

000 001 002 003 004 005 006 007 008 009 010 011 012 CLUTCH: CONTEXTUALIZED LANGUAGE MODEL FOR UNLOCKING TEXT-CONDITIONED HAND MOTION MOD- ELLING IN THE WILD

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Hands play a central role in daily life, yet modeling natural hand motions remains underexplored. Existing methods that tackle text-to-hand-motion generation or hand animation captioning rely on studio-captured datasets with limited actions and contexts, making them costly to scale to “in-the-wild” settings. Further, contemporary models and their training schemes struggle to capture animation fidelity with text–motion alignment. To address this, we (1) introduce ‘3D Hands in the Wild’ (3D-HIW), a dataset of 32K 3D hand-motion sequences and aligned text, and (2) propose CLUTCH, an LLM-based hand animation system with two critical innovations: (a) SHIFT, a novel VQ-VAE architecture to tokenize hand motion, and (b) a geometric refinement stage to finetune the LLM. To build 3D-HIW, we propose a data annotation pipeline that combines vision–language models (VLMs) and state-of-the-art 3D hand trackers, and apply it to a large corpus of egocentric action videos covering a wide range of scenarios. To fully capture motion in-the-wild, CLUTCH employs SHIFT, a part–modality decomposed VQ-VAE, which improves generalization and reconstruction fidelity. Finally, to improve animation quality, we introduce a geometric refinement stage, where CLUTCH is co-supervised with a reconstruction loss applied directly to decoded hand motion parameters. Experiments demonstrate state-of-the-art performance on text-to-motion and motion-to-text tasks, establishing the first benchmark for scalable in-the-wild hand motion modelling. Code, data and models will be released.

1 INTRODUCTION

Hands are at the heart of our daily experiences: With them we write, knit, play instruments, and perform countless other actions that feel effortless to us but remain challenging for generative models to reproduce naturally. Capturing this variability is not only essential for natural motion generation, but also foundational for future behavioral AI, where models must infer, predict, and generate human behavior in interactive settings such as AR/VR, robotics, and human–computer collaboration. While prior work has focused on full-body motion, gestures, and hand–object interactions (Chen et al., 2024; Jiang et al., 2024; Liu et al., 2024; Ng et al., 2024; Huang et al., 2025; Christen et al., 2024; Cha et al., 2024; Petrov et al., 2025), text-guided hand motion generation “in-the-wild” remains underexplored, with text-to-hand–object interaction methods being the most related line of work.

Hand motion models (Huang et al., 2025; Zhou et al., 2024; Cha et al., 2024; Zhang et al., 2025b) are primarily trained on high-quality 3D hand motion datasets, such as GRAB (Taheri et al., 2020), ARCTIC (Fan et al., 2023), and H2O (Kwon et al., 2021), all captured in motion capture studios. However, collecting such datasets is both time-consuming and expensive, limiting scalability to diverse scenarios and actions. As a result, current methods are restricted to a narrow set of actions and intents, and cannot generate “in-the-wild” motions. To mitigate this data limitation, we draw inspiration from prior work (Wang et al., 2025; Sklyarova et al., 2023), which leverage VLMs/LLMs as data annotators. Specifically, we integrate a 3D hand tracker (Zhang et al., 2025a) with a VLM (Wu et al., 2024) to construct an “in-the-wild” hand motion dataset comprising 32K sequences; approximately 10× larger than GRAB and ARCTIC, and 2× larger than the recent Gigahands (Fu et al., 2025) dataset. We refer to this dataset as ‘3D Hands in the Wild’ (3D-HIW) dataset, which includes multi-action clips like piano and food prep, underrepresented in previous work.

Figure 1: CLUTCH is a novel LLM-based model that enables text-conditioned synthesis (left) and captioning of in-the-wild 3D hand motions (right).

While VLMs demonstrate strong visual understanding, they often hallucinate spurious objects, actions, or concepts (Wu et al., 2025) when captioning. To address this, we introduce a *Parallelized Chain-of-Thought Prompting* strategy, which decomposes a complex reasoning prompt into multiple atomic prompts, each targeting a specific video aspect. The atomic responses are processed by a summarization module to generate an initial annotation, then refined into a more detailed annotation.

Compared to most existing hand motion datasets, which mostly contain single actions or interactions per sequence, in-the-wild hand movements are more natural and diverse, often involving multiple actions within the same sequence. This requires a motion model that can robustly align hand motion with language representations. Recent approaches, HOIGPT (Huang et al., 2025) and MotionGPT (Huang et al., 2025), repurpose pre-trained LLMs for motion tasks. However, we find that applying them as-is to hand animation leads to suboptimal performance due to (1) poor generalization capability of the motion tokenizer, and (2) geometric inaccuracies in the LLM-predicted motion. We address this by introducing **CLUTCH (Contextualized Language model for Unlocking Text-Conditioned Hand motion)**, a novel LLM for synthesizing and captioning in-the-wild 3D hand motions (illustrated in Fig. 1). In CLUTCH, we address the aforementioned limitations by: (1) a novel hand motion prior and (2) a new LLM finetuning stage with a geometric refinement loss.

(1) Motion prior. Hand motions are inherently multi-modal. Using a standard single VQ-VAE for both hands leads to poor quality of hand motion reconstruction (jitter or lack of realism). The diversity of hand motions observed “in-the-wild” exposes this issue further. To address this, we introduce **SHIFT (Structuring Hands Into Fine-grained Tokens)**. SHIFT models trajectory and pose components using separate VQ-VAE’s, while disentangling left and right hands during encoding and decoding. Empirically, this formulation achieves stronger generalization and more accurate reconstructions, even under high temporal compression compared to a standard VQ-VAE. It also improves bimanual coordination and reduces jitter.

(2) LLM finetuning. We find that finetuning the LLM on the standard next-token prediction task with the cross-entropy (CE) loss leads to suboptimal animation fidelity. We find that token-level accuracy does not guarantee high-quality motion synthesis (as shown in (Hong et al., 2024)). An additional reconstruction loss in motion space is needed to improve the motion generation. In CLUTCH, we add a novel geometry refinement stage that decodes the sampled tokens into the hand motion parameters and applies a reconstruction loss directly to the decoded hand motion parameters. This guides the LLM toward selecting codes with stronger animation fidelity. With these, CLUTCH achieves state-of-the-art on in-the-wild hand motion synthesis and captioning, and goes beyond studio captures, by generating everyday in-the-wild motions rarely seen in mocap: *playing piano (bimanual)*, *cooking*, *writing*, *knitting*, and more. We show quantitatively, that CLUTCH outperforms recent state-of-the-art methods such as HumanMDM, MotionGPT, and T2M-GPT.

The overview of our work is presented in Figure 2. Taken together, our main contributions are:

- (1) A data acquisition pipeline that combines a 3D hand tracker with a novel annotation framework driven by a vision-language model to enable scalable in-the-wild 3D hand motion data curation.
- (2) Using this pipeline, we construct ‘3D Hands in the Wild’ (3D-HIW), a large-scale dataset comprising over 32K hand motion sequences captured in diverse real-world egocentric videos.
- (3) We introduce SHIFT (Structuring Hands Into Fine-grained Tokens) tokenizer, for modelling in-the-wild hand motions. SHIFT improves performance over tokenizers used in prior works.

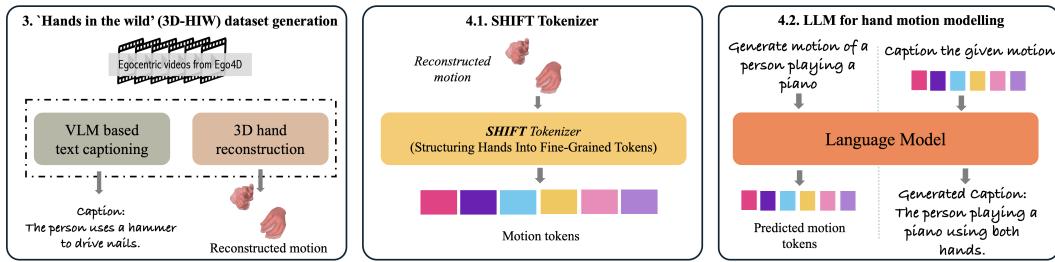


Figure 2: **Overview:** CLUTCH is an LLM for synthesizing and captioning in-the-wild 3D hand motions. To train this model, we (i) generate an in-the-wild hand motion dataset (Section 3). We (ii) tokenize the hand motion using a novel decomposed VQ-VAE tokenizer (Section 4.1). We (iii) train the LLM to model both text and motion in a unified token space (Section 4.2).

(4) Finally, we propose CLUTCH, an LLM-based generative model for text-conditioned synthesis and captioning of in-the-wild 3D hand motions; setting a new benchmark for scalable in-the-wild hand motion modelling.

2 RELATED WORK

Motion Datasets / Annotation: Existing motion datasets provide a foundation for current human modelling methods. AMASS (Mahmood et al., 2019) unifies diverse mocap datasets into a large-scale human body motion dataset. While GRAB, ARCTIC, H2O, DexYCB (Chao et al., 2021), and OakInk (Zhan et al., 2024; Yang et al., 2022) offer detailed 3D hand-object interactions. More recently, Gigahands (Fu et al., 2025) introduced a dataset of 15K hand motion sequences with diverse actions and objects. While these datasets are of high quality, they are costly to collect, confined to controlled studio settings, and cover only narrow action ranges. In contrast, large-scale egocentric datasets such as Ego4D (Grauman et al., 2022) and EgoVid5M (Wang et al., 2024) capture diverse real-world activities but lack accurate 3D hand reconstructions and textual action descriptions. Parallel efforts in egocentric video captioning, such as LaViLa (Zhao et al., 2023), HOD (Pei et al., 2025), and EgoLM (Hong et al., 2024), leverage language models generating faithful action descriptions from input videos. LaViLa and EgoLM employ large language models (LLMs) to generate dense narrations, while HOD augments narrations (if present) with detected hand-object trajectories to produce semantically richer descriptions. To enable in the wild hand motion modelling, we construct a large-scale 3D hand motion dataset called ‘3D Hands in the Wild’ (3D-HIW) based on Ego4D. To this end, we introduce a two-stage annotation pipeline that first applies open-vocabulary reasoning via parallel chain-of-thought prompting, and then refines results with closed-vocabulary grounding.

