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Abstract

The Delphi method is a structured forecasting process that engages experts in
iterative prediction and reflection. Each round, experts submit forecasts to a mediator,
receive an aggregated and synthesized response highlighting key arguments, and
update their forecasts based on collective insight. However, Delphi panels are labour
intensive, slow and hard to reproduce, requiring diverse knowledgeable participants
to engage periodically across weeks or months. To address these constraints,
we propose DeLLMphi, a forecasting method that replaces human experts and
mediators with LLMs. We show (i) that providing example superforecaster
reasoning traces and predictions helps to elicit more accurate forecasts from LLM
experts, (ii) that the mediator plays the crucial role of surfacing different lines of
reasoning and points of disagreement, and (iii) that multiple rounds and experts
lead to better forecasts, showing that multi-turn interaction is key to DeLLMphi.

1 Introduction

Decades of research confirm that aggregated expert forecasts tend to outperform individual
predictions [2,5]. The Delphi method, developed at RAND in the 1950s, structures this aggregation
by enabling human experts to iteratively and anonymously refine their judgments based on collective
feedback [[1]. This approach has proven successful in producing high-quality and consensus-based
forecasts from diverse experts across a range of domains [[16, 24, 28]]. However, human Delphi panels
face practical barriers: they are labor-intensive, suffer from expert attrition over time, and produce
results that are difficult to reproduce [[11}123].

These constraints raise the question: Can we create an “In Silico Delphi” which retains key properties
including building consensus while preserving diverse lines of reasoning across turns, ultimately result-
ing in improved forecast performance? Such an environment would enable controlled experiments that
would otherwise be impossible with a human panel: systematically varying expert example forecasts
and panel composition, testing counterfactual scenarios, isolating the impact of specific reasoning
strategies, and exploring how consensus emerges across hundreds of parallel deliberations.

Our main contribution is DeLLMphi, a multi-agent forecasting method that recreates the Delphi method
using LLMs. DeLLMphi generates diverse expert perspectives by conditioning agents on distinct sets
of superforecaster examples, implements structured deliberation through a mediator that synthesizes
forecasts and surfaces disagreements, and enables iterative refinement across multiple rounds.

We evaluate DeLLMphi on a subset of the ForecastBench event forecasting dataset (see Section )
to analyze how forecasts are influenced and updated over multiple rounds of interaction, focusing
on agent diversity and feedback structure. Our results demonstrate that interaction between diverse
agents is fundamental to DeLLMphi’s success: expert diversity and multi-round deliberation improve
accuracy, while mediation guides agents toward consensus through feedback on distinct lines of
reasoning. These findings position multi-agent forecasting as both a competitive forecasting method
and as a promising benchmark for assessing sustained LLM interaction, while also opening new
research directions for multi-agent deliberation methods.
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Figure 1: DeLLMphi architecture. Expert LLMs, each conditioned on distinct superforecaster exam-
ples, generate forecasts and reasoning. A Mediator LLM synthesizes outputs and highlights disagree-
ments, giving experts feedback for N rounds. The final forecast is the median of the last expert forecasts.

2 Background and Motivation

Event Forecasting is a form of forecasting where the output is a probability f € [0,1] of the realization
of some event, such as a vaccine being developed by some year, or of a temperature record being
broken on a given day for a given location. Recently, there have been several investigations into
whether LLMs are good event forecasters, identifying specific prompting strategies and other tools
that improve LLMSs’ forecasting abilities [10} [12} 22| 27, 29]. However, it remains unclear whether
LLMs are competitive against forecasters with established track records (“‘superforecasters”), as
demonstrated by ForecastBench [13]], a recently proposed benchmark specifically for event forecasting
on a broad range of topics (see Sectiond]for more details).

The Delphi Method is a judgmental forecasting method that relies on multiple experts interacting
anonymously through a mediator over multiple rounds [61[8] 9] 17,24}, 25]. The Delphi method requires
both (i) expert forecast elicitation and (ii) structured interaction between experts through a mediator [24]].
First, experts produce reasoned forecasts based on diverse, yet informed, backgrounds. As such, experts
are neither random members of the public nor experts of a single discipline [23]]. Next, a dedicated
mediator serves as a bottleneck by summarizing and sharing a summary of the forecasts and relevant con-
text on divergent predictions. Experts then update their forecasts based on this feedback. This process
continues over multiple rounds. Delphi participants are therefore required to remember their previous
lines of thinking and to adjust to new evidence. Recent work has looked at incorporating LLMs into the
Delphi method, providing feasibility studies and qualitative analyses of possible forecasts [3} 4 19].

3 The DeLLMphi Method

DeLLMphi emulates Delphi forecasting with a set of N LLM experts that iteratively refine their
forecasts over T' rounds, guided by a mediator M that synthesizes the collective output into feedback.

Each expert e; € E conditions their forecasts on a unique set of example forecasts from a
superforecaster s;, drawn from our in-context learning example pool of ForecastBench’s corpus

(see sectionEI). Each expert forecasts fi(t) €[0,1] for round ¢ after creating a reasoning trace rl(t)

fz(t) 7T§t) =€ (qahq(;t_l) 7M(t71)7¢ICL(Si)ape)a

where g € Q is the forecasting question, hl(t_l) ={( fi(T) ,rlm) t~1 is the expert’s own forecast history
from previous rounds, M1 = {m(7) }tT_:l1 is the complete history of mediator feedback from all
previous rounds, ¢ic(s;) denotes in-context learning examples from superforecaster s;, and p, is
the expert system prompt.

via:

The mediator M orchestrates the deliberation by synthesizing expert outputs into structured feedback.
At each round ¢, the mediator processes all expert forecasts and reasoning traces to generate feedback:

m(t) :M({fi(t)vrz(t)}ij\ilapm%

where p,, is the mediator’s system prompt. The feedback m(*) is a natural language synthesis of the
forecasts structured at the discretion of the mediator.
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Table 1: Average Brier Score (mean =+ standard deviation, lower is better) on the 35-question holdout
set across 3 random seeds. We use 3 expert agents (except for the single agent) and 1 mediator agent, all
of which are based on gpt-oss-120b. The in-context examples are obtained from a separate in-context
learning example pool to avoid leakage with the holdout set. Final forecasts are aggregated using the
median. DeLLMphi performs best overall: both diverse expert elicitation and rich mediator-based
multi-turn feedback are key to DeLLMphi’s success. DeLLMphi without examples is non-competitive,
while running a DeLL.Mphi with three copies of the same expert improves the average Brier Score,
but is much more sensitive than with three distinct experts. The other baselines, described in Section[4}
represent ablations of key DeLLMphi components. Prompts can be found in Appendix [B]

Examples Interaction  Brier Score |

Method in Context  Feedback |Q|=35, uto
Human Public Forecaster median - - 0.165

Human Super Forecaster median - - 0.136
Baseline LLMs, median forecast — 0.174+0.006
Frequency-prompt LLM experts, median forecast - 0.171+0.004
Example-based LLM experts, median forecast 3 - 0.165+0.003
Single agent with all examples 9 - 0.165+0.012
Single agent with all examples and feedback 9 Mediator  0.17240.013
Median-forecast-to-all communication 3 Median 0.165+0.004
All-to-all communication 3 All-to-all  0.160+0.0001
DeLLMphi without examples Mediator  0.17340.005
DeLLMphi with identical experts 3 Mediator  0.1594+0.016
DeLLMphi 3 Mediator  0.157 4 0.003

4 Experimental Protocol

Four experimental axes allow us to systematically evaluate each component’s contribution to
DeLLMphi’s performance: (1) expert elicitation strategies—ICL-diverse (each expert conditioned on
unique s;), ICL-uniform (all experts share the same s;), no conditioning (¢icr. = (), a frequency-based
expert prompt [26]], and ICL-single (a single expert conditioned on all examples from the {s;} of
a corresponding DeL.LMphi); (2) number of experts N € {1,2,3,5} to quantify scaling effects; (3)
convergence dynamics with rounds 7" € {1,2,3,4}, where T'=1 represents the non-interactive baseline;
(4) mediator ablations comparing full feedback (complete m(*)), median-only (replacing m(*) with

median({ fi(t) 1)), and no mediator (by broadcasting raw { fi(t) ,r(t) N

. tieq across all agents).

Dataset ForecastBench [14] is an event forecasting benchmark with recorded human forecasts from
both the public and superforecasters (39 individuals with strong forecasting track records). We focus
on a set of 110 questions that resolved on 2025-07-21 for which the human forecasters made their
predictions on 2024-07-21. We partition the questions into (i) a topic stratified set of 35 questions
in our holdout set, and (ii) a pool of in-context learning examples for the experts, which we refer to
as the in-context learning example pool (see appendix [A]for topic stratification details). We note that
the forecasts in ForecastBench were collected after the knowledge cutoff dates of all LLMs used in
our experiments, specifically June 2024 for OpenAI’s gpt-oss-120b and gpt-o0ss-20b [21], and o3 [20].

Baselines To benchmark DeLLLMphi’s accuracy, we measure its average Brier Score [7]] on the
holdout set. We compare it to both the Public Forecaster median and the Super Forecaster median from
ForecastBench [[14]'| To assess the impact of eliciting diverse expertise, we compare against (1) the
baseline LLM median forecast, (2) the median forecast of LLMs prompted with a frequency-based
prediction strategy and (3) the median of example-based LLM experts. We also evaluate a single agent
with all forecasting examples in context, both (4) with and (5) without interaction, to estimate the
importance of having distinct experts. We also compare our results to (6) all-to-all communication
across experts, as well as (7) median-forecast-to-all communication to validate the importance of the
mediator. Finally, we also run two variants of DeLLMphi, one without examples (8), and one with 3
identical example-based experts (9), to validate the importance of diverse expertise within a DeLLMphi.

'In passing, we note that the reasoning traces suggest that the superforecasters have interacted, possibly
improving their estimates based on those of the other superforecasters.
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Figure 2: Average Brier Score over DeLLMphi rounds with 35 questions, 3 seeds, where lower
is better. We evaluate DeLLLMphis of 1, 2, 3 and 5 agents over 3 rounds of updates. We elicit diverse
initial forecasts from the agents by prompting them with examples from different superforecasters.
The single agent’s forecasts worsen across rounds, underperforming the public median forecast. With
more agents, forecasts improve as the experts interact through the mediator agent over multiple rounds
(see section[3|for more details), with 3 and 5 agent DeLLMphis outperforming 2 agent DeLLMphis.

5 Results and Discussion

Table[T|shows that DeLLMphi (gpt-oss-120b) produces the most accurate forecasts of all LLM-based
methods, outperforming all baselines and closing about 28% of the performance gap between public
and superforecasters. Figure [2] also shows that increasing the number of experts and the number
of rounds improves performance. These results highlight not only DeLLMphi’s potential as a
useful forecasting method, but also its reliance on structured, multi-round interactions to perform
competitively (see appendix|G]for additional results with gpt-oss-20b and 03).

Expert Elicitation Adding example superforecasts to the context improves forecasts, as can be seen in
Table[T]by comparing the performance of example-based LLM experts (0.165) to baseline LLMs (0.174)
and frequency-based reasoning LLMs (0.171) ([27], see appendix@]). We also assess the consistency
of example-based experts in Appendix [C| showing that conditioning experts on examples elicits diverse
persona-consistent forecasts. The assessment of reasoning trace diversity is left to future work, while Ap-
pendix [E.Tlexamines failure cases where individual models refuse to output forecasts (‘defection’).

Mediation Limiting feedback to the median forecast negates the performance improvement of
DeLLMphi over the example-based expert forecast median. On the other hand, all-to-all commu-
nication performs nearly as well as DeLLMphi, and has the lowest seed variability. However, this
approach scales the feedback linearly in the number of agents, which can quickly become prohibitively
expensive. Future work could explore such Delphi variants, e.g. Estimate-Talk-Estimate [[13], and
examine how mediators handle divergent viewpoints (see Appendix [D]for a polarization analysis).

Multi-expert Interaction A single-agent with all examples performs similarly to the median of
example-based experts (0.165). However, mediator-based iteration worsens the super-agent’s forecasts
(0.172), whereas DeLLLMphi benefits (0.157). Thus, DeLLMphi derives its advantage not only from
diverse examples, but from diverse example-based experts interacting through the mediator over multi-
ple rounds: Figure[2]shows that DeLLMphis benefit from more experts and more rounds, with 1-expert
DeLLMphis degrading, 2-expert DeLLMphis steadily improving, and 3-expert and 5-expert DeLLM-
phis performing best. We analyze the dynamics of forecasts over rounds in more detail in Appendix|[E]

6 Conclusion

We introduced DeLLMphi, a multi-agent forecasting method that emulates the Delphi method using
LLMs. Our experiments demonstrate that key elements of human expert panels (diverse perspectives,
structured mediation, and iterative refinement) emerge in silico and are key to DeLLMphi achieving per-
formance competitive with a human crowd. This work opens several promising research directions and
novel extensions to structured delibration methods such as Delphi, including multi-round deliberation
beyond human constraints, counterfactual analysis with Shapley values to quantify evidence impor-
tance, and adaptive panel composition that reacts to disagreements. DeLLLLMphi also provides a rich
testbed for studying multi-agent interaction dynamics, making it valuable both as a practical forecasting
tool and as a benchmark for evaluating LLMSs’ capacity for sustained, purposeful collaboration.
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A Dataset Preparation

To encourage balanced topic diversity in our holdout test set, we used Nomic Atlas to cluster the
questions according to topics. Specifically, after filtering ForecastBench for the 110 questions that
were resolved on 2025-07-21:

1. Each question was embedded into a high-dimensional space and clustered by semantic
similarity.
2. Cluster labels were assigned automatically by Atlas’s topic modeling system.

3. We stratified the evaluation set by sampling proportionally across clusters, ensuring that the
holdout set would cover diverse topics.

Table 2: Distribution of questions from ForecastBench across topical clusters with associated data
sources.

Topic Count Source(s)
Violent Incidents 22 ACLED
Monetary Policy 22 FRED
Company Operations 14 Yahoo Finance
Retail 8 Yahoo Finance
Weather 16 DBnomics
Chess 11 Wikipedia
Infectious Disease 11 Wikipedia

As shown in Table 2} Nomic’s classification produced 7 distinct categories. We manually verified
a subset of questions to confirm that topical assignment was coherent. In particular, questions obtained
from Yahoo Finance are all stock-related, suggesting they might belong to the same category. However,
they were automatically separated by Nomic into two clusters: Company Operations, comprising
firms with an operational or enterprise focus, and Rerail, representing consumer-facing companies.

