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ABSTRACT

Hands play a central role in daily life, yet modeling natural hand motions remains
underexplored. Existing methods that tackle text-to-hand-motion generation or
hand animation captioning rely on studio-captured datasets with limited actions
and contexts, making them costly to scale to “in-the-wild” settings. Further,
contemporary models and their training schemes struggle to capture animation
fidelity with text–motion alignment. To address this, we (1) introduce ‘3D Hands
in the Wild’ (3D-HIW), a dataset of 32K 3D hand-motion sequences and aligned
text, and (2) propose CLUTCH, an LLM-based hand animation system with two
critical innovations: (a) SHIFT, a novel VQ-VAE architecture to tokenize hand
motion, and (b) a geometric refinement stage to finetune the LLM. To build 3D-
HIW, we propose a data annotation pipeline that combines vision–language models
(VLMs) and state-of-the-art 3D hand trackers, and apply it to a large corpus of
egocentric action videos covering a wide range of scenarios. To fully capture
motion in-the-wild, CLUTCH employs SHIFT, a part–modality decomposed VQ-
VAE, which improves generalization and reconstruction fidelity. Finally, to improve
animation quality, we introduce a geometric refinement stage, where CLUTCH is
co-supervised with a reconstruction loss applied directly to decoded hand motion
parameters. Experiments demonstrate state-of-the-art performance on text-to-
motion and motion-to-text tasks, establishing the first benchmark for scalable
in-the-wild hand motion modelling. Code, data and models will be released.

1 INTRODUCTION

Hands are at the heart of our daily experiences: With them we write, knit, play instruments, and
perform countless other actions that feel effortless to us but remain challenging for generative models
to reproduce naturally. Capturing this variability is not only essential for natural motion generation,
but also foundational for future behavioral AI, where models must infer, predict, and generate human
behavior in interactive settings such as AR/VR, robotics, and human–computer collaboration. While
prior work has focused on full-body motion, gestures, and hand–object interactions (Chen et al., 2024;
Jiang et al., 2024; Liu et al., 2024; Ng et al., 2024; Huang et al., 2025; Christen et al., 2024; Cha et al.,
2024; Petrov et al., 2025), text-guided hand motion generation “in-the-wild” remains underexplored,
with text-to-hand–object interaction methods being the most related line of work.

Hand motion models (Huang et al., 2025; Zhou et al., 2024; Cha et al., 2024; Zhang et al., 2025b)
are primarily trained on high-quality 3D hand motion datasets, such as GRAB (Taheri et al., 2020),
ARCTIC (Fan et al., 2023), and H2O (Kwon et al., 2021), all captured in motion capture studios.
However, collecting such datasets is both time-consuming and expensive, limiting scalability to
diverse scenarios and actions. As a result, current methods are restricted to a narrow set of actions
and intents, and cannot generate ”in-the-wild” motions. To mitigate this data limitation, we draw
inspiration from prior work (Wang et al., 2025; Sklyarova et al., 2023), which leverage VLMs/LLMs
as data annotators. Specifically, we integrate a 3D hand tracker (Zhang et al., 2025a) with a VLM (Wu
et al., 2024) to construct an “in-the-wild” hand motion dataset comprising 32K sequences; approx-
imately 10× larger than GRAB and ARCTIC, and 2× larger than the recent Gigahands (Fu et al.,
2025) dataset. We refer to this dataset as ‘3D Hands in the Wild’ (3D-HIW) dataset, which includes
multi-action clips like piano and food prep, underrepresented in previous work.
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“a person playing 
piano” 

“a person kneading 
flour” 

“ The person is 
interacting with a 

laptop”

“ The person is using 
the hammer”

CLUTCH 

(Text-to-Motion)

CLUTCH 

(Motion-to-Text)

Figure 1: CLUTCH is a novel LLM-based model that enables text-conditioned synthesis (left) and
captioning of in-the-wild 3D hand motions (right).

While VLMs demonstrate strong visual understanding, they often hallucinate spurious objects,
actions, or concepts (Wu et al., 2025) when captioning. To address this, we introduce a Parallelized
Chain-of-Thought Prompting strategy, which decomposes a complex reasoning prompt into multiple
atomic prompts, each targeting a specific video aspect. The atomic responses are processed by a
summarization module to generate an initial annotation, then refined into a more detailed annotation.

Compared to most existing hand motion datasets, which mostly contain single actions or interactions
per sequence, in-the-wild hand movements are more natural and diverse, often involving multiple
actions within the same sequence. This requires a motion model that can robustly align hand
motion with language representations. Recent approaches, HOIGPT (Huang et al., 2025) and
MotionGPT (Huang et al., 2025), repurpose pre-trained LLMs for motion tasks. However, we
find that applying them as-is to hand animation leads to suboptimal performance due to (1) poor
generalization capability of the motion tokenizer, and (2) geometric inacurracies in the LLM-predicted
motion. We address this by introducing CLUTCH (Contextualized Language model for Unlocking
Text-Conditioned Hand motion), a novel LLM for synthesizing and captioning in-the-wild 3D hand
motions (illustrated in Fig. 1). In CLUTCH, we address the aforementioned limitations by: (1) a
novel hand motion prior and (2) a new LLM finetuning stage with a geometric refinement loss.

(1) Motion prior. Hand motions are inherently multi-modal. Using a standard single VQ-VAE
for both hands leads to poor quality of hand motion reconstruction (jitter or lack of realism). The
diversity of hand motions observed “in-the-wild” exposes this issue further. To address this, we
introduce SHIFT (Structuring Hands Into Fine-grained Tokens). SHIFT models trajectory and
pose components using separate VQ-VAE’s, while disentangling left and right hands during encoding
and decoding. Empirically, this formulation achieves stronger generalization and more accurate
reconstructions, even under high temporal compression compared to a standard VQ-VAE. It also
improves bimanual coordination and reduces jitter.

(2) LLM finetuning. We find that finetuning the LLM on the standard next-token prediction task with
the cross-entropy (CE) loss leads to suboptimal animation fidelity. We find that token-level accuracy
does not guarantee high-quality motion synthesis (as shown in (Hong et al., 2024)). An additional
reconstruction loss in motion space is needed to improve the motion generation. In CLUTCH, we add
a novel geometry refinement stage that decodes the sampled tokens into the hand motion parameters
and applies a reconstruction loss directly to the decoded hand motion parameters. This guides
the LLM toward selecting codes with stronger animation fidelity. With these, CLUTCH achieves
state-of-the-art on in-the-wild hand motion synthesis and captioning, and goes beyond studio captures,
by generating everyday in-the-wild motions rarely seen in mocap: playing piano (bimanual), cooking,
writing, knitting, and more. We show quantitatively, that CLUTCH outperforms recent state-of-the-art
methods such as HumanMDM, MotionGPT, and T2M-GPT.

The overview of our work is presented in Figure 2. Taken together, our main contributions are:
(1) A data acquisition pipeline that combines a 3D hand tracker with a novel annotation framework
driven by a vision-language model to enable scalable in-the-wild 3D hand motion data curation.
(2) Using this pipeline, we construct ‘3D Hands in the Wild’ (3D-HIW), a large-scale dataset
comprising over 32K hand motion sequences captured in diverse real-world egocentric videos.
(3) We introduce SHIFT (Structuring Hands Into Fine-grained Tokens) tokenizer, for modelling
in-the-wild hand motions. SHIFT improves performance over tokenizers used in prior works.
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Figure 2: Overview: CLUTCH is an LLM for synthesizing and captioning in-the-wild 3D hand
motions. To train this model, we (i) generate an in-the-wild hand motion dataset (Section 3). We (ii)
tokenize the hand motion using a novel decomposed VQ-VAE tokenizer (Section 4.1). We (iii) train
the LLM to model both text and motion in a unified token space (Section 4.2).

(4) Finally, we propose CLUTCH, an LLM-based generative model for text-conditioned synthesis
and captioning of in-the-wild 3D hand motions; setting a new benchmark for scalable in-the-wild
hand motion modelling.