Motion Modelling: Research in motion generation has largely focused on full-body and gesture synthesis (Guo et al., 2024; Liu et al., 2023; Zhang et al., 2023; Jiang et al., 2025; Wang et al., 2023; Shafir et al., 2023; Xie et al., 2023; Karunratanakul et al., 2023; Zhang et al., 2025c; 2023; Athanasiou et al., 2024; Chi et al., 2024; Liu et al., 2024). Parallel works have focused on hand-object interaction modelling (Christen et al., 2024; Cha et al., 2024; Ghosh et al., 2023; Zhou et al., 2022; 2024), built on MoCap datasets like GRAB (Taheri et al., 2020) or ARCTIC (Fan et al., 2023). Recent works such as (Huang et al., 2025; Jiang et al., 2024; Chen et al., 2024; Li et al., 2025a) treat motion tokens as text-like symbols, enabling pretrained LLMs to synthesize motions. While promising, these methods are limited by small-scale datasets and training objectives that emphasize token prediction accuracy rather than reconstruction fidelity. EgoLM (Hong et al., 2024) addresses this by introducing soft-linear blending regression losses during pretraining, improving text-motion alignment. However, such regression objectives conflict with cross-entropy: blending encourages smooth interpolations, whereas CE enforces sharp token choices, leading to ambiguous representations and reduced generalization. Our approach extends this line of work with a geometry-alignment stage after pretraining, where Gumbel-Softmax sampling and reconstruction losses guide the LLM toward motions that are both semantically grounded and geometrically consistent.

VQVAE as Motion Prior: VQ-VAE tokenizers discretize motion into language-like symbols (Jiang et al., 2024; Guo et al., 2022), but single codebooks fail to capture multi-modality. Extensions use multiple codebooks: for hand/face (Yi et al., 2023), hand/object (Huang et al., 2025), or decomposed

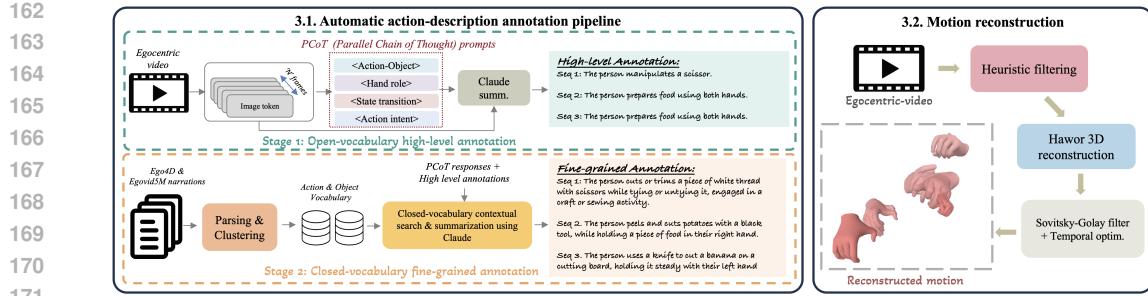


Figure 3: **Data annotation pipeline:** We generate motion–text pairs from egocentric videos using a novel automated annotation framework combined with a state-of-the-art hand tracker. Text annotations are produced by first applying Parallel Chain-of-Thought prompting for open-vocabulary reasoning, followed by a closed-vocabulary refinement stage.

body parts (Chen et al., 2024). (Wang et al., 2025) further explore scaling strategies to expand capacity. We build on these ideas by disentangling trajectories and hand poses into distinct codebooks, and further separate left and right hands. This yields finer control and improved generalization under temporal compression, surpassing prior single- and multi-codebook designs. A more detailed version of the related works is presented in Appendix D.

3 3D HANDS IN THE WILD (3D-HIW) DATASET

To enable in-the-wild hand motion modelling, we construct a large-scale 3D hand motion dataset based on in-the-wild videos from Ego4D Grauman et al. (2022) and EgoVid5M Wang et al. (2024). We propose a two-stage VLM-based text annotation and a motion reconstruction pipeline.

3.1 AUTOMATIC TWO-STAGE TEXT ANNOTATION PIPELINE

To generate textual descriptions from egocentric action videos, we propose an automated two-stage annotation pipeline using VLMs/LLMs. We employ VILA (Wu et al., 2024) as the VLM for its strong performance in video–language understanding and scalability for dense frame-level queries. Generating reliable annotations from egocentric videos is complicated, since the model needs to jointly reason about hand motion, user intent, and object–scene relationships. To address these challenges, we propose a two-stage pipeline, shown in Figure 3. In Stage 1 (Open-vocabulary high-level annotation), we introduce a *Parallel Chain-of-Thought* prompting strategy, which decomposes the reasoning process into several atomic prompts focused on the hand role, action–object relations, state transitions, and intent. These responses are then aggregated by a summarization LLM (Claude) to produce a coherent high-level description and reduce hallucinations. In Stage 2 (Closed-vocabulary fine-grained annotation), we refine these high-level annotations by constraining the VLM to select plausible object–action pairs from a curated vocabulary, mined from EgoVid5M and Ego4D narrations and organized into semantically meaningful clusters. This closed-vocabulary grounding improves consistency, and yields more faithful fine-grained annotations. We present the annotations generated by our method for a few sample sequences in Figure 5. Finally, we verify the generated annotations using an additional VLM pass and filter outliers with a Local Outlier Factor (LOF) filter. These refined annotations serve as supervision for the downstream training of our text-conditioned hand motion synthesis model. The prompts used for the annotation pipeline are presented in ??.

3.2 MOTION RECONSTRUCTION

To extract 3D hand motion reconstructions from egocentric videos, we first process high-level text descriptions from the EgoVid5M dataset to identify sequences involving human presence, particularly those where humans interact with objects. We then cluster these textual descriptions into scene-level activity categories (e.g., crafting, repair) and sample sequences from each cluster to ensure diverse coverage, given that certain categories like cooking are overrepresented. Next, we run a hand keypoint tracker over the sampled videos and retain only those sequences where both hands are visible in at

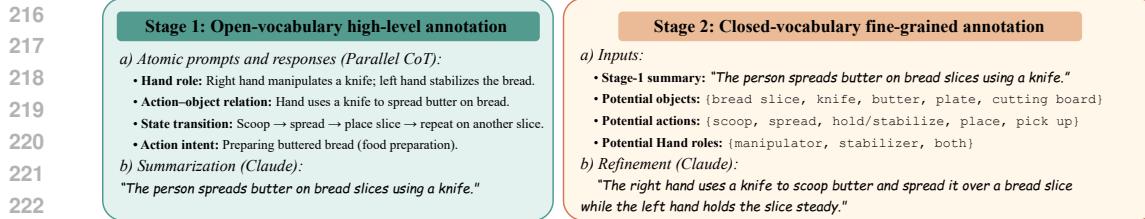


Figure 4: Example of the two-stage annotation pipeline for an egocentric video (Figure 5).

Figure 5: Examples of the generated annotation and motion reconstruction from egocentric videos using our data annotation pipeline. For better visualization please see the SupMat video.

236 least 80% of the frames. We use HaWor (Zhang et al., 2025a) to reconstruct 3D hand motions from 237 these egocentric sequences in a global coordinate frame. To reduce the noise in the reconstructed 238 motions, we apply the Savitzky-Golay filter (Savitzky & Golay, 1964) followed by a Gaussian filter. 239 Finally, we compute the mean of the top-3 sequence-level acceleration on both translation and rotation 240 parameters to identify and filter out samples with abrupt, jittery transitions, indicating HaWor failures. 241

242 3.3 DATASET ANALYSIS

244 Our ‘3D Hands in the wild’ (3D-HIW) motion dataset contains 5000 minutes of 3D hand poses and 245 text descriptions, covering over 1355 objects and 1045 verbs. In total, 3D-HIW comprises 12M 246 hand poses represented with MANO parameters. In Figure 6, we compare the top-200 trajectories 247 between 3D-HIW and mocap datasets. While captured motions appear repetitive and front-facing, 248 in-the-wild motions show greater variability in shape, end positions, and speed. t-SNE embeddings of 249 trajectories and hand poses of top-3000 diverse samples further confirm that 3D-HIW spans a broader 250 distribution than GRAB or Gigahands, capturing richer variability of real-world interactions. For 251 more details, see Appendix C.1.

252 4 MOTION MODELLING

255 To model in-the-wild hand motions, we first tokenize the motion space into discrete tokens using a 256 decomposed VQ-VAE. Based on this motion space, we train an LLM to model text and motion tokens 257 in a unified latent space which allows us to do both motion synthesis from text and captioning of hand 258 motions. **Motion parameterization:** We represent the hand motions as $\mathbf{M} = (\mathcal{H}_l, \mathcal{H}_r) \in \mathbb{R}^{D \times N}$,

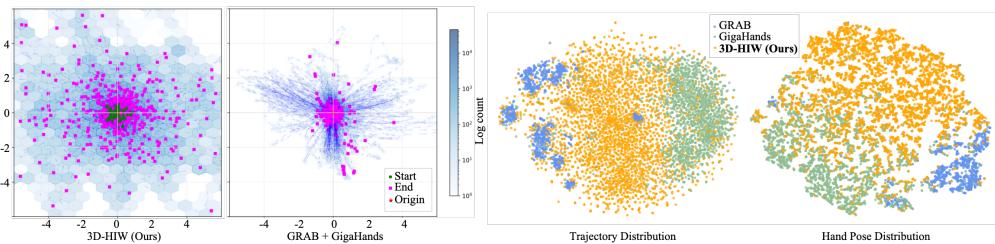


Figure 6: Comparison of our 3D-HIW dataset with existing datasets (GRAB, Gigahands). Left: 2D trajectory density plots show that our dataset covers a broader spatial range with more diverse start-end distributions. Right: t-SNE embeddings of trajectories and hand poses further highlight that our data spans a significantly wider distribution, capturing natural variability.

270 where N represents the total number of frames in the motion, D represents the motion dimension,
 271 and l/r denotes the left and right hand respectively. The hand motions are parameterized using the
 272 MANO hand model (Romero et al., 2017) represented as $\mathcal{H}_j = (\tau_j, \theta_j) \in \mathbb{R}^{D/2 \times N}$, with $j \in \{l, r\}$,
 273 $\tau_j \in \mathbb{R}^{9 \times N}$ represents the trajectory of the hand motion, which contains 6D global rotation and
 274 translation. $\theta_j \in \mathbb{R}^{90 \times N}$ denotes the hand pose representing the 15 joints with 6D rotation.
 275

276 4.1 STRUCTURING HANDS INTO FINE-GRAINED TOKENS (SHIFT): 277

278 Standard VQ-VAE models struggle to capture the diversity and complexity of ‘in-the-wild’
 279 hand motion, often resulting in limited reconstruction quality and generalization. To address
 280 this, we introduce SHIFT tokenizer that models trajectory and pose components using sepa-
 281 rate VQ-VAEs, while also disentangling left and right hands during encoding and decoding.
 282 This design choice is motivated by prior findings from Huang et al. (2025); Chen et al. (2024),
 283 where separating motion into different parts like hand, face, and objects shows improved performance.
 284 Our work extends this idea further by separating the motion into part-modality-specific granular
 285 components. Empirically, this formulation achieves stronger generalization and more faithful reconstructions (Table 4), even under high temporal
 286 compression (Figure 10). The hand motions are encoded using trajectory E_τ and hand pose E_θ
 287 encoders to produce $z_j \in \mathbb{R}^{d \times N/8}$ and $y_j \in \mathbb{R}^{d \times N/8}$ embeddings, where d represents the dimension
 288 of the codebook latent space. The embeddings are quantized into \hat{z}_j and \hat{y}_j using nearest neighbor
 289 quantization (van den Oord et al., 2018). The trajectory $\hat{\tau}_j$ and hand pose $\hat{\theta}_j$ of the input sequence
 290 is reconstructed using the respective decoders D_τ and hand pose D_θ , to get the final reconstructed
 291 motion $\hat{M} = (\hat{\tau}_j, \hat{\theta}_j)$ we train the encoder, decoder, and codebook simultaneously with the loss:
 292

$$293 \mathcal{L}_{VQ} = \mathcal{L}_{rec}(M, \hat{M}) + \sum_{x \in X} (\|sg[x] - \hat{x}\|^2 + \beta \|x - sg[\hat{x}]\|^2), \quad X = \{z_l, z_r, y_l, y_r\}, \quad (1)$$