B Prompts

B.1 Default Expert System Prompt

You are a helpful assistant.

B.2 Frequency-based Expert System Prompt

Please answer the following question. Out of 100 similar cases, in how
— many would the event occur? Then provide a probabilistic estimate between
— 0% and 100%, formatted as: FINAL PROBABILITY: [decimal between O and 1]




230

231

232

233
234
235
236
237

238

239
240

B.3 Example-based Expert Prompt

REFERENCE EXAMPLES OF EXPERT FORECASTS:

[EXAMPLE n]
Question: {Example question text}

Background:
{Example background text}

Resolution: {Example resolution rule}
Analysis: {Example qualitative judgment}
Probability: {Example numerical forecast}

% Repeat EXAMPLE blocks as needed

YOUR TASK - PROVIDE FORECAST FOR THIS QUESTION:

Question: {Main question text}

Background:
{Main background text}

Resolution: {Resolution rule}
URL: {Data source URL}
Freeze value: {Reference value}

Freeze value explanation: {Explanation of reference value}

Based on the examples above, provide your forecast concluding with:
FINAL PROBABILITY: [decimal between O and 1]

B.4 Mediator Instruction Prompt

It is now time for you to synthesize the expert responses
— 1into a tight 1-paragraph feedback memo. Focus on areas of consensus, key
— disagreements and cruxes, evidence that would most shift views, and the most
— compelling arguments raised. Do not include probabilities in your response.

When you have completed writing your message, include a reminder
— for the experts to review the other experts' arguments and update their
— forecasts. Also, you should remind them that they must end their response
< with exactly this format: FINAL PROBABILITY: [decimal between O and 1]

C In-Context Learning Influence on Expert Consistency

This appendix analyzes how In-Context Learning (ICL) examples from superforecasters systematically
influence expert opinion consistency and provide quantitative evidence for persona adoption in
language model experts. Our findings demonstrate that exposure to high-quality forecasting examples
fundamentally alters expert behavior patterns, promoting more stable and bounded reasoning while
preserving beneficial exploration.

C.1 Methodology

For each expert ¢ across all predictions, we calculate opinion consistency metrics to detect ICL
influence. Let p; ={p; 1,p; 2,...,p; 7 } represent expert ¢’s probability assessments across T' rounds.
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Opinion Volatility measures the variability in opinion changes between consecutive rounds:

T-1

> " (Api—Ap;)? (1)

t=1

Volatility, = (Ap;) = 71

where Ap; + =p; ++1—Ds,¢. This serves as our primary metric for measuring persona stability.

When ICL examples are present, we extract superforecaster demonstrations e = {eg,ea,...,ex } and
calculate three key influence metrics:

Anchoring Strength measures how closely expert predictions align with demonstrated values:

T
. 1 _
Anchoring, =1— T tg_l |pi,t —€| )

where e is the mean of ICL example probabilities.

Range Conformity quantifies bounded reasoning within demonstrated bounds:
|{t:min(e) <p,; ; <max(e)}|

RC;=
T

3

ICL Pull captures directional movement toward examples over time:

Pull; = |p;,1 —é|—|pi,r —é€] “)
C.2 ICL Influence on Persona Formation

When superforecaster examples are provided through ICL, we observe systematic changes in expert
behavior that support persona adoption theories. Experts show 28.4% lower opinion volatility when
exposed to ICL examples (mean volatility 0.0312 vs 0.0436, p < 0.01), with 68.3% of predictions
falling within demonstrated ranges. This bounded rationality effect suggests that ICL examples
establish implicit constraints on acceptable probability assessments while preserving sufficient
exploration within those bounds.

Figure[3|demonstrates this volatility reduction through direct comparison of experts with and without
ICL exposure. The distribution clearly shows that ICL-guided experts cluster toward lower volatility
values, indicating more consistent persona-like behavior. The statistical significance (p < 0.01) of this
difference provides strong evidence that exposure to high-quality forecasting examples fundamentally
alters expert reasoning patterns.

The magnitude of this effect is particularly striking given that experts receive no explicit instructions
to emulate the demonstrated behavior. Instead, the mere exposure to superforecaster reasoning
patterns appears to induce implicit learning of more stable forecasting strategies. This suggests that
ICL operates at a deeper level than simple pattern matching, potentially influencing the underlying
reasoning processes that generate probability assessments.

Range conformity analysis reveals that 68.3% of expert predictions fall within the bounds established
by ICL examples, compared to what would be expected from uniform random sampling across the
probability space. This bounded exploration pattern indicates that while experts retain the ability
to explore alternative probability assessments, they do so within a framework established by the
demonstrated examples.

C.3 Temporal Dynamics of ICL Influence

The temporal pattern of ICL influence reveals sophisticated learning dynamics rather than simple
mimicry. Figure[]illustrates how different aspects of ICL influence evolve across deliberation rounds,
showing variation in range conformity from initial anchoring through subsequent rounds as experts
adapt demonstrated strategies to specific contexts.

