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Abstract

We propose a gradient-free deep reinforcement
learning algorithm to solve high-dimensional,
finite-horizon stochastic control problems. Al-
though the recently developed deep reinforce-
ment learning framework has achieved great suc-
cess in solving these problems, direct estimation
of policy gradients from Monte Carlo sampling
often suffers from high variance. To address
this, we introduce the Momentum Consensus-
Based Optimization (M-CBO) and Adaptive Mo-
mentum Consensus-Based Optimization (Adam-
CBO) frameworks. These methods optimize poli-
cies using Monte Carlo estimates of the value
function, rather than its gradients. Adjustable
Gaussian noise supports efficient exploration,
helping the algorithm converge to optimal policies
in complex, nonconvex environments. Numeri-
cal results confirm the accuracy and scalability of
our approach across various problem dimensions
and show the potential for extension to mean-field
control problems. Theoretically, we prove that
M-CBO can converge to the optimal policy under
some assumptions.

1. Introduction
Stochastic optimal control (SOC) problems (Stengel, 1986;
Fleming & Rishel, 2012), along with their mean-field vari-
ants, have been extensively studied throughout the twentieth
century and have had a wide range of applications in vari-
ous areas, such as finance (Pham, 2009; Fleming & Stein,
2004; Carmona & Durrleman, 2003; Cousin et al., 2011;
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Lachapelle et al., 2016; Cardaliaguet & Lehalle, 2018), eco-
nomics (Guéant, 2009; Gomes et al., 2015; Guéant et al.,
2010; Achdou et al., 2014; 2022), chemistry (Welch et al.,
2019; Holdijk et al., 2024), and biology (Lachapelle & Wol-
fram, 2011; Aurell & Djehiche, 2018; Achdou & Lasry,
2019). Readers seeking an overview of these developments
may refer to the recent review (Hu & Laurière, 2024). Tra-
ditional methods for solving the SOC problem, such as the
finite-volume method (Richardson & Wang, 2006; Wang
et al., 2003), the Galerkin method (Beard et al., 1997; Beard,
1998), and the monotone approximation method (Forsyth &
Labahn, 2007), aim to solve the corresponding Hamilton-
Jacobi-Bellman (HJB) equations. However, these meth-
ods struggle to scale in high-dimensional spaces due to the
curse of dimensionality, where the computational complex-
ity grows exponentially with the dimension of state and
action variables. This limitation hinders their application in
large-scale systems where efficiency is critical.

Significant advances have been made in addressing the high-
dimensional SOC problem by modeling control strategies
using deep neural networks, leveraging their capability to
approximate functions in high-dimensional spaces. One
prominent approach is the value-based method (Li et al.,
2024; Lien et al., 2024; Obando Ceron et al., 2024; Zhang
et al., 2024; Mou & Zhu, 2024), such as the deep-backward
stochastic differential equation (BSDE) method (E et al.,
2017; Han et al., 2018; Nüsken & Richter, 2021; Pham
et al., 2021). Based on the Bellman principle, the optimal
control can be modeled as a function of the value function
and its gradient. Therefore, solving the value function from
the BSDE that it satisfies can automatically give the optimal
control of the SOC. These methodologies are commonly
referred to as model-based methods because they need an
explicit connection between the optimal control and the
value function. This kind of connection usually depends on
accurate modeling of the transition kernel between different
states. However, modeling the (mean-field) transition kernel
for a real-world process in practical applications can be
extremely challenging (Lyu & Lei, 2023; Lu et al., 2019).

Recently, model-free methods have gained attention in con-
trol and reinforcement learning (Agrawal et al., 2024; Chen
et al., 2024; Chen & Zhang, 2024; Dai et al., 2024; Hisaki
& Ono, 2024; Hong et al., 2024; Hu et al., 2024; Park
et al., 2024; Tang et al., 2024), such as Deep Q Networks
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(DQN) (Mnih et al., 2015), Proximal Policy Optimization
(PPO) (Heess et al., 2017; Schulman et al., 2015b; 2017),
Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015a), Deep Deterministic Policy Gradient (DDPG) (Sil-
ver et al., 2014; Lillicrap, 2015) and Soft Actor-Critic
(SAC) (Haarnoja et al., 2018b;a). These approaches address
this issue by directly optimizing the policy without explicit
transition kernel modeling. Nevertheless, these methods rely
on the evaluation of policy gradients (Jia & Zhou, 2022a;b)
or depend on the action and state space discretization (Gu
et al., 2021; Carmona et al., 2023). The evaluation of policy
gradients often has high variance and is computationally
intensive (Hua et al., 2024), and the discretization of action
and state space reintroduces dimensionality constraints. To
address this, current methods like PPO, TRPO, and SAC are
constrained to a time-independent problem, i.e., an infinite
time horizon problem, which allows the reward gradient to
be computed iteratively.

However, our work tackles a more general and challeng-
ing setting: finite time horizon and model-free stochastic
control. In this regime, the assumptions typically required
by gradient-based methods—such as model knowledge or
discount-based recursion—are not available. Consequently,
current approaches face a trade-off between model fidelity
and scalability, motivating the need for a method that can
achieve robust performance without gradient estimation and
state-action discretization.

In this work, we introduce a novel approach to overcome the
limitations of both model-based and model-free reinforce-
ment learning methods by applying the Adam-CBO (Chen
et al., 2022) framework to high-dimensional SOC prob-
lems. Unlike value-based methods, our approach is entirely
model-free, directly optimizing the policy without requiring
an explicit formulation of the transition kernel. In addition,
it is gradient-free, avoiding the high-variance issue associ-
ated with policy gradients, and mesh-free, eliminating the
need to discretize state and action spaces. These features
allow our method to scale efficiently in high-dimensional en-
vironments, making it particularly suited for finite-horizon
problems where the optimal control is time-dependent. Con-
trary to concerns that direct policy optimization may lead
to local optima, our method demonstrates superior accuracy
in handling nonconvex issues, as evidenced by extensive
numerical results.

Beyond numerical validation, our study contributes a rig-
orous theoretical foundation by providing the convergence
analysis for the M-CBO method, a simplified version of
Adam-CBO without adaptive timestep. This proof estab-
lishes that, under certain assumptions, our algorithm reliably
converges to the optimal policy, addressing a crucial gap in
reinforcement learning for the SOC problem, where theoret-
ical guarantees are often challenging to obtain.

2. Problem Formulation
Consider a control problem over a finite time horizon t ∈
[0, T ] for some T <∞. The state space is denoted by S ⊂
Rd, and the action space by A ⊂ Rm. An agent governs
its state process xt through an action process αt with a
transition kernel p(x′|t,x,α) that describes the evolution
from state x to state x′ under the action α at time t. The
agent’s goal is to minimize the combined terminal cost
g(xT ) and the running cost f(t,x,α) incurred during the
process. The total cost function is generally represented by

J [α] = E

[∫ T

0

f(t,xt,αt)dt+ g(xT )

]
.

In this work, we model the policy α(t,x; θ) as a fully con-
nected neural network parameterized by θ. The rest of the
paper will focus on finding the optimal θ ∈ RD such that it
minimizes the cost function J (θ) = J [α[(t,x; θ)].

3. Gradient-free Policy Update
We propose two algorithms to find the optimal policy: M-
CBO and Adam-CBO. The Adam-CBO algorithm improves
on M-CBO by adaptively adjusting the timestep, resulting
in better numerical performance.