294 where \mathcal{L}_{rec} is an MSE reconstruction loss, sg is a stop gradient operation used to calculate the
 295 codebook loss, and the third part is a ‘‘commitment’’ loss with a trade-off β .
 296

302 4.2 LLM FOR HAND-MOTION MODELLING: 303

304 Employing the part-modality decomposed tokenizer, a hand motion sequence $M_{1:N}$ can be mapped
 305 to discrete trajectory and pose tokens $\mathbf{z}_{1:T} = \{z_t\}_{t=1}^T$ and $\mathbf{y}_{1:T} = \{y_t\}_{t=1}^T$. We represent the motion
 306 tokens as sequences of indices $\mathbf{s}_{1:2T} = \{s_t\}_{t=1}^{2T}$, $s_t \in \mathbb{N}$, where each s_t is drawn from the combined
 307 motion vocabulary space V_m , where trajectory and pose codebooks are stacked. When tokenized, the
 308 motion sequence is represented as an interleaved stream of trajectory and pose tokens. In practice,
 309 each motion token is written as a special symbol $\langle \text{motion_token}\{i\} \rangle$. For brevity, we denote
 310 motion tokens as $\langle m \rangle$ and text tokens as $\langle t \rangle$.
 311

For example, a sequence with T trajectory $\langle m^{(\tau)} \rangle$ and pose tokens $\langle m^{(\theta)} \rangle$ is arranged as:

$$312 \langle \text{som} \rangle \langle m_1^{(\tau_L)} \rangle \langle m_1^{(\theta_L)} \rangle \langle m_1^{(\tau_R)} \rangle \langle m_1^{(\theta_R)} \rangle; \dots; \langle m_T^{(\tau_L)} \rangle \langle m_T^{(\theta_L)} \rangle \langle m_T^{(\tau_R)} \rangle \langle m_T^{(\theta_R)} \rangle \langle \text{eom} \rangle. \quad (2)$$

313 To train the LLM, we build a unified text–motion space $V = V_t \cup V_m$, where V_t is the text vocabulary.
 314 We include additional special tokens such as boundary markers (e.g., $\langle \text{som} \rangle$, $\langle \text{eom} \rangle$), which enable
 315 text-conditioned motion tasks to be represented in a consistent format. The model handles text-
 316 to-motion, motion-to-text, or joint captioning tasks in a unified manner. Given an input sequence
 317 $X_s = \{x_k^s\}_{k=1}^K$, $x_k^s \in V$, it predicts the target sequence $X_t = \{x_i^t\}_{i=1}^L$, $x_i^t \in V$ autoregressively:
 318

$$319 p_\theta(X_t | X_s) = \prod_{i=0}^{L-1} p_\theta(x_i^t | x_{<i}^t, X_s). \quad (3)$$

320 The training objective is:
 321

$$322 \mathcal{L}_{LM} = - \sum_{i=0}^{L-1} \log p_\theta(x_i^t | x_{<i}^t, X_s). \quad (4)$$

324 Table 1: Comparison of various methods on RPrecision, MMDist, KID Mean, Diversity, and
 325 MultiModality. Lower is better for all metrics except RPrecision and Diversity.

Method	RP3 \uparrow	MMD \downarrow	KID \downarrow	Div \rightarrow	MM \uparrow
Ground Truth	0.667 ± 0.004	1.903 ± 0.005		3.964 ± 0.189	
HumanMDM	0.694 ± 0.005	1.971 ± 0.019	0.344 ± 0.02	3.824 ± 0.177	1.748 ± 0.069
MotionGPT	0.573 ± 0.009	2.183 ± 0.013	0.756 ± 0.03	3.642 ± 0.119	2.015 ± 0.095
T2M-GPT	0.683 ± 0.005	1.976 ± 0.011	0.431 ± 0.02	3.854 ± 0.130	1.892 ± 0.085
Ours	0.721 ± 0.004	1.765 ± 0.016	0.216 ± 0.02	3.865 ± 0.124	1.984 ± 0.084

331 **Pre-training Stage.** We pre-train the language model on large-scale text and motion sequences
 332 using a cross-entropy loss on the next-token-prediction task and simple T2M and M2T tasks. This
 333 allows the model to capture natural language semantics and temporal dynamics of hand motions,
 334 similar to MotionGPT.

336 **Geometric-Refinement Stage.** While token-level cross-entropy loss encourages correct next-token
 337 prediction, we find it does not guarantee that decoded motions are geometrically smooth or realistic.
 338 Prior works (Hong et al., 2024) address this by adding soft-blending-based regression losses during
 339 the pre-training stage. However, jointly applying soft-blending-based regression in pre-training
 340 conflicts with cross-entropy, as soft-blending favors smooth interpolations while CE enforces sharp
 341 token predictions, leading to modest performance improvements (Table 5). To address this, we adopt
 342 a Gumbel-Softmax parameterization, which enables discrete token selection while directly applying
 343 regression loss in motion space. This yields the joint training objective: $\mathcal{L} = \alpha \mathcal{L}_{LM} + \lambda \mathcal{L}_{rec}$,
 344 where \mathcal{L}_{rec} ensures fidelity of the reconstructed hand motion. In addition, we also train the model
 345 on additional masked prediction tasks with $\alpha = 0$ to encourage the model to focus more on the
 346 reconstruction quality.

347 **Instruction Fine-tuning Stage.** Finally, we perform instruction fine-tuning to enable the model
 348 to handle multiple tasks, including text-to-motion and motion-to-text. We adopt the multi-task
 349 prompt-based training strategy from MotionGPT, where the model is supervised on diverse instruc-
 350 tion prompts. This stage improves generalization across different tasks and yields state-of-the-art
 351 performance on both synthesis and captioning benchmarks.

353 5 EXPERIMENTS

355 **Dataset** We build our experiments on the proposed 3D-HIW hand motion dataset, which provides
 356 paired 3D hand motions and text descriptions of 32k real-world sequences. For training and evaluation,
 357 we partition the sequences into non-overlapping splits to avoid leakage between sets. Specifically, we
 358 allocate **80% for training** (26k sequences), **10% for validation** (3k), and **10% for testing** (3k).

360 **Evaluation Metrics:** For **text-to-motion generation (T2M)**, we follow prior work Tevet et al.
 361 (2023); Guo et al. (2022) and report: *R Precision (RP3)* for text–motion matching, *MMD* for text
 362 and motion alignment in feature space, *KID* for distribution similarity, and *Diversity* for output
 363 variability and *Multimodality* for diversity from a single prompt. For **motion-to-text captioning**, we
 364 use standard language metrics (*BLEU4*, *BLEU1*, *Rouge-L*) along with *R Precision*. For **annotation**
 365 **quality**, we adopt GPT-Score following EgoHOD Hong et al. (2024). For **motion reconstruction**,
 366 we report *MPJPE*, *PA-MPJPE*, and *ACCEL* as in EgoLM Hong et al. (2024).

367 5.1 DATASET ANNOTATION

369 We evaluate the quality of our egocentric video-to-text annotations using GPT-Scores from the
 370 EgoHOD (Pei et al., 2025), which rate similarity to human-authored descriptions on a 0–10 scale
 371 (higher is better). Results are reported in Table 3. Compared to LaVILA (Zhao et al., 2023) and
 372 EgoHOD, our method achieves the highest GPT-Score (6.9), surpassing existing approaches by a clear
 373 margin. This confirms that our pipeline produces more faithful and higher-quality text annotations.
 374 To further analyze the role of our two-stage annotation pipeline, we ablate against two baselines: (i)
 375 **VILA-Naive**, which uses a single large prompt, and (ii) **VILA-Stage1**, which only uses the first-stage
 376 outputs. Both underperform compared to our full pipeline, validating the importance of structured
 377 multi-stage prompting for robust annotation quality. We study motion quality of the 3D-HIW dataset
 with respect to different data-cleaning steps in Appendix C.1.

378
379
380

Table 2: Motion-to-text captioning quantitative results.

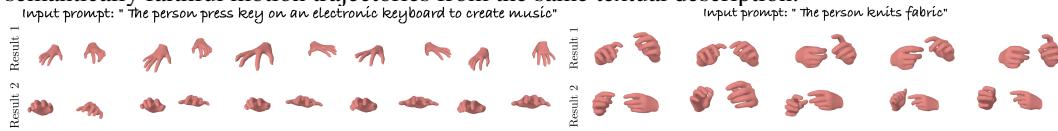
Method	RP3 \uparrow	B4 \uparrow	B1 \uparrow	RG \uparrow
GT	0.668			
TM2T	0.385	0.122	0.333	0.428
MotionGPT	0.407	0.132	0.345	0.439
Ours	0.571	0.181	0.420	0.472

385

386

387 5.2 CLUTCH – TEXT-TO-MOTION GENERATION (T2M)

389 The text-to-motion task evaluates a model’s ability to generate plausible hand motion sequences
390 given natural language input. We benchmark CLUTCH against recent state-of-the-art baselines,
391 including MotionGPT (Jiang et al., 2024), HumanMDM (Tevet et al., 2023), and T2MGPT (Zhang
392 et al., 2023), retraining all models on our dataset for fairness. Results are reported in Table 1. Across
393 all metrics, CLUTCH achieves consistent improvements over competing methods, suggesting that its
394 unified modelling of language and hand motion provides stronger alignment than prior approaches.
395 Qualitative results in Figure 8 further highlight CLUTCH’s ability to generate multiple diverse yet
396 semantically faithful motion trajectories from the same textual description.

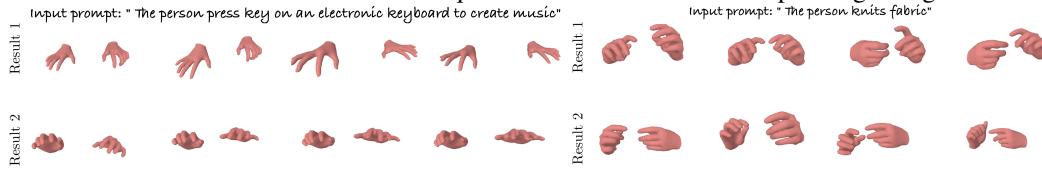


400 Figure 8: Qualitative results for text-to-motion synthesis.

401
402

403 5.3 CLUTCH – MOTION-TO-TEXT CAPTIONING (M2T)

404 The motion-to-text task involves generating text descriptions from novel 3D hand motions from the
405 wild. To this end, we compare our method against MotionGPT and TM2T (Guo et al., 2022) and
406 report the metrics in Table 2. From the results, we can infer that our method significantly outperforms
407 the baselines on all the metrics. We show qualitative results of motion captioning in Figure 9.



414 Figure 9: Motion-to-Text captioning results.

415

416 5.4 ABLATIONS

417
418
419
420
421
422
423
424
425
426

Effectiveness of the SHIFT tokenizer: We compare our SHIFT with three baselines: MotionGPT’s VQ-VAE, a standard VQ-VAE, and a part-decomposed variant (PD VQ-VAE) that disentangles left and right hands during encoding and decoding. As shown in Table 4, our model achieves the best overall performance, yielding the lowest MPJPE (45.94) and ACCEL (5.395), while also improving motion diversity. Moreover, Figure 10 illustrates that SHIFT handles temporal compression substantially better than the baseline VQ-VAEs, enabling LLM training under modest memory requirements (4 A100 GPU’s vs 64 Tesla V100 and 32 NVIDIA A100 GPU’s in MotionGPT and HoiGPT respectively). These results underscore the advantage of decomposing both body parts and modalities in VQ-VAE-based motion modelling. Additional experiments are presented in Appendix B.2.

427
428
429
430
431

Impact of Geometric Refinement and Instruct-Fine Tuning: Table 5 compares different training stages. Pre-training alone (row 1) provides a reasonable baseline, but performance remains limited. Instruction tuning (IFT) substantially improves results (row w/o GR), raising T2M RP3 from 0.53 to 0.69 and M2T RP3 from 0.50 to 0.57. Adding geometric refinement (GR) further boosts alignment: the full model (PT+GR+IFT) achieves the lowest KID (0.216 vs. 0.297 w/o GR) and the highest RP3 scores (0.72 for T2M, 0.57 for M2T). This demonstrates that GR plays a key role in motion synthesis

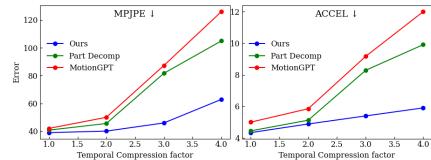
500 Table 3: Evaluating text annotations using
501 EgoHoD’s GPT-Scores (0–10).

Method	GPT-Score \uparrow
LaVILA	4.9 ± 0.3
EgoHOD	6.1 ± 0.4
VILA-Naive	5.5 ± 0.2
VILA-Stage1	6.4 ± 0.5
Ours	6.9 ± 0.3

432 Table 4: Comparison of VQ-VAE configurations.

Method	Num. / dim	MPJPE \downarrow	ACCEL \downarrow	Div \rightarrow
GT	—	—	—	3.964
MotionGPT	512 / 512	93.486	8.340	3.683
Std. VQ-VAE	4K / 64	93.258	7.771	3.450
PD VQ-VAE	4K / 64	95.266	7.500	3.647
Ours	4K / 64	45.944	5.395	3.747

433 Figure 10: VQ-VAE compression.

434 Table 5: Impact of different LLM training stages. Table 6: Performance scaling with increased
435 PT: Pre-training, GR: Geometry refinement, IFT: training data (7K, 15K, 30K samples). Cap.
436 data: Artic+GRAB.

Method	T2M		M2T		Method	T2M		M2T	
	RP3 \uparrow	KID \downarrow	RP3 \uparrow	B4 \uparrow		RP3 \uparrow	KID \downarrow	RP3 \uparrow	B4 \uparrow
I = PT	0.533	0.349	0.501	0.148	Cap. data	0.097	1.970	0.083	0.004
w/o GR (1+IFT)	0.690	0.297	0.568	0.173	7K	0.513	0.860	0.247	0.092
PT + GR + IFT	0.721	0.216	0.571	0.181	15K	0.637	0.672	0.396	0.139
EgoLM setup	0.705	0.263	0.570	0.171	30K	0.721	0.216	0.571	0.181

437 quality. In other words, IFT scales generalization, while GR makes that generalization meaningful by
438 enforcing geometric alignment. The combination yields the best overall performance. Finally, we
439 compare against the EgoLM Hong et al. (2024) soft-blending reconstruction loss (last row). While
440 competitive, it is inferior to our approach, highlighting the benefits of explicit geometric refinement
441 and Gumbel-Softmax-based reconstruction.

442 **Impact of Dataset Size:** Increasing the number of captioned sequences from 7K to 30K yields steady
443 improvements in both text-to-motion (T2M) and motion-to-text (M2T). These results underline the
444 importance of larger, more diverse training data for scalable in-the-wild hand motion modelling. For
445 reference, we also provide our method trained on a combination Arctic and GRAB dataset.

446 **Impact of Language Model Size:** Table 7 reports the effect of scaling the backbone language
447 model from T5-Small to T5-Large. As expected,
448 larger models yield consistently better results on
449 both T2M and M2T tasks. These results confirm
450 that language model capacity plays a crucial
451 role in enabling stronger generalization across
452 modalities in both tasks.

453 6 CONCLUSION

454 To the best of our knowledge, CLUTCH is the first work to explore in-the-wild hand motion
455 modelling. While effective, our approach still has limitations. We focus on hand motions, while
456 leaving hand-object interactions for future exploration due to the current challenges of in-the-
457 wild reconstruction. Further improvements may enhance fine-grained expressiveness in motion
458 reconstructions and enable temporal segmentation of overlapping actions in egocentric sequences.
459 Advancing along these directions could further improve dataset quality and model robustness.

460 Despite these challenges, CLUTCH makes important progress towards scalable, natural hand motion
461 synthesis. To this end, we introduce a novel data annotation pipeline, a dataset, and a part-modality
462 decomposed VQ-VAE for in-the-wild hand motion modelling. Through detailed experiments, we
463 demonstrate that CLUTCH outperforms existing diffusion and LLM models on the in-the-wild hand
464 motion modelling task. Looking ahead, we believe combining in-the-wild motions with controlled
465 datasets, and extending to hand-object interactions can unlock new downstream applications in
466 behavioral AI, allowing us to eventually build embodied avatars capable of fine-grained high-fidelity
467 interactions with their environments.

468 Table 7: Impact of model size on the performance.

Method	T2M		M2T	
	RP3 \uparrow	KID \downarrow	RP3 \uparrow	B4 \uparrow
T5-Small (50M)	0.545	0.732	0.292	0.089
T5-Base (220M)	0.721	0.216	0.571	0.181
T5-Large (770M)	0.733	0.092	0.578	0.192

486 REFERENCES
487488 Nikos Athanasiou, Alpár Ceske, Markos Diomataris, Michael J Black, and Güл Varol. Motionfix:
489 Text-driven 3d human motion editing. *arXiv preprint arXiv:2408.00712*, 2024.490 Junuk Cha, Jihyeon Kim, Jae Shin Yoon, and Seungryul Baek. Text2hoi: Text-guided 3d motion
491 generation for hand-object interaction. In *Proceedings of the IEEE/CVF Conference on Computer*
492 *Vision and Pattern Recognition*, pp. 1577–1585, 2024.493
494 Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S.
495 Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, and Dieter Fox. DexYCB: A
496 benchmark for capturing hand grasping of objects. In *IEEE/CVF Conference on Computer Vision*
497 *and Pattern Recognition (CVPR)*, 2021.498 Changan Chen, Juze Zhang, Shrinidhi Kowshika Lakshmikanth, Yusu Fang, Ruizhi Shao, Gordon
499 Wetzstein, Li Fei-Fei, and Ehsan Adeli. The language of motion: Unifying verbal and non-verbal
500 language of 3d human motion. In *arXiv*, 2024.501
502 Seunggeun Chi, Hyung-gun Chi, Hengbo Ma, Nakul Agarwal, Faizan Siddiqui, Karthik Ramani, and
503 Kwonjoon Lee. M2d2m: Multi-motion generation from text with discrete diffusion models. *arXiv*
504 *preprint arXiv:2407.14502*, 2024.505 Sammy Christen, Shreyas Hampali, Fadime Sener, Edoardo Remelli, Tomas Hodan, Eric Sauser,
506 Shugao Ma, and Bugra Tekin. Diffh2o: Diffusion-based synthesis of hand-object interactions from
507 textual descriptions. In *SIGGRAPH Asia*, pp. 145:1–145:11, 2024. URL <https://doi.org/10.1145/3680528.3687563>.508
509 Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed Kocabas, Manuel Kaufmann, Michael J.
510 Black, and Otmar Hilliges. ARCTIC: A dataset for dexterous bimanual hand-object manipulation.
511 In *Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.512
513 Rao Fu, Dingxi Zhang, Alex Jiang, Wanjia Fu, Austin Fund, Daniel Ritchie, and Srinath Sridhar.
514 Gigahands: A massive annotated dataset of bimanual hand activities. 2025.515
516 Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, and Philipp Slusallek.
517 Imos: Intent-driven full-body motion synthesis for human-object interactions. In *Eurographics*,
518 2023.519
520 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
521 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan,
522 Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray,
523 Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cart-
524 tillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano
525 Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang,
526 Yifei Huang, Wenqi Jia, Leslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico
527 Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan
528 Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova,
529 Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
530 Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall,
531 Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna
532 Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva,
533 Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba,
534 Lorenzo Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in 3,000 hours of
535 egocentric video. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
(CVPR), pp. 18973–18990, 2022.536
537 Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for the
538 reciprocal generation of 3d human motions and texts. In *ECCV*, pp. 580–597. Springer, 2022.539 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative
540 masked modeling of 3d human motions. In *CVPR*, pp. 1900–1910, 2024.

540 Fangzhou Hong, Vladimir Guzov, Hyo Jin Kim, Yuting Ye, Richard Newcombe, Ziwei Liu,
 541 and Lingni Ma. Egolm: Multi-modal language model of egocentric motions. *arXiv preprint*
 542 *arXiv:2409.18127*, 2024.

543

544 Mingzhen Huang, Fu-Jen Chu, Bugra Tekin, Kevin J Liang, Haoyu Ma, Weiyao Wang, Xingyu Chen,
 545 Pierre Gleize, Hongfei Xue, Siwei Lyu, Kris Kitani, Matt Feiszli, and Hao Tang. Hoigpt: Learning
 546 long sequence hand-object interaction with language models. In *IEEE Conference on Computer*
 547 *Vision and Pattern Recognition (CVPR)*, Nashville, USA, 2025.

548 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In
 549 *Proceedings International Conference on Learning Representations (ICLR)*, April 2017. URL
 550 <https://openreview.net/pdf?id=rkE3y85ee>.

551

552 Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a
 553 foreign language. *Advances in Neural Information Processing Systems*, 36, 2024.

554 Biao Jiang, Xin Chen, Chi Zhang, Fukun Yin, Zhuoyuan Li, Gang Yu, and Jiayuan Fan. Motionchain:
 555 Conversational motion controllers via multimodal prompts. In *ECCV*, pp. 54–74. Springer, 2025.