2 RELATED WORK

Motion Datasets / Annotation: Existing motion datasets provide a foundation for current human
modelling methods. AMASS (Mahmood et al., 2019) unifies diverse mocap datasets into a large-scale
human body motion dataset. While GRAB, ARCTIC, H2O, DexYCB (Chao et al., 2021), and
OakInk (Zhan et al., 2024; Yang et al., 2022) offer detailed 3D hand–object interactions. More
recently, Gigahands (Fu et al., 2025) introduced a dataset of 15K hand motion sequences with diverse
actions and objects. While these datasets are of high quality, they are costly to collect, confined to
controlled studio settings, and cover only narrow action ranges. In contrast, large-scale egocentric
datasets such as Ego4D (Grauman et al., 2022) and EgoVid5M (Wang et al., 2024) capture diverse
real-world activities but lack accurate 3D hand reconstructions and textual action descriptions. Parallel
efforts in egocentric video captioning, such as LaViLa (Zhao et al., 2023), HOD (Pei et al., 2025),
and EgoLM (Hong et al., 2024), leverage language models generating faithful action descriptions
from input videos. LaViLa and EgoLM employ large language models (LLMs) to generate dense
narrations, while HOD augments narrations (if present) with detected hand–object trajectories to
produce semantically richer descriptions. To enable in the wild hand motion modelling, we construct
a large-scale 3D hand motion dataset called ‘3D Hands in the Wild’ (3D-HIW)’ based on Ego4D . To
this end, we introduce a two-stage annotation pipeline that first applies open-vocabulary reasoning
via parallel chain-of-thought prompting, and then refines results with closed-vocabulary grounding.

Motion Modelling: Research in motion generation has largely focused on full-body and gesture
synthesis (Guo et al., 2024; Liu et al., 2023; Zhang et al., 2023; Jiang et al., 2025; Wang et al., 2023;
Shafir et al., 2023; Xie et al., 2023; Karunratanakul et al., 2023; Zhang et al., 2025c; 2023; Athanasiou
et al., 2024; Chi et al., 2024; Liu et al., 2024). Parallel works have focused on hand–object interaction
modelling (Christen et al., 2024; Cha et al., 2024; Ghosh et al., 2023; Zhou et al., 2022; 2024), built
on MoCap datasets like GRAB (Taheri et al., 2020) or ARCTIC (Fan et al., 2023). Recent works such
as (Huang et al., 2025; Jiang et al., 2024; Chen et al., 2024; Li et al., 2025a) treat motion tokens as
text-like symbols, enabling pretrained LLMs to synthesize motions. While promising, these methods
are limited by small-scale datasets and training objectives that emphasize token prediction accuracy
rather than reconstruction fidelity. EgoLM (Hong et al., 2024) addresses this by introducing soft-linear
blending regression losses during pretraining, improving text–motion alignment. However, such
regression objectives conflict with cross-entropy: blending encourages smooth interpolations, whereas
CE enforces sharp token choices, leading to ambiguous representations and reduced generalization.
Our approach extends this line of work with a geometry-alignment stage after pretraining, where
Gumbel-Softmax sampling and reconstruction losses guide the LLM toward motions that are both
semantically grounded and geometrically consistent.

VQVAE as Motion Prior: VQ-VAE tokenizers discretize motion into language-like symbols (Jiang
et al., 2024; Guo et al., 2022), but single codebooks fail to capture multi-modality. Extensions use
multiple codebooks: for hand/face (Yi et al., 2023), hand/object (Huang et al., 2025), or decomposed
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Figure 3: Data annotation pipeline: We generate motion–text pairs from egocentric videos using a
novel automated annotation framework combined with a state-of-the-art hand tracker. Text annotations
are produced by first applying Parallel Chain-of-Thought prompting for open-vocabulary reasoning,
followed by a closed-vocabulary refinement stage.

body parts (Chen et al., 2024). (Wang et al., 2025) further explore scaling strategies to expand
capacity. We build on these ideas by disentangling trajectories and hand poses into distinct codebooks,
and further separate left and right hands. This yields finer control and improved generalization under
temporal compression, surpassing prior single- and multi-codebook designs. A more detailed version
of the related works is presented in Appendix D.

3 3D HANDS IN THE WILD (3D-HIW) DATASET

To enable in-the-wild hand motion modelling, we construct a large-scale 3D hand motion dataset
based on in-the-wild videos from Ego4D Grauman et al. (2022) and EgoVid5M Wang et al. (2024).
We propose a two-stage VLM-based text annotation and a motion reconstruction pipeline.

3.1 AUTOMATIC TWO-STAGE TEXT ANNOTATION PIPELINE

To generate textual descriptions from egocentric action videos, we propose an automated two-stage
annotation pipeline using VLMs/LLMs. We employ VILA (Wu et al., 2024) as the VLM for its
strong performance in video–language understanding and scalability for dense frame-level queries.
Generating reliable annotations from egocentric videos is complicated, since the model needs to
jointly reason about hand motion, user intent, and object–scene relationships. To address these
challenges, we propose a two-stage pipeline, shown in Figure 3. In Stage 1 (Open-vocabulary high-
level annotation), we introduce a Parallel Chain-of-Thought prompting strategy, which decomposes
the reasoning process into several atomic prompts focused on the hand role, action–object relations,
state transitions, and intent. These responses are then aggregated by a summarization LLM (Claude)
to produce a coherent high-level description and reduce hallucinations. In Stage 2 (Closed-vocabulary
fine-grained annotation), we refine these high-level annotations by constraining the VLM to select
plausible object–action pairs from a curated vocabulary, mined from EgoVid5M and Ego4D narrations
and organized into semantically meaningful clusters. This closed-vocabulary grounding improves
consistency, and yields more faithful fine-grained annotations. We present the annotations generated
by our method for a few sample sequences in Figure 5. Finally, we verify the generated annotations
using an additional VLM pass and filter outliers with a Local Outlier Factor (LOF) filter. These
refined annotations serve as supervision for the downstream training of our text-conditioned hand
motion synthesis model. The prompts used for the annotation pipeline are presented in ??.

3.2 MOTION RECONSTRUCTION

To extract 3D hand motion reconstructions from egocentric videos, we first process high-level text
descriptions from the EgoVid5M dataset to identify sequences involving human presence, particularly
those where humans interact with objects. We then cluster these textual descriptions into scene-level
activity categories (e.g., crafting, repair) and sample sequences from each cluster to ensure diverse
coverage, given that certain categories like cooking are overrepresented. Next, we run a hand keypoint
tracker over the sampled videos and retain only those sequences where both hands are visible in at
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a) Atomic prompts and responses (Parallel CoT):
    • Hand role: Right hand manipulates a knife; left hand stabilizes the bread.
    • Action–object relation: Hand uses a knife to spread butter on bread.

    • State transition: Scoop → spread → place slice → repeat on another slice.
    • Action intent: Preparing buttered bread (food preparation).

b) Summarization (Claude):
“The person spreads butter on bread slices using a knife."

Stage 2: Closed-vocabulary fine-grained annotation
a) Inputs:
    • Stage-1 summary: “The person spreads butter on bread slices using a knife.”
    • Potential objects: {bread slice, knife, butter, plate, cutting board}

    • Potential actions: {scoop, spread, hold/stabilize, place, pick up}
    • Potential Hand roles: {manipulator, stabilizer, both}
b) Refinement (Claude):
    “The right hand uses a knife to scoop butter and spread it over a bread slice         
while the left hand holds the slice steady."

Stage 1: Open-vocabulary high-level annotation 

Figure 4: Example of the two-stage annotation pipeline for an egocentric video (Figure 5).

Figure 5: Examples of the generated annotation and motion reconstruction from egocentric videos
using our data annotation pipeline. For better visulaization please see the SupMat video.

least 80% of the frames. We use HaWor (Zhang et al., 2025a) to reconstruct 3D hand motions from
these egocentric sequences in a global coordinate frame. To reduce the noise in the reconstructed
motions, we apply the Savitzky-Golay filter (Savitzky & Golay, 1964) followed by a Gaussian filter.
Finally, we compute the mean of the top-3 sequence-level acceleration on both translation and rotation
parameters to identify and filter out samples with abrupt, jittery transitions, indicating HaWor failures.

3.3 DATASET ANALYSIS

Our ‘3D Hands in the wild’ (3D-HIW) motion dataset contains 5000 minutes of 3D hand poses and
text descriptions, covering over 1355 objects and 1045 verbs. In total, 3D-HIW comprises 12M
hand poses represented with MANO parameters. In Figure 6, we compare the top-200 trajectories
between 3D-HIW and mocap datasets. While captured motions appear repetitive and front-facing,
in-the-wild motions show greater variability in shape, end positions, and speed. t-SNE embeddings of
trajectories and hand poses of top-3000 diverse samples further confirm that 3D-HIW spans a broader
distribution than GRAB or Gigahands, capturing richer variability of real-world interactions. For
more details, see Appendix C.1.