Mean absolute opinion changes follow a similar pattern, decreasing from 0.0451 in early rounds to
0.0234 in later rounds for ICL-guided experts, compared to a smaller decrease (0.0523 to 0.0387)
for those without ICL guidance. This accelerated stabilization suggests that ICL examples provide
cognitive scaffolding that helps experts develop coherent forecasting strategies more efficiently than
through pure trial and error.
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Figure 3: ICL influence on expert opinion volatility. Direct comparison of volatility distributions for
experts with and without ICL examples, demonstrating a 28.4% reduction in opinion volatility when
superforecaster examples are provided. The shift toward lower volatility values (left) indicates more
consistent persona-like behavior among ICL-guided experts, with statistical significance of p <0.01
supporting the persona adoption hypothesis.

C.4 Implications for Expert System Design

The systematic influence of ICL examples on expert consistency has profound implications for
designing effective forecasting systems. The 28.4% reduction in volatility demonstrates that carefully
selected demonstrations can promote more stable expert behavior without eliminating beneficial
diversity or exploration. This finding suggests that human expert knowledge can be effectively
transferred to language model systems through strategic example selection.

The bounded rationality effect observed through range conformity indicates that ICL examples serve
as implicit calibration mechanisms. Rather than rigidly constraining expert reasoning, they establish
reasonable bounds that prevent extreme or poorly calibrated predictions while preserving the flexibility
needed for novel situations. This balanced approach may be particularly valuable in domains where
both stability and adaptability are crucial.

The temporal dynamics reveal that effective persona adoption is a gradual process involving adaptation
of demonstrated strategies to specific contexts. This suggests that deliberation systems should allow
sufficient time for this learning process to unfold, rather than expecting immediate behavioral changes
from ICL exposure.

From a practical standpoint, these findings indicate that investing in high-quality ICL examples may
be more effective than complex algorithmic approaches for improving expert system performance.
The ability to influence fundamental reasoning patterns through demonstration suggests a powerful
and scalable approach to expert system calibration that leverages human expertise without requiring
explicit rule specification.

D Polarization Analysis

This appendix details the technical methodology for detecting and measuring opinion polarization
in expert deliberation systems, including both Gaussian Mixture Model (GMM) approaches and
bimodality indices.

10
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Figure 4: Accelerated opinion stabilization with ICL guidance. Comparison of mean absolute opinion
changes across deliberation rounds for experts with and without ICL examples. ICL-guided experts
(blue) show faster convergence to stable forecasting patterns compared to those without guidance
(red), demonstrating that superforecaster examples provide cognitive scaffolding for more efficient
strategy development.

D.1 Methodology
D.1.1 Gaussian Mixture Model Detection

For each deliberation round ¢ with expert opinions p; ={p1,;,02,¢,---,Pn ¢ }» We fit Gaussian Mixture
Models with k € {1,2,3,4} components and select the optimal number using the Akaike Information
Criterion (AIC):

AIC(k)=2k—2In(L(k)) 4)

where £(k) is the likelihood of the k-component model. The optimal number of modes k&* minimizes
AIC.

D.1.2 Polarization Metrics

Given the optimal GMM with modes g = {1, o, ..., pti+ } and weights w = {wy,wa,...,wg« }, we
calculate polarization strength as:

o
Jap = Zwl i (weighted mean of modes) (6)
i=1
o
Mode Variance = Zwl (i —fi)? @)
i=1
Mode Variance

Polarization Strength =

0.252 ®

The denominator 0.252 represents the maximum possible variance for a uniform distribution on [0, 1],
providing normalization. For multi-modal distributions (k* > 1), we additionally calculate mode
separation as max(p) —min(p), which measures the maximum distance between opinion clusters.

We complement the GMM approach with a bimodality index for distributions with n > 4 observations:

11
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where -y is the sample skewness and « is the sample excess kurtosis. Values > 0.55 indicate significant
bimodality.

To track polarization evolution, we measure changes between consecutive rounds as
APolarization;; = Polarization Strength, , ; — Polarization Strength,, classifying evolution as
increasing (A >0.01), decreasing (A < —0.01), or stable (otherwise).

D.2 Results
D.2.1 Overall Polarization Patterns

Analysis of 131 deliberation rounds reveals that polarization is the dominant pattern in expert deliber-
ation. Multi-modal opinion distributions occur in 86 of 131 rounds (65.6%), with a mean polarization
strength of 0.0201 indicating low-to-moderate polarization levels. The average number of modesis2.17
when polarization is present, though distributions can reach up to 4 distinct opinion clusters, see figure[3]

Distribution of Opinion Mode Count (1=Consensus, 2+=Polarization)

45
39
27
I |
1 2 3 4

Number of Opinion Modes

40

30

Frequency

10

Figure 5: Distribution of mode counts.

The mode distribution across all rounds shows considerable diversity: unimodal (consensus-like)
patterns appear in 45 cases (34.4%), classic bimodal polarization in 39 cases (29.8%), trimodal
structures in 27 cases (20.6%), and complex quadrimodal distributions in 20 cases (15.3%). This
distribution suggests that while consensus formation does occur, the tendency toward polarization
into multiple opinion camps is more prevalent, with over a third of polarized rounds exhibiting more
complex structures than simple binary disagreement.

D.2.2 Polarization Dynamics

Tracking polarization changes across 98 deliberation transitions reveals a striking pattern of stability.
Figure[6]shows that the vast majority of transitions (76 cases, 77.6%) show stable polarization levels,
while only 17 transitions (17.3%) exhibit decreasing polarization and merely 5 transitions (5.1%) show
increasing polarization. This predominance of stability suggests that opinion structures, once formed
in early deliberation rounds, tend to persist rather than converge toward consensus. Initial rounds show
higher variability in polarization strength, while later rounds exhibit more stable patterns, indicating
that fundamental opinion structures crystallize early and remain largely unchanged through subsequent
deliberation.

12



345

346
347
348
349
350

352

353

355
356

357
358
359
360
361
362

363
364
365
366

367

368
369
370

Polarization Evolution Trends Between Rounds (How Opinion Clustering Changes)

increasing

decreasing

Figure 6: How opinion changes over the deliberation.

D.3 Implications and Considerations

The high prevalence of polarized rounds and the persistence of these patterns raise important questions
about the nature of expert deliberation. The maintenance of diverse opinion structures rather than
convergence to consensus may reflect legitimate epistemic disagreement on inherently uncertain
questions, effective preservation of minority viewpoints that prevents premature consensus, or limited
information integration between experts holding different initial positions. The predominance of stable
polarization suggests that while opinion consistency is maintained, there may be limited learning or
information exchange between experts with divergent views.

The presence of complex multi-modal distributions (3-4 modes in 35.9% of polarized rounds) re-
veals opinion structures more nuanced than simple pro/con polarization. This complexity suggests
sophisticated disagreement patterns that may reflect different expert reasoning approaches, information
weighting strategies, or underlying uncertainty about different aspects of the questions being considered.

From a methodological perspective, several considerations warrant attention. The AIC-based model
selection provides automatic determination of optimal mode numbers while penalizing overfitting,
though mode detection reliability decreases with small expert samples (n < 5). The polarization evolu-
tion classification uses £0.01 thresholds calibrated to the observed distribution of changes, which may
require adjustment for different expert systems. Additionally, the bimodality index assumes normality
that may be violated for probability assessments bounded in [0,1], particularly near the boundaries.

This polarization analysis provides quantitative evidence for the persistence of diverse expert opinions
throughout deliberation, challenging simple models of consensus formation through information
aggregation and suggesting that effective deliberation systems may need to explicitly account for and
leverage persistent disagreement rather than assuming convergence.

E Opinion Dynamics in DeLL.Mphi Experiments

This appendix provides a comprehensive analysis of opinion dynamics observed across our DeLLMphi
experiments, examining how expert forecasts evolve through mediator-guided deliberation. We
analyze 3,327 opinion changes from 4,436 total predictions across 5 experimental configurations.
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Figure[/|reveals striking differences in opinion volatility across experimental configurations. The
violin plots show the full distribution of absolute opinion changes, where narrower and more compact
shapes indicate greater stability in expert forecasts. Several key patterns emerge:

System prompt effects: Experiments without system prompts (leftmost distributions) exhibit the
most stable behavior, with the majority of opinion updates clustered near zero. This suggests that
system prompts may increase forecast volatility.

Expert panel size: Configurations with fewer experts tend toward more concentrated distributions,
while larger panels show increased variability. This finding supports the hypothesis that smaller,
focused expert groups facilitate more stable consensus formation.

Baseline comparison: The super-agent configuration produces the most volatile behavior, with
occasional extreme shifts up to 1.75 probability units, highlighting the value of structured multi-agent
deliberation over single-agent forecasting.

Distribution of Opinion Changes Across Experiments

& &

5E, 3Ex 3E, 3Ex 3E, 3Ex Superagent 5E, 3Ex
Figure 7: Distribution of absolute opinion changes across experimental configurations. Violin plots
show full probability density, with narrower shapes indicating more stable forecasting behavior.
System prompts and larger expert panels increase volatility.

E.1 Temporal Dynamics of Opinion Updates

The temporal pattern of opinion changes, shown in Figure[8] reveals the characteristic dynamics of
DeLLMphi deliberation. The box plots demonstrate a clear temporal hierarchy in the magnitude of
forecast updates:

Initial response (0—1): The transition from initial forecasts to first mediator response shows the
highest variability and largest median changes. This reflects experts’ initial reactions to synthesized
group information and alternative perspectives, representing the most significant learning phase.

Iterative refinement (1—2, 2—3): Subsequent rounds exhibit progressively smaller changes with
tighter distributions around zero. This pattern indicates that most substantial opinion updates occur
early in the deliberation process, with later rounds serving primarily for fine-tuning and convergence.

Diminishing returns: The consistent decrease in update magnitude supports our design choice of
limiting DeLLMphi to three mediator rounds, as the marginal benefit of additional iterations appears
minimal while computational costs scale linearly.

Take-away DeLLMphi fosters rapid convergence with minimal oscillation. Smaller expert panels
without system prompts yield the most stable consensus; the super-agent baseline remains the most
volatile.
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Figure 8: Magnitude of opinion changes by consecutive round transitions.

Figure 9: Final consensus level (round 3) across experimental conditions. Lower values indicate tighter
consensus.

Model Defection Analysis

We analyzed model defection patterns across five experimental configurations of our Delphi forecasting
system, where a defection is defined as a model producing a zero probability prediction or failing to
provide a valid probability. Across 4,436 total predictions, we observed an overall defection rate of
2.66% (118 defections), indicating generally robust model behavior.

The defection rate exhibited a clear relationship with system complexity. Configurations with five
experts showed substantially higher defection rates (3.87% average) compared to those with three
experts (1.66% average), suggesting that coordination challenges increase with the number of
participating agents. The highest defection rate occurred in the five-expert configuration with system
prompt (4.41%), while the superagent mediator configuration achieved the lowest rate (1.19%).

A particularly notable finding emerged regarding the impact of system prompts on defection behavior.
While the presence or absence of system prompts had minimal effect on overall defection rates (approxi-
mately 2.4% in both cases), it dramatically altered the nature of defections. Configurations with system
prompts produced exclusively “silent” defections (empty responses), whereas configurations without
system prompts exhibited a mix of defection types including explicit zero probability statements and
reasoned refusals. This suggests that system prompts may suppress the model’s ability to articulate
its reasoning when declining to make predictions, potentially masking important uncertainty signals.

Table 3: Defection Rates by Configuration

Configuration Experts System Prompt Defection Rate Defection Type
5 experts, 3 examples 5 Yes 4.41% Empty only

5 experts, 3 examples 5 No 3.32% Mixed

3 experts, 3 examples 3 Yes 1.79% Empty only

3 experts, 3 examples 3 No 1.53% Mixed
Superagent - Yes 1.19% Empty only
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F Consensus Pull Analysis

This appendix provides technical details on the consensus pull analysis methodology and results, which
measures how expert opinions move toward or away from the group consensus across deliberation
rounds.

F.1 Methodology
F.1.1 Consensus Pull Calculation

For each expert ¢ in round ¢, we calculate their consensus pull using a leave-one-out approach to avoid
mathematical dependencies:

1
Group Average ,; ;= mzpj,t (10)
J#i
Initial Distance; ; = |p;  — Group Averageﬂ-yt | (11
Opinion Change; ;. 1 =pi t+1—Pi,t (12)
Consensus Direction; ; = sign(Group Average_iyt — pu) (13)
Consensus Pull; ;11 =Opinion Change, , . ; X Consensus Direction; ; (14)

where p; ; represents expert 7’s probability assessment in round ¢, and 2 is the total number of experts.
F.1.2 Pull Ratio and Interpretation

The consensus pull ratio normalizes the pull by the initial distance from the group:

Consensus Pull; ;41
max(Initial Distance; ;,0.001)

Pull Rati0i7t+1 = (15)
A pull ratio of 1.0 indicates the expert moved completely to the group average, while 0.5 indicates they
moved halfway. Negative values indicate anti-consensus behavior (movement away from the group).

F.1.3 Behavioral Classifications

Based on consensus pull patterns, we identify four distinct behavioral archetypes among experts.
Strong Consensus Followers demonstrate pull ratios exceeding 0.5 in the majority of their transitions,
indicating they frequently move substantially toward group positions. Moderate Followers exhibit
pull ratios between 0.1 and 0.5, showing consistent but measured movement toward consensus.
Independent Thinkers maintain pull ratios near zero (between -0.1 and 0.1), suggesting minimal
influence from group opinions on their assessments. Finally, Contrarians consistently show negative
pull ratios below -0.1, actively moving away from group consensus in their deliberations.

F.2 Results

F.2.1 Overall Consensus Pull Statistics

Across all analyzed expert transitions (/N =434), we observe a moderate positive pull toward consensus
with a mean consensus pull of 0.0125. Figure[I0fa) displays the distribution of these consensus pull
values, revealing a balanced yet slightly right-skewed pattern: 58.3% of transitions move toward
the group average (positive values), while 41.7% exhibit anti-consensus behavior by moving away
from the group (negative values). Notably, nearly half (46.8%) of all transitions demonstrate strong
consensus-following behavior with pull ratios exceeding 0.5, indicating that when experts do converge,
they frequently make substantial moves toward group opinion.

F.2.2 Round-Specific Patterns

The effectiveness of consensus pull varies dramatically across deliberation rounds, revealing a clear
temporal pattern in social influence dynamics illustrated in Figure[I0(b). The transition from Round 0 to
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Round 1 shows the strongest consensus effect, with 79.5% of experts moving toward the group average
and a mean pull of 0.0325. This initial convergence weakens substantially in subsequent rounds: the
Round 1 to 2 transition drops to only 49.0% consensus movement with a mean pull of 0.0024, while the
Round 2 to 3 transition shows similar weak convergence at 46.2% and 0.0022 mean pull respectively.

This pronounced decay in consensus pull effectiveness—clearly visible in the declining bar heights
in Figure[T0[b)—suggests that the first deliberation round represents a critical window for opinion
formation, after which experts become increasingly committed to their positions and less responsive
to group information.

F.2.3 Expert-Level Analysis

Individual expert analysis reveals substantial heterogeneity in consensus-following behavior across our
expert population. Figure[IT]vividly illustrates this diversity through individual expert trajectories: the
green lines represent strong consensus followers who consistently move toward group averages, while
red lines show contrarians who actively move away from consensus positions, and gray lines indicate
moderate or neutral experts. This striking variation in behavioral patterns suggests that experts employ
fundamentally different information processing strategies when encountering social information
during deliberation.

F.3 TImplications

The consensus pull analysis reveals critical insights into the dynamics of expert deliberation systems.
Most notably, the first deliberation round emerges as the pivotal moment for opinion convergence, with
nearly 80% of experts moving toward consensus during this initial transition. This finding suggests
that if consensus formation is a primary goal, deliberation systems should focus resources and attention
on optimizing the first round of interaction, as subsequent rounds show dramatically diminished social
influence effects.

The overall consensus rate of 58.3% indicates a healthy balance in the deliberation process—experts are
neither slavishly following the crowd nor completely ignoring social information. This moderate level
of consensus pull suggests that the deliberation system successfully maintains intellectual diversity
while still enabling productive convergence where appropriate. The substantial variation in individual
expert behavior further enriches this picture, revealing that different experts bring distinct information
processing strategies to the deliberation process. Some experts consistently integrate group information
into their assessments, while others maintain strong independence or even contrarian stances.

F.3.1 Methodological Considerations

Our analytical approach incorporates several important methodological refinements to ensure
robust results. The leave-one-out calculation prevents mathematical artifacts that would arise from
including an expert in their own consensus target, which would artificially inflate convergence metrics.
Additionally, normalizing by initial distance from consensus accounts for ceiling effects where experts
already close to the group average have limited mathematical opportunity for further convergence,
ensuring fair comparison across different starting positions.

These findings provide quantitative evidence for the complex social learning dynamics that emerge
in expert deliberation systems. The clear temporal patterns and individual heterogeneity we observe
have direct implications for designing more effective consensus formation mechanisms, suggesting
that deliberation protocols should account for both the critical importance of early rounds and the
diversity of expert response strategies to social information.
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Figure 10: Consensus pull analysis across all expert transitions. (a) Distribution of consensus pull
values showing the balance between consensus-following behavior (positive values, blue bars)
and contrarian behavior (negative values, red bars), with the mean indicated by the dashed line.
(b) Temporal dynamics of consensus formation showing the proportion of experts moving toward
consensus in each round transition, with mean pull values displayed within bars, demonstrating the
pronounced decay in social influence effectiveness over successive rounds.
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Figure 11: Individual expert consensus pull trajectories across deliberation rounds. Lines are
color-coded by behavioral type: green for strong consensus followers, red for contrarians, and gray
for moderate/neutral experts. The horizontal black line at zero separates consensus-following (above)
from contrarian (below) behavior. This visualization reveals the substantial heterogeneity in how
different experts respond to group information throughout the deliberation process.

G Additional Results

Figure[T2]reports the average Brier score across rounds for a 3-agent DeLLMphi setup with gpt-oss-
120b, gpt-0ss-20b, and 03. When conditioned on examples, all three models benefit from iterative inter-
action, with performance improving across rounds. However, the initial forecasts of gpt-oss-20b and 03
lag substantially behind those of gpt-oss-120b. This suggests that the current expert elicitation strategy
effectively strengthens gpt-oss-120b’s initial forecasts but is less effective for the smaller models.

To test this, we also evaluate gpt-oss-20b and 03 without examples. In this setting, gpt-0ss-20b
surprisingly begins with stronger forecasts than its example-laden counterpart. However, its
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Figure 12: Average Brier Score over DeLLMphi rounds with 35 questions, 3 seeds, where lower
is better. We evaluate 3-agent DeLLMphis using different base models, specifically gpt-oss-120b,
gpt-0ss-20b and 03.

performance degrades over rounds instead of improving. Conversely, gpt-oss-20b with examples
recovers from its weak initial forecasts, steadily improving until it surpasses its no-examples
counterpart and approaches the public forecaster benchmark. For 03, iteration without examples
consistently harms performance, and while conditioning on examples yields a short-term improvement
in the first round, its performance soon stagnates and converges to that of gpt-oss-20b without examples
by the final round. Further analysis is needed to determine whether the initial forecast elicitation
strategy can be better adapter to other models such as gpt-o0ss-20b and 03.
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