556

557 Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Guided
 558 motion diffusion for controllable human motion synthesis. In *ICCV*, pp. 2151–2162, 2023.

559

560 Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. H2o: Two hands
 561 manipulating objects for first person interaction recognition. In *Proceedings of the IEEE/CVF*
 562 *International Conference on Computer Vision (ICCV)*, pp. 10138–10148, October 2021.

563

564 Chuqiao Li, Julian Chibane, Yannan He, Naama Pearl, Andreas Geiger, and Gerard Pons-Moll.
 565 Unimotion: Unifying 3d human motion synthesis and understanding. In *International Conference*
 566 *on 3D Vision (3DV)*, March 2025a.

567

568 Muchen Li, Sammy Christen, Chengde Wan, Yujun Cai, Renjie Liao, Leonid Sigal, and Shugao
 569 Ma. Latenthoi: On the generalizable hand object motion generation with latent hand diffusion.
 570 In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 17416–
 571 17425, June 2025b.

572

573 Haiyang Liu, Zihao Zhu, Giorgio Becherini, Yichen Peng, Mingyang Su, You Zhou, Xuefei Zhe,
 574 Naoya Iwamoto, Bo Zheng, and Michael J. Black. Emage: Towards unified holistic co-speech
 575 gesture generation via expressive masked audio gesture modeling. In *CVPR*, 2024.

576

577 Jinpeng Liu, Wenxun Dai, Chunyu Wang, Yiji Cheng, Yansong Tang, and Xin Tong. Plan, posture
 578 and go: Towards open-world text-to-motion generation. *arXiv preprint arXiv:2312.14828*, 2023.

579

580 Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
 581 Amass: Archive of motion capture as surface shapes. In *ICCV*, pp. 5442–5451, 2019.

582

583 Evonne Ng, Javier Romero, Timur Bagautdinov, Shaojie Bai, Trevor Darrell, Angjoo Kanazawa, and
 584 Alexander Richard. From audio to photoreal embodiment: Synthesizing humans in conversations,
 585 2024.

586

587 Baoqi Pei, Yifei Huang, Jilan Xu, Guo Chen, Yiping He, Lijin Yang, Yali Wang, Weidi Xie, Yu Qiao,
 588 Fei Wu, and Limin Wang. Modeling fine-grained hand-object dynamics for egocentric video
 589 representation learning, 2025.

590

591 Ilya A. Petrov, Riccardo Marin, Julian Chibane, and Gerard Pons-Moll. Tridi: Trilateral diffusion of
 592 3d humans, objects, and interactions. In *Proceedings of the IEEE/CVF International Conference*
 593 *on Computer Vision*, October 2025.

594

595 Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
 596 Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
 597 Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
 598 Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis
 599 Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
 600 Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,

594 Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
 595 Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
 596 data with t5x and seqio. *arXiv preprint arXiv:2203.17189*, 2022. URL <https://arxiv.org/abs/2203.17189>.

598 Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing
 599 hands and bodies together. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*, 36(6),
 600 November 2017.

602 A Savitzky and MJE Golay. Smoothing and differentiation of data by simplified least squares
 603 procedures. *Analytical Chemistry*, 36(8):1627–1639, 1964.

604 Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a
 605 generative prior. *arXiv preprint arXiv:2303.01418*, 2023.

607 Connor Shorten, Charles Pierse, Thomas Benjamin Smith, Erika Cardenas, Akanksha Sharma, John
 608 Trengrove, and Bob van Luijt. Structureddrag: JSON response formatting with large language
 609 models. *CoRR*, abs/2408.11061, 2024. doi: 10.48550/ARXIV.2408.11061. URL <https://doi.org/10.48550/arXiv.2408.11061>.

611 Vanessa Sklyarova, Egor Zakharov, Otmar Hilliges, Michael J Black, and Justus Thies. Haar:
 612 Text-conditioned generative model of 3d strand-based human hairstyles. *ArXiv*, Dec 2023.

613 Omid Taheri, Nima Ghorbani, Michael J. Black, and Dimitrios Tzionas. GRAB: A dataset of whole-
 614 body human grasping of objects. In *European Conference on Computer Vision (ECCV)*, 2020.
 615 URL <https://grab.is.tue.mpg.de>.

617 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
 618 Human motion diffusion model. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=SJ1kSyO2jwu>.

620 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 621 coding, 2018.

623 Xiaofeng Wang, Kang Zhao, Feng Liu, Jiayu Wang, Guosheng Zhao, Xiaoyi Bao, Zheng Zhu, Yingya
 624 Zhang, and Xingang Wang. Egovid-5m: A large-scale video-action dataset for egocentric video
 625 generation. *arXiv preprint arXiv:2411.08380*, 2024.

627 Ye Wang, Sipeng Zheng, Bin Cao, Qianshan Wei, Weishuai Zeng, Qin Jin, and Zongqing Lu.
 628 Scaling large motion models with million-level human motions. In *Forty-second International
 629 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=TO6jrwuxi4>.

631 Zhenzhi Wang, Jingbo Wang, Dahua Lin, and Bo Dai. Intercontrol: Generate human motion
 632 interactions by controlling every joint. *arXiv preprint arXiv:2311.15864*, 2023.

633 Tsung-Han Wu, Heekyung Lee, Jiaxin Ge, Joseph E Gonzalez, Trevor Darrell, and David M Chan.
 634 Generate, but verify: Reducing hallucination in vision-language models with retrospective resam-
 635 pling. *arXiv preprint arXiv:2504.13169*, 2025.

637 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 638 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 639 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024.

641 Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control any
 642 joint at any time for human motion generation. *arXiv preprint arXiv:2310.08580*, 2023.

643 Lixin Yang, Kailin Li, Xinyu Zhan, Fei Wu, Anran Xu, Liu Liu, and Cewu Lu. OakInk: A large-scale
 644 knowledge repository for understanding hand-object interaction. In *IEEE/CVF Conference on
 645 Computer Vision and Pattern Recognition (CVPR)*, 2022.

647 Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong Wen, Timo Bolkart, Dacheng Tao, and
 Michael J Black. Generating holistic 3d human motion from speech. In *CVPR*, pp. 469–480, 2023.

648 Xinyu Zhan, Lixin Yang, Yifei Zhao, Kangrui Mao, Hanlin Xu, Zenan Lin, Kailin Li, and Cewu
 649 Lu. Oakink2: A dataset of bimanual hands-object manipulation in complex task completion. In
 650 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 651 pp. 445–456, June 2024.

652 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu, Xi Shen,
 653 and Ying Shan. Generating human motion from textual descriptions with discrete representations.
 654 In *CVPR*, pp. 14730–14740, 2023.

655 Jinglei Zhang, Jiankang Deng, Chao Ma, and Rolandos Alexandros Potamias. Hawor: World-space
 656 hand motion reconstruction from egocentric videos. *arXiv preprint arXiv:2501.02973*, 2025a.

657 Wanyue Zhang, Rishabh Dabral, Vladislav Golyanik, Vasileios Choutas, Eduardo Alvarado, Thabo
 658 Beeler, Marc Habermann, and Christian Theobalt. Bimart: A unified approach for the synthesis of
 659 3d bimanual interaction with articulated objects. *Proceedings of the IEEE/CVF Conference on*
 660 *Computer Vision and Pattern Recognition (CVPR)*, 2025b.

661 Zhikai Zhang, Yitang Li, Haofeng Huang, Mingxian Lin, and Li Yi. Freemotion: Mocap-free human
 662 motion synthesis with multimodal large language models. In *ECCV*, pp. 403–421. Springer, 2025c.

663 Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video representations from
 664 large language models. In *CVPR*, 2023.

665 Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, and Gerard Pons-Moll. Toch: Spatio-temporal
 666 object-to-hand correspondence for motion refinement. In *European Conference on Computer*
 667 *Vision (ECCV)*. Springer, October 2022.

668 Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, and Gerard Pons-Moll. Gears: Local
 669 geometry-aware hand-object interaction synthesis. In *IEEE Conference on Computer Vision and*
 670 *Pattern Recognition (CVPR)*, June 2024.

671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A GUMBEL-SOFTMAX MOTION DECODING. 703

704 Given an input sequence X_s , the LLM outputs a full vocabulary logit tensor $f_\theta(X_s) \in \mathbb{R}^{T \times |V|}$,
705 where $|V|$ is the joint (text + motion) vocabulary. For motion decoding, we extract *only the logits*
706 *corresponding to the motion-token subspace* $V_m \subset V$. This slicing is expressed as:
707

$$708 \ell_{1:T} = f_\theta(X_s)_{1:T, V_m},$$

709 where $\ell_t \in \mathbb{R}^K$ and $K = |V_m|$ is the size of the motion-token vocabulary. This corresponds exactly
710 to selecting the motion-token logit channels from the full output tensor.
711

712 The extracted motion logits are then converted into a categorical representation through a Gumbel-Softmax operator (Jang et al., 2017):
713

$$714 \tilde{Z}_{1:T} = \text{Gumbel}(\ell_{1:T}, \tau).$$

715 The continuous 3D hand-motion sequence is reconstructed by decoding this Gumbel-Softmax motion
716 representation using the SHIFT decoder:
717

$$718 \hat{M}_{1:T} = \mathcal{D}_\tau, \mathcal{D}_\theta(\tilde{Z}_{1:T}),$$

719 where \mathcal{D}_τ denotes trajectory decoder parameters and \mathcal{D}_θ the hand-pose decoder parameters.
720

721 **Reconstruction Loss.** To refine geometric fidelity, we combine the language-modeling loss \mathcal{L}_{LM}
722 with a reconstruction loss computed in continuous motion space:
723

$$724 \mathcal{L}_{rec} = \frac{1}{T} \sum_{t=1}^T \left\| \hat{M}_t - M_t \right\|_2^2.$$

727 The final objective is:
728

$$\mathcal{L} = \alpha \mathcal{L}_{LM} + \lambda \mathcal{L}_{rec}.$$

730 B ADDITIONAL EXPERIMENTS 731

732 **Implementation details:** In our experiments, we use two VQ-VAE models with 4096 codebook
733 entries of 64 dimensions each. The compression rate of the VQ-VAE is 8, i.e., the encoder compresses
734 8 temporal frames into a single code. The motion tokenizer is trained for 2000 epochs using the Adam
735 optimizer with a learning rate of $2e^{-4}$. We employ the 220M-parameter Flan-T5-Base (Roberts
736 et al., 2022) as our language model. The model is pre-trained, geometry-refined, and fine-tuned
737 for 300/50/200 epochs with learning rates of $2e^{-4}/1e^{-5}/2e^{-5}$, respectively. Experimental results
738 are reported with a 95% confidence interval, computed from 20 repeated runs to ensure statistical
739 significance. All models are trained on 4 NVIDIA A100 GPUs with 80GB memory each.
740

741 B.1 EFFECTIVENESS OF TEXT-ANNOTATION TYPE: 742

743 We evaluate how different annotation types affect LLM performance, using high-level (HA),
744 fine-grained (DA), and combined (HA+DA) annotations (Table 8). Using only high-level (HA)
745 or fine-grained (DA) annotations yields moderate performance (e.g., T2M RP3 = 0.551 and
746 0.462). Combining both (HA+DA) yields the best results across metrics (T2M RP3 = 0.721,
747 M2T RP3 = 0.571), underscoring their complementarity for robust text-motion learning.
748

752 B.2 TOKENIZER ANALYSIS: 753

754 We provide additional comparisons of our decomposed VQ-VAE (SHIFT) against several baselines
755 to further highlight the impact of model design choices. As reported in Table 9, our formulation

756 Table 8: Effect of different types annotation on
757 Text-to-Motion task performance. HA: High-level
758 annotation, DA: Fine-grained Annotation.
759

Method	T2M		M2T	
	RP3 \uparrow	KID \downarrow	RP3 \uparrow	B4 \uparrow
Ours (HA)	0.551	0.148	0.496	0.153
Ours (DA)	0.462	0.192	0.489	0.114
Ours(HA+DA)	0.721	0.216	0.571	0.181

756 consistently achieves the lowest reconstruction error, with MPJPE reduced to 45.94 and ACCEL to
 757 5.395, while preserving motion diversity. Further, We visualize the effect of temporal compression
 758 in Figure 10. Whereas standard VQ-VAEs degrade rapidly as the compression factor increases, our
 759 decomposition into trajectory and pose codebooks maintains reconstruction quality even at high
 760 compression rates. This property is especially important for scaling large language models to motion,
 761 as it reduces the effective sequence length and enables training under more modest compute budgets.
 762 In practice, our model requires only 4 NVIDIA A100 GPUs for training, compared to the 64 Tesla
 763 V100 GPUs used in MotionGPT and 32 A100 GPUs in HOIGPT. These extended experiments
 764 confirm that decomposing both modalities (trajectory vs. pose) and body parts (left vs. right hand) is
 765 a crucial factor for stable, scalable motion modeling.

766
767
768 **Table 9: VQVAE analysis - Extented version**

Method	Num. / dim	MPJPE ↓	ACCEL ↓	Div →
GT				3.964
MotionGPT	512 / 512	93.486	8.340	3.683
Std. VQ-VAE	4K / 64	93.258	7.771	3.450
Std VQ-VAE	8K / 64	92.150	7.859	3.539
Std VQ-VAE	4K / 256	93.045	8.014	3.647
PD VQ-VAE	4K / 64	95.266	7.500	3.647
PD VQVAE	8K / 64	92.052	7.369	3.581
PD VQVAE	4K / 256	97.289	7.616	3.357
Ours	4K / 64	45.944	5.395	3.747

778 **B.3 RESULTS ON PUBLIC DATASETS:**
779

780 To further assess the capability of our method, we follow the dataset protocol of HOIGPT(Huang
 781 et al., 2025) and train our model and all baselines on a publicly available captured dataset composed
 782 of ARCTIC(Fan et al., 2023) and GRAB (Taheri et al., 2020), covering 5.1K / 0.5K / 0.5K sequences
 783 for training, validation, and testing. We evaluate performance on the Text2Motion (T2M) and
 784 Motion2Text (M2T) tasks using the metrics described in Section 5, and we report the results in
 785 Table 10 and Table 11.

786 As shown in the tables, our method consistently outperforms prior approaches across both tasks. In
 787 T2M, our model achieves the highest R-Precision (0.492), the lowest MMDist among generative
 788 models (3.008), and competitive KID scores, while also providing substantially better multimodality
 789 than MotionGPT(Jiang et al., 2024) and T2MGPT(Zhang et al., 2023). Notably, HumanMDM (Tevet
 790 et al., 2023), a diffusion-based model, tends to generate visually smooth but less semantically aligned
 791 motions, which is reflected in its lower R-Precision and higher MMDist under this reduced-data
 792 regime. In M2T, our method again achieves the best performance across all major metrics, indicating
 793 stronger bidirectional grounding between motion and language compared to MotionGPT and TM2T.
 794 Although our model is explicitly designed for in-the-wild hand-motion modeling, it nonetheless
 795 generalizes effectively to controlled HOI datasets, demonstrating the strength and versatility of the
 796 learned representation.

797 **B.4 SENSITIVITY ANALYSIS OF THE LM AND RECONSTRUCTION LOSSES**
798

799 We conducted a full α/λ sensitivity sweep to study the effect of balancing the language-modeling
 800 loss and the reconstruction loss. The results are presented in Table 12. We observe a consistent trend:
801

Method	RP3 ↑	MMDist ↓	KID ↓	Diversity →	MultiModality ↑
Ground Truth	0.525	2.763	–	4.581	–
HumanMDM	0.429	4.047	0.0107	4.915	2.567
MotionGPT	0.371	3.609	0.0409	3.315	1.955
T2MGPT	0.407	3.761	0.0773	4.956	1.658
Ours	0.492	3.008	0.0144	3.811	2.393

802
803
804
805
806
807
808
809 **Table 10: T2M evaluation results on ARCTIC+GRAB.**

Method	RP3 \uparrow	Bleu4 \uparrow	Bleu1 \uparrow	ROUGE-L \uparrow
TM2T	0.3519	0.1815	0.2245	0.5174
MotionGPT	0.4262	0.2158	0.5167	0.5278
Ours	<u>0.4601</u>	<u>0.2341</u>	<u>0.5732</u>	<u>0.5822</u>

Table 11: M2T evaluation results on ARCTIC+GRAB.

LM (α)	Rec (λ)	T2M		M2T	
		RP3 \uparrow	KID \downarrow	RP3 \uparrow	Bleu4 \uparrow
GT		0.671	–	0.667	–
0	1	0.413	0.886	0.099	0.021
0.1	0.9	0.498	0.725	0.357	0.077
0.25	0.75	0.522	0.335	0.403	0.116
0.5	0.5	0.721	0.216	0.571	0.181
0.75	0.25	0.712	0.234	0.544	0.172
0.9	0.1	0.708	0.289	0.543	0.171
1	0	0.690	0.297	0.568	0.173

Table 12: Sensitivity study of the LM loss weight α and reconstruction loss weight λ . Left: M2T performance (RP3, KID). Right: T2M performance (RP3, Bleu4). GT: Ground Truth

large λ (low α) smooths the motion but affects semantic alignment, while large α (low λ) sharpens token prediction but increases geometric artifacts, reflected in higher KID scores. The balanced setting of $\alpha = 0.5, \lambda = 0.5$ delivers the best overall performance across both M2T (RP3 = 0.721, KID = 0.216) and T2M (RP3 = 0.571, Bleu4 = 0.181).

When λ is high (i.e., the reconstruction loss dominates), the model struggles to capture the overall distribution, highlighting the importance of the LM loss for maintaining semantic alignment. Conversely, when α is too high, the model predicts sharper discrete tokens but exhibits poorer geometric realism. These findings confirm that a balanced loss weighting is essential for high-quality motion generation.

Method	Rating (1-5)
A = Random	1.106
B = Our annotation pipeline	4.244
C = Human annotation	4.673

Method	Rating (1-5)
A = Random motion	1.375
B = Without filters	2.434
C = Final-cleaned	4.133

Table 14: User study results. Left: annotation quality ratings. Right: motion quality ratings. **Rating: 1 = Low, 5 = Best**

C 3D HANDS IN THE WILD (3D-HIW) DATASET - EXTENSION:

C.1 DATASET ANALYSIS - CONTINUATION:

To extract 3D hand motion reconstructions from egocentric videos, we first process high-level text descriptions from the EgoVid5M dataset to identify sequences involving human presence, particularly those where humans interact with objects. We then cluster these descriptions into scene-level categories (e.g., crafting, repair) and sample uniformly across clusters to mitigate the overrepresentation of cooking activities. We also study the impact of filter with respect to motion quality in Table 13, where we ablate key components of our cleaning pipeline. Removing filters (e.g., hand visibility checks, acceleration constraints, or temporal smoothing) significantly degrades R-Precision and increases motion noise. Further, we analyze the distribution of top-35 verbs and nouns in our dataset which is presented in Figure 11.

Table 13: Dataset design choices evaluation

Method	RP3 \uparrow	MMD \downarrow
w/o. both hands filter	0.178	3.819
w/o. accl.	0.422	2.653
w/o. temp smooth.	0.511	2.249
w/o. verifier filter.	0.553	2.019
Ours (final)	0.666	1.903

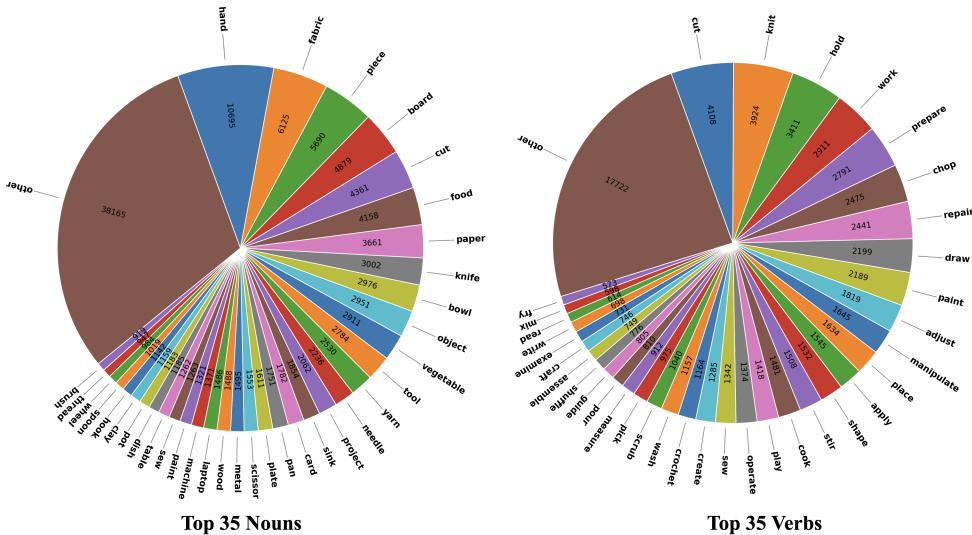


Figure 11: **Top-N Verb and Nouns:** We present the distribution of top-35 verbs and nouns in the '3D Hands in the wild' (3DHiW) dataset

C.2 PERCEPTUAL USER-STUDY:

Motion Reconstruction: We conducted an additional MTurk user study to assess the perceptual quality of our reconstructed hand motions. Workers were shown the input egocentric video alongside two rendered 3D hand-motion reconstructions (front and back views), and were asked to rate on a 1-5 Likert scale how realistic the 3D motion appeared and how well it matched the motion in the

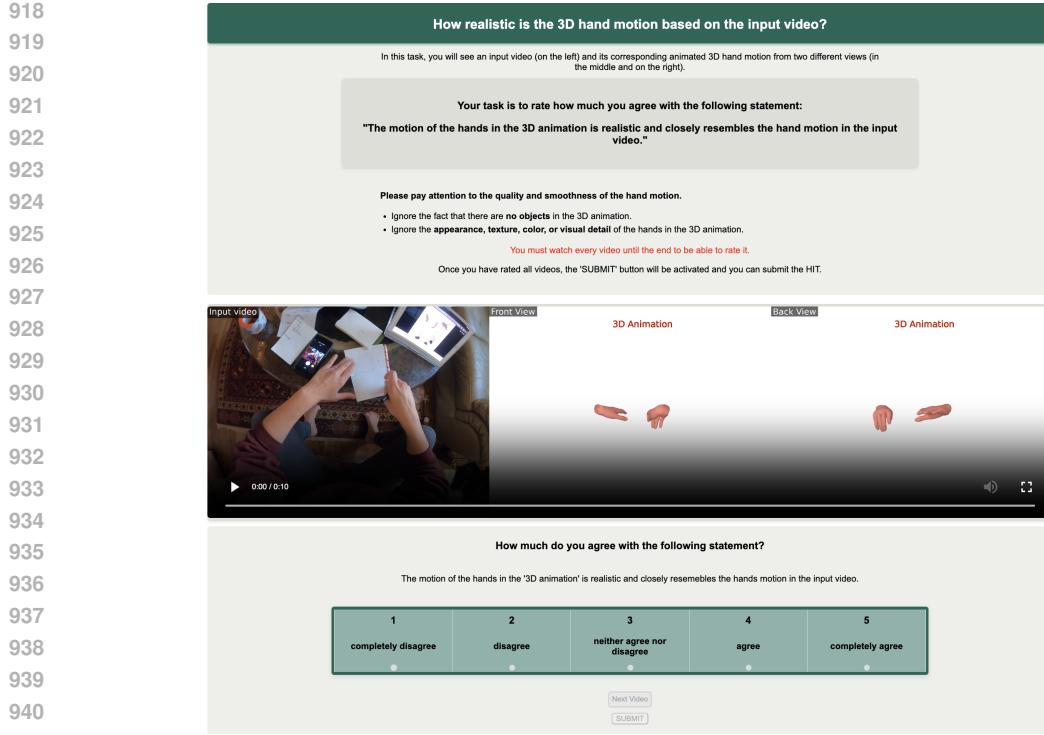


Figure 12: MTurk interface used for the motion user study.

video. We evaluate three categories: (A) random motions sampled from unrelated sequences, (B) our reconstruction without filtering, and (C) our final filtered reconstruction. From Table 14, users overwhelmingly preferred our final reconstruction (4.133) compared to the unfiltered version (2.434) and the random baseline (1.375). We restricted participation to experienced MTurk workers (>5000 HITs, $\geq 98\%$ approval rate) and collected ratings on 65 sampled videos, with each video evaluated by 25 unique workers, resulting in a total of 1,625 judgments. The marked improvement from (B) to (C) confirms that our filtering pipeline substantially enhances motion quality. The MTurk user-study interface is presented in the Figure 12.

Text annotation: In addition, we conducted a human evaluation of the generated annotations using an MTurk study that mirrors the setup described above. Workers were shown an input egocentric video together with a candidate text description, and were asked to rate on a 1–5 Likert scale how much they agreed with the statement: “The text accurately describes the hand motion in the input video.” We evaluate three categories: (A) a random annotation sampled from human annotation’s, (B) our generated annotation, and (C) the corresponding human-written annotation. As reported in Table 14, random annotations received very low scores (1.106), confirming that workers reliably detect mismatched or incorrect text. Our generated annotations achieved a high rating of 4.244, which is close to the human-written descriptions (4.673). This strong alignment indicates that our automated annotation pipeline produces realistic and human-quality motion descriptions that accurately reflect the hand motions in the video. The MTurk interface used for this annotation study is shown in Figure 13.

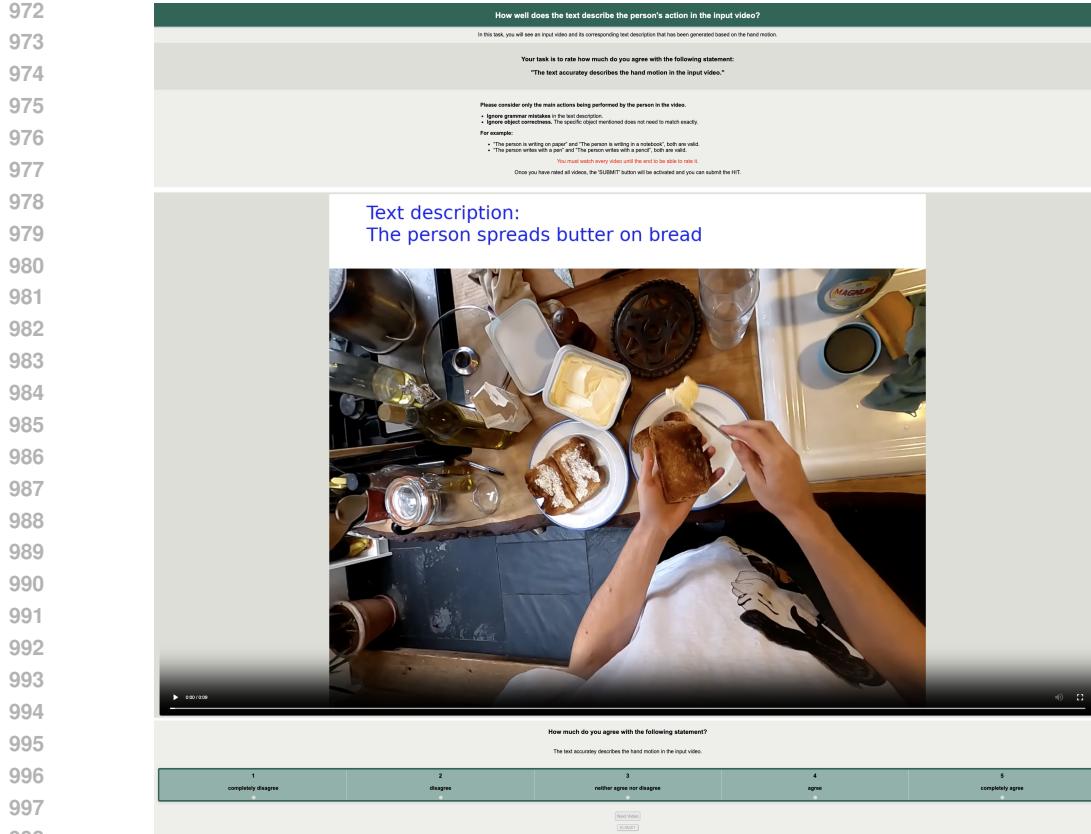


Figure 13: MTurk interface used for the text annotation user study.

C.3 TEXT ANNOTATION PROMPTS:

Here, we give further details of the prompts introduced in Section 3.1 and Figures 3 and 4. In order to give the reader a better understanding of what is requested in the prompts, we give simplified (i.e. natural-language-based) prompt summaries in Figure 14. The actual exact prompts passed into the annotating LLM contain more formal language as well as a strict JSON output specification (following the example of Shorten et al. (2024)). The final prompts of both stages are given in Figure 15.

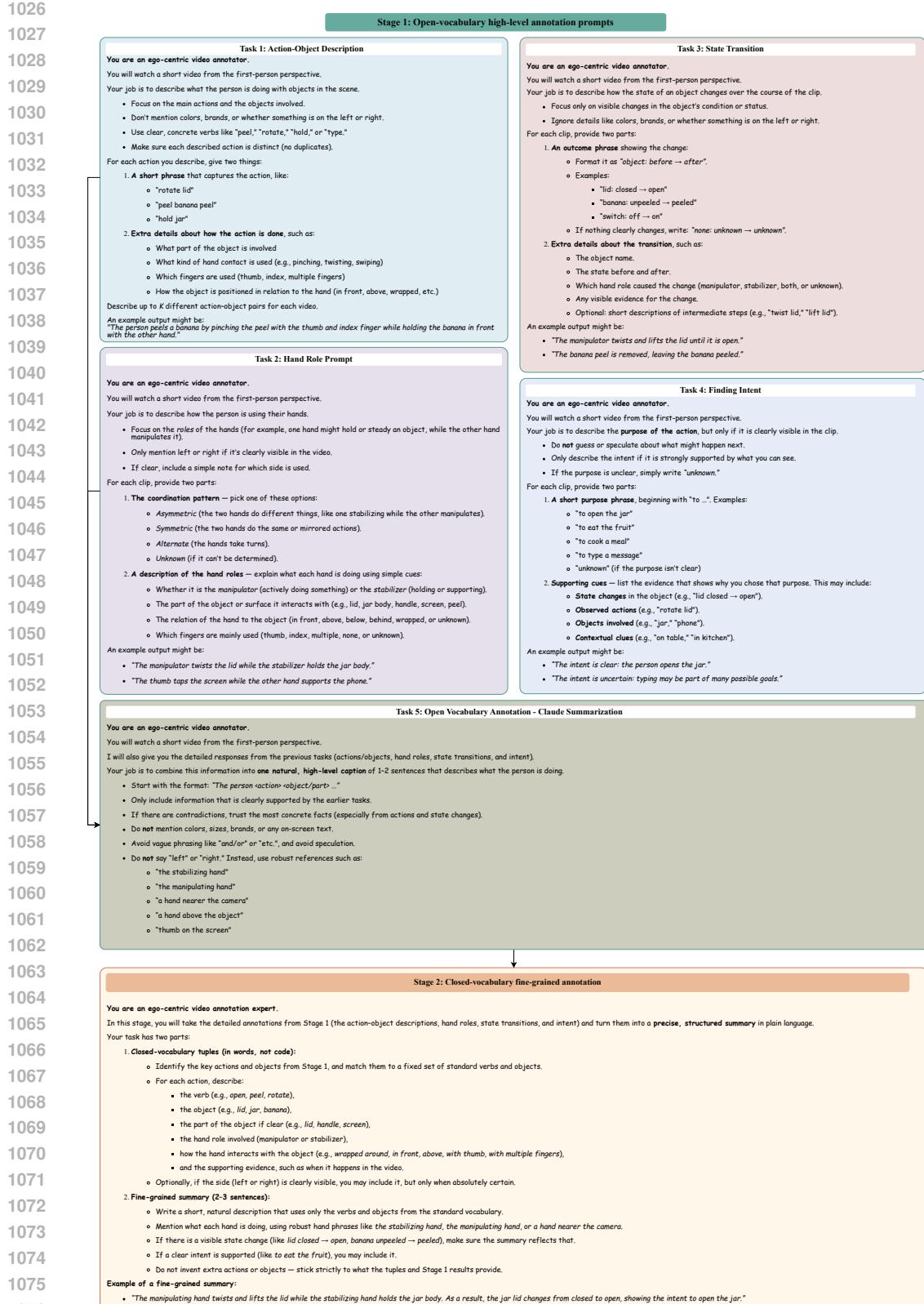


Figure 14: Simplified natural language prompt summaries. First stage (top): First 4 tasks are used for PCoT, and Task 5 is the open vocabulary summarization of the output of the first 4 tasks. Second stage (bottom) is used for the final closed-vocabulary fine-grained annotation generations.

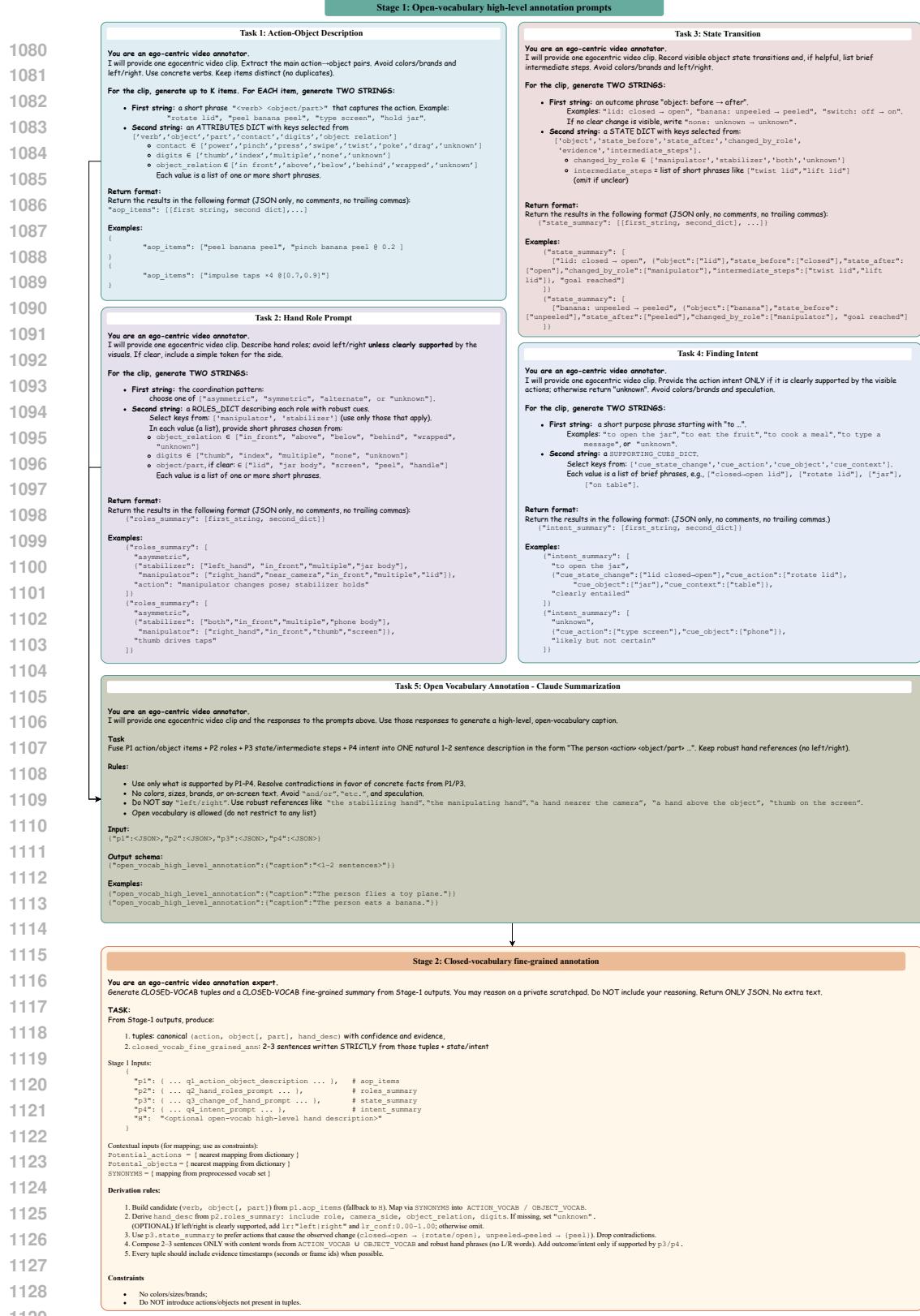


Figure 15: The exact formal prompts used in the data annotation pipeline. *First stage (top)*: First 4 tasks are used for PCoT, and Task 5 is the open vocabulary summarization of the output of the first 4 tasks. *Second stage (bottom)* is used for the final closed-vocabulary fine-grained annotation generations. The prompts were designed following Shorten et al. (2024).

1134 **D RELATED WORKS**

1135

1136 **Discussion:** In contrast to prior work based on controlled mocap datasets or single-codebook
 1137 tokenizers, we contribute the first in-the-wild 3D hand motion dataset with large-scale semantic
 1138 annotations, a part-modality decomposed tokenizer for robust hand representation, and a geometry-
 1139 aligned LLM training strategy. Together, these contributions enable CLUTCH to synthesize natural,
 1140 diverse, and semantically consistent hand motions in unconstrained real-world settings.

1141

1142 **D.1 MOTION DATASETS / ANNOTATION**

1143

1144 **Motion Datasets:** Existing motion datasets provide a foundation for body-level modelling but remain
 1145 limited for hands. AMASS (Mahmood et al., 2019) aggregates mocap sequences, while GRAB,
 1146 ARCTIC, H2O, DexYCB (Chao et al., 2021), and OakInk (Zhan et al., 2024; Yang et al., 2022)
 1147 offer detailed 3D hand–object interactions. More recently, Gigahands (Fu et al., 2025) introduced
 1148 a large dataset of 15K hand motion sequences with diverse actions and objects. However, these
 1149 datasets are costly to collect, restricted to controlled studio settings, and cover only narrow action sets.
 1150 Large-scale egocentric datasets such as Ego4D (Grauman et al., 2022) and EgoVid5M (Wang et al.,
 1151 2024) capture diverse real-world activities, but lack accurate 3D hand reconstructions with semantic
 1152 labels. This gap has so far prevented hand motion modelling from benefiting from large-scale training
 1153 methods that have driven rapid advances in vision and language.

1154 **Egocentric motion captioning:** Recent advances in egocentric video understanding have leveraged
 1155 natural language for supervision, moving beyond classic action recognition tasks. LaViLa (Zhao
 1156 et al., 2023), HOD (Pei et al., 2025), and EgoLM (Hong et al., 2024) are closest to our work on
 1157 egocentric video to motion captioning. LaViLa and EgoLM leverage large language models (LLMs)
 1158 to generate dense narrations for videos, while HOD augments these narrations by integrating detected
 1159 hand–object trajectories with motion cues to produce semantically richer descriptions. In contrast,
 1160 our method introduces a two-stage annotation pipeline: high-level open-vocabulary reasoning via
 1161 parallel chain-of-thought prompting, followed by closed-vocabulary fine-grained grounding. This
 1162 design reduces hallucinations, improves consistency, and yields scalable annotations tailored for
 1163 text-to-motion modelling.

1164 **D.2 MOTION MODELLING**

1165

1166 **Full-body and Gesture Motion modelling:** Research in motion generation has largely focused on
 1167 full-body and gesture synthesis (Guo et al., 2024; Liu et al., 2023; Zhang et al., 2023; Jiang et al., 2025;
 1168 Wang et al., 2023; Shafir et al., 2023; Xie et al., 2023; Karunratanakul et al., 2023; Zhang et al., 2025c;
 1169 2023; Athanasiou et al., 2024; Chi et al., 2024; Chen et al., 2024; Liu et al., 2024). Recent models,
 1170 such as MDM Tevet et al. (2023) and MotionGPT Jiang et al. (2024), leverage transformer-based
 1171 architectures and large-scale motion datasets to generate realistic human movements. Further, (Chen
 1172 et al., 2024) built an multi-modal language models to unify the verbal and non-verbal 3D human
 1173 motions. These approaches demonstrate strong performance on body-level actions but are primarily
 1174 trained on controlled studio data, limiting their ability to generalize to fine-grained, unconstrained
 1175 hand dynamics. While effective for large-scale gestures or locomotion, they fall short in modelling
 1176 the nuanced variability of everyday hand behaviors.

1177 **3D Hand-motion modelling:** A smaller body of work explicitly targets 3D hand motion modelling,
 1178 where hands are modelled using MANO (Romero et al., 2017) and objects as 3D meshes. Recent
 1179 works such as HOIGPT (Huang et al., 2025), and other hand-object interaction models (Christen et al.,
 1180 2024; Cha et al., 2024; Li et al., 2025b; Ghosh et al., 2023) aim to capture fine hand-object interaction.
 1181 However, they rely on high-quality mocap datasets such as GRAB Taheri et al. (2020), ARCTIC (Fan
 1182 et al., 2023), and H2O (Kwon et al., 2021), which are limited in scale and diversity. Consequently,
 1183 current hand motion models are often limited to narrow distributions of scripted actions.

1184 **LLMs for motion modelling:** Large language models have recently been adapted for motion
 1185 generation, leveraging their strengths in sequence modelling and cross-modal alignment. Works such
 1186 as (Jiang et al., 2024; Huang et al., 2025; Chen et al., 2024) treat motion tokens as text-like symbols,
 1187 enabling pretrained LLMs to transfer to motion tasks. While promising, these methods are limited
 1188 by small-scale datasets and training objectives that emphasize token prediction accuracy rather than
 1189 reconstruction fidelity. EgoLM (Hong et al., 2024) addresses this by introducing soft-linear blending

1188 regression losses during pretraining, improving text–motion alignment. However, such regression
1189 objectives conflict with cross-entropy: blending encourages smooth interpolations, whereas CE
1190 enforces sharp token choices, leading to ambiguous representations and reduced generalization.
1191 Our approach extends this line of work with a geometry-alignment stage after pretraining, where
1192 Gumbel-Softmax sampling and hand motion reconstruction losses guide the LLM toward motions
1193 that are both semantically grounded and geometrically consistent.

1194 **VQVAE as motion-prior:** Recent approaches discretize motion using VQ-VAE tokenizers, enabling
1195 motion to be represented in a language-like manner. Works such as (Jiang et al., 2024; Zhang et al.,
1196 2023) show that modelling motion as a sequence of tokens facilitates cross-modal learning with
1197 text. However, standard single-codebook tokenizers struggle to capture the multimodal nature of
1198 motion, where both trajectories and poses of different body parts must be jointly encoded. To address
1199 this, (Yi et al., 2023) introduce compositional codebooks for hand and face motion, while (Huang
1200 et al., 2025) employ separate codebooks for hand and object motion. Similarly, (Chen et al., 2024)
1201 decompose body parts into individual codebooks, each modeled independently. (Wang et al., 2025)
1202 further explore scaling strategies for codebooks to improve motion representation capacity. Building
1203 on these ideas, our formulation extends compositional quantization by introducing distinct codebooks
1204 for trajectories and hand poses, and further disentangling left and right hands during encoding and
1205 decoding. This design improves efficiency and generalization under higher temporal compression,
1206 while providing finer-grained control over multimodal hand motion generation compared to prior
1207 works.

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241