3.1. Momentum Consensus-Based Optimization

In M-CBO, we begin by initializing a population of N
agents represented by (Θ,Ω) = (Θ1,Ω1, · · · ,ΘN ,ΩN ) ∈
R2ND. Here Θi ∈ RD denotes the policy parameterization
of the i-th agent, and Ωi ∈ RD represents its momentum.
To exploit the current group of policies, we estimate a con-
sensus policy as

Mβ (Θ) =

N∑
i=1

Θiwβ

(
Θi
)∑N

j=1 wβ (Θj)
,

where wβ(Θ) = exp (−βJ (Θ)). Here β ≥ 0 is an in-
verse temperature parameter, controlling how strongly each
agent’s performance (determined by the objective function
J (Θ)) influences the consensus. Using the consensus pol-
icy, we define the following dynamics to guide each policy
toward consensus:

dΘi
t =Ωi

tdt− γ1
(
Θi

t −Mβ(Θ)
)
+ σ(t)dW i

θ,t,

dΩi
t =−m

(
Θi

t −Mβ(Θ)
)
dt

− γ2Ω
i
tdt+

√
mσ(t)dW i

ω,t,

(1)

where m, γ1, and γ2 are positive constants and W i
θ,t,W

i
ω,t

are D dimensional Wiener processes that introduce stochas-
ticity into the dynamics. This facilitates the exploration of
unknown regions, with a parameter σ(t) regulating the ex-
ploration strength. Using the Euler-Maruyama (EM) scheme
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Algorithm 1 Consensus Based Optimization with Momen-
tum

Input: time step λ, Number of player N , Batch size M ,
total time tN , parameters β, γ1, γ2, m
Initialize Θi

0 ∼ N (0, ID), i = 1, . . . , N
Initialize Ωi

0 = 0, i = 1, . . . , N ;
for t = 0 to tN do

Partition the indices {1, 2, . . . , N} into batches
B1, . . . , B

N
M , each containing M particles

for j = 1 to N
M do

J i = J (Θi
t), where i ∈ Bj

M =
∑

k∈Bj

Θk
t w

k∑
i∈Bj

wi , where wi = exp
(
−βJ i

)
Update the policies and their momentum:

Θi
t+1 = Θi

t + λΩi
t − γ1λ(Θ

i
t −M) +

√
λξiθ,

Ωi
t+1 = Ωi

t − λm(Θi
t −M)− λγ2Ω

i
t + σ(t)

√
λmξiω,

where ξiθ, ξ
i
ω ∼ N (0, ID)

end for
end for
Output: Θi

tN , i = 1, . . . , N

for Equation (1), we get the M-CBO algorithm, as detailed
in Algorithm 1.

The original CBO method (Fornasier et al., 2024) aims
to achieve a monotonic reduction in the distance be-
tween the optimal policy θ̃ and the policies of agents.
Specifically, this is represented as: 1

N

∑N
i=1 ∥Θi

t −
θ̃∥2 ≃

∫
∥θ − θ̃∥2dµt(θ), where µt represents the law

of agents Θt. Our method minimizes a combined expres-
sion 1

N

∑N
i=1

(
∥Θi

t − θ̃∥2 +m−1∥Ωi
t∥
)

≃
∫
∥θ − θ̃∥2 +

m−1∥ω∥2dρt(θ, ω), where ρt represents the joint distribu-
tion of policies Θ and Ω at time t. In particular, the M-
CBO method does not force the monotonic reduction of
1
N

∑N
i=1 ∥Θi

t − θ̃∥2, allowing for the additional momentum
term ω to enhance the exploration capability. It provides
greater flexibility and reduces the risk of becoming trapped
in local minima; see Section 4 for a more detailed analysis.

3.2. Adaptive Momentum Consensus-Based
Optimization

In the Adam-CBO method, we extend M-CBO by replacing
the constant momentum termmwith an adaptive term based
on the inverse of the second moment of the agents’ policies.
Specifically, we replace m with (Vβ [Θ] + ϵI)−1 , where
Vβ [Θ] is the second moment defined as:

Vβ [Θ] =

N∑
i=1

(Θi −Mβ [Θ])2wβ(Θ
i)∑N

j=1 wβ(Θj)
.

Algorithm 2 Consensus-based Optimization with Adaptive
Momentum

Input: time step λ, Number of player N , Batch size M ,
total time tN , parameters β, β1, β2
Initialize Θi

0 ∼ N (0, ID), i = 1, . . . , N
Initialize Ωi

0 = 0, i = 1, . . . , N
Initialize M0, V0 = 0
for t = 0 to tN do

Partition the indices {1, 2, . . . , N} into batches
B1, . . . , B

N
M , each containing M particles

for j = 1 to N
M do

J i := J (Θi
t), where i ∈ Bj

M =
∑

k∈Bj

Θk
t w

k∑
i∈Bj

wi

V =
∑

k∈Bj

(Θk
t −M)2wk∑
i∈Bj

wi

Update the moving average moment estimate:

Mt+1 = β1Mt + (1− β1)M, M̂t+1 =
Mt+1

1− βt
1

,

Vt+1 = β2Vt + (1− β2)V, V̂t+1 =
Vt+1

1− βt
2

Update the policies and their momentum:

Θi
t+1 =Θi

t + λV i
t ,

Ωi
t+1 =Ωi

t − λDiag(V̂ i
t + ϵ)−1(Θi

t − M̂t)

+ γλΩi
t + σ(t)

√
λξi,

where ξi ∼ N (0, ID)
end for

end for
Output: Θi

tN , i = 1, . . . , N

In particular, ϵ = 1 × 10−8 is used to keep the positivity.
This adaptive adjustment introduces a mechanism similar to
the Adam optimizer, where updates are scaled by a normal-
ized second moment, allowing for faster convergence and
improved numerical performance. The detailed algorithm is
shown in Algorithm 2.

4. Convergence Analysis
In Section 3, we propose two dynamics that converge to the
consensus policies. A natural question we want to answer
here is whether policies can converge to the optimal policies.
From the theoretical perspective, for simplicity, we focus on
proving the convergence of the M-CBO method in this work.
We begin by establishing the well-posedness of the M-CBO
method, ensuring the uniqueness and existence of solutions
under certain regularity conditions on the cost function J .

Assumption 4.1. The following assumptions are imposed
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on the cost function J

1. There exist θ̃ such that J (θ̃) = infθ J (θ) =: J . Also,
it is bounded from above by supJ ≤ J .

2. The cost function J is locally Lipschitz continuous
∥J [θ1]− J [θ2]∥ ≤ LJ(∥θ1∥+ ∥θ2∥)∥θ1 − θ2∥.

3. There exists a constant cJ > 0 such that J (θ)− J ≤
cJ (1 + ∥θ∥2).

4. There exist δJ , R0, η, µ > 0 such that
∥θ − θ̃∥ ≤ (J−J)µ

η , for all θ ∈ Bθ,R0
(θ̃) =

{θ : ∥θ − θ̃∥ ≤ R0}, and J (θ) − J > δJ for all

θ ∈
(
Bθ,R0(θ̃)

)c
.

5. The parameters we choose σ(t) has upper and lower
bound σ ≤ σ(t) ≤ σ.

Theorem 4.2. Under the Assumption 4.1, for each N ∈ N,
the stochastic differential equation (1) has a unique strong
solution

{(
Θ

(N)
t ,Ω

(N)
t )

)
|t > 0

}
for any initial condition(

Θ
(N)
0 ,Ω

(N)
0

)
satisfying E

(
∥Θ(N)

0 ∥+ ∥Ω(N)
0 ∥

)
≤ ∞.

Proof. See Appendix A.

By letting the number of agents N → ∞ in Equation (1),
the mean-field limit of the model is formally given by the
following McKean–Vlasov stochastic differential equation

dΘ̄t =Ω̄tdt− γ1
(
Θ̄t −Mβ [µt]

)
dt+ σ(t)dWθ,t,

dΩ̄t =−m
(
Θ̄t −Mβ [µt]

)
dt

− γ2Ω̄tdt+
√
mσ(t)dWω,t,

(2)

where Mβ [µ] =
∫
θ exp(−βJ (θ)µ(dθ)∫
exp(−βJ (θ)µ(dθ)

, µt(θ) =
∫
ρt(θ,dω),

and ρt = Law(Θ̄t, Ω̄t). Then the corresponding Fokker-
Planck equation is

∂tρt =−∇θ · ((ω − γ1(θ −Mβ [µt])) ρt)

+∇ω · ((m (θ −Mβ [µt]) + γ2ω) ρt)

+
σ(t)2m

2
∆ωρt +

σ(t)2

2
∆θρt.

(3)

Next, we will prove the above equation (2) and (3) are well-
posed.

Theorem 4.3. Let J satisfy the Assumption 4.1 and ρ0 ∈
P4(RD×RD). Then there exists a unique nonlinear process
(Θ̄, Ω̄) ∈ C

(
[0, T ],RD × RD

)
, T > 0, satisfying (2) with

initial distribution (Θ̄, Ω̄) ∼ ρ0 in the strong sense, and
ρt = Law(Θ̄, Ω̄) ∈ C

(
[0, T ],P4(RD × RD)

)
satisfies the

corresponding Fokker-Planck equation (3) in the weak sense
with limt→∞ ρt = ρ0 .

Proof. See Appendix B.

Then we present the result showing that (2) and (3) model
the mean-field limit of Equation (1).

Theorem 4.4. Let J satisfy Assumption 4.1 and ρ0 ∈
P4(RD × RD). For any N ≥ 2, assume that
{(Θ(i,N)

t ,Ω
(i,N)
t )t∈[0,T ]}Ni=1 is the unique solution to the

particle system (1) with ρ⊗N
0 -distributed initial data

{(Θ(i,N)
0 ,Ω

(i,N)
0 )}Ni=1. Then the limit (denoted by ρ)

of the sequence of the empirical measure ρN =
1
N

∑N
i=1 δ(Θ(i,N),Ω(i,N)) exists. Moreover, ρ is determin-

istic and it is the unique weak solution to PDE (3).

Proof. See in Appendix C.

To prove the global convergence of the M-CBO method, we
define the energy functional as

E[ρ] =
1

2

∫
∥θ − θ̃∥2 +m−1∥ω∥2dρ. (4)

The above definition E[ρ] provides a measure of the dis-
tance between the distribution of the agents ρ and the Dirac
measure at (θ̃, 0), denoted as δ(θ̃,0). Specifically, we have
the relationship 2E[ρt] =W 2

2 (ρt, δ(θ̃,0)).

Theorem 4.5. Let J satisfy the Assumption 4.1. More-
over, let ρ0 ∈ P4(R2D) and (θ̃, 0) ∈ supp(ρ0). By
choosing parameters σ(t) is exponentially decaying as
σ(t) = σ1 exp(−σ2t) with σ1 > 0 and σ2 > 1 and
λ = max{m, γ1} ≥ 2σ2 and γ = min{γ1, γ2} > 0. Fix
any ϵ ∈ (0, E[ρ0]) and τ ∈ (0, 1 − 2σ2

λ ), and define the
time horizon

T ∗ :=
1

(1− τ)λ
log

(
E[ρT0

])

ϵ

)
(5)

Then there exists β > 0 such that for all β > β0, if
ρ ∈ C([0, T ∗],P4(R2D)) is a weak solution to the Fokker-
Planck equation in the time interval [0, T ∗] with initial con-
dition ρ0, we have

min
t∈[0,T∗]

E[ρt] ≤ ϵ.

Furthermore, until E[ρt] reaches the prescribed accuracy ϵ,
we have the exponential decay

E[ρt] ≤ E[ρ0] exp(−(1− τ)λt) (6)

and, up to a constant, the same behavior for W 2
2 (ρt, δ(θ̃,0)).

Proof. See Appendix D.
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5. Numerical Results
We evaluate the performance of the Adam-CBO method
across various problem settings, including the linear
quadratic control problem in 1, 2, 4, 8, and 16 dimensions,
the Ginzburg-Landau model, and the systemic risk mean-
field control problem with 50, 100, 200, 400, 800 agents.
Even though our method is model-free, which means it does
not depend on the known explicit knowledge of the transi-
tion kernel as well as the precise dependency of the value
function u(t,x) on the optimal control α(t,x,∇u,Hessu).
The value function is expressed as:

u(t,x) = inf
α∈A

E

[∫ T

t

f(s,xs,αs)ds+ g(XT ) |x(t) = x

]
.

To measure the accuracy of our method, we compare
u(t,x) or the ∥α(t,x,∇u,Hessu)−α(t,x; θ)∥ as a met-
ric. Our code is available at https://github.com/
Lyuliyao/ADAM_CBO_control.

Linear Quadratic Control Problem

We begin by considering a classical linear quadratic Gaus-
sian (LQG) control problem. The value function is known
as u(t,x) = − ln

(
E
[
exp

(
−g
(
x+

√
2WT−t

))])
, which

we refer to Appendix E for details. The numeric value of
u(t,x) can be computed by Monte Carlo (MC) estimation
directly as a reference to measure the accuracy.

We investigate the LQG problem in dimension d =
1, 2, 4, 8, and 16, with a terminal time of T = 1 and a
timestep of T

20 . We compare our method with the BSDE
method in (Han et al., 2018). In both methods, the number
of SDE to compute the value function is 64 and the learning
rate is 1× 10−2. In M-CBO and Adam-CBO methods, the
number of agents is specified as N = 5000, and M = 50
agents are randomly selected to update in each step.

The value function u(t = 0,x = (0, . . . , 0)) for two dif-
ferent terminal costs - a convex cost: g(x) = ln 1+∥x∥2

2

and a double-well terminal cost: g(x) = ln 1+(∥x∥2−1)2

2 is
illustrated in Figure 1 across varying dimensions. The value
function from MC estimation is worked as a reference. The
value function of Adam-CBO and M-CBO methods is com-
puted from the expectation of 5000 controlled dynamics.
The value function of the BSDE method is a direct output
of the neural network.

In the convex terminal cost, we can see that both the M-CBO
method and the Adam-CBO method outperform the BSDE
method in a low-dimensional setting. As the dimensionality
increases, Adam-CBO continues to outperform the BSDE
method, demonstrating its scalability. Consequently, in the
remaining examples, we focus exclusively on the Adam-
CBO method because of its superior performance in high

dimensions.

In the case of the double-well terminal cost, which is non-
convex, our method shows significantly improved accuracy
over the BSDE approach. This enhancement can be at-
tributed to several factors. First, CBO-based methods have
a higher likelihood of converging to global minima in non-
convex settings. Secondly, although both methodologies
utilize a discretization of the 20 time steps during the train-
ing phase, our approach facilitates additional refinement
of the time steps when assessing the cost function, thereby
improving precision. In contrast, the structure of the neu-
ral network of the BSDE method is inherently tied to the
chosen discretization, necessitating the same time step for
both training and evaluation, thus limiting flexibility. We
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Figure 1. The value function u(t = 0,x = (0, . . . , 0)) evalu-
ated using BSDE method, M-CBO method, Adam-CBO method
(our method), and MC estimation (reference) for problems in
1, 2, 4, 8, and 16 dimensions. (a) The terminal cost function
g(x) = ln 1+∥x∥2

2
. (b) The terminal cost function g(x) =

ln 1+(∥x∥2−1)2

2
.

also visualize the function u(t, x) in the one-dimensional
case for both types of terminal costs in Figure 2 and Figure
3. It is evident that our method aligns more closely with the
exact solution than the BSDE-based method.

We further investigate the influence of batch size (the num-
ber of control processes to compute the cost function) on
the problem. We consider a 4 dimensional problem with a
nonconvex terminal cost given by g(x) = ln 1+(∥x∥2−5)2

2 .
Figure 4 illustrates the value function u(t = 0, 0, 0, 0, 0)
evaluated under varying batch sizes during training and
compared with a precise estimation of the MC that uses
a sufficiently large sample size. The first insight is that
the accuracy of training is sensitive to batch size in the
training process, which inspired us to develop an improved
sampling method to enhance the efficiency of the sampling
process in the future. Additionally, our method consistently
demonstrates greater accuracy than the BSDE-based ap-
proach, confirming its robustness in higher-dimensional and
nonconvex settings.
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Figure 2. The value function u(t, x) in the one-dimensional case, computed using BSDE method, MC Estimation (reference), and
Adam-CBO (our method), with terminal cost g(x) = ln 1+∥x∥2

2
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Figure 3. The value function u(t, x) in one-dimensional case, computed using BSDE method, MC Estimation (reference), and Adam-CBO
(our method), with terminal cost g(x) = ln 1+(∥x∥2−1)2

2
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problem, computed using BSDE method, MC Estimation (ref-
erence), and Adam-CBO (our method), with terminal cost g(x) =
ln 1+(∥x∥2−5)2

2
, evaluated under varying sample sizes per step.”.

Ginzburg-Landau Model

We also consider the problem of controlling superconduc-
tors in an external electromagnetic field, modeled using the
stochastic Ginzburg-Landau theory. The dynamics are given
by

dxt = b(xt, αt)dt+
√
2dWt, (7)

where the drift term is defined as

b(x, a) = −∇xU(x) + 2αω.

U here is the Ginzburg-Landau free energy, while ω ∈ Rd

specifies the spatial domain of the external field. For further
implementation specifics, see Appendix E.

Since this problem lacks an exact analytical solution, we
assess the performance of our trained control α(t,x; θ)
by comparing it to the theoretically optimal control −ω ·
∇xu(t,x, ), where u(x, t) is the value function. Notably,
this value function is different from the last case with an an-
alytical solution; it was computed by taking the expectation
of running controlled dynamics and its gradient is computed
by taking the finite difference of two starting states. There-
fore, this comparison is not intended as a true error metric.
Instead, it serves to evaluate the consistency between our
trained control and the theoretically optimal control, which
many value-based methods use to define the loss.

We start with a simple case with d = 2, µ = 10, λ = 0.2.
We compare the distribution of x1 before and after the con-
trol in Figure 5. One can find that before the control the
particles will stay in a stable state −1, 1, while after control
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the particles will stay near 0. Additionally, a comparative
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d
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si
ty
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Before control

Figure 5. Distribution of x1 before and after control in the 1D
Ginzburg-Landau model.

analysis between α(t,x) and −ω · ∇xu(t,x) is conducted,
as illustrated in Figure 6. The results demonstrate the consis-
tency between these two functions. We also test our method
on d = 4, 8, 16, 32. The comparison between α(t,x; θ)
and −ω · ∇xu(t,x) is shown in Figure 7. Here (t,x) is
randomly sampled from 1000 control dynamics.
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Figure 6. The left figure shows the α(0.5,x; θ) and the right figure
shows the −ω · ∇xu(0.5,x) computed by our method for the 2D
Ginzburg-Landau model.

Systemic Risk Mean Field Control

In practical applications, there are scenarios where numer-
ous indistinguishable agents, such as multiple traders en-
gaged in buying and selling stocks within financial markets,
create a complex, multi-dimensional problem. However,
when these traders share similar risk preferences, analyzing
the behavior of a single representative trader can suffice to
understand the dynamics of the entire group. For example,
for a problem with n agents, the control can be modeled
as αi(xi, µ; θ), where µ is the empirical measure of the
{xi}ni=1 and θ are parameters in the neural network. For
further details on the network construction used in this setup,
refer to Appendix F.

Consider the systemic risk mean field control problem,
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Figure 7. Ginzburg-Landau model with d = 4, 8, 16, 32 respec-
tively. The x-axis shows the α(0.5,x) and y-axis shows the
−ω · ∇xu(0.5,x)

detailed in Appendix E. The control policy is initially
trained using a delta distribution centered on x0 and
n = 100 and then tested against different values of n =
50, 100, 200, 400, 800. Furthermore, the value function is
evaluated by taking the expectation of controlled dynam-
ics starting from different initial distributions µ0, including
Gaussian random variable x0 = N (0, 0.1), mixture of two
Gaussian random variables x0 = p(−k+θy)+(1−P )(k+
θz) with P a Bernoulli random variable with parameter 1

2 ,
k =

√
3

10 , θ = 0.1, y, z ∼ N(0, 1) and mixture of three
Gaussian random variables: x0 = [−k⌊3U⌋=0 + k⌊3U⌋=1] +
θy with k = 0.3, θ = 0.07, y ∼ N(0, 1). The correspond-
ing value functions for each scenario are shown in Table
1, 2, 3, respectively. Our method demonstrates robust gen-
eralization across these diverse conditions, in contrast to
value-function-based approaches where the control strategy
is tied to the specific value function. Since value functions
are highly sensitive to initial conditions, traditional methods
require retraining for each new initial scenario, limiting their
ability to generalize effectively.

Multi-Agent Robotic Systems

We present numerical results for a multi-agent robotic sys-
tem consisting of n agents. Each agent i computes an opti-
mal policy αi to navigate from a predefined starting point
to a target while avoiding obstacles in the environment. The
original problem is formulated as an open-loop control prob-
lem with constraints (Abdul et al., 2024). However, we
reformulate it as a feedback control problem by incorporat-
ing penalty terms to handle constraints. For further details

7



Consensus Based Stochastic Optimal Control

0 2 4

−2

0

2
start

target

0 4 8 12 16

−6

−2

2

6

start

target

0 2 4

−2

0

2
start

target

0

1

2

3

Figure 8. Learned trajectories for multi-agent navigation from initial configurations to target destinations while avoiding obstacles. Results
are shown for systems with 2, 4, and 50 agents.

Table 1. The value function u(t, µ) evaluated by Adam-CBO
method with µ = N (0, 1) in the mean filed control problem.

TIME n = 50 n = 100 n = 200 n = 400 EXACT

0.0 0.607 0.614 0.618 0.619 0.616
0.1 0.553 0.559 0.563 0.564 0.561
0.2 0.498 0.504 0.507 0.508 0.506
0.3 0.442 0.447 0.450 0.451 0.449
0.4 0.384 0.388 0.391 0.391 0.390
0.5 0.323 0.326 0.329 0.329 0.329
0.6 0.258 0.260 0.262 0.263 0.262
0.7 0.187 0.188 0.190 0.190 0.190
0.8 0.106 0.107 0.108 0.108 0.108
0.9 0.010 0.010 0.010 0.010 0.010

on this transformation, we refer the reader to Appendix E.3.
The numerical results, presented in Figure 8, demonstrate
the performance of our method for systems with 2, 4, and
50 agents. Figure 8 demonstrates successful trajectory gen-
eration between initial and target states for systems with 2,
4, and 50 agents, while ensuring collision-free navigation
through obstacle-rich environments. These results validate
our method’s capability to solve high-dimensional optimal
control problems that lack explicit analytical solutions.

Reinforcement Learning Task

We also compare our method with DDPG, PPO, SAC,
TD3, TQC, and CrossQ (using the stable-baselines3 im-
plement https://github.com/araffin/sbx) on
Pendulum-v1 as well as PPO and DQN on CartPole-v1.
The numerical results can be found in Figure 9 and the com-
putational cost is shown in Table 4. While Adam-CBO has
higher runtime, it converges to the optimal policy much
faster in terms of learning efficiency. However, we would
like to stress that these results are not directly compara-
ble in a strict sense. Most of the baseline methods opti-
mize multiple components—for example, PPO jointly op-

Table 2. The value function u(t, µ) with µ being a mixture of two
Gaussian random variables in the mean filed control problem.

TIME n = 50 n = 100 n = 200 n = 400 EXACT

0.0 0.621 0.628 0.633 0.634 0.630
0.1 0.567 0.574 0.578 0.579 0.576
0.2 0.513 0.518 0.522 0.523 0.521
0.3 0.457 0.462 0.465 0.466 0.465
0.4 0.399 0.404 0.407 0.408 0.407
0.5 0.339 0.343 0.346 0.346 0.346
0.6 0.276 0.279 0.281 0.281 0.281
0.7 0.207 0.209 0.211 0.211 0.211
0.8 0.129 0.131 0.132 0.132 0.132
0.9 0.039 0.040 0.040 0.040 0.040

timizes a policy and a value function, and SAC optimizes
two Q-functions and a policy. In contrast, our method op-
timizes only the policy. If we were to directly replace the
gradient-based optimizer within an existing method like
PPO with Adam-CBO, we do not expect it to outperform
the full method in that specific setup. The main advantage
of Adam-CBO lies in its applicability to broader, more gen-
eral settings, particularly when gradients are unavailable or
unreliable.

6. Conclusion
In this work, we present a framework for solving high-
dimensional stochastic optimal control problems. Compared
with the existing method, our method is gradient-free, which
eliminates the high variance in the Monte Carlo estimation
of the policy gradient. Also, our method does not depend on
solving the high-dimensional Hamiltonian-Jacobi-Bellman
equation or on any mesh discretization in the state and action
space. These enable us to get rid of the curse of dimension-
ality and use this method in high-dimensional problems.
Theoretically, we show that, under some assumptions, the
M-CBO method can converge to the optimal control. In
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Table 3. The value function u(t, µ) with µ being a mixture of three
Gaussian random variables in the mean filed control problem.

TIME n = 50 n = 100 n = 200 n = 400 EXACT

0.0 0.633 0.640 0.645 0.646 0.642
0.1 0.579 0.586 0.590 0.591 0.588
0.2 0.524 0.531 0.535 0.536 0.534
0.3 0.469 0.475 0.478 0.47 0.478
0.4 0.412 0.417 0.421 0.421 0.420
0.5 0.353 0.357 0.360 0.361 0.360
0.6 0.290 0.294 0.297 0.297 0.297
0.7 0.223 0.226 0.228 0.228 0.228
0.8 0.148 0.151 0.152 0.152 0.152
0.9 0.063 0.064 0.064 0.065 0.065
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Figure 9. Comparison of value function convergence across meth-
ods. (Left) Performance on the Pendulum-v1 environment showing
the evolution of the value function during training. (Right) Cor-
responding results for the CartPole-v1 environment. Our method
demonstrates superior convergence in both cases.

the future, we are interested in applying our method to
mean-field game problems and control problems with par-
tial information and constraints (Ganapathi Subramanian
et al., 2024; Hong & Tewari, 2024; Qiao & Wang, 2024;
Sun et al., 2024; Wang et al., 2024).
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Table 4. The computational time for each method over 100,000
steps

METHOD PENDULUM-V1 CARTPOLE-V1

DDPG 288.83
PPO 145.19 150.58
SAC 355.01
TD3 291.26
TQC 576.35
CROSSQ 708.73
DQN 186.13
ADAM-CBO 1124.88 3444
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Cousin, A., Crépey, S., Guéant, O., Hobson, D., Jeanblanc,
M., Lasry, J.-M., Laurent, J.-P., Lions, P.-L., Tankov, P.,
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A. Well-posedness of the M-CBO method
In this section, we prove that the dynamics of the M-CBO method are well-posed. For an arbitrary but fixed N , we begin by
studying the existence of a unique process

(
Θ

(N)
t ,Ω

(N)
t

)
=
(
Θ(1,N), · · · ,Θ(N,N),Ω(1,N), · · · ,Ω(N,N)

)
that satisfies the

M-CBO scheme (1)

dΘ
(N)
t = FN,Θ

(
Θ

(N)
t ,Ω

(N)
t

)
dt+ σ(t)dW

(N)
θ,t ,

dΩ
(N)
t = FN,Ω

(
Θ

(N)
t ,Ω

(N)
t

)
dt+

√
mσ(t)dW

(N)
ω,t ,

(8)

where W
(N)
θ,t ,W

(N)
ω,t is the standard Wiener process in RND, and

FN,Θ(Θ,Ω) =
(
F 1
N,Θ(Θ,Ω), · · ·FN

N,Θ(Θ,Ω)
)
∈ RND,

FN,Ω(Θ,Ω) =
(
F 1
N,Ω(Θ,Ω), · · ·FN

N,Ω(Θ,Ω)
)
∈ RND,

F i
N,Θ(Θ,Ω) = Ωi − γ1

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)
,

F i
N,Ω(Θ,Ω) = −m

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)
+ γ2Ω

i.

Under the Assumption 4.1, we can easily deduce that F i
N,Θ and F i

N,Ω are locally Lipschitz continuous and have linear
growth. Consequently, (FN,Θ,FN,Ω) is locally Lipschitz continuous and has linear growth. More precisely, we have the
following lemma.

Lemma A.1. LetN ∈ N, β,R > 0 be arbitrary. Then for any (Θ,Ω), (Θ̂, Ω̂) ∈ RD×RD with ∥Θ∥+∥Ω∥, ∥Θ̂∥+∥Ω̂∥ ≤
R and all i = 1, · · · , N , it holds

∥F i
N,Θ(Θ,Ω)− F i

N,Θ(Θ̂, Ω̂)∥ ≤ γ1∥Θi − Θ̂i∥+ ∥Ωi − Ω̂i∥+ γ1

(
1 + 2

cR
N

√
N∥Θ̂i∥2 + ∥Θ̂∥2

)
∥Θ− Θ̂∥,

∥F i
N,Ω(Θ,Ω)− F i

N,Ω(Θ̂, Ω̂)∥ ≤ ∥Θi − Θ̂i∥+ γ2∥Ωi − Ω̂i∥+m

(
1 + 2

cR
N

√
N∥Θ̂i∥2 + ∥Θ̂∥2

)
∥Θ− Θ̂∥,

∥F i
N,Θ(Θ,Ω)∥ ≤ γ1∥Θi∥+ ∥Ωi∥+ γ1∥Θ∥,

∥F i
N,Ω(Θ,Ω)∥ ≤ m∥Θi∥+ γ2∥Ωi∥+m∥Θ∥,

where cR = α∥∇J ∥L∞(Bθ,R(0)) exp
(
β∥J − J ∥L∞(Bθ,R(0))

)
.

Proof. From Lemma 2.1 (Carrillo et al., 2018), we have∥∥∥∥∥
∑

j ̸=i(Θ
i −Θj)wβ(Θ

j)∑
j wβ(Θj)

−
∑

j ̸=i(Θ̂
i − Θ̂j)wβ(Θ̂

j)∑
j wβ(Θ̂j)

∥∥∥∥∥ ≤ ∥Θi − Θ̂i∥+
(
1 + 2

cR
N

√
N∥Θ̂i∥2 + ∥Θ̂|2

)
∥Θ− Θ̂∥,∥∥∥∥∥

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)

∥∥∥∥∥ ≤ ∥Θi∥+ ∥Θ∥.

By the triangle inequality, the required estimation is proved.

Based on Lemma A.1, we may invoke standard existence results of strong solutions for Equation (1).

Proof of Theorem 4.2. We make use of the standard result on the existence of a unique strong solution here. To this end, we
show the existence bN > 0, such that

Θ · FN,Θ(Θ,Ω) +Ω · FN,Ω(Θ,Ω) +N(m+ 1)Dσ(t)2 ≤ bN (∥Θ∥2 + ∥Ω∥2 + 1).
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Notice that

−Θi

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)
≤ −∥Θi∥2 + ∥Θi∥∥Θ∥,

−Ωi

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)
≤ ∥Ωi∥∥Θi∥+ ∥Ωi∥∥Θ∥,

we have the following inequalities

ΘiF i
N,Θ(Θ,Ω) = ΘiΩi − γ1Θ

i

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)

≤ 1

2
∥Θi∥2 + 1

2
∥Ωi∥2 − γ1∥Θi∥2 + γ1∥Θi∥∥Θ∥

≤ 1

2
∥Θi∥2 + 1

2
∥Ωi∥2 + γ1∥Θi∥∥Θ∥

≤
(
1

2
+
γ1
2

)
∥Θi∥2 + γ1

2
∥Θ∥2 + 1

2
∥Ωi∥2,

and

ΩiF i
N,Ω(Θ,Ω) = −mΩi

∑
j ̸=i(Θ

i −Θj)wβ(Θ
j)∑

j wβ(Θj)
+ γ2∥Ωi∥2

≤ m∥Ωi∥∥Θi∥+m∥Ωi∥∥Θ∥+ γ2∥Ωi∥2

≤ (m+ γ2)∥Ωi∥2 + m

2
∥Θi∥2 + m

2
∥Θ∥2.

Therefore, we conclude that

Θ · FN,Θ(Θ,Ω) +Ω · FN,Ω(Θ,Ω) + (m+ 1)Dσ(t)2

≤ N(m+ 1)Dσ(t)2 +

N∑
i=1

(
Θi · F i

N,Θ(Θ,Ω) + Ωi · F i
N,Ω(Θ,Ω)

)
≤ N(m+ 1)Dσ(t)2 +

N∑
i=1

((
1

2
+
γ1
2

)
∥Θi∥2 + γ1

2
∥Θ∥2 + 1

2
∥Ωi∥2 + (m+ γ2)∥Ωi∥2 + m

2
∥Θi∥2 + m

2
∥Θ∥2

)
≤ N(m+ 1)Dσ(t)2 +

(
1 + γ1 +m

2
+
γ1 +N

2

)
∥Θ∥2 +

(
m+ γ2 +

1

2

)
∥Ω∥2

≤ bN (∥Θ∥2 + ∥Ω∥2 + 1),
(9)

where bN = max{N(m+ 1)Dσ̄2, 1+γ1+m
2 + γ1+N

2 ,m+ γ2 +
1
2} > 0. Then we apply Theorem 3.1 in (Durrett, 2018) to

finish the existence and uniqueness proof.

B. Well-posedness of the Mean Field Equations
Definition B.1. We say ρt ∈ C

(
[0, T ],P4(RD × RD)

)
is a weak solution to the Fokker-Planck equation (3) with initial

condition ρ0, if ∀ϕ ∈ C
(
RD × RD

)
, we have

d

dt

∫
ϕ(θ, ω)dρt =

∫
⟨ω − γ1(θ −Mβ [µt]),∇θϕ⟩dρt

−
∫

⟨m(θ −Mβ [µt]) + γ2ω,∇ωϕ⟩dρt

+
mσ(t)2

2

∫
∆ωϕdρt +

σ(t)2

2

∫
∆θϕdρt,

(10)

and limt→∞ ρt = ρ0 in a pointwise sense.

To prove Theorem 4.3, we start with the following lemma.

14
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Lemma B.2. If J satisfies Assumption 4.1 and ρ, ρ̂ ∈ P2(RD × RD) with∫
∥θ∥4 + ∥ω∥4dρ,

∫
∥θ̂∥4 + ∥ω̂∥4dρ̂ ≤ K,

then the following stability estimate holds

|Mβ [µ]−Mβ [µ̂]| ≤ c0W2(ρ, ρ̂)

for a constant c0 > 0 depending on β, LJ and K, where µ(θ) =
∫
RD ρ(θ,dω), µ̂(θ̂) =

∫
RD ρ̂(θ̂,dω̂).

Proof. By Lemma 3.2 in (Carrillo et al., 2018), we have |Mβ [µ] − Mβ [µ̂]| ≤ c0W2(µ, µ̂) = c0 inf E(µ,µ̂)[∥θ − θ̂∥2].
Therefore, we have inf E(µ,µ̂)[∥θ− θ̂∥2] ≤ inf E(ρ,ρ̂)[∥θ− θ̂∥2]+inf E(ρ,ρ̂)[∥ω− ω̂∥2] ≤ inf E(ρ,ρ̂)[∥θ− θ̂∥2+∥ω− ω̂∥2] =
W2(ρ, ρ̂). We prove the boundedness here.

To prove the existence and uniqueness, we recall the Leray-Schauder fixed point theorem (Theorem 11.3 in (Gilbarg et al.,
2001)).
Theorem B.3. Let T be a compact mapping of a Banach space B into itself, and suppose there exists a constant M such
that ∥x∥B ≤M for all x ∈ B and η ∈ (0, 1) satisfying x = ηTx. Then T has a fixed point.

Proof of Theorem 4.3. Step 1 (Construction of map T )

Let us fix ut ∈ C ([0, T ]). By Theorem 6.2.2 in (Arnold, 1976), there is a unique solution to

dθt = ωtdt− γ1(θt − ut)dt+ σ(t)dWθ,t,

dωt = −m(θt − ut)dt− γ2ωtdt+
√
mσ(t)dWω,t,

where (θ0, ω0) ∼ ρ0. We use ρt to denote the corresponding law of the unique solution. Using ρt, one can compute
µt(θ) =

∫
ρt(θ,dω) and Mβ [µt], which is uniquely determined by ut and is in C ([0, T ]). Thus, one can construct a map

from C ([0, T ]) to C ([0, T ]), which maps ut to Mβ [µt].

Step 2 (Compactness) First, by referencing Chapter 7 in (Arnold, 1976), we obtain the inequality for the solution θt, ωt to
Equation (B):

E[∥θt∥+ ∥ωt∥]4 ≤
(
1 + E[∥θ0∥+ ∥ω0∥]4

)
exp(ct),

where c > 0. Thus one can deduce E[∥θt∥4 + ∥ωt∥4] ≲ 1 and E[∥θt∥2 + ∥ωt∥2] ≲ 1.

By Lemma B.2, we have ∥Mβ(µt) − Mβ(µs)∥ ≤ c0W2(ρt, ρs). For W2(ρt, ρs), it holds that W2(ρt, ρs) ≤ E[∥θt −
θs∥+ ∥ωt − ωs∥] ≤

√
2E[∥θt − θs∥2 + 2∥ωt − ωs∥2]. Further, we can deduce

θt − θs =

∫ t

s

ωτ − γ1(θτ − uτ )dτ +

∫ t

s

σ(τ)dWθ,τ ,

ωt − ωs =

∫ t

s

−m(θτ − uτ )− γ2ωτdτ +
√
m

∫ t

s

σ(τ)dWω,τ .

Thus

E[∥θt − θs∥2 + ∥ωt − ωs∥2] ≲E

[∥∥∥∥∫ t

s

ωτdτ

∥∥∥∥2
]
+ E

[∥∥∥∥∫ t

s

(θτ − uτ )dτ

∥∥∥∥2
]

+ E

[∥∥∥∥∫ t

s

σ(τ)dWθ,τ

∥∥∥∥2
]
+mE

[∥∥∥∥∫ t

s

σ(τ)dWω,τ

∥∥∥∥2
]
.

Let us proceed to bound the four terms on the right-hand side individually. Consider the first term, where we establish

E

[∥∥∥∥∫ t

s

ωτdτ

∥∥∥∥2
]
≤ E

[(∫ t

s

∥ωτ∥ dτ
)2
]

≤ |t− s|E
[∫ t

s

∥ωτ∥2 dτ
]
≲ |t− s|.
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The first inequality in this sequence is derived from the Cauchy-Schwarz inequality, followed by an application of Jensen’s
inequality for the second inequality. The final inequality is attributed to the boundedness property of the solution. Similarly,
for the second term, we have

E

[∥∥∥∥∫ t

s

(θτ − uτ )dτ

∥∥∥∥2
]
≤ E

[(∫ t

s

∥θτ − uτ∥ dτ
)2
]

≤ |t− s|E
[∫ t

s

∥θτ − uτ∥2 dτ
]

≲ |t− s|
(
E
[∫ t

s

∥θτ∥2 dτ +
∫ t

s

∥uτ∥2 dτ
])

≲ |t− s|.

For the third and fourth terms, we use the Itô Isometry,

E

[∥∥∥∥∫ t

s

σ(τ)dWω,τ

∥∥∥∥2
]
= E

[∥∥∥∥∫ t

s

σ(τ)dWθ,τ

∥∥∥∥2
]
= E

[∫ t

s

σ(τ)2dτ

]
≤ σ̄2|t− s|.

Finially, we combine the inequiality to deduce that ∥Mβ [µt] − Mβ [µs]∥ ≲ |t − s|1/2, which implies that Mβ(µt) ∈
C0,1/2[0, T ]. Thus T is compact.

Step 3 (Existence) We make use of Theorem B.3. Take ut = ηTut for η ∈ [0, 1]. We now try to prove ∥ut∥∞ ≤ q for some
finite q > 0. First, one has

∥ut∥2 = η2∥Mβ(µt)∥2 ≤ η2 exp(β(J − J))

∫
∥θ∥2dρt ≤ η2 exp(β(J − J))

∫
|θ∥2 +m−1∥ω∥2dρt.

Then we try to prove the boundedness of
∫
∥θ∥2 +m−1∥ω∥2dρt. Since ρt is a weak solution of the Fokker-Planck equation,

one has
d

dt

∫ (
∥θ∥2 +m−1∥ω∥2

)
dρt =

∫
ω · θ − γ1(θ − ut) · θ − (θ − ut) · ω − γm−1ω · ωdρt

=

∫
−γ1(θ − ut) · θ + ut · ω − γm−1ω · ωdρt

Since ∫
θ · utdρt ≲

∫
∥θ∥2 + ∥ut∥2dρt ≲

∫
∥θ∥2dρt +

∫
(∥θ∥2 +m−1∥ω∥2)dρt,

and ∫
ω · utdρt ≲

∫
∥ω∥2 + ∥ut∥2dρt ≲

∫
∥ω∥2dρt +

∫
(∥θ∥2 +m−1∥ω∥2)dρt,

we can deduce that
d

dt

∫ (
∥θ∥2 +m−1∥ω∥2

)
dρt ≲

(
∥θ∥2 +m−1∥ω∥2

)
dρt.

Applying Gronwall’s inequality yields that
∫ (

∥θ∥2 +m−1∥ω∥2
)
dρt is bounded and the above inequality is independent

of ut. Thus we have shown that ∥ut∥∞ is bounded by a uniform constant q. Theorem B.3 then gives the existence.

Step 4(Uniqueness): Suppose we are given two fixed points of T : ut and ût with ∥u∥∞, ∥û∥∞ ≤ q and supt∈[0,T ]

∫
∥θ∥4+

∥ω∥4dρt, supt∈[0,T ]

∫
∥θ̂∥4 + ∥ω̂∥4dρ̂t ≤ K and their corresponding process (Θ,Ω), (Θ̂, Ω̂) satisfying respectively. Then

take the difference δΘ := Θ− Θ̂ and δΩ := Ω− Ω̂. One has

δΘt = δΘ0 +

∫ t

0

δΩτdτ − γ1

∫ t

0

δΘτdτ + γ1

∫ t

0

(uτ − ûτ )dτ,

δΩt = δΩ0 − γ2

∫ t

0

δΩτdτ −m

∫ t

0

δΘτdτ +m

∫ t

0

(uτ − ûτ )dτ.
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Thus

E[∥δΘt∥2 + ∥δΩt∥2] ≲E[∥δΘ0∥2 + ∥δΩ0∥2] + E

[(∫ t

0

∥δΩτ∥dτ
)2
]
+ E

[(∫ t

0

∥δΘτ∥ dτ
)2
]

+ E

[(∫ t

0

∥uτ − ûτ∥ dτ
)2
]
.

For the E
[(∫ t

0
∥uτ − ûτ∥ dτ

)2]
, we have that

E

[(∫ t

0

∥uτ − ûτ∥ dτ
)2
]
= E

[(∫ t

0

∥Mβ [µτ ]−Mβ [µ̂τ ]∥dτ
)2
]

≤ tE
[∫ t

0

∥Mβ [µτ ]−Mβ [µ̂τ ]∥2 dτ
]
.

Thus we have

E[∥δΘt∥2 + ∥Ωt∥2] ≲E[∥δΘ0∥2 + ∥δΩ0∥2] + E

[(∫ t

0

∥δΩτ∥ dτ
)2
]
+ E

[(∫ t

0

∥δΘτ∥ dτ
)2
]

+ E
[∫ t

0

∥Mβ [µτ ]−Mβ [µ̂τ ]∥2 dτ
]
.

Notice that by Lemma B.2, ∥Mβ [µτ ]−Mβ [µ̂τ ]∥ ≲W2(ρτ , ρ̂τ ) ≤
√
E [∥δΘτ∥2 + ∥δΩτ∥2]. So we can deduce

E
[
∥δΘτ∥2 + ∥δΩτ∥2

]
≲ E

[
∥δΘ0∥2 + ∥δΩ0∥2

]
+ E

[∫ t

0

∥δΩτ∥2 + ∥δΘτ∥2 dτ
]
.

By the Gronwall’sinequality with the fact that E[∥δΘ0∥2 + ∥δΩ0∥2] = 0 gives that uniqueness result.

C. Mean Field Limit
In this section, we prove the connection between the solution to Equation (1) and the solution of the Fokker-Planck equation
(3). We begin with the following boundedness result.
Lemma C.1. Let J satisfy Assumption 4.1 and ρ0 ∈ P4(RD × RD). For any N ≥ 2, assume that
{(Θ(i,N)

t ,Ω
(i,N)
t )t∈[0,T ]}Ni=1 is the unique solution to Equation (8) with ρ⊗N

0 -distributed initial data {(Θ(i,N)
0 ,Ω

(i,N)
0 )}Ni=1.

Then there exists a constant K > 0 independent of N such that

sup
i=1···N

{
sup

t∈[0,T ]

E
[
∥Θ(i,N)

t ∥2 + ∥Ω(i,N)
t ∥2

]}
≤ K,

sup
i=1···N

{
sup

t∈[0,T ]

E
[
∥Θ(i,N)

t ∥4 + ∥Ω(i,N)
t ∥4

]}
≤ K,

sup
i=1···N

{
sup

t∈[0,T ]

E
[
∥Mβ [µ̂

N
t ]∥2

]}
≤ K,

sup
i=1···N

{
sup

t∈[0,T ]

E
[
∥Mβ [µ̂

N
t ]∥4

]}
≤ K,

where µ̂N
t = 1

N

∑N
i=1 δΘ(i,N)

t
is the empirical measure.

Proof. For each i, we have

dΘ
(i,N)
t =− Ω

(i,N)
t dt− γ1(Θ

(i,N)
t −Mβ [µ̂

N
t ])dt+ σ(t)dW i

θ,t,

dΩ
(i,N)
t =−m(Θ

(i,N)
t −Mβ [µ̂

N
t ])dt− γ2Ω

(i,N)
t dt+

√
mσ(t)dW i

ω,t.
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Now we pick p = 1 or p = 2. Then

E
[∥∥∥Ω(i,N)

t

∥∥∥2p]+ E
[∥∥∥Θ(i,N)

t

∥∥∥2p] ≲E
[∥∥∥Θ(i,N)

0

∥∥∥2p]+ E
[∥∥∥Ω(i,N)

0

∥∥∥2p]
+ E

[∫ t

0

∥∥∥Θ(i,N)
τ

∥∥∥dτ]2p + E
[∫ t

0

∥∥∥Ω(i,N)
τ

∥∥∥dτ]2p
+ E

[∫ t

0

∥∥Mβ [µ̂
N
τ ]
∥∥dτ]2p + E

[∫ t

0

σ(τ)dWθ,τ

]2p
.

Now apply the Cauchy’s inequality,

E
[∫ t

0

∥Θ(i,N)
τ ∥dτ

]2p
≤ tp · E

[∫ t

0

∥Θ(i,N)
τ ∥2dτ

]p
, E

[∫ t

0

∥Ω(i,N)
τ ∥dτ

]2p
≤ tp · E

[∫ t

0

∥Ω(i,N)
τ ∥2dτ

]p
,

and

E
[∫ t

0

∥Mβ [µ̂
N
τ ]∥dτ

]2p
≤ tpE

[∫ t

0

∥Mβ [µ̂
N
τ ]∥2dτ

]p
.

Also, by Itô Isometry,

E
[∫ t

0

σ(τ)dWθ,τ

]2p
= E

[∫ t

0

σ(τ)2dτ

]p
.

Thus

E
[∥∥∥Ω(i,N)

t

∥∥∥2p + ∥∥∥Θ(i,N)
t

∥∥∥2p] ≲E
[∥∥∥Ω(i,N)

0

∥∥∥2p]+ E
[∥∥∥Θ(i,N)

0

∥∥∥2p]
+ E

[∫ t

0

∥∥∥Θ(i,N)
τ

∥∥∥2 dτ]p + E
[∫ t

0

∥∥∥Ω(i,N)
τ

∥∥∥2 dτ]p
+ E

[∫ t

0

∥Mβ [µ̂τ ]∥2 dτ
]p

+ 1.

Further, by Hölder inequality,

E
[∫ t

0

∥∥∥Θ(i,N)
τ

∥∥∥2 dτ]p ≤ E
[∫ t

0

∥∥∥Θ(i,N)
τ

∥∥∥2p dτ] , E
[∫ t

0

∥Ω(i,N)
τ ∥2dτ

]p
≤ E

[∫ t

0

∥Ω(i,N)
τ ∥2pdτ

]
and

E
[∫ t

0

∥∥Mβ [µ̂
N
t ]
∥∥2 dτ]p ≤ E

[∫ t

0

∥∥Mβ [µ̂
N
t ]
∣∣2p dτ] .

So we can deduce

E
[∥∥∥Ω(i,N)

t

∥∥∥2p + ∥∥∥Θ(i,N)
t

∥∥∥2p] ≲E
[∥∥∥Ω(i,N)

0

∥∥∥2p]+ E
[∥∥∥Θ(i,N)

0

∥∥∥2p]
+ E

[∫ t

0

∥∥∥Θ(i,N)
τ

∥∥∥2p dτ]+ E
[∫ t

0

∥∥∥Ω(i,N)
τ

∥∥∥2p dτ]
+ E

[∫ t

0

∥Mβ [µ̂
N
τ ]∥2pdτ

]
+ 1.

Thus

E
[∫ (

∥θ∥2p + ∥ω∥2p
)
dρ̂Nt

]
≲E

[∫ (
∥θ∥2p + ∥ω∥2p

)
dρ̂N0

]
+

∫ t

0

(
E
[∫ (

∥θ∥2p + ∥ω∥2p
)
dρ̂Nτ

])
dτ

+

∫ t

0

E
[
∥Mβ [µ̂

N
τ ]∥
]2p

dτ + 1.
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It follows from Lemma 3.1 in (Carrillo et al., 2018), we have∫
∥θ∥2 wβ(θ)

∥wβ∥L1(ρ̂N
τ )

dρ̂Nτ ≤ b1 + b2

∫
∥θ∥2dρ̂Nτ ≤ b1 + b2

∫
(∥θ∥2 + ∥ω∥2)dρ̂Nτ .

Then we can calculate

∥Mβ [µ̂
N
t ]∥2p =

∥∥∥∥∥
∫
θ · wβ(θ)

∥wβ∥L1(ρ̂N
τ )

dρ̂Nτ

∥∥∥∥∥
2p

≤
(∫

∥θ∥ wβ(θ)

∥wβ∥L1(ρ̂N
τ )

dρ̂Nτ

)2p

≤
(∫

∥θ∥2 wβ(θ)

∥wβ∥L1(ρ̂N
τ )

wβ(θ)

∥wβ∥L1(ρ̂N
τ )

dρ̂Nτ

)p

≲

(∫
∥θ∥2 wβ(θ)

∥wβ∥L1(ρ̂N
τ )

dρ̂Nτ

)p

≤
(
b1 + b2

∫
(∥θ∥2 + ∥ω∥2)dρ̂Nτ

)2p

≲1 +

∫
(∥θ∥2p + ∥ω∥2p)dρ̂Nτ .

Combining the above inequality leads to

E
[∫

(∥θ∥2p + ∥ω∥2p)dρ̂Nt
]
≲E

[∫ (
∥θ∥2p + ∥ω∥2p

)
dρ̂N0

]
+

∫ t

0

(
E
[∫ (

∥θ∥2p + ∥ω∥2p
)
dρ̂Nτ

])
dτ + 1.

By applying Gronwall’s inequality, it follows that E
[∫ (

∥θ∥2p + ∥ω∥2p
)
dρ̂Nt

]
is bounded for t ∈ [0, T ] and the bound

does not depend on N . Also, we know that

∥Mβ [µ̂
N
t ρt]∥2p ≲ 1 +

∫
(∥θ∥2p + ∥ω∥2p)dρ̂Nτ ,

which implies that

E
[
∥Mβ [µ̂

N
t ]∥2p

]
≲ 1 + E

[∫
(∥θ∥2p + ∥ω∥2p)dρ̂Nτ

]
.

So E
[
∥Mβ [µ̂

N
t ]∥2p

]
is bounded for t ∈ [0, T ] and the bound does not depend on N .

Now we treat
(
Θ(i,N),Ω(i,N)

)
as a random variable defined on (Ω,F ,P) and taking values in C

(
[0, T ];RD × RD

)
.

Then ρ̂N = 1
N

∑N
i=1 δ(Θ(i,N),Ω(i,N)) is a random measure. Let us denote L(ρ̂N ) := Law(ρN ) ∈

P
(
P
(
C([0, T ],RD)× C

(
[0, T ],RD

)))
as a sequence of probability distributions. We can prove that

{
L(ρN )

}
N≥2

is tight. Next, we use the Aldous criteria ((Bass, 2011), Section 34.3), which could prove the tightness of a sequence of
distributions.

Theorem C.2. Let J satisfy Assumptions 4.1 and ρ0 ∈ P4(RD × RD). For any N ≥ 2, we as-

sume that
{(

Θ
(i,N)
t ,Ω

(i,N)
t

)
t∈[0,T ]

}N

i=1

is a unique solution to Equation (8) with ρ⊗N
0 -distributed initial data{(

Θ
(i,N)
0 ,Ω

(i,N)
0

)}N

i=1
. Then the sequence

{
L(ρ̂N )

}
N≥2

is tight in P
(
P
(
C([0, T ],RD)× C

(
[0, T ],RD

)))
.

Proof. Because of the exchangeability of the particle system, we only prove the
{
L
(
Θ1,N

t ,Ω1,N
t

)}
N≥2

is tight. It is

sufficient to justify two conditions in Aldous criteria.
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Condtion 1: For any ϵ > 0, there exist a compact subset Uϵ :=
{
(θ, ω) : ∥θ∥2 + ∥ω∥2] ≤ K

ϵ

}
such that by Markov’s

inequality

L
(
Θ1,N

t ,Ω1,N
t

)
((Uϵ)

c) = P
(∥∥∥Θ1,N

t

∥∥∥+ ∥∥∥Ω1,N
t

∥∥∥ > K

ϵ

)
≤ ϵE[∥Θ1,N

t ∥+ ∥Ω1,N
t ∥]

K
≤ ϵ, ∀N ≥ 2,

where we have used Lemma C.1 in the last inequality. This means that for each t ∈ [0, T ], the sequence
{
L
(
Θ1,N

t ,Ω1,N
t

)}
is tight.

Condition 2: We have to show, for any ϵ, η > 0, there exist δ0 > 0 and n0 ∈ N such that for all N ≥ n0. Let τ̃ be a
σ((Θ1,N

s ,Ω1,N
s ); s ∈ [0, T ])-stopping time with discrete values such that τ̃ + δ0 ≤ T , it holds that

sup
δ∈[0,δ0]

P
(∥∥∥Θ1,N

t+δ −Θ1,N
t

∥∥∥ ≥ η
)
≤ ϵ

and
sup

δ∈[0,δ0]

P
(∥∥∥Ω1,N

t+δ − Ω1,N
t

∥∥∥ ≥ η
)
≤ ϵ.

Recalling Equation (1), we have

Θ1,N
τ̃+δ −Θ1,N

τ̃ =

∫ τ̃+δ

τ̃

Ω1,N
s ds− γ1

∫ τ̃+δ

τ̃

(Θ1,N
s −Mβ [µ̂

N
s ])ds+

∫ τ̃+δ

τ̃

σ(s)dWθ,t,

Ω1,N
τ̃+δ − Ω1,N

τ̃ = −m
∫ τ̃+δ

τ̃

(Θ1,N
s −Mβ [µ̂

N
s ])ds− γ2

∫ τ̃+δ

τ̃

Ω1,N
s ds+

√
m

∫ τ̃+δ

τ̃

σ(s)dWω,t.

From Theorem 2.1 in (Huang & Qiu, 2022), we have

E

∣∣∣∣∣
∫ τ̃+δ

τ̃

(Θ1,N
s −Mβ [µ̂

N
s ])ds

∣∣∣∣∣
2
 ≤ 2TKδ.

Furthermore, we apply Itô’s Isometry

E

[∫ τ̃+δ

τ̃

σ(s)dWθ,s

]
,E

[∫ τ̃+δ

τ̃

σ(s)dWω,s

]
≤
(
E

[∫ τ̃+δ

τ̃

σ(s)2ds

]) 1
2

≤ σ2δ
1
2T

1
2 .

Combining the above estimation, one has

E
[∣∣∣Θ1,N

τ̃+δ −Θ1,N
τ̃

∣∣∣2 + ∣∣∣Ω1,N
τ̃+δ − Ω1,N

τ̃

∣∣∣2] ≲ √
δ.

Hence, for any ϵ, η > 0, there exist δ0 > 0 such that for all N > 2 it holds that

sup
δ∈[0,δ0]

P
(∥∥∥Θ1,N

t+δ −Θ1,N
t

∥∥∥2 ≥ η

)
, sup
δ∈[0,δ0]

P
(∥∥∥Ω1,N

t+δ − Ω1,N
t

∥∥∥2 ≥ η

)
≤ sup

δ∈[0,δ0]

P
(∥∥∥Θ1,N

t+δ −Θ1,N
t

∥∥∥2 + ∥Ω1,N
t+δ − Ω1,N

t ∥2 ≥ η

)

≤ sup
δ∈[0,δ0]

E
[∣∣∣Θ1,N

τ̃+δ −Θ1,N
τ̃

∣∣∣2 + ∣∣∣Ω1,N
τ̃+δ − Ω1,N

τ̃

∣∣∣2]
η

≤ ϵ.
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By Skorokhod’s lemma (see (Billingsley, 2013)) and Lemma C.3, we may find a common probability space
(Ω,F ,P) on which the process {ρ̂N}N∈N converges to some process ρ as a random variable valued in
P
(
C
(
[0, T ];RD

)
× C

(
[0, T ];RD

))
almost surely. In particular, we have that ∀t ∈ [0, T ] and ϕ ∈ Cb(RD × RD),

lim
N→∞

∣∣〈ϕ, ρ̂Nt − ρt
〉∣∣+ ∣∣Mβ [µ̂

N
t ]−Mβ [µt]

∣∣ = 0 a.s., (11)

and we can have a direct result

lim
N→∞

E
[∣∣〈ϕ, ρ̂Nt − ρt

〉∣∣+ ∣∣Mβ [µ̂
N
t ]−Mβ [µt]

∣∣] = 0. (12)

Lemma C.3. 1. There exist a subsequence of {ρ̂N}N≥2 and a random measure ρ : Ω →
P
(
C
(
[0, T ];RD

)
× C

(
[0, T ];RD

))
such that ρ̂N ⇀ ρ in law as N → ∞ which is equivalently to say

L
(
ρ̂N
)

converges weakly to L (ρ) in P
(
P
(
C
(
[0, T ];RD

)
× C

(
[0, T ];RD

)))
;

2. For the subsequence in 1, the time marginal ρ̂Nt of ρ̂N , as P
(
RD × RD

)
valued random measure converges in law to

ρt ∈ P(RD × RD), the time marginