.1 17.5 20.7 17.1 3.6
Gemma2-27B 69.3 32.8 36.5 84.3 29.8 54.6 73.1 25.2 47.8 69.2 22.0 47.2 36.0 27.7 8.3
Qwen2-72B 62.7 34.1 28.6 84.0 34.2 49.9 57.2 27.6 29.6 53.5 20.2 33.3 22.5 19.4 3.1
Granite3.1-8B 49.6 26.1 23.5 90.1 28.6 61.4 45.1 0.0 45.1 42.0 4.5 37.5 19.6 14.9 4.7

Average 56.9 35.2 21.7 83.5 40.7 42.8 48.2 23.1 25.1 60.7 28.6 32.1 28.6 22.4 6.2

4 EXPERIMENTS

We perform extensive experiments to demonstrate how TDBench enables diverse and fine-grained
temporal evaluation of LLMs. More detailed settings (e.g., system prompts) are provided in Sec. C.

LLMs Compared We compare GPT-3.5 (OpenAI, 2022), GPT-4 (OpenAI, 2023), GPT-4o (OpenAI,
2024), Llama3.1-70B (Dubey et al., 2024), Mixtral-8x7B (Jiang et al., 2024), Gemma2-27B (Team
et al., 2024), Qwen2-72B (Bai et al., 2023), and Granite3.1-8B (Granite Team, 2024). We set all the
temperature parameters to zero to exclude randomness in the LLM responses.

Datasets We use temporal databases from two types of sources: (1) Wikipedia covering domains
such as Countries, Athletes, Organizations, and Olympics, which are commonly addressed in existing
TSQA benchmarks (Chen et al., 2021; Dhingra et al., 2022; Mousavi et al., 2024), generating 6,177
questions; and (2) other platforms such as Kaggle, covering areas including same-sex marriage laws,
carbon taxation, UNESCO heritage, and Netflix shows to model domain-specific scenarios in Legal,
Environmental, Cultural, and Social contexts, generating 1,704 questions. More details on datasets,
including schemas, used TFDs, and subcategories of questions, are provided in Sec. C.2.

Performance Measures We mainly use the following three performance evaluation metrics.
• Answer accuracy (A): Portion of responses with correct answers.
• Time accuracy (T): Portion of responses with correct time references, evaluated using relation-

specific criteria (Table 10). If two time references are expected (e.g., start and end dates), partial
credit (50%) is given when only one is correct. Granularity (e.g., year, month) varies by dataset.

• Answer-Time accuracy (AT): Portion of responses with both correct answers and time references.
Here, we do not give partial credit (i.e., only consider 100%) when evaluating time accuracy.

4.1 EVALUATION OF TEMPORAL ALIGNMENT

We evaluate the temporal alignment of LLMs, assessing the ability to answer up-to-date questions
that reflect current world knowledge (Dhingra et al., 2022; Kasai et al., 2023; Mousavi et al., 2024).

Performance Variations when Accounting for Time Accuracy Table 4 shows notable performance
variations across domains under two evaluation settings: A (answer-only) and AT (answer and time).
While the models generally achieve high A by retrieving correct up-to-date answers, they often fail
to generate accurate time references, resulting in a 21.7% average performance drop in AT on the
Wikipedia dataset. This gap reveals the limitation of traditional answer-only evaluation, indicating that
a large portion of factually inconsistent responses with incorrect time references can be overlooked –
see actual cases in Sec. D.1. We also observe domain-specific LLM performances; GPT-4o performs
best in domains such as law, carbon tax, and UNESCO heritage, while Llama3.1-70B excels in the
Netflix domain – demonstrating TDBench’s applicability beyond Wikipedia-based data.

Integrating Time Accuracy into Existing Benchmarks We show how the proposed time accuracy
metric can be beneficial when integrated into existing temporal alignment TSQA benchmarks (Dhin-
gra et al., 2022; Margatina et al., 2023; Mousavi et al., 2024), enabling more fine-grained evaluation.
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Table 5: Comparison of LLM performances across
multiple-, unique-, and no-answer (“None”) question
types, evaluated on the Wikipedia dataset in the open-
book setting. We report only A for the None type, as no
time reference applies to no-answer cases.

Multiple Unique None
Model A T AT A T AT A

GPT-3.5 34.4 41.9 20.1 43.3 67.8 36.8 17.9
GPT-4 60.3 77.8 49.8 61.7 82.9 49.9 45.0
GPT-4o 58.1 67.3 42.2 67.8 68.7 43.7 62.4
Llama3.1-70B 48.6 45.7 29.4 69.1 51.8 33.2 44.2
Mixtral-8x7B 36.2 57.6 24.1 49.9 78.1 36.6 7.8
Gemma2-27B 49.7 56.1 29.1 61.9 63.6 41.7 20.0
Qwen2-72B 48.3 62.5 37.7 63.4 86.4 57.0 49.1
Granite3.1-8B 22.5 41.9 14.8 46.9 51.2 25.8 25.1
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Figure 2: LLM performances on 13 tem-
poral relations in the open-book setting.

These benchmarks use open-ended QA templates (e.g., “The president of Italy is __”) and solely
evaluate the final answer. To integrate T and assess model explanation as well, we simply modify the
system prompt to elicit start date references from the model, without altering the original benchmark.
In Sec. D.2, we provide a detailed case study with Dyknow (Mousavi et al., 2024), where we extend
the benchmark with T and observe an F1-score of 0.96 for temporally aligned responses (i.e., both
answer and time reference are correct), improving benchmark correctness against human verifications.

4.2 BREAKDOWN OF TEMPORAL REASONING PERFORMANCE

We now evaluate the temporal reasoning ability of LLMs to understand diverse temporal conditions,
analyzing performance by answer cardinality, temporal constraint type, and temporal span.

Performance by Answer Cardinality We evaluate LLM performances across different answer set
sizes, expanding the traditional setup with a single answer. Depending on the generated temporal
context, TDBench can yield multiple-answer or no-answer questions as well as single-answer
questions. For example, a no-answer question might ask, “Which president of the U.S. ended their
term exactly half a year before January 20, 2001?”, where no such president exists. Table 5 shows
that models like GPT-4o perform robustly across question types, whereas models like Mixtral and
GPT-3.5 show notable gaps, particularly underperforming on no-answer questions. For example, a
model incorrectly answers “Bill Clinton” (term ended on January 20, 2001), likely due to matching the
string “January 20, 2001” in the question rather than reasoning over “exactly half a year.”, indicating
that models may rely more on surface cues than true temporal reasoning.

Performance by Temporal Constraint Type We assess how well the LLMs handle different types
of temporal constraints using the 13 distinct temporal relations. Fig. 2 shows that LLMs perform
best on ‘equal’ relation-based constraints (e.g., “in 2025”) – likely due to their prevalence in training
data – while struggling with ‘contain’ and ‘overlap’, which require precise temporal reasoning over
both start and end dates (e.g., started before January 1, 1985, and ended after December 30, 1992 for
‘contain’). Interestingly, LLMs tend to comprehend start constraints (e.g., ‘start’, ‘started-by’) more
accurately than end constraints (e.g., ‘finish’, ‘finished-by’), which may stem from the autoregressive
nature of LLMs that prioritizes earlier tokens in generation.

Performance by Temporal Span We evaluate LLM performance across different temporal
spans under the closed-book setting, assessing how well LLMs utilize internal time-sensitive factual
knowledge without external context. Fig. 3 shows the results for a single domain (Countries) (see
Sec. D.3. for aggregated results across multiple domains) where we observe a gradual performance
increase from 1985 to 2010, with a notable jump in the 1990–1995 interval. As this trend appears
consistently across all models, we suggest it reflects shared characteristics of training data rather than
model-specific behavior, where the 1990–1995 period may be better represented in the training data.

4.3 EVALUATION OF MULTI-HOP QUESTIONS

We assess LLM performance on multi-hop questions. As described in Sec. 3.3, these questions
have implicit temporal contexts generated via temporal joins, and we construct 2-hop and 3-hop
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Figure 3: LLM performances across different time spans
(1985-2025) in the closed-book setting. Additional results
on multiple domains are presented in Sec. D.3.

Table 6: Performance comparison on
multi-hop questions where Hi denotes
the hallucination rate at the (i+1)-th hop
given the correct i-th hop. Full results
with 2-hop questions are in Table 27.

3-hop
Model A AT H1 H2

GPT-3.5 33.8 33.8 8.5 7.6
GPT-4 57.1 52.5 10.8 0.5
GPT-4o 90.4 87.9 26.3 0.0
Llama3.1-70B 82.8 80.8 38.2 4.5
Mixtral-8x7B 60.1 49.0 19.5 10.6
Gemma2-27B 48.0 43.9 26.5 24.7
Qwen2-72B 68.2 59.1 35.1 5.6
Granite3.1-8B 11.1 11.1 10.3 77.8

questions by joining the Olympic and Country datasets. For the 2-hop setting, we use the TFD
game_edition, role T→ name, where models should infer (1) the host country and time from a given
Olympic name (e.g., 1988 Summer Olympics), and (2) the leader of the host country (e.g., president)
at that time. For the 3-hop setting, we use game_round, role T→name, where models should infer
(1) the Olympic name from the round number (e.g., 24th Summer Olympics), (2) the host country
and time, and (3) the leader at that time. An example QA is shown in Sec. B.3.

Performance by Reasoning Hops To effectively assess the reasoning process, we introduce Hi,
which measures the conditional probability of hallucination where a model answers the i-th hop
correctly, but hallucinates on the (i+1)-st hop. Alongside the overall performances captured by A
and AT, Table 6 shows the step-wise performances captured by Hi, revealing the most challenging
hop for each model. For example, GPT-4o and Llama3.1-70B hallucinate more at the first hop (i.e.,
higher H1), while Granite3.1-8B hallucinates more at the second hop (i.e., higher H2) in the 3-hop
setting. These model-specific challenges highlight the value of TDBench’s multi-hop generation
capability, which enables a fine-grained diagnosis of intermediate reasoning failures.

Table 7: Performance comparison on multi-
hop questions when applying RAG, CoT, and
Time-CoT. Best- and second-best performing
methods for each model are highlighted in
bold and underline, respectively.

Model Original RAG CoT Time-CoT

GPT-3.5 63.1 71.2 39.4 15.2
GPT-4 67.2 35.4 92.4 93.9
GPT-4o 79.3 89.9 92.9 95.5
Llama3.1-70B 83.8 73.2 92.9 91.9
Mixtral-8x7B 72.7 60.1 67.2 71.2
Gemma2-27B 77.8 40.9 83.8 78.8
Qwen2-72B 65.2 78.8 77.8 85.4
Granite3.1-8B 50.5 54.5 70.2 72.2

Impact of Performance Improvement Techniques
To mitigate reasoning errors in multi-hop settings,
we evaluate the effectiveness of prompting strategies
known to support model reasoning. Specifically, we
compare RAG (Lewis et al., 2020), which augments
prompts with retrieved Wikipedia passages; Chain-
of-Thought (CoT) (Wei et al., 2022), which guides
models to generate intermediate reasoning steps; and
Time-CoT (Yin & Hu, 2024), a recent CoT variant
designed for temporal reasoning – see CoT and Time-
CoT prompts in Sec. D.4. As shown in Table 7, CoT
and Time-CoT generally outperform RAG, which
often retrieves relevant yet temporally misaligned
contexts (see a case study in Sec. D.4). Between CoT
and Time-CoT, no single method consistently outperforms the other, with effectiveness varying by
model; see similar results with single-hop questions in Sec. D.4.

4.4 CORRECTNESS OF TDBENCH

Table 8: Correctness of TDBench
against manual verification. Fine-
grained results are in Table 23.

Methods P R F1

Temporal alignment 0.98 0.96 0.97
Temporal reasoning 0.87 0.91 0.88
Multi-hop 0.95 0.87 0.91

We evaluate the correctness of TDBench across three task types
(Sec. 4.1 – Sec. 4.3). We compare TDBench’s evaluation results
with manual verification on 125 randomly sampled responses
per task, using precision (P), recall (R), and F1-score (F1); see
Sec. D.5 for metric definitions and details of manual verifica-
tion. As shown in Table 8, TDBench achieves high agreement
with manual verification, demonstrating the effectiveness of
database-driven techniques for LLM benchmarking.
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4.5 MORE ANALYSES

To further evaluate the applicability and robustness of TDBench, we conduct additional analyses: (1)
evaluation on synthetic medical data, demonstrating how TDBench can be applied beyond real-world
facts (Sec. D.6); (2) evaluation of task-specific TSQA methods, which underperform relative to the
general-purpose models in the main experiments (Sec. D.7); and (3) comparison with LLM-based
TSQA methods, which generate TSQA pairs by directly feeding raw data into LLMs, but can be more
susceptible to hallucination and incur higher inference costs when processing the raw data (Sec. D.8).

5 RELATED WORK

Table 9: Comparison with TDBench against
template-based factual TSQA benchmarks.
We cover 13 temporal relations (Op #), with-
out relying on the fixed set of templates (Temp
#) while verifying both answers (A) and time
references (T) during evaluation (Eval).

Method Op # Temp # Eval

Dhingra et al. (2022) 1 (Equal) 9 A
Margatina et al. (2023) 1 (Equal) 16 A
Tan et al. (2023) 6 23 A
Mousavi et al. (2024) 1 (Equal) 27 A

TDBench (Ours) 13 (Unlimited) A, T

Factual Time-Sensitive Question-Answering TD-
Bench differs from prior factual TSQA benchmarks
in three main aspects: data source, QA construction,
and evaluation methodology. Prior TSQA studies
heavily centers on Wikidata (Jia et al., 2018; Chen
et al., 2021; Dhingra et al., 2022; Margatina et al.,
2023; Tan et al., 2023; Mousavi et al., 2024; Luo
et al., 2025; Zhu et al., 2025; Islakoglu & Kalo, 2025)
or Wikipedia (Jang et al., 2022; Kim et al., 2024; Wu
et al., 2024; Xiong et al., 2024). While some recent
work target tabular data (Gupta et al., 2023; Zhao
et al., 2024), they remain limited to Wikipedia tables
and often require additional Wikipedia page content
for QA construction, restricting generalization beyond Wikipedia. In contrast, TDBench is not
constrained by Wikidata/Wikipedia domains, enabling generalization to arbitrary temporal databases
by building on database design principles such as TFDs. In terms of QA construction, existing
benchmarks often rely on manually curated (Chen et al., 2021; Wei et al., 2023; Kasai et al., 2023;
Gupta et al., 2023; Vu et al., 2023; Jia et al., 2024) or template-based QA (Table 9), which often
covers limited temporal relations. In contrast, TDBench does not rely on manual construction or a
fixed set of templates, while covering a richer set of temporal relations via temporal SQL. There are
also LLM-based methods that generate TSQA pairs by processing raw databases via natural language
prompting (Kim et al., 2024; Zhao et al., 2024), but TDBench enables more controlled and precise
data processing by employing SQL-based data querying. Lastly, to our knowledge, we are the first to
address the automatic evaluation of invalid model explanations in TSQA tasks.

Using SQL for QA Systems In QA systems, Text-to-SQL has been a primary research area (Qin
et al., 2022; Hong et al., 2024), with the goal of (1) translating natural language questions into SQL
queries and (2) retrieving answers from databases that serve as knowledge sources, thereby improving
QA performance (Pasupat & Liang, 2015; Zhong et al., 2017; Yu et al., 2018; Rajkumar et al., 2022;
Liu et al., 2022; Gao et al., 2023). In contrast, our methodology adopts an SQL-to-Text approach (Xu
et al., 2018; Câmara et al., 2024; Zhang et al., 2024b), translating SQL queries into natural language
questions. We perform this task for the purpose of generating QA pairs, rather than enhancing LLM
performance through SQL-based retrieval. In particular, our distinction is to use temporal SQL – an
extension of standard SQL with expressive temporal operators – to generate time-sensitive questions
tailored to TSQA tasks, as well as other database techniques such as TFDs and temporal joins.

6 CONCLUSION

We proposed TDBench, which utilizes temporal databases and database techniques for systematic
evaluation of factual TSQA. By leveraging database techniques, TDBench reduces the manual
effort traditionally required in benchmark construction and maintenance, such as designing temporal
contexts or updating QA pairs with new world knowledge. We also introduced a new metric called
time accuracy for fine-grained TSQA evaluation, designing TDBench to automatically verify both the
final answers and the time references by using SQL-based temporal constraints. Experiments revealed
that a large portion of factually inconsistent responses with invalid time references can be overlooked
in the answer-only evaluation setting, while uncovering model-specific weaknesses across constraint
types, answer cardinality, and reasoning hops. We believe TDBench offers a new direction for TSQA
evaluation by moving beyond Wikipedia/Wikidata and enabling domain-specific benchmarking.
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ETHICS STATEMENT

We believe our research addresses an important aspect of Trustworthy AI by evaluating the accuracy
and reliability of LLMs under time-sensitive factual scenarios. In particular, we surface the issue of
LLM hallucination in both final answers and time references, which can mislead users and undermine
trust. By providing a systematic benchmarking framework to detect such cases, TDBench contributes
toward building more reliable and transparent LLMs. As a dynamic framework, the choice of the
database in TDBench inherently determines the benchmark content. We assume that it is the user’s
responsibility to ensure their chosen databases meet ethical standards and exclude harmful or private
material. All datasets used in this study are publicly available and free of sensitive or harmful content.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the details of experimental setups in the
supplementary material, including the proposed TDBench algorithm, system prompts, LLM hyperpa-
rameters (e.g., temperature), and details of datasets used in our study. In addition, we will release
the GitHub repository for the TDBench framework, containing code and scripts for reproducing our
results and documentation for extending the benchmark to new datasets.

THE USE OF LARGE LANGUAGE MODELS

LLMs were mainly utilized as evaluation targets in this work. We also used LLMs to assist in
the writing process (e.g., refining phrasing, enhancing clarity), but we did not employ LLMs for
generating core research ideas or technical content.
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A APPENDIX – FORMAL DEFINITIONS OF FDS AND TFDS

Continuing from Sec. 2, we introduce formal definitions on temporal functional dependencies (TFDs)
and temporal joins. Let R and S be temporal relation schemas where two timestamps Ts and Te

denote the start and end timestamps of each relation, respectively.

R = (A1, . . . , An, C1, . . . , Ck, Ts, Te)

S = (B1, . . . , Bm, C1, . . . , Ck, Ts, Te)

For an effective illustration, let {Ai}ni=1 and {Bi}mi=1 denote the unique attributes of schemas R and
S, respectively, and let {Ci}ki=1 represent the attributes shared by both.

We first introduce the definition of temporal FDs (Jensen et al., 1996) below.
Definition A.1 (Temporal functional dependencies). Let X and Y be sets of non-timestamp attributes
of a temporal relation schema R, and let t1 and t2 be arbitrary times, with t1 not exceeding the
current time. A temporal functional dependency, denoted as X T→ Y , exists on R if, for all meaningful
instances r of R – that is, database states that are valid, consistent, and free of contradictions – the
following holds:

∀t1, t2, ∀u1, u2 ∈ τt2(ρt1(r)), u1[X] = u2[X] =⇒ u1[Y ] = u2[Y ],
where ρt1(r) selects tuples valid at t1, and τt2(·) further restricts the result to tuples visible at t2.

The above definition formally states that for any valid time intervals [t1, t2], if two tuples u1 and u2

share the same values for X , these tuples must also share the same values for Y .

We now introduce the definition of temporal natural join (Jensen & Snodgrass, 2018) below.
Definition A.2 (Temporal natural join). Let r and s be instances of R and S, respectively. The
temporal natural join of r and s, denoted as r ▷◁T s, is defined as:

r ▷◁T s = {z | ∃u ∈ r, ∃v ∈ s (u[C1, ..., Ck] = v[C1, ..., Ck] ∧
z[A1, ..., An] = u[A1, ..., An] ∧ z[B1, ..., Bm] = v[B1, ..., Bm] ∧ z[C1, ..., Ck] = v[C1, ..., Ck]∧
z[Ts, Te] = overlap(u[Ts, Te], v[Ts, Te]) ∧ z[Ts, Te] ̸= ∅)},

where z represents the result tuple, and overlap(u[Ts, Te], v[Ts, Te]) computes the intersection of
the valid time intervals from u and v.

The first two lines ensure that tuples u and v match on the shared attributes {Ci}ki=1 and concatenate
the unique attributes {Ai}ni=1 and {Bi}mi=1, along with a single copy of {Ci}ki=1. The third line
ensures that the join operation is performed only on tuples with overlapping valid time intervals.

B APPENDIX – MORE DETAILS ON TDBENCH FRAMEWORK

Continuing from Sec. 3, we provide more details on the TDBench framework.

B.1 GENERATED SQL CONDITIONS AND TIME ACCURACY CRITERIA

Continuing from Sec. 3 and Sec. 4, we provide more details on SQL conditions generated in TDBench.
We design these conditions based on the interval relations from the database literature (Allen, 1983)
and define the corresponding time accuracy criteria, as shown in Table 10.

SQL Conditions to Generate Up-to-date Questions For Temporal Alignment Task The temporal
alignment task requires grounding questions in a specific temporal condition – “current” – to evaluate
whether LLMs provide up-to-date knowledge. The “current” condition can be generated in various
ways depending on the data format (e.g., by setting the end date to a maximum possible date like
99-99-99 or to NULL). We adopt the NULL format, which can produce more readable predicates (e.g.,
end IS NULL) than the maximum date format (e.g., start < CURRENT_DATE and CURRENT_DATE
< end) and thus can facilitate the following SQL-to-text conversion step (Sec. 3.1). Given the NULL
format, we treat the “current” condition as a special case of the “overlap” relation, where the event
begins before the present and has no defined end, as shown in Table 10.
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Table 10: Illustration of the 13 temporal relation (Allen, 1983) between temporal intervals a and b,
from which we generate the SQL condition, temporal context, and the corresponding time accuracy
criteria. Diverse temporal contexts can be constructed by sampling different values for a and b. In
these examples, a denotes a president’s term, and September 20, 2000 and March 20, 2001 correspond
to b.start and b.end, respectively. For the “overlap” relation, we design two conditions: one for the
general overlap between time intervals, and another specifically for handling current data (e.g., current
president) where the end timestamp can be unspecified (e.g., NULL) – see Sec. B.1 for more details
on handling current data. We show examples of the generated natural language questions from these
SQL conditions in Sec. B.3.

Relation Interval Diagram SQL Condition Example Temporal Context Criteria

a before b a.end < b.start A president who ends
before September 20, 2000 end

a after b a.start > b.end A president who starts
after March 20, 2001 start

a meet b a.end = b.end - b.length
A president who ends

exactly half a year
before March 20, 2001

end

a met-by b a.start = b.start + b.length
A president who starts

exactly half a year
after September 20, 2000

start

a overlap b

a.start < b.start
∧ b.start < a.end < b.end

A president who starts before
September 20, 2000 and

ends between September 20, 2000
and March 20, 2001

start, end

a.start < b.start
∧ a.end IS NULL

A president who is
currently serving start

a overlapped-by b
a.end > b.end

∧ b.start < a.start < b.end

A president who starts between
September 20, 2000 and

March 20, 2001 and
ends after March 20, 2001

start, end

a equal b a.start = b.start
∧ a.end = b.end

A president who starts in
September, 2000 and
ends in March, 2001

start, end

a start b a.start = b.start
∧ a.end < b.end

A president who starts in
September, 2000 and

ends before March, 2001
start, end

a started-by b
a.start = b.start
∧ a.end > b.end

A president who starts
in September, 2000 start

a finish b
a.start > b.start
∧ a.end = b.end

A president who starts after
September 20, 2000 and

ends in March, 2001
start, end

a finished-by b
a.start < b.start
∧ a.end < b.end

A president who ends
in March, 2001 end

a during b
a.start > b.start
∧ a.end < b.end

A president who starts after
September 20, 2000 and

ends before March 20, 2001
start, end

a contain b
a.start < b.start
∧ a.end > b.end

A president who starts before
September 20, 2000 and

ends after March 20, 2001
start, end

B.2 PSEUDOCODE OF GENQUERIES

Continuing from Sec. 3.1 and Sec. 3.2, we provide the pseudocode of Genqueries (Alg. 1), which
systematically generates temporal SQL queries from an input temporal database.

Algorithm Procedure of Genqueries We explain the Genqueries algorithm (Alg. 1) line
by line. Genqueries begins by initializing an empty list of queries (Line 1). For each tuple in
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Algorithm 1 The proposed Genqueries algorithm
Input: Temporal database relation s with schema S, list of temporal functional dependencies (TFDs;
Sec. 2) F = {X1

T→ Y1, . . . , Xn
T→ Yn} where Xi and Yi denote sets of attributes in the schema S

for i ∈ n, list of temporal relationsR = {before, after, . . . , contain} shown in Table 10
Output: List of generated temporal SQL queries G

1: G ← ∅
2: for each tuple u ∈ r do
3: for each TFD f : Xi

T→ Yi ∈ F do
4: # Phase 1: Generate base query using a TFD
5: qb ← SELECT Yi FROM s WHERE Xi = u.Xi

6: # Phase 2: Add temporal constraints
7: for each operation r ∈ R do
8: Sample a random time interval b = (ts, te)
9: qt ← qb + r(u, b) according to Table 10

10: G ← G ∪ {qt}
11: end for
12: end for
13: end for
14: return G

the database and each TFD defined in the database (Lines 2–3), we construct a base SQL query by
selecting the Yi attributes conditioned on the Xi attributes of the tuple (Line 4). We then add temporal
conditions to this base query (Line 5) by iterating over a set of predefined temporal operations, such
as “before”, “after”, or “overlap” (Line 6), using the relation-SQL condition mapping in Table 10. For
each operation, we sample a random time interval (Line 7), adding the temporal constraint to the base
query (Line 8), and append the resulting query to the output list (Line 9). After processing all tuples
and TFDs, Genqueries returns the complete set of generated temporal SQL queries (Line 10).

Extending Genqueries We can further extend Genqueries to incorporate more diverse
TSQA evaluation scenarios. While Genqueries primarily utilizes TFD-selected attributes to
automatically construct QA pairs (i.e., using X as the question and Y as the answer for a given TFD
X

T→ Y ), Genqueries also supports user-defined extensions where users can manually specify
alternative sets of question and answer attributes. For example, given the relation Leader(country,
role, name, gender, start, end) (Table 1) and the TFD country, role

T→ name, one can extend
the answer to include both name and gender, while still using country, role as the question.
Although this extension requires manual input to specify attribute sets, Genqueries still greatly
simplifies the QA construction process compared to manual construction or template creation. In
addition, SQL’s expressiveness allows flexible extensions to richer question types. For example,
aggregation operators (e.g., GROUP BY, HAVING) enable event-counting questions like “Which
president has been elected for the third time?”, which can be generated from the condition “GROUP
BY... HAVING COUNT(*)=3” and require the model to count specific events throughout history.

B.3 MORE DETAILS ON NATURAL LANGUAGE QA CONVERSION

Continuing from Sec. 3.1, we provide more details on the natural language conversion step, where
we use GPT-4o (OpenAI, 2024) as an SQL-to-text translator.

System Prompt for SQL-to-text The following prompt is an example system prompt used in our
zero-shot setting for SQL-to-text conversion. We set the temperature parameter of GPT-4o to 0.3 to
promote diverse paraphrasing. The prompt instructs the model to convert SQL queries into natural
language questions based on the given schema and generate three different phrasings per query, where
more than three questions can be generated if desired by modifying the prompt accordingly.

The following SQL query is about a relational database Leader(country,
role, name, start, end), where start and end represent date information.
Convert the provided SQL query into a natural language question.
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Generate three different questions, each starting with Q:.
Only return the generated questions.

Accuracy of SQL-to-text We assess the accuracy of SQL-to-text conversion in the above setup by
randomly sampling 130 generated questions during the conversion and manually verifying whether
the questions correspond to the underlying query. We observe 91.5% accuracy, consistent with recent
findings that modern LLMs have strong zero-shot performance on SQL-to-text tasks (Zhang et al.,
2024a). We analyze error cases as follows:

• Prime ministers of Japan→ Japanese prime minister: Although a prime minister of a country
may not necessarily be a citizen, the model often assumes nationality based on the position,
making this the most common error type.

• November 1st→ November: In some cases, specific dates (e.g., November 1st) are generalized to
the corresponding month (e.g., November), introducing potential ambiguity.

• Calculation error: When processing temporal operations like DATE(’2006-07-17 00:00:00’, ’-2
months’) in the query, the model occasionally makes date calculation errors. However, such errors
are relatively rare, occurring in fewer than 1% of cases.

Examples of Generated QA pairs In addition to the example QA pairs shown in the main text
(Table 3) generated from the “meet” relation, we present additional examples across temporal
relations. Table 11 and Table 12 show QA pairs derived from the “contains” and “overlap” relations,
respectively, which are two examples of temporal relations rarely covered in prior TSQA benchmarks.
Table 13 shows QA pairs from an additional SQL condition for the “overlap” relation, specifically
designed to target current data (see Sec. B.1 for more details). Table 14 shows multi-hop QA pairs
generated by using temporal joins (Sec. A).

Table 11: A single SQL query (e.g., for the “contain” relation) generates multiple QA pairs by
translating into diverse natural language questions with the same answer. To evaluate both answer
and time accuracy, the SQL query also outputs a relation-specific time reference (e.g., start and
end for the “contain” relation), defined in Table 10.

SQL Query (relation=“contain”) Generated QA

SELECT name, start, end FROM
Leader WHERE Country=‘Japan’
AND Role=‘Emperor’ AND Start
< ‘2019-10-01’ AND End >
‘2024-08-26’

[Questions] “Who was the Emperor of Japan whose term
started before October 1, 2019, and ended after August 26,
2024?”, “What is the name of the Emperor of Japan who began
their role before October 1, 2019, and ended it after August 26,
2024?”...
[Answer] Akihito
[Time reference] 1989-01-07 (start), 2019-05-01 (end)

[Model Response (Gemma2-27B)] Akihito. He reigned from 1989-01-07 to 2019-05-01.

B.4 FORMAL DEFINITION OF TIME ACCURACY

Continuing from Sec. 3.2, we present the formal definition of the proposed time accuracy metric.

We begin by defining the set of time references T , which captures the time references to be verified
in LLM responses. Since we primarily generate questions asking about real world events – each
grounded with a start date and end date – we set T = {ts, te}, where ts and te denote the start and
end dates, respectively.

We then define the question-reference function f : q → T , which maps a question to the time
references to be verified. This function can be flexibly designed based on the temporal contexts
expressed in the question. In our setup, the underlying SQL queries explicitly specify which time
reference are relevant to answer selection process (e.g., an SQL condition such as “start < January
2001” implies reliance on ts). Accordingly, we define f with respect to the temporal relation used in
the SQL query, as summarized in Table 10.
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Table 12: A single SQL query (e.g., for the “overlap” relation) generates multiple QA pairs by
translating into diverse natural language questions with the same answer. To evaluate both answer
and time accuracy, the SQL query also outputs a relation-specific time reference (e.g., start and
end for the “overlap” relation), defined in Table 10.

SQL Query (relation=“overlap”) Generated QA

SELECT name, start,
end FROM Leader WHERE
Country=‘Germany’ AND
Role=‘President’ AND Start <
‘2003-09-30’ AND End BETWEEN
‘2003-09-30’ and ‘2007-06-30’

[Questions] “Who was the president of Germany who started
their term before September 30, 2003, and ended their term
between September 30, 2003, and June 30, 2007?”, “Can you
list the names of the presidents of Germany whose terms began
before September 30, 2003, and ended between September 30,
2003, and June 30, 2007?”...
[Answer] Johannes Rau
[Time reference] 1999-07-01 (start), 2004-06-30 (end)

[Model Response (Qwen2-72B)] Johannes Rau, who started his term on July 1, 1999, and ended it on June
30, 2004.

Table 13: A single SQL query (e.g., for the “overlap” relation to target current data) generates multiple
QA pairs by translating into diverse natural language questions with the same answer. To evaluate
both answer and time accuracy, the SQL query also outputs a relation-specific time reference (e.g.,
start), defined in Table 10.

SQL Query (relation=“overlap”) Generated QA

SELECT name, start
FROM Leader WHERE
Country=‘Netherlands’ AND
Role=‘King’ AND End IS NULL

[Questions] “Who is currently serving as the King of the
Netherlands?”, “What is the name of the individual who is
the reigning King in the Netherlands?”...

[Answer] Willem-Alexander
[Time reference] 2013-04-30 (start)

[Model Response (Llama3.1-70B)] King Willem-Alexander, since April 2013.

Table 14: A single SQL query (e.g., for a joined relation) generates multiple QA pairs by translating
into diverse natural language questions with the same answer. To evaluate both answer and time
accuracy, the SQL query also outputs timestamp attributes (e.g., start, end). ⋊⋉T denote the
temporal join operator, which only joins tuples with overlapping valid time intervals – see formal
definition of temporal join in Sec. A.

SQL Query (temporal join) Generated QA

SELECT name, start, end FROM
Leader ⋊⋉T Olympic WHERE
game_edition=‘7th Winter’
AND Role=‘President’

[Questions] “Who was the president of the host country for
the 7th Winter Olympic Games?”, “Can you provide the name
of the president of the host country during the 7th edition of
the Winter Olympics?”...
[Answer] Giovanni Gronchi
[Time reference] 1955-05-11 (start), 1962-05-11 (end)

[Model Response (GPT-4o)] The 7th Winter Olympic Games were held in Cortina d’Ampezzo, Italy in
February 1956. The President of Italy at that time was Giovanni Gronchi, who served from May 1955 to
May 1962.

We finally define the time accuracy T given a question q as follows:

T(q) =
|{t ∈ f(q)|t ∈ model response}|

|f(q)|
× 100(%). (1)

Note that for temporal relation types requiring multiple time references (e.g., “contain” in Table 11),
partial credit is given when only a subset is correctly included in the model response.
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B.5 TIME ACCURACY EVALUATION WITH LLM-JUDGE

Continuing from Sec. 3.2, we provide more details on time accuracy evaluation, where we use
Deepseek-R1-14B (Guo et al., 2025) as an LLM-judge.

System Prompt for LLM-Judge The following system prompt shows the instruction for time
accuracy evaluation, consistent with the formal definition in Eq. 1. As shown in the prompt, we opt to
use LLM-Judge to capture various expressions of time references (e.g., “26 Jan 2025”, “2025/01/26”),
which may be missed by exact-match methods that directly compares gold time reference strings
({entity_date}) against the evaluated model response ({response}).

You are given a reference **start date** and **end date**.
Check whether the response correctly includes both dates, even if they
are expressed in a different but equivalent format (e.g., ‘26 Jan 2025’,
‘January 26, 2025’, ‘2025/01/26’, etc.).

- If **both** of the two dates is are correctly mentioned with the
intended meaning (i.e., the start date is described as the start date,
and the end date as the end date), respond with **"Yes"**.
- If **one** of the two dates is correctly mentioned with the intended
meaning, respond with **"Half"**.
- If **neither** date is correctly mentioned with the correct meaning,
respond with **"No"**.
Your answer must be one of: ‘Yes’, ‘Half’, or ‘No’. Be concise.

{entity_date}

**Response:**
{response}

**Answer:

Accuracy of LLM-Judge in Time Accuracy Evaluation Similarly to the manual verification
setup in Sec. B.3, we assess the effectiveness of LLM-Judge in time accuracy evaluation by randomly
sampling 130 responses and manually verifying whether the evaluation aligns with the instruction
above. We observe 91.1% accuracy, with most errors arising from instruction misinterpretation (e.g.,
assessing end dates when only assessing start dates is required) and date match failures (e.g., failing
to match the gold time reference of “1993-04-28” and “April 1993” in the model response).

We note that using stronger LLMs can further enhance evaluation correctness; for instance, we
observe that using GPT-4o under the same setup yields higher accuracy (95.5%). However, we opt not
to use GPT-4o in our main experiments, as it is one of the evaluated models and may incur potential
bias during evaluation if used as a judge.

B.6 ADDITIONAL CONTEXT CONSTRUCTION

Continuing from Sec. 3.2, we provide more details on context construction used in the open-book
setting. As illustrated in Fig. 4, we append both relevant rows and irrelevant rows from the table with
the gold answer to effectively evaluate LLMs’ temporal reasoning abilities given a time-sensitive
question. Relevant rows are retrieved by (1) removing the temporal condition from the underlying
SQL query of the question and (2) executing the modified query on the database, returning entities
across different periods (e.g., all U.S. presidents when the question asks about the U.S. president in
2019). We randomly sample the irrelevant rows in the table.

C APPENDIX – MORE DETAILS ON EXPERIMENTAL SETUPS

Continuing from Sec. 4, we provide more details on experimental settings, system prompts, and
datasets.
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| Country | Role | Name | Start | End |
| —-------- | —--- | —------ | —--- | —- |
| India | President | Sharma | 1992-07-25 | 1997-07-25 |
| India | President | Kovind | 2017-07-25 | 2022-07-25 |
| India | President | Narayanan | 1997-07-25 | 2002-07-25 |
| France | President | Chirac | 1995-05-17 | 2007-05-16 |
| Egypt | Prime Minister | Madbouly | 2018-06-14 | nan |
| Austria | Chancellor | Bierlein | 2019-06-03 | 2020-01-07 |

Relevant 
rows

Irrelevant 
rows

Open-book QA

Closed-book QA

Q: Who was the President of India that started his term after May 31, 
1996, and ended his term between July 1, 2002, and July 31, 2002?

A:

Figure 4: Open-book vs. Closed-book QA in TDBench. The open-book setting provides table rows
as additional context, while the closed-book setting poses only the question.

C.1 EXPERIMENTAL SETUPS AND SYSTEM PROMPTS

Experiment Settings We use the following LLM versions: GPT-3.5 (2024-05-01-preview), GPT-4
(2025-01-01-preview), GPT-4o (2024-02-01), Llama3.1-70B (2024-07-23), Mixtral-8x7B (2023-12-
11), Gemma2-27B (2024-06-27), Qwen2-72B (2023-08-03), and Granite3.1-8B (2024-12-18). All
experiments are conducted on NVIDIA Quadro RTX 8000 GPUs.

System Prompts for TSQA Tasks We use the following system prompts for the TSQA tasks: the
upper prompt is used for the temporal alignment task (Sec. 4.1), and the lower prompt is used for
the temporal reasoning task (Sec. 4.2). As the prompts explicitly require time information in the
rationale, responses that omit such references are marked incorrect in the time accuracy evaluation.
This policy is applied uniformly across all models to ensure consistent and fair TSQA benchmarking,
reflecting our goal of evaluating both final answers and explanations.

Answer the following question. Provide the short direct answer that
includes both the factual answer and the date information (month and
year) of the fact, prefixed with the word ‘since’. Say ‘unsure’ if you
don’t know. Be concise.

Answer the following question. Provide the short direct answer that
includes both the factual answer and rationale with the date information
of the fact. If there is no valid answer, respond with ‘No answer’.
If there is one correct answer, return it as a short sentence.
If there are multiple valid answers, present them clearly as bullet
points. If you are unsure, respond with ‘unsure’. Be concise.

C.2 MORE DETAILS ON DATASETS

Continuing from Sec. 4, we provide more details on the temporal databases used in our experiments.
Table 15 summarizes the schema, selected TFDs, and the number of questions generated from each
dataset. Table 16 presents example questions generated by converting TFDs. Using these datasets,
we construct 2,079 temporal alignment, 6,756 temporal reasoning, and 396 multi-hop questions, with
additional questions readily generable if needed.

Wikipedia We select domains following the conventional TSQA benchmarking literature (Dhingra
et al., 2022; Margatina et al., 2023; Tan et al., 2023; Mousavi et al., 2024), including Country, Athlete,
Organization, and Olympic datasets. We also follow the entity selection step of Mousavi et al. (2024),
which select entities likely to appear in most LLM training corpora to reduce performance variance
caused by entity frequency when retrieving facts (Mallen et al., 2023; Sun et al., 2023). All datasets
were retrieved on 02 January 2025.

Domain-specific To demonstrate the applicability of TDBench beyond Wikipedia-based datasets,
we model domain-specific TSQA scenarios across four contexts: Legal, Environmental, Cultural,
and Social. These domains are represented by datasets on same-sex marriage laws sourced from
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Table 15: Details of the temporal databases used in our experiments.
Data Source Question # Schema TFD

Wikipedia 6,177

Country(country, role, name, start, end) country, role T→ name

Athlete(name, team, sport, start, end) name, sport T→ team

Organization(org_name, type, role, name,
start, end)

org_name, type, role T→ name

Olympic(game_round, game_edition, city
country, season, game_name, start, end)

game_round, role T→ name (joined)
game_edition, role T→ name (joined)

Domain-specific 1,704

Law(country, law_type, legality, start, end) country, law_type T→ legality

Carbon Tax(jurisdiction, tax_type, instru-
ment_name, status, start, end)

jurisdiction, type T→ status

Heritage(heritage_element, member_state,
status, region, start, end)

heritage_element T→ status

Netflix(title, director, cast, release_year,
popularity, start, end)

title T→ director

Synthetic 1,350
Medical(name, gender, blood_type
medication, doctor, hospital,
insurance_provider, billing_amount)

name, gender, blood_type T→ doctor
name, gender, blood_type T→ medication

Table 16: Examples of base questions generated from TFDs across datasets. The proposed
Genqueries algorithm (Alg. 1) converts the TFDs listed in Table 15 into these base questions and
augments them with diverse temporal constraints.

Data Source Example Questions Generated From TFDs

Wikipedia

• Country: Who is serving as the president of Italy?
• Athlete: What team did Stephen Curry play for in basketball?
• Organization: Which person began their tenure as general secretary at the United Nations

organization?
• Olympic: Can you provide the name of the president of the host country during the 7th

edition of the Winter Olympics?

Domain-specific

• Law: Is joint adoption by same-sex couples legal or illegal in Argentina?
• Carbon Tax: Is the carbon tax mechanism in Finland active?
• Heritage: Is the heritage element “Cheoyongmu” inscribed or proclaimed?
• Netflix: Who directed the most recent release of the movie titled “Attack on Titan”?

Synthetic
• Who was the doctor for Jerry Martin, a male patient with blood type A+?
• Which medication is given to Kenneth Jacobs, a female patient with AB+ blood type?

the ILGA World databases2, a global knowledge base on legal frameworks and human right bodies,
retrieved on 02 January 2025; carbon taxation data sourced from the World Bank Group’s “State and
Trends of Carbon Pricing Dashboard”3, retrieved on 17 October 2024; UNESCO heritage elements
sourced from the official UNESCO website4, retrieved on 17 October 2024; and Netflix TV shows
data sourced from Kaggle5, retrieved on 05 May 2025. For the Netflix dataset, we only consider TV
series that share the same title, but have been remade over time with different directors.

Synthetic We also show how TDBench can be applied to synthetic datasets by using the Medical
dataset, which contains synthetic patient records sourced from Kaggle6, retrieved on 05 May 2025.

2https://database.ilga.org/en
3https://carbonpricingdashboard.worldbank.org/compliance/instrument-detail
4https://whc.unesco.org/en/list/
5https://www.kaggle.com/code/sonawanelalitsunil/netflix-movies-tv-shows-till-2025
6https://www.kaggle.com/datasets/prasad22/healthcare-dataset
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D APPENDIX – MORE EXPERIMENTAL RESULTS

Continuing from Sec. 4, we provide more details on experimental results.

D.1 ERROR ANALYSIS ON TEMPORAL ALIGNMENT EVALUATION

Continuing from Sec. 4.1, we present example error cases in the temporal alignment task, where LLMs
often hallucinate time references while providing correct answers. Table 17 and Table 18 show such
responses from the Heritage and Netflix datasets, respectively, where LLMs generate inaccurate time
references (e.g., “December 2011” and “January 2020”) alongside correct answers (e.g., “Inscribed”
and “Mehmet Ada Öztekin”). These cases indicates that LLMs struggle to accurately align the time
references with the factual answers, highlighting that capturing temporal misalignment in model
explanations can be a critical yet overlooked issue in the current temporal alignment task.

Table 17: Example LLM responses on the temporal alignment task using the Heritage dataset, where
the granularity for time accuracy is year.

[Question] Is the UNESCO heritage element “Cheoyongmu” currently inscribed or proclaimed?
[Answer] Inscribed
[Time reference] November 2009 (start)

[Model Response]
GPT-3.5: Since Inscribed (✓) December 2011 (✗).
GPT-4: Inscribed (✓) since November 2009 (✓).
GPT-4o: Inscribed (✓) since November 2009 (✓).
Llama3.1-70B: Inscribed (✓) since November 2009 (✓).
Mixtral-8x7B: Proclaimed (✗) since December 2017 (✗).
Gemma2-27B: Inscribed (✓) since November 2022 (✗).
Qwen2-72B: “Cheoyongmu” has been inscribed (✓) on UNESCO’s list since 2015 (✗).
Granite3.1-8B: Inscribed (✓) since 2019 (✗)

Table 18: Example LLM responses on the temporal alignment task using the Netflix dataset, where
the granularity for time accuracy is year.

[Question] Which director was involved in the most recent version of “Miracle in Cell No. 7”?
[Answer] Mehmet Ada Öztekin
[Time reference] October 2019 (start)

[Model Response]
GPT-3.5: Since January 2020 (✗), the director of the latest release of “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
GPT-4: Since March 2020 (✗), the director of the most recently released movie “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
GPT-4o: Since October 2023 (✗), the director of the most recent “Miracle in Cell No. 7” movie is

Mehmet Ada Öztekin (✓).
Llama3.1-70B: Lee Hwan-kyung (✗), since January 2019 (✓).
Mixtral-8x7B: Sure, since January 2019 (✓), the director of the latest release of “Miracle in Cell No. 7” is

Mehmet Ada Öztekin (✓).
Gemma2-27B: Since August 2023 (✗), the director of the latest release of “Miracle in Cell No. 7” is

Lee Hwan-kyung (✗).
Qwen2-72B: The original film was released in 2013 and a Chinese remake directed by Zhang Lü (✗)

was released in January 2021 (✗).
Granite3.1-8B: The most recent version of ""Miracle in Cell No. 7"" was directed by Lee Jae-gon (✗),

since 2019 (✓).

D.2 INTEGRATING TIME ACCURACY TO EXISTING TSQA BENCHMARKS

Continuing from Sec. 4.1, we provide a detailed case study with Dyknow (Mousavi et al., 2024), one
of the TSQA benchmarks that employs open-ended QA templates (e.g., “The president of Italy is
__”) (Dhingra et al., 2022; Margatina et al., 2023) to assess whether LLMs are temporally aligned
with the current world.
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While Dyknow evaluates LLM responses as correct (Cor.), outdated (Out.), or incorrect (Inc.) based
on the parsed answer, we modify their system prompt to explicitly generate start date references to
incorporate time accuracy. We then assess the correctness of each evaluation method (i.e., with and
without time accuracy) against manual verification on 125 randomly sampled responses per model,
where we recruit five graduate student annotators and distribute a total 1,000 responses from eight
LLMs, ensuring that each response is evaluated by at least two annotators. We measure the correctness
with precision (P), recall (R), and F1-score (F1), standard metrics for classification (Yacouby &
Axman, 2020) with definitions provided below.

• Precision: The proportion of examples labeled as a given class (e.g., correct, outdated, and
incorrect) by the evaluation method that are also judged as the same class by human annotators.

Precision =
True Positives

True Positives + False Positives

• Recall: The proportion of examples judged to a given class (e.g., correct, outdated, and incorrect)
by human annotators that are also labeled as the same class by the evaluation method.

Recall =
True Positives

True Positives + False Negatives

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure of alignment
with human judgment.

F1 Score = 2× Precision× Recall
Precision + Recall

As shown in Table 19, integrating T consistently improves all metrics over the original method,
leading to higher evaluation correctness. These results demonstrate the value of time accuracy as
a complementary evaluation criterion to traditional answer accuracy. We note that the integration
is straightforward for other TSQA benchmarks that employ open-ended question formats similar to
Dyknow (Dhingra et al., 2022; Margatina et al., 2023), requiring only minimal prompt modifications.

Table 19: Comparison of evaluation correctness using DyKnow (Mousavi et al., 2024), with and
without time accuracy (T), against human verification.

Methods P R F1

Correct (↑)
Human 1.00 1.00 1.00
Dyknow 0.67 0.92 0.77
Dyknow + T 0.98 0.95 0.96

Outdated (↓)
Human 1.00 1.00 1.00
Dyknow 0.69 0.78 0.73
Dyknow + T 0.95 0.88 0.91

Incorrect (↓)
Human 1.00 1.00 1.00
Dyknow 0.32 0.60 0.39
Dyknow + T 0.58 0.84 0.64

D.3 TEMPORAL SPAN ANALYSIS AGGREGATED ACROSS MULTIPLE DOMAIN

Continuing from Sec. 4.2, we provide more results on temporal span analysis. In addition to Fig. 3
that shows LLM performances by temporal span evaluated on a single domain, we show aggregated
results in Fig. 5 evaluated on multiple domains: Country, Athletes, and Organizations. Compared to
the single domain results, LLM performances diverge more clearly, suggesting that domain-specific
fluctuations are smoothed out and model-specific behaviors become more evident when multiple
domains are considered. General trends – notable performance drops in recent years (2020-2025)
while having performance peaks in 2010-2015 – are still observed, which are consistent with recent
findings (Dhingra et al., 2022; Mousavi et al., 2024; Zhao et al., 2024).
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Figure 5: LLM performances across different time spans (1985-2025) in the closed-book setting,
evaluated on multiple domains: Country, Athletes, and Organizations.

D.4 MORE DETAILS ON EXPERIMENTS WITH PERFORMANCE IMPROVEMENT TECHNIQUES

Continuing from Sec. 4.3, we provide more details on experiments with performance improvement
techniques: RAG (Lewis et al., 2020), CoT (Wei et al., 2022), and Time-CoT (Yin & Hu, 2024).

CoT and Time-CoT Prompts The upper and lower prompts are used for the CoT and Time-CoT
settings, respectively. As illustrated, Time-CoT prompts provide more detailed intermediate steps for
temporal reasoning, such as presenting relevant historical timelines (e.g., sequences of presidential
terms) when compared to standard CoT.

Q: Who was the vice president of the host country for the 31th Summer
Olympic Games?
A: Michel Temer. The 31th Summer Olympic Games were held in August 2016
in Rio. The host country was Brazil. The Vice President of Brazil in
August 2016 was Michel Temer. The answer is Michel Temer.

Q: Can you provide the name of the governor-general of the host country
during the 27th edition of the Summer Olympics?
A: William Deane. The 27th edition of the Summer Olympics were held
in September 2000 in Sydney. The host country was Australia.
The Governor-General of Australia in September 2000 was William Deane.
The answer is William Deane.

Q: Can you identify the president of the host country for the Seoul 1988
Olympics?
A: Roh Tae-woo. The Seoul 1988 Olympics were held in September 1988.
The host country was South Korea. The president of South Korea in
September 1988 was Roh Tae-woo. The answer is Roh Tae-woo.

Q: Who held the position of general secretary in the host country during
the 1980 Olympic Games in Moscow?
A: Leonid Brezhnev. The Moscow 1980 Olympics were held in July 1980.
The host country was Soviet Union. The general secretary of Soviet Union
in July 1980 was Leonid Brezhnev. The answer is Leonid Brezhnev.

Q: Can you identify the president of the host country for the Seoul
1988 Olympics?
A: Let’s think step by step. First, Seoul 1988 Olympic Games were held
in September 1988, South Korea. Then, we need to find out who was
the president of South Korea according to timeline. 1989-1993: Roh
Tae-woo, 1993-1998:Kim Young-sam. Then, we need to focus on the time
-- 1988. So we can obtain the answer is Roh Tae-woo.
Therefore, the answer is Roh Tae-woo.

Q: Who held the position of general secretary in the host country during
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the 1980 Olympic Games in Moscow?
A: Let’s think step by step. First, Moscow 1980 Olympic Games were
held in July 1980, Soviet Union. Then, we need to find out who was
the general secretary of Soviet Union according to timeline. 1964-1982:
Leonid Brezhnev, 1982-1984: Yuri Andropov. Then, we need to focus on
the time -- 1980. So we can obtain the answer is Leonid Brezhnev.
Therefore, the answer is Leonid Brezhnev.

Q: What is the name of the monarch of the host country for the Oslo 1952
Olympic Games?
A: Let’s think step by step. First, Oslo 1952 Olympic Games were held
in February 1952, Norway. Then, we need to find out who was the monarch
of Norway according to timeline. 1905-1957: Haakon VII, 1957-1991: Olav
V. Then, we need to focus on the time -- 1952. So we can obtain the
answer is Haakon VII. Therefore, the answer is Haakon VII.

Q: Which emperor was in charge of the host country during the Sapporo
1972 Olympic Games?
A: Let’s think step by step. First, Sapporo 1972 Olympic Games were
held in February 1972, Japan. Then, we need to find out who was the
president of Japan according to timeline. 1926-1989: Showa, 1989-2019:
Akihito. Then, we need to focus on the time -- 1972. So we can obtain
the answer is Showa. Therefore, the answer is Showa.

Case Study of Temporally Misaligned RAG We observe that standard RAG methods often fail
to account for temporal cues embedded in the question. Table 20 and Table 21 present illustrative
examples of such temporal misalignments, where retrieved documents from Wikipedia describe the
Olympics from incorrect time periods or provide generic explanations of the Olympics.

Table 20: Retrieved Wikipedia passage describing the 1964 Winter Olympics, given the question
asking about the 7th Winter Olympics (held in 1956).

[Question] Who was the president of the host country for the 7th Winter Olympic Games?

[Retrieved Document] The 1964 Winter Olympics, officially known as the IX Olympic Winter Games
(German: IX. Olympische Winterspiele) and commonly known as Innsbruck 1964 (Austro-Bavarian:
Innschbruck 1964), were a winter multi-sport event which was celebrated in Innsbruck, Austria, from
January 29 to February 9, 1964. ...

Table 21: Retrieved Wikipedia passage describing generic information about the Olympics, given the
question asking about the 4th Summer Olympics.

[Question] Who was the Prime Minister of the host country during the 4th edition of the Summer Olympic
Games?

[Retrieved Document] The modern Olympic Games (Olympics; French: Jeux olympiques) are the world’s
leading international sporting events. They feature summer and winter sports competitions in which
thousands of athletes from around the world participate in a variety of competitions. The Olympic Games
are considered the world’s foremost sports competition, with more than 200 teams, representing sovereign
states and territories, participating. ...

Results on the Single-hop Setting In addition to the multi-hop setting presented in the main
text (Table 7), we provide more results on single-hop questions. Specifically, we apply the same
performance improvement techniques to the questions used in the temporal reasoning task (Sec. 4.2)
under the closed-book setting to examine the effectiveness of each technique – RAG for providing up-
to-date knowledge, and CoT and Time-CoT for improving temporal reasoning – and report the results
in Table 22. Interestingly, all techniques greatly improve performances on None-type questions,
where we observe that models tend to respond with “no answer” more frequently, possibly rejecting
to respond if they are uncertain for their reasoning. In addition, when the additional contexts retrieved
via RAG do not contain the gold answer – due to the temporal misalignment issue discussed above
– we also observe that models tend to respond with “no answer” rather than relying on their own
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knowledge, which degrades performances on Multiple- and Unique-type questions while improving
performance on None-type questions. As with the multi-hop results, we observe similar performance
between CoT and Time-CoT in the single-hop setting.

Table 22: Comparison of LLM performances with different performance improvement techniques
– RAG, CoT, and Time-CoT – across question types categorized by answer cardinality: Multiple,
Unique, and None, evaluated on the Wikipedia dataset under the closed-book setting. The results are
compared with the original setting (Orig.). We report AT for Multiple and Unique types, and A for
the None-type, as no time reference applies to no-answer cases.

Multiple Unique None
Model Orig. RAG CoT Time-CoT Orig. RAG CoT Time-CoT Orig. RAG CoT Time-CoT

GPT-3.5 12.4 14.2 9.0 0.4 38.7 26.6 26.6 12.7 56.8 54.2 83.9 97.1
GPT-4 20.2 25.1 21.0 30.0 61.3 54.3 65.9 57.3 19.0 39.6 51.6 74.7
GPT-4o 34.5 30.7 24.3 32.6 65.1 59.2 62.9 62.9 37.4 43.2 60.4 50.2
Llama3.1-70B 20.6 8.6 16.5 19.9 59.4 34.5 68.9 48.7 22.0 54.9 25.3 33.3
Mixtral-8x7B 10.9 9.7 8.6 15.4 40.6 30.3 50.9 48.7 28.9 16.5 30.8 26.7
Gemma2-27B 24.3 13.9 19.9 21.3 59.4 45.7 62.2 62.5 6.2 16.8 10.6 12.1
Qwen2-72B 19.1 17.2 13.5 12.7 57.5 51.7 59.2 59.9 20.1 32.6 38.8 39.6
Granite3.1-8B 6.7 4.9 4.9 7.1 34.1 15.7 22.8 20.6 20.9 43.6 76.9 60.1

D.5 MORE DETAILS ON CORRECTNESS ANALYSIS

Continuing from Sec. 4.4, we provide a more fine-grained correctness analysis result. Similarly
to the manual verification setup in Sec. D.2, we manually verify 125 randomly sampled responses
per task and measure the correctness using precision, recall, and F1 score. As shown in Table 23,
TDBench exhibits high agreement with manual verification, achieving higher precision than recall.
This result indicates that TDBench can effectively capture responses with both correct answers and
valid temporal reasoning, while some incorrect explanations – particularly those unrelated to temporal
references – remain challenging to detect.

Table 23: Correctness of TDBench against manual verification across question subcategories, mea-
sured with Precision, Recall, and F1 score – see metric definitions in Sec. D.2.

Task P R F1

Temporal alignment (Average) 0.98 0.96 0.97
Temporal reasoning (Multiple) 0.85 0.88 0.86
Temporal reasoning (Unique) 0.81 0.87 0.83
Temporal reasoning (None) 0.89 0.90 0.90
Temporal reasoning (Average) 0.87 0.91 0.88
Multi-hop (Average) 0.95 0.87 0.91

D.6 EVALUATION ON SYNTHETIC MEDICAL DATA

Continuing from Sec. 4.5, we demonstrate how TDBench can be applied to synthetic datasets, as
long as the underlying tables used in TDBench have TFDs satisfied. We use a synthetic medical
dataset consisting of synthetic records of patients at a hospital, and ask questions about doctors and
medication by using TFDs name, gender, blood_type T→ doctor and name, gender, blood_type T→
medication – see example questions in Sec. C.2.

Table 24 shows improved LLMs performances compared to the performances on real-world factual
questions, particularly for Multiple- and None-type questions. We hypothesize that this improvement
may stem from reduced interference by the model’s internal knowledge. As the data is synthetic and
unfamiliar, models are more likely to focus on the explicit temporal context provided in the prompt,
potentially leading to more accurate temporal reasoning.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 24: Comparison of LLM performances across question types categorized by answer cardinality:
Multiple, Unique, and None, evaluated on the synthetic Medical dataset in the open-book setting. We
report only A for the None-type, as no time reference applies to no-answer cases.

Multiple Unique None
Model A T AT A T AT A

GPT-3.5 97.5 50.4 61.9 35.4 93.6 33.0 100.0
GPT-4 98.8 77.9 77.7 44.4 98.6 43.9 91.0
GPT-4o 97.5 78.6 78.5 59.8 97.2 58.4 100.0
Llama3.1-70B 95.8 68.6 85.8 57.9 76.6 56.4 98.8
Mixtral-8x7B 97.1 55.7 60.8 24.9 90.6 22.9 27.1
Gemma2-27B 94.8 52.1 78.3 48.3 89.8 47.0 100.0
Qwen2-72B 93.5 68.9 66.2 53.5 95.1 52.2 100.0
Granite3.1-8B 88.3 44.8 41.5 17.6 93.5 17.1 100.0

D.7 EVALUATION OF TASK-SPECIFIC TSQA METHODS

Continuing from Sec. 4.5, we provide an additional analysis with task-specific TSQA methods. While
the primary goal of our study is to assess the accuracy and reliability of general-purpose models –
those expected to possess “accurate knowledge” and widely adopted in many tasks as GPT-Judges
for handling factual knowledge (Lin et al., 2021; Sun et al., 2023; Wang et al., 2023) – performance
analysis on task-specific models such as TG-LLM (Xiong et al., 2024) and TempT5 (Tan et al.,
2023) can offer insights in different perspectives. Specifically, we aim to explore (1) performance
differences compared to general-purpose models and (2) the effectiveness of their training methods
when measured with other TSQA pairs beyond the original benchmarks used for their training
(TGQA (Xiong et al., 2024) and TempREASON (Tan et al., 2023) for TG-LLM and TempT5,
respectively), which follow different QA styles.

Table 25: Performance comparison of task-specific TSQA methods. Only A is reported for TempT5
and T5 due to their answer-only format.

Model A AT

Llama3.1-70B 58.4 54.2
Mixtral-8x7B 42.9 30.9
Gemma2-27B 69.3 32.8
TG-LLM 41.0 34.0
Llama2-13B (base model of TG-LLM) 37.0 27.0
TempT5 4.2 N/A
T5-base (base model of TempT5) 0.0 N/A

As shown in Table 25, TG-LLM demonstrates a notable performance improvement over its base
model (i.e., Llama2-13B) and performs comparably to the general purpose model Gemma2-27B;
however, the performance still lags behind the larger Llama family model used in our experiments
(i.e., Llama3.1-70B). In contrast to the good generalization ability shown in TG-LLM, TempT5
greatly struggles with TDBench’s QA pairs, resulting in low performance, likely due to the limited
capacity of its underlying architecture (i.e., T5-base).

D.8 COMPARISON WITH LLM-BASED METHODS

Continuing from Sec. 3.1 and Sec. 4.5, we provide a case study comparing TDBench with LLM-based
methods. While TDBench leverages both database techniques and an LLM for TSQA construction,
one possible approach is to solely use LLMs to directly generate QA pairs from an input data
source (Kim et al., 2024; Zhao et al., 2024). We demonstrate how this LLM-only approach can (1) be
more prone to hallucinations and (2) incur higher inference costs when processing the raw data.

Anlaysis on Hallucination We demonstrate with Zhao et al. (2024), using their system prompt,
shown below. To better reflect realistic multi-attribute reasoning scenarios, we relax one constraint in
the original prompt: each question should contain only one column’s information.
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Below is a table in CSV format separated with commas ‘,’. Based on this
table’s information along with its description and abstracts,
please raise up to ten questions that the answers are different
in 2010, 2019, and 2023. After raising the question, please get answers
for those time points from the table. Please make sure the answers
should be totally different without overlapping. Please only raise
questions regarding the latest status of those time points instead of
the history, while also do not explicitly mention the time information
in the question to make them more natural. Do not ask questions
cannot be answered based on the information provided in the table. Make
sure the full and explicit names of related entities are used in
the question based on the description in the prompt and do not use
pronouns.

We use the same LLM (GPT-4) as in their study and provide 50 rows from the Country dataset. The
generated QA pairs are as follows:

• Q1: What name was associated with the role of the Prime Minister of Australia?
A1: Anthony Albanese

• Q2: Who was the Prime Minister of Denmark in 2010?
A2: Lars Løkke Rasmussen

• Q3: Who was the Prime Minister of Denmark in 2019?
A3: Lars Løkke Rasmussen

• Q4: Who was serving as the President of Nigeria in the year when Goodluck Jonathan started his
term?
A4: Goodluck Jonathan

• Q5: Who was serving as the Prime Minister of Denmark when Mette Frederiksen began her term?
A5: Mette Frederiksen

While the model correctly identifies the time-sensitive column based on the table schema (e.g., the
name of the role-holder), the generated QA pairs do not fully adhere to the instructions. For instance,
(Q2, A2) and (Q3, A3) explicitly mention temporal information, violating the guideline to avoid
doing so; (Q2, A2) and (Q3, A3) makes it easy to infer answers from the questions themselves,
compromising the question quality.

This case study indicates that LLM-based QA generation can result in less controlled QA generation,
being vulnerable to hallucinations even when the provided data source is relatively in small-scale (i.e.,
50 rows). In contrast, SQL-based data processing employed in TDBench can ensure more controlled
QA generation, even at scale, thereby reducing the manual effort often required in LLM-based
methods to identify and eliminate hallucinated responses (Kim et al., 2024; Wu et al., 2024).

Analysis on Inference Cost More importantly, SQL-based processing can be more cost-effective.
TDBench only uses the necessary attributes for generating questions via TFDs and discards the rest,
whereas an LLM-only approach typically ingests an entire row. We compare TDBench with an
LLM-only baseline on five datasets used in our experiments (Sec. 4). As a result, Table xx shows that
TDBench uses significantly fewer input tokens while achieving comparable inference time as that of
the LLM-only baseline. We also observe greater cost benefits in larger, real-world datasets like the
Netflix dataset compared to smaller, well-processed datasets like the Leaders dataset, demonstrating
the scalability of TDBench.

Table 26: Comparison of inference time (Time (s)) and input size (Tokens) across datasets, where
each dataset’s column count (#col) is shown. Bold indicates the lower (better) value.

Leaders (#col: 5) Olympic (#col: 7) Environ (#col: 10) Medical (#col: 15) Netflix (#col: 18)

Model Time (s) Tokens Time (s) Tokens Time (s) Tokens Time (s) Tokens Time (s) Tokens

LLM-only 1.79 206 1.89 316 1.47 376 1.81 542 1.91 1,288
TDBench 1.62 161 2.57 177 1.93 169 3.32 299 1.73 138
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D.9 FULL EXPERIMENTAL RESULTS

Continuing from Sec. 4.3, we provide full results on the multi-hop setting. Table 27 shows that
Llama3.1-70B outperforms GPT-4o in the 2-hop setting, whereas GPT-4o outperforms Llama3.1-70B
in the 3-hop setting. Interestingly, GPT-4o shows an extremely low hallucination rate (i.e., H1) in the
2-hop setting – which requires identifying the role-holder of the host country of a given Olympic
games – indicating that once the model get the correct host country and time, the model is mostly
able to retrieve the correct role-holder for that time.

Table 27: Performance comparison on multi-hop questions where Hi denotes the hallucination rate
at the (i+ 1)-st hop given that the i-th hop is correct.

2-hop 3-hop
Model A AT H1 A AT H1 H2

GPT-3.5 66.7 63.1 9.1 33.8 33.8 8.5 7.6
GPT-4 88.4 67.2 4.5 57.1 52.5 10.8 0.5
GPT-4o 86.9 79.3 0.0 90.4 87.9 26.3 0.0
Llama3.1-70B 91.9 83.8 68.8 82.8 80.8 38.2 4.5
Mixtral-8x7B 80.8 72.7 45.9 60.1 49.0 19.5 10.6
Gemma2-27B 79.8 77.8 35.1 48.0 43.9 26.5 24.7
Qwen2-72B 78.3 65.2 50.0 68.2 59.1 35.1 5.6
Granite3.1-8B 73.7 50.5 80.4 11.1 11.1 10.3 77.8
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