4 MOTION MODELLING

To model in-the-wild hand motions, we first tokenize the motion space into discrete tokens using a
decomposed VQ-VAE.Based on this motion space, we train an LLM to model text and motion tokens
in a unified latent space which allows us to do both motion synthesis from text and captioning of hand
motions. Motion parameterization: We represent the hand motions as M = (Hl,Hr) ∈ RD×N ,

Figure 6: Comparison of our 3D-HIW dataset with existing datasets (GRAB, Gigahands). Left:
2D trajectory density plots show that our dataset covers a broader spatial range with more diverse
start–end distributions. Right: t-SNE embeddings of trajectories and hand poses further highlight that
our data spans a significantly wider distribution, capturing natural variability.
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where N represents the total number of frames in the motion, D represents the motion dimension,
and l/r denotes the left and right hand respectively. The hand motions are parameterized using the
MANO hand model (Romero et al., 2017) represented as Hj = (τj , θj) ∈ RD/2×N , with j ∈ {l, r},
τj ∈ R9×N represents the trajectory of the hand motion, which contains 6D global rotation and
translation. θj ∈ R90×N denotes the hand pose representing the 15 joints with 6D rotation.

4.1 STRUCTURING HANDS INTO FINE-GRAINED TOKENS (SHIFT):

Figure 7: SHIFT Tokenizer overview.

Standard VQ-VAE models struggle to capture
the diversity and complexity of ‘in-the-wild’
hand motion, often resulting in limited recon-
struction quality and generalization. To address
this, we introduce SHIFT tokenizer that mod-
els trajectory and pose components using sep-
arate VQ-VAEs, while also disentangling left
and right hands during encoding and decoding.
This design choice is motivated by prior findings
from Huang et al. (2025); Chen et al. (2024),
where separating motion into different parts like
hand, face, and objects shows improved performance. Our work extends this idea further by sep-
arating the motion into part-modality-specific granular components. Empirically, this formulation
achieves stronger generalization and more faithful reconstructions (Table 4), even under high temporal
compression (Figure 10). The hand motions are encoded using trajectory Eτ and hand pose Eθ

encoders to produce zj ∈ Rd×N/8 and yj ∈ Rd×N/8 embeddings, where d represents the dimension
of the codebook latent space. The embeddings are quantized into ẑj and ŷj using nearest neighbor
quantization (van den Oord et al., 2018). The trajectory τ̂j and hand pose θ̂j of the input sequence
is reconstructed using the respective decoders Dτ and hand pose Dθ, to get the final reconstructed
motion M̂ = (τ̂j , θ̂j) we train the encoder, decoder, and codebook simultaneously with the loss:

LV Q = Lrec(M, M̂) +
∑
x∈X

(
∥sg[x]− x̂∥2 + β∥x− sg[x̂]∥2

)
, X = {zl, zr, yl, yr}, (1)

where Lrec is an MSE reconstruction loss, sg is a stop gradient operation used to calculate the
codebook loss, and the third part is a “commitment” loss with a trade-off β.

4.2 LLM FOR HAND-MOTION MODELLING:

Employing the part-modality decomposed tokenizer, a hand motion sequence M1:N can be mapped
to discrete trajectory and pose tokens z1:T = {zt}Tt=1 and y1:T = {yt}Tt=1. We represent the motion
tokens as sequences of indices s1:2T = {st}2Tt=1, st ∈ N, where each st is drawn from the combined
motion vocabulary space Vm, where trajectory and pose codebooks are stacked. When tokenized, the
motion sequence is represented as an interleaved stream of trajectory and pose tokens. In practice,
each motion token is written as a special symbol <motion token{i}>. For brevity, we denote
motion tokens as ⟨m⟩ and text tokens as ⟨t⟩.

For example, a sequence with T trajectory ⟨m(τ)⟩ and pose tokens ⟨m(θ)⟩ is arranged as:

⟨som⟩ ⟨m(τL)
1 ⟩⟨m(θL)

1 ⟩⟨m(τR)
1 ⟩⟨m(θR)

1 ⟩; · · · ; ⟨m(τL)
T ⟩⟨m(θL)

T ⟩⟨m(τR)
T ⟩⟨m(θR)

T ⟩ ⟨eom⟩. (2)
To train the LLM, we build a unified text–motion space V = Vt∪Vm, where Vt is the text vocabulary.
We include additional special tokens such as boundary markers (e.g., <som>, <eom>), which enable
text-conditioned motion tasks to be represented in a consistent format. The model handles text-
to-motion, motion-to-text, or joint captioning tasks in a unified manner. Given an input sequence
Xs = {xs

k}Kk=1, x
s
j ∈ V , it predicts the target sequence Xt = {xt

i}Li=1, x
t
i ∈ V autoregressively:

pθ(Xt | Xs) =

L−1∏
i=0

pθ
(
xt
i | xt

<i, Xs

)
. (3)

The training objective is:

LLM = −
L−1∑
i=0

log pθ
(
xt
i | xt

<i, Xs

)
. (4)
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Table 1: Comparison of various methods on RPrecision, MMDist, KID Mean, Diversity, and
MultiModality. Lower is better for all metrics except RPrecision and Diversity.

Method RP3 ↑ MMD ↓ KID ↓ Div → MM ↑
Ground Truth 0.667 ± 0.004 1.903 ± 0.005 3.964 ± 0.189
HumanMDM 0.694 ± 0.005 1.971 ± 0.019 0.344 ± 0.02 3.824 ± 0.177 1.748 ± 0.069
MotionGPT 0.573 ± 0.009 2.183 ± 0.013 0.756 ± 0.03 3.642 ± 0.119 2.015 ± 0.095
T2M-GPT 0.683 ± 0.005 1.976 ± 0.011 0.431 ± 0.02 3.854 ± 0.130 1.892 ± 0.085
Ours 0.721 ± 0.004 1.765 ± 0.016 0.216 ± 0.02 3.865 ± 0.124 1.984 ± 0.084

Pre-training Stage. We pre-train the language model on large-scale text and motion sequences
using a cross-entropy loss on the next-token-prediction task and simple T2M and M2T tasks. This
allows the model to capture natural language semantics and temporal dynamics of hand motions,
similar to MotionGPT.

Geometric-Refinement Stage. While token-level cross-entropy loss encourages correct next-token
prediction, we find it does not guarantee that decoded motions are geometrically smooth or realistic.
Prior works (Hong et al., 2024) address this by adding soft-blending-based regression losses during
the pre-training stage. However, jointly applying soft-blending-based regression in pre-training
conflicts with cross-entropy, as soft-blending favors smooth interpolations while CE enforces sharp
token predictions, leading to modest performance improvements (Table 5). To address this, we adopt
a Gumbel-Softmax parameterization, which enables discrete token selection while directly applying
regression loss in motion space. This yields the joint training objective: L = αLLM + λLrec,
where Lrec ensures fidelity of the reconstructed hand motion. In addition, we also train the model
on additional masked prediction tasks with α = 0 to encourage the model to focus more on the
reconstruction quality.

Instruction Fine-tuning Stage. Finally, we perform instruction fine-tuning to enable the model
to handle multiple tasks, including text-to-motion and motion-to-text. We adopt the multi-task
prompt-based training strategy from MotionGPT, where the model is supervised on diverse instruc-
tion prompts. This stage improves generalization across different tasks and yields state-of-the-art
performance on both synthesis and captioning benchmarks.

5 EXPERIMENTS

Dataset We build our experiments on the proposed 3D-HIW hand motion dataset, which provides
paired 3D hand motions and text descriptions of 32k real-world sequences. For training and evaluation,
we partition the sequences into non-overlapping splits to avoid leakage between sets. Specifically, we
allocate 80% for training (26k sequences), 10% for validation (3k), and 10% for testing (3k).

Evaluation Metrics: For text-to-motion generation (T2M), we follow prior work Tevet et al.
(2023); Guo et al. (2022) and report: R Precision (RP3) for text–motion matching, MMD for text
and motion alignment in feature space, KID for distribution similarity, and Diversity for output
variability and Multimodality for diversity from a single prompt. For motion-to-text captioning, we
use standard language metrics (BLEU4, BLEU1, Rouge-L) along with R Precision. For annotation
quality, we adopt GPT-Score following EgoHOD Hong et al. (2024). For motion reconstruction,
we report MPJPE, PA-MPJPE, and ACCEL as in EgoLM Hong et al. (2024).

5.1 DATASET ANNOTATION

We evaluate the quality of our egocentric video-to-text annotations using GPT-Scores from the
EgoHOD (Pei et al., 2025), which rate similarity to human-authored descriptions on a 0–10 scale
(higher is better). Results are reported in Table 3. Compared to LaVILA (Zhao et al., 2023) and
EgoHOD, our method achieves the highest GPT-Score (6.9), surpassing existing approaches by a clear
margin. This confirms that our pipeline produces more faithful and higher-quality text annotations.
To further analyze the role of our two-stage annotation pipeline, we ablate against two baselines: (i)
VILA-Naive, which uses a single large prompt, and (ii) VILA-Stage1, which only uses the first-stage
outputs. Both underperform compared to our full pipeline, validating the importance of structured
multi-stage prompting for robust annotation quality. We study motion quality of the 3D-HiW dataset
with respect to different data-cleaning steps in Appendix C.1.
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Table 2: Motion-to-text captioning quantitative
results.

Method RP3 ↑ B4 ↑ B1 ↑ RG ↑
GT 0.668
TM2T 0.385 0.122 0.333 0.428
MotionGPT 0.407 0.132 0.345 0.439
Ours 0.571 0.181 0.420 0.472

Table 3: Evaluating text annotations using
EgoHoD’s GPT-Scores (0–10).

Method GPT-Score ↑
LaVILA 4.9 ± 0.3
EgoHOD 6.1 ± 0.4
VILA-Naive 5.5 ± 0.2
VILA-Stage1 6.4 ± 0.5
Ours 6.9 ± 0.3

5.2 CLUTCH – TEXT-TO-MOTION GENERATION (T2M)

The text-to-motion task evaluates a model’s ability to generate plausible hand motion sequences
given natural language input. We benchmark CLUTCH against recent state-of-the-art baselines,
including MotionGPT (Jiang et al., 2024), HumanMDM (Tevet et al., 2023), and T2MGPT (Zhang
et al., 2023), retraining all models on our dataset for fairness. Results are reported in Table 1. Across
all metrics, CLUTCH achieves consistent improvements over competing methods, suggesting that its
unified modelling of language and hand motion provides stronger alignment than prior approaches.
Qualitative results in Figure 8 further highlight CLUTCH’s ability to generate multiple diverse yet
semantically faithful motion trajectories from the same textual description.

Figure 8: Qualitative results for text-to-motion synthesis.

5.3 CLUTCH – MOTION-TO-TEXT CAPTIONING (M2T)

The motion-to-text task involves generating text descriptions from novel 3D hand motions from the
wild. To this end, we compare our method against MotionGPT and TM2T (Guo et al., 2022) and
report the metrics in Table 2. From the results, we can infer that our method significantly outperforms
the baselines on all the metrics. We show qualitative results of motion captioning in Figure 9.

Figure 9: Motion-to-Text captioning results.

5.4 ABLATIONS

Effectiveness of the SHIFT tokenizer: We compare our SHIFT with three baselines: MotionGPT’s
VQ-VAE, a standard VQ-VAE, and a part-decomposed variant (PD VQ-VAE) that disentangles
left and right hands during encoding and decoding. As shown in Table 4, our model achieves
the best overall performance, yielding the lowest MPJPE (45.94) and ACCEL (5.395), while also
improving motion diversity. Moreover, Figure 10 illustrates that SHIFT handles temporal compression
substantially better than the baseline VQ-VAEs, enabling LLM training under modest memory
requirements (4 A100 GPU’s vs 64 Tesla V100 and 32 NVIDIA A100 GPU’s in MotionGPT and
HoiGPT respectively). These results underscore the advantage of decomposing both body parts
and modalities in VQ-VAE–based motion modelling. Additional experiments are presented in
Appendix B.2.

Impact of Geometric Refinement and Instruct-Fine Tuning: Table 5 compares different training
stages. Pre-training alone (row 1) provides a reasonable baseline, but performance remains limited.
Instruction tuning (IFT) substantially improves results (row w/o GR), raising T2M RP3 from 0.53 to
0.69 and M2T RP3 from 0.50 to 0.57. Adding geometric refinement (GR) further boosts alignment:
the full model (PT+GR+IFT) achieves the lowest KID (0.216 vs. 0.297 w/o GR) and the highest RP3
scores (0.72 for T2M, 0.57 for M2T). This demonstrates that GR plays a key role in motion synthesis
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Table 4: Comparison of VQ-VAE configurations.
Method Num. / dim MPJPE ↓ ACCEL ↓ Div →
GT – – – 3.964
MotionGPT 512 / 512 93.486 8.340 3.683
Std. VQ-VAE 4K / 64 93.258 7.771 3.450
PD VQ-VAE 4K / 64 95.266 7.500 3.647
Ours 4K / 64 45.944 5.395 3.747

Figure 10: VQ-VAE compression.

Table 5: Impact of different LLM training stages.
PT: Pre-training, GR: Geometry refinement, IFT:
Instruct Fine-tuning.

T2M M2T
Method RP3 ↑ KID ↓ RP3 ↑ B4 ↑
1 = PT 0.533 0.349 0.501 0.148
w/o GR (1+IFT) 0.690 0.297 0.568 0.173
PT + GR + IFT 0.721 0.216 0.571 0.181
EgoLM setup 0.705 0.263 0.570 0.171

Table 6: Performance scaling with increased
training data (7K, 15K, 30K samples). Cap.
data: Artic+GRAB.

T2M M2T
Method RP3 ↑ KID ↓ RP3 ↑ B4 ↑
Cap. data 0.097 1.970 0.083 0.004
7K 0.513 0.860 0.247 0.092
15K 0.637 0.672 0.396 0.139
30K 0.721 0.216 0.571 0.181

quality. In other words, IFT scales generalization, while GR makes that generalization meaningful by
enforcing geometric alignment. The combination yields the best overall performance. Finally, we
compare against the EgoLM Hong et al. (2024) soft-blending reconstruction loss (last row). While
competitive, it is inferior to our approach, highlighting the benefits of explicit geometric refinement
and Gumbel-Softmax–based reconstruction.

Impact of Dataset Size: Increasing the number of captioned sequences from 7K to 30K yields steady
improvements in both text-to-motion (T2M) and motion-to-text (M2T). These results underline the
importance of larger, more diverse training data for scalable in-the-wild hand motion modelling. For
reference, we also provide our method trained on a combination Arctic and GRAB dataset.

Table 7: Impact of model size on the performance.

T2M M2T
Method RP3 ↑ KID ↓ RP3 ↑ B4 ↑
T5-Small (50M) 0.545 0.732 0.292 0.089
T5-Base (220M) 0.721 0.216 0.571 0.181
T5-Large (770M) 0.733 0.092 0.578 0.192

Impact of Language Model Size: Table 7 re-
ports the effect of scaling the backbone language
model from T5-Small to T5-Large. As expected,
larger models yield consistently better results on
both T2M and M2T tasks. These results confirm
that language model capacity plays a crucial
role in enabling stronger generalization across
modalities in both tasks.

6 CONCLUSION

To the best of our knowledge, CLUTCH is the first work to explore in-the-wild hand motion
modelling. While effective, our approach still has limitations. We focus on hand motions, while
leaving hand–object interactions for future exploration due to the current challenges of in-the-
wild reconstruction. Further improvements may enhance fine-grained expressiveness in motion
reconstructions and enable temporal segmentation of overlapping actions in egocentric sequences.
Advancing along these directions could further improve dataset quality and model robustness.

Despite these challenges, CLUTCH makes important progress towards scalable, natural hand motion
synthesis. To this end, we introduce a novel data annotation pipeline, a dataset, and a part-modality
decomposed VQ-VAE for in-the-wild hand motion modelling. Through detailed experiments, we
demonstrate that CLUTCH outperforms existing diffusion and LLM models on the in-the-wild hand
motion modelling task. Looking ahead, we believe combining in-the-wild motions with controlled
datasets, and extending to hand–object interactions can unlock new downstream applications in
behavioral AI, allowing us to eventually build embodied avatars capable of fine-grained high-fidelity
interactions with their environments.
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A GUMBEL-SOFTMAX MOTION DECODING.

Given an input sequence Xs, the LLM outputs a full vocabulary logit tensor fθ(Xs) ∈ RT×|V |,
where |V | is the joint (text + motion) vocabulary. For motion decoding, we extract only the logits
corresponding to the motion–token subspace Vm ⊂ V . This slicing is expressed as:

ℓ1:T = fθ(Xs)1:T, Vm ,

where ℓt ∈ RK and K = |Vm| is the size of the motion–token vocabulary. This corresponds exactly
to selecting the motion–token logit channels from the full output tensor.

The extracted motion logits are then converted into a categorical representation through a Gum-
bel–Softmax operator (Jang et al., 2017):

Z̃1:T = Gumbel(ℓ1:T , τ).

The continuous 3D hand–motion sequence is reconstructed by decoding this Gumbel–Softmax motion
representation using the SHIFT decoder:

M̂1:T = Dτ , Dθ(Z̃1:T ),

where Dτ denotes trajectory decoder parameters and Dθ the hand-pose decoder parameters.

Reconstruction Loss. To refine geometric fidelity, we combine the language–modeling loss LLM

with a reconstruction loss computed in continuous motion space:

Lrec =
1

T

T∑
t=1

∥∥∥M̂t −Mt

∥∥∥2
2
.

The final objective is:
L = αLLM + λLrec.

B ADDITIONAL EXPERIMENTS

Implementation details: In our experiments, we use two VQ-VAE models with 4096 codebook
entries of 64 dimensions each. The compression rate of the VQ-VAE is 8, i.e., the encoder compresses
8 temporal frames into a single code. The motion tokenizer is trained for 2000 epochs using the Adam
optimizer with a learning rate of 2e−4. We employ the 220M-parameter Flan-T5-Base (Roberts
et al., 2022) as our language model. The model is pre-trained, geometry-refined, and fine-tuned
for 300/50/200 epochs with learning rates of 2e−4/1e−5/2e−5, respectively. Experimental results
are reported with a 95% confidence interval, computed from 20 repeated runs to ensure statistical
significance. All models are trained on 4 NVIDIA A100 GPUs with 80GB memory each.

B.1 EFFECTIVENESS OF TEXT-ANNOTATION TYPE:

Table 8: Effect of different types annotation on
Text-to-Motion task performance. HA: High-level
annotation, DA: Fine-grained Annotation.

T2M M2T
Method RP3 ↑ KID ↓ RP3 ↑ B4 ↑
Ours (HA) 0.551 0.148 0.496 0.153
Ours (DA) 0.462 0.192 0.489 0.114
Ours(HA+DA) 0.721 0.216 0.571 0.181

We evaluate how different annotation types af-
fect LLM performance, using high-level (HA),
fine-grained (DA), and combined (HA+DA) an-
notations (Table 8). Using only high-level (HA)
or fine-grained (DA) annotations yields moder-
ate performance (e.g., T2M RP3 = 0.551 and
0.462). Combining both (HA+DA) yields the
best results across metrics (T2M RP3 = 0.721,
M2T RP3 = 0.571), underscoring their comple-
mentarity for robust text–motion learning.

B.2 TOKENIZER ANALYSIS:

We provide additional comparisons of our decomposed VQ-VAE (SHIFT) against several baselines
to further highlight the impact of model design choices. As reported in Table 9, our formulation
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consistently achieves the lowest reconstruction error, with MPJPE reduced to 45.94 and ACCEL to
5.395, while preserving motion diversity. Further, We visualize the effect of temporal compression
in Figure 10. Whereas standard VQ-VAEs degrade rapidly as the compression factor increases, our
decomposition into trajectory and pose codebooks maintains reconstruction quality even at high
compression rates. This property is especially important for scaling large language models to motion,
as it reduces the effective sequence length and enables training under more modest compute budgets.
In practice, our model requires only 4 NVIDIA A100 GPUs for training, compared to the 64 Tesla
V100 GPUs used in MotionGPT and 32 A100 GPUs in HOIGPT. These extended experiments
confirm that decomposing both modalities (trajectory vs. pose) and body parts (left vs. right hand) is
a crucial factor for stable, scalable motion modeling.

Table 9: VQVAE analysis - Extened version

Method Num. / dim MPJPE ↓ ACCEL ↓ Div →
GT 3.964
MotionGPT 512 / 512 93.486 8.340 3.683
Std. VQ-VAE 4K / 64 93.258 7.771 3.450
Std VQ-VAE 8K / 64 92.150 7.859 3.539
Std VQ-VAE 4K / 256 93.045 8.014 3.647
PD VQ-VAE 4K / 64 95.266 7.500 3.647
PD VQVAE 8K / 64 92.052 7.369 3.581
PD VQVAE 4K / 256 97.289 7.616 3.357
Ours 4K / 64 45.944 5.395 3.747

B.3 RESULTS ON PUBLIC DATASETS:

To further assess the capability of our method, we follow the dataset protocol of HOIGPT(Huang
et al., 2025) and train our model and all baselines on a publicly available captured dataset composed
of ARCTIC(Fan et al., 2023) and GRAB (Taheri et al., 2020), covering 5.1K / 0.5K / 0.5K sequences
for training, validation, and testing. We evaluate performance on the Text2Motion (T2M) and
Motion2Text (M2T) tasks using the metrics described in Section 5, and we report the results in
Table 10 and Table 11.

As shown in the tables, our method consistently outperforms prior approaches across both tasks. In
T2M, our model achieves the highest R-Precision (0.492), the lowest MMDist among generative
models (3.008), and competitive KID scores, while also providing substantially better multimodality
than MotionGPT(Jiang et al., 2024) and T2MGPT(Zhang et al., 2023). Notably, HumanMDM (Tevet
et al., 2023), a diffusion-based model, tends to generate visually smooth but less semantically aligned
motions, which is reflected in its lower R-Precision and higher MMDist under this reduced-data
regime. In M2T, our method again achieves the best performance across all major metrics, indicating
stronger bidirectional grounding between motion and language compared to MotionGPT and TM2T.
Although our model is explicitly designed for in-the-wild hand-motion modeling, it nonetheless
generalizes effectively to controlled HOI datasets, demonstrating the strength and versatility of the
learned representation.

B.4 SENSITIVITY ANALYSIS OF THE LM AND RECONSTRUCTION LOSSES

We conducted a full α/λ sensitivity sweep to study the effect of balancing the language-modeling
loss and the reconstruction loss. The results are presented in Table 12. We observe a consistent trend:

Method RP3 ↑ MMDist ↓ KID ↓ Diversity → MultiModality ↑
Ground Truth 0.525 2.763 – 4.581 –
HumanMDM 0.429 4.047 0.0107 4.915 2.567
MotionGPT 0.371 3.609 0.0409 3.315 1.955
T2MGPT 0.407 3.761 0.0773 4.956 1.658
Ours 0.492 3.008 0.0144 3.811 2.393

Table 10: T2M evaluation results on ARCTIC+GRAB.
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Method RP3 ↑ Bleu4 ↑ Bleu1 ↑ ROUGE L ↑
TM2T 0.3519 0.1815 0.2245 0.5174
MotionGPT 0.4262 0.2158 0.5167 0.5278
Ours 0.4601 0.2341 0.5732 0.5822

Table 11: M2T evaluation results on ARCTIC+GRAB.

T2M M2T
LM (α) Rec (λ) RP3 ↑ KID ↓ RP3 ↑ Bleu4 ↑

GT 0.671 – 0.667 –

0 1 0.413 0.886 0.099 0.021
0.1 0.9 0.498 0.725 0.357 0.077
0.25 0.75 0.522 0.335 0.403 0.116
0.5 0.5 0.721 0.216 0.571 0.181
0.75 0.25 0.712 0.234 0.544 0.172
0.9 0.1 0.708 0.289 0.543 0.171
1 0 0.690 0.297 0.568 0.173

Table 12: Sensitivity study of the LM loss weight α and reconstruction loss weight λ. Left: M2T
performance (RP3, KID). Right: T2M performance (RP3, Bleu4). GT: Ground Truth

large λ (low α) smooths the motion but affects semantic alignment, while large α (low λ) sharpens
token prediction but increases geometric artifacts, reflected in higher KID scores. The balanced
setting of α = 0.5, λ = 0.5 delivers the best overall performance across both M2T (RP3 = 0.721,
KID = 0.216) and T2M (RP3 = 0.571, Bleu4 = 0.181).

When λ is high (i.e., the reconstruction loss dominates), the model struggles to capture the overall
distribution, highlighting the importance of the LM loss for maintaining semantic alignment. Con-
versely, when α is too high, the model predicts sharper discrete tokens but exhibits poorer geometric
realism. These findings confirm that a balanced loss weighting is essential for high-quality motion
generation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Method Rating (1-5)
A = Random 1.106
B = Our annotation pipeline 4.244
C = Human annotation 4.673

Method Rating (1-5)
A = Random motion 1.375
B = Without filters 2.434
C = Final-cleaned 4.133

Table 14: User study results. Left: annotation quality ratings. Right: motion quality ratings. Rating:
1 = Low, 5 = Best

C 3D HANDS IN THE WILD (3D-HIW) DATASET - EXTENSION:

C.1 DATASET ANALYSIS - CONTINUATION:

Table 13: Dataset design choices evaluation

Method RP3 ↑ MMD ↓
w/o. both hands filter 0.178 3.819
w/o. accl. 0.422 2.653
w/o. temp smooth. 0.511 2.249
w/o. verifier filter. 0.553 2.019
Ours (final) 0.666 1.903

To extract 3D hand motion reconstructions from
egocentric videos, we first process high-level
text descriptions from the EgoVid5M dataset to
identify sequences involving human presence,
particularly those where humans interact with
objects. We then cluster these descriptions into
scene-level categories (e.g., crafting, repair) and
sample uniformly across clusters to mitigate the
overrepresentation of cooking activities. We
also study the impact of filter with respect to motion quality in Table 13, where we ablate key
components of our cleaning pipeline. Removing filters (e.g., hand visibility checks, acceleration
constraints, or temporal smoothing) significantly degrades R-Precision and increases motion noise.
Further, we analyze the distribution of top-35 verbs and nouns in our dataset which is presented in
Figure 11.

Figure 11: Top-N Verb and Nouns: We present the distribution of top-35 verbs and nouns in the
’3D Hands in the wild’ (3DHiW) dataset

C.2 PERCEPTUAL USER-STUDY:

Motion Reconstruction: We conducted an additional MTurk user study to assess the perceptual
quality of our reconstructed hand motions. Workers were shown the input egocentric video alongside
two rendered 3D hand-motion reconstructions (front and back views), and were asked to rate on a
1-5 Likert scale how realistic the 3D motion appeared and how well it matched the motion in the
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Figure 12: MTurk interface used for the motion user study.

video. We evaluate three categories: (A) random motions sampled from unrelated sequences, (B)
our reconstruction without filtering, and (C) our final filtered reconstruction. From Table 14, users
overwhelmingly preferred our final reconstruction (4.133) compared to the unfiltered version (2.434)
and the random baseline (1.375). We restricted participation to experienced MTurk workers (>5000
HITs, ≥98% approval rate) and collected ratings on 65 sampled videos, with each video evaluated by
25 unique workers, resulting in a total of 1,625 judgments. The marked improvement from (B) to
(C) confirms that our filtering pipeline substantially enhances motion quality. The MTurk user-study
interface is presented in the Figure 12.

Text annotation: In addition, we conducted a human evaluation of the generated annotations using
an MTurk study that mirrors the setup described above. Workers were shown an input egocentric
video together with a candidate text description, and were asked to rate on a 1–5 Likert scale how
much they agreed with the statement: “The text accurately describes the hand motion in the input
video.” We evaluate three categories: (A) a random annotation sampled from human annotation’s,
(B) our generated annotation, and (C) the corresponding human-written annotation. As reported in
Table 14, random annotations received very low scores (1.106), confirming that workers reliably
detect mismatched or incorrect text. Our generated annotations achieved a high rating of 4.244, which
is close to the human-written descriptions (4.673). This strong alignment indicates that our automated
annotation pipeline produces realistic and human-quality motion descriptions that accurately reflect
the hand motions in the video. The MTurk interface used for this annotation study is shown in
Figure 13.
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Figure 13: MTurk interface used for the text annotation user study.

C.3 TEXT ANNOTATION PROMPTS:

Here, we give further details of the prompts introduced in Section 3.1 and Figures 3 and 4. In order
to give the reader a better understanding of what is requested in the prompts, we give simplified
(i.e. natural-language-based) prompt summaries in Figure 14. The actual exact prompts passed into
the annotating LLM contain more formal language as well as a strict JSON output specification
(following the example of Shorten et al. (2024)). The final prompts of both stages are given in
Figure 15.
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You are an ego-centric video annotator.

You will watch a short video from the first-person perspective.

Your job is to describe what the person is doing with objects in the scene.

Focus on the main actions and the objects involved.

Don’t mention colors, brands, or whether something is on the left or right.

Use clear, concrete verbs like “peel,” “rotate,” “hold,” or “type.”

Make sure each described action is distinct (no duplicates).

For each action you describe, give two things:

1. A short phrase that captures the action, like:

“rotate lid”

“peel banana peel”

“hold jar”

2. Extra details about how the action is done, such as:

What part of the object is involved

What kind of hand contact is used (e.g., pinching, twisting, swiping)

Which fingers are used (thumb, index, multiple fingers)

How the object is positioned in relation to the hand (in front, above, wrapped, etc.)

Describe up to K different action–object pairs for each video.

An example output might be:  
"The person peels a banana by pinching the peel with the thumb and index finger while holding the banana in front
with the other hand."

Task 1: Action-Object Description  

You are an ego-centric video annotator.

You will watch a short video from the first-person perspective.

Your job is to describe how the person is using their hands.

Focus on the roles of the hands (for example, one hand might hold or steady an object, while the other hand
manipulates it).

Only mention left or right if it’s clearly visible in the video.

If clear, include a simple note for which side is used.

For each clip, provide two parts:

1. The coordination pattern — pick one of these options:

Asymmetric (the two hands do different things, like one stabilizing while the other manipulates).

Symmetric (the two hands do the same or mirrored actions).

Alternate (the hands take turns).

Unknown (if it can’t be determined).

2. A description of the hand roles — explain what each hand is doing using simple cues:

Whether it is the manipulator (actively doing something) or the stabilizer (holding or supporting).

The part of the object or surface it interacts with (e.g., lid, jar body, handle, screen, peel).

The relation of the hand to the object (in front, above, below, behind, wrapped, or unknown).

Which fingers are mainly used (thumb, index, multiple, none, or unknown).

An example output might be: 

“The manipulator twists the lid while the stabilizer holds the jar body.”

“The thumb taps the screen while the other hand supports the phone.”

Task 2: Hand Role Prompt

You are an ego-centric video annotator.

You will watch a short video from the first-person perspective.
Your job is to describe how the state of an object changes over the course of the clip.

Focus only on visible changes in the object’s condition or status.

Ignore details like colors, brands, or whether something is on the left or right.

For each clip, provide two parts:

1. An outcome phrase showing the change:

Format it as “object: before → after”.

Examples:

“lid: closed → open”

“banana: unpeeled → peeled”

“switch: off → on”

If nothing clearly changes, write: “none: unknown → unknown”.

2. Extra details about the transition, such as:

The object name.

The state before and after.

Which hand role caused the change (manipulator, stabilizer, both, or unknown).

Any visible evidence for the change.

Optional: short descriptions of intermediate steps (e.g., “twist lid,” “lift lid”).

An example output might be: 

“The manipulator twists and lifts the lid until it is open.”

“The banana peel is removed, leaving the banana peeled.”

Task 3: State Transition

You are an ego-centric video annotator.

You will watch a short video from the first-person perspective.
Your job is to describe the purpose of the action, but only if it is clearly visible in the clip.

Do not guess or speculate about what might happen next.

Only describe the intent if it is strongly supported by what you can see.

If the purpose is unclear, simply write “unknown.”

For each clip, provide two parts:

1. A short purpose phrase, beginning with “to …”. Examples:

“to open the jar”

“to eat the fruit”

“to cook a meal”

“to type a message”

“unknown” (if the purpose isn’t clear)

2. Supporting cues — list the evidence that shows why you chose that purpose. This may include:

State changes in the object (e.g., “lid closed → open”).

Observed actions (e.g., “rotate lid”).

Objects involved (e.g., “jar,” “phone”).

Contextual clues (e.g., “on table,” “in kitchen”).

An example output might be: 

“The intent is clear: the person opens the jar.”

“The intent is uncertain: typing may be part of many possible goals.”

Task 4: Finding Intent

You are an ego-centric video annotation expert.

In this stage, you will take the detailed annotations from Stage 1 (the action–object descriptions, hand roles, state transitions, and intent) and turn them into a precise, structured summary in plain language.

Your task has two parts:

1. Closed-vocabulary tuples (in words, not code):

Identify the key actions and objects from Stage 1, and match them to a fixed set of standard verbs and objects.

For each action, describe:

the verb (e.g., open, peel, rotate),

the object (e.g., lid, jar, banana),

the part of the object if clear (e.g., lid, handle, screen),

the hand role involved (manipulator or stabilizer),

how the hand interacts with the object (e.g., wrapped around, in front, above, with thumb, with multiple fingers),

and the supporting evidence, such as when it happens in the video.

Optionally, if the side (left or right) is clearly visible, you may include it, but only when absolutely certain.

2. Fine-grained summary (2–3 sentences):

Write a short, natural description that uses only the verbs and objects from the standard vocabulary.

Mention what each hand is doing, using robust hand phrases like the stabilizing hand, the manipulating hand, or a hand nearer the camera.

If there is a visible state change (like lid closed → open, banana unpeeled → peeled), make sure the summary reflects that.

If a clear intent is supported (like to eat the fruit), you may include it.

Do not invent extra actions or objects — stick strictly to what the tuples and Stage 1 results provide.

Example of a fine-grained summary:

“The manipulating hand twists and lifts the lid while the stabilizing hand holds the jar body. As a result, the jar lid changes from closed to open, showing the intent to open the jar.”

Stage 2: Closed-vocabulary fine-grained annotation

You are an ego-centric video annotator.

You will watch a short video from the first-person perspective.

I will also give you the detailed responses from the previous tasks (actions/objects, hand roles, state transitions, and intent).

Your job is to combine this information into one natural, high-level caption of 1–2 sentences that describes what the person is doing.

Start with the format: “The person <action> <object/part> …”

Only include information that is clearly supported by the earlier tasks.

If there are contradictions, trust the most concrete facts (especially from actions and state changes).

Do not mention colors, sizes, brands, or any on-screen text.

Avoid vague phrasing like “and/or” or “etc.”, and avoid speculation.

Do not say “left” or “right.” Instead, use robust references such as:

“the stabilizing hand”

“the manipulating hand”

“a hand nearer the camera”

“a hand above the object”

“thumb on the screen”

Task 5: Open Vocabulary Annotation - Claude Summarization 

Stage 1: Open-vocabulary high-level annotation prompts

Figure 14: Simplified natural language prompt summaries. First stage (top): First 4 tasks are used
for PCoT, and Task 5 is the open vocabulary summarization of the output of the first 4 tasks. Second
stage (bottom) is used for the final closed-vocabulary fine-grained annotation generations.
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You are an ego-centric video annotator.
I will provide one egocentric video clip. Extract the main action→object pairs. Avoid colors/brands and
left/right. Use concrete verbs. Keep items distinct (no duplicates).

For the clip, generate up to K items. For EACH item, generate TWO STRINGS:

First string: a short phrase "<verb> <object/part>" that captures the action. Example: 
"rotate lid", "peel banana peel", "type screen", "hold jar".

Second string: an ATTRIBUTES DICT with keys selected from 
[’verb’,’object’,’part’,’contact’,’digits’,’object relation’]

contact ∈ [’power’,’pinch’,’press’,’swipe’,’twist’,’poke’,’drag’,’unknown’]
digits ∈ [’thumb’,’index’,’multiple’,’none’,’unknown’]
object_relation ∈ [’in front’,’above’,’below’,’behind’,’wrapped’,’unknown’]
Each value is a list of one or more short phrases.

Return format: 
Return the results in the following format (JSON only, no comments, no trailing commas):
"aop_items": [[first string, second dict],...]

Examples:
{ 

"aop_items": ["peel banana peel", "pinch banana peel @ 0.2 ]
}
{ 

"aop_items": ["impulse taps ×4 @[0.7,0.9]"]
}

Task 1: Action-Object Description  

You are an ego-centric video annotator.
I will provide one egocentric video clip. Describe hand roles; avoid left/right unless clearly supported by the
visuals. If clear, include a simple token for the side.

For the clip, generate TWO STRINGS:

First string: the coordination pattern:
        choose one of ["asymmetric", "symmetric", "alternate", or "unknown"].
Second string: a ROLES_DICT describing each role with robust cues.
        Select keys from: ['manipulator', 'stabilizer'] (use only those that apply).
        In each value (a list), provide short phrases chosen from:

object_relation ∈ ["in_front", "above", "below", "behind", "wrapped",
"unknown"]
digits ∈ ["thumb", "index", "multiple", "none", "unknown"]
object/part, if clear: ∈ ["lid", "jar body", "screen", "peel", "handle"]
Each value is a list of one or more short phrases.

Return format: 
Return the results in the following format (JSON only, no comments, no trailing commas):
    {"roles_summary": [first_string, second_dict]} 

Examples:
    {"roles_summary": [
      "asymmetric",
      {"stabilizer": ["left_hand", "in_front","multiple","jar body"],
       "manipulator": ["right_hand","near_camera","in_front","multiple","lid"]},
      "action": "manipulator changes pose; stabilizer holds"
    ]}
    {"roles_summary": [
      "asymmetric",
      {"stabilizer": ["both","in_front","multiple","phone body"],
       "manipulator": ["right_hand","in_front","thumb","screen"]},
      "thumb drives taps"
    ]}

Task 2: Hand Role Prompt

You are an ego-centric video annotator.
I will provide one egocentric video clip. Record visible object state transitions and, if helpful, list brief
intermediate steps. Avoid colors/brands and left/right.

For the clip, generate TWO STRINGS:

First string: an outcome phrase "object: before → after".
        Examples: "lid: closed → open", "banana: unpeeled → peeled", "switch: off → on".
        If no clear change is visible, write "none: unknown → unknown".
Second string: a STATE DICT with keys selected from:   
  ['object','state_before','state_after','changed_by_role',
  'evidence','intermediate_steps'].

changed_by_role ∈ ['manipulator','stabilizer','both','unknown']
intermediate_steps = list of short phrases like ["twist lid","lift lid"] 
(omit if unclear)

Return format:  
Return the results in the following format (JSON only, no comments, no trailing commas):
    {"state_summary": [[first_string, second_dict], ...]}

Examples:
    {"state_summary": [
      ["lid: closed → open", {"object":["lid"],"state_before":["closed"],"state_after":
["open"],"changed_by_role":["manipulator"],"intermediate_steps":["twist lid","lift
lid"]}, "goal reached"]
    ]}
    {"state_summary": [
      ["banana: unpeeled → peeled", {"object":["banana"],"state_before":
["unpeeled"],"state_after":["peeled"],"changed_by_role":["manipulator"], "goal reached"]
    ]}

Task 3: State Transition

You are an ego-centric video annotator.
I will provide one egocentric video clip. Provide the action intent ONLY if it is clearly supported by the visible
actions; otherwise return "unknown". Avoid colors/brands and speculation.

For the clip, generate TWO STRINGS:

First string:  a short purpose phrase starting with "to …".
        Examples: "to open the jar", "to eat the fruit", "to cook a meal", "to type a

message", or "unknown".
Second string: a SUPPORTING_CUES_DICT.
        Select keys from: ['cue_state_change','cue_action','cue_object','cue_context'].
        Each value is a list of brief phrases, e.g., ["closed→open lid"], ["rotate lid"], ["jar"],

["on table"].

Return format:  
Return the results in the following format: (JSON only, no comments, no trailing commas.)
    {"intent_summary": [first_string, second_dict]}

Examples:
    {"intent_summary": [
      "to open the jar",
      {"cue_state_change":["lid closed→open"],"cue_action":["rotate lid"],

   "cue_object":["jar"],"cue_context":["table"]},
      "clearly entailed"
    ]}
    {"intent_summary": [
      "unknown",
      {"cue_action":["type screen"],"cue_object":["phone"]},
      "likely but not certain"
    ]}

Task 4: Finding Intent

You are an ego-centric video annotation expert.
Generate CLOSED-VOCAB tuples and a CLOSED-VOCAB fine-grained summary from Stage-1 outputs. You may reason on a private scratchpad. Do NOT include your reasoning. Return ONLY JSON. No extra text.

TASK:
From Stage-1 outputs, produce:

1. tuples: canonical (action, object[, part], hand_desc) with confidence and evidence,
2. closed_vocab_fine_grained_ann: 2–3 sentences written STRICTLY from those tuples + state/intent

Stage 1 Inputs:
    {
      "p1": { ... q1_action_object_description ... },   # aop_items
      "p2": { ... q2_hand_roles_prompt ... },           # roles_summary
      "p3": { ... q3_change_of_hand_prompt ... },       # state_summary
      "p4": { ... q4_intent_prompt ... },               # intent_summary
      "H":  "<optional open-vocab high-level hand description>"
    }
    
Contextual inputs (for mapping; use as constraints):
Potential_actions =  { nearest mapping from dictionary }
Potental_objects = { nearest mapping from dictionary }
SYNONYMS = { mapping from preprocessed vocab set }
    
Derivation rules:

1. Build candidate (verb, object[, part]) from p1.aop_items (fallback to H). Map via SYNONYMS into ACTION_VOCAB / OBJECT_VOCAB.
2. Derive hand_desc from p2.roles_summary: include role, camera_side, object_relation, digits. If missing, set "unknown". 

(OPTIONAL) If left/right is clearly supported, add lr:"left|right" and lr_conf:0.00–1.00; otherwise omit.
3. Use p3.state_summary to prefer actions that cause the observed change (closed→open → {rotate/open}, unpeeled→peeled → {peel}). Drop contradictions.
4. Compose 2–3 sentences ONLY with content words from ACTION_VOCAB ∪ OBJECT_VOCAB and robust hand phrases (no L/R words). Add outcome/intent only if supported by p3/p4.
5. Every tuple should include evidence timestamps (seconds or frame ids) when possible.

 
Constraints

    No colors/sizes/brands;
    Do NOT introduce actions/objects not present in tuples.

Stage 2: Closed-vocabulary fine-grained annotation

You are an ego-centric video annotator.
I will provide one egocentric video clip and the responses to the prompts above. Use those responses to generate a high-level, open-vocabulary caption.

Task
Fuse P1 action/object items + P2 roles + P3 state/intermediate steps + P4 intent into ONE natural 1–2 sentence description in the form "The person <action> <object/part> …". Keep robust hand references (no left/right).

Rules:

Use only what is supported by P1–P4. Resolve contradictions in favor of concrete facts from P1/P3.
No colors, sizes, brands, or on-screen text. Avoid “and/or”, “etc.”, and speculation.
Do NOT say “left/right”. Use robust references like “the stabilizing hand”, “the manipulating hand”, “a hand nearer the camera”, “a hand above the object”, “thumb on the screen”.
Open vocabulary is allowed (do not restrict to any list)

Input:
{"p1":<JSON>,"p2":<JSON>,"p3":<JSON>,"p4":<JSON>}

Output schema:
{"open_vocab_high_level_annotation":{"caption":"<1–2 sentences>"}}

Examples:
{"open_vocab_high_level_annotation":{"caption":"The person flies a toy plane."}}
{"open_vocab_high_level_annotation":{"caption":"The person eats a banana."}}    

Task 5: Open Vocabulary Annotation - Claude Summarization 

Stage 1: Open-vocabulary high-level annotation prompts

Figure 15: The exact formal prompts used in the data annotation pipeline. First stage (top): First
4 tasks are used for PCoT, and Task 5 is the open vocabulary summarization of the output of the
first 4 tasks. Second stage (bottom) is used for the final closed-vocabulary fine-grained annotation
generations. The prompts were designed following Shorten et al. (2024).
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D RELATED WORKS

Discussion: In contrast to prior work based on controlled mocap datasets or single-codebook
tokenizers, we contribute the first in-the-wild 3D hand motion dataset with large-scale semantic
annotations, a part-modality decomposed tokenizer for robust hand representation, and a geometry-
aligned LLM training strategy. Together, these contributions enable CLUTCH to synthesize natural,
diverse, and semantically consistent hand motions in unconstrained real-world settings.

D.1 MOTION DATASETS / ANNOTATION

Motion Datasets: Existing motion datasets provide a foundation for body-level modelling but remain
limited for hands. AMASS (Mahmood et al., 2019) aggregates mocap sequences, while GRAB,
ARCTIC, H2O, DexYCB (Chao et al., 2021), and OakInk (Zhan et al., 2024; Yang et al., 2022)
offer detailed 3D hand–object interactions. More recently, Gigahands (Fu et al., 2025) introduced
a large dataset of 15K hand motion sequences with diverse actions and objects. However, these
datasets are costly to collect, restricted to controlled studio settings, and cover only narrow action sets.
Large-scale egocentric datasets such as Ego4D (Grauman et al., 2022) and EgoVid5M (Wang et al.,
2024) capture diverse real-world activities, but lack accurate 3D hand reconstructions with semantic
labels. This gap has so far prevented hand motion modelling from benefiting from large-scale training
methods that have driven rapid advances in vision and language.

Egocentric motion captioning: Recent advances in egocentric video understanding have leveraged
natural language for supervision, moving beyond classic action recognition tasks. LaViLa (Zhao
et al., 2023), HOD (Pei et al., 2025), and EgoLM (Hong et al., 2024) are closest to our work on
egocentric video to motion captioning. LaViLa and EgoLM leverage large language models (LLMs)
to generate dense narrations for videos, while HOD augments these narrations by integrating detected
hand–object trajectories with motion cues to produce semantically richer descriptions. In contrast,
our method introduces a two-stage annotation pipeline: high-level open-vocabulary reasoning via
parallel chain-of-thought prompting, followed by closed-vocabulary fine-grained grounding. This
design reduces hallucinations, improves consistency, and yields scalable annotations tailored for
text-to-motion modelling.

D.2 MOTION MODELLING

Full-body and Gesture Motion modelling: Research in motion generation has largely focused on
full-body and gesture synthesis (Guo et al., 2024; Liu et al., 2023; Zhang et al., 2023; Jiang et al., 2025;
Wang et al., 2023; Shafir et al., 2023; Xie et al., 2023; Karunratanakul et al., 2023; Zhang et al., 2025c;
2023; Athanasiou et al., 2024; Chi et al., 2024; Chen et al., 2024; Liu et al., 2024). Recent models,
such as MDM Tevet et al. (2023) and MotionGPT Jiang et al. (2024), leverage transformer-based
architectures and large-scale motion datasets to generate realistic human movements. Further, (Chen
et al., 2024) built an multi-modal language models to unify the verbal and non-verbal 3D human
motions. These approaches demonstrate strong performance on body-level actions but are primarily
trained on controlled studio data, limiting their ability to generalize to fine-grained, unconstrained
hand dynamics. While effective for large-scale gestures or locomotion, they fall short in modelling
the nuanced variability of everyday hand behaviors.

3D Hand-motion modelling: A smaller body of work explicitly targets 3D hand motion modelling,
where hands are modelled using MANO (Romero et al., 2017) and objects as 3D meshes. Recent
works such as HOIGPT (Huang et al., 2025), and other hand-object interaction models (Christen et al.,
2024; Cha et al., 2024; Li et al., 2025b; Ghosh et al., 2023) aim to capture fine hand-object interaction.
However, they rely on high-quality mocap datasets such as GRAB Taheri et al. (2020), ARCTIC (Fan
et al., 2023), and H2O (Kwon et al., 2021), which are limited in scale and diversity. Consequently,
current hand motion models are often limited to narrow distributions of scripted actions.

LLMs for motion modelling: Large language models have recently been adapted for motion
generation, leveraging their strengths in sequence modelling and cross-modal alignment. Works such
as (Jiang et al., 2024; Huang et al., 2025; Chen et al., 2024) treat motion tokens as text-like symbols,
enabling pretrained LLMs to transfer to motion tasks. While promising, these methods are limited
by small-scale datasets and training objectives that emphasize token prediction accuracy rather than
reconstruction fidelity. EgoLM (Hong et al., 2024) addresses this by introducing soft-linear blending
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regression losses during pretraining, improving text–motion alignment. However, such regression
objectives conflict with cross-entropy: blending encourages smooth interpolations, whereas CE
enforces sharp token choices, leading to ambiguous representations and reduced generalization.
Our approach extends this line of work with a geometry-alignment stage after pretraining, where
Gumbel-Softmax sampling and hand motion reconstruction losses guide the LLM toward motions
that are both semantically grounded and geometrically consistent.

VQVAE as motion-prior: Recent approaches discretize motion using VQ-VAE tokenizers, enabling
motion to be represented in a language-like manner. Works such as (Jiang et al., 2024; Zhang et al.,
2023) show that modelling motion as a sequence of tokens facilitates cross-modal learning with
text. However, standard single-codebook tokenizers struggle to capture the multimodal nature of
motion, where both trajectories and poses of different body parts must be jointly encoded. To address
this, (Yi et al., 2023) introduce compositional codebooks for hand and face motion, while (Huang
et al., 2025) employ separate codebooks for hand and object motion. Similarly, (Chen et al., 2024)
decompose body parts into individual codebooks, each modeled independently. (Wang et al., 2025)
further explore scaling strategies for codebooks to improve motion representation capacity. Building
on these ideas, our formulation extends compositional quantization by introducing distinct codebooks
for trajectories and hand poses, and further disentangling left and right hands during encoding and
decoding. This design improves efficiency and generalization under higher temporal compression,
while providing finer-grained control over multimodal hand motion generation compared to prior
works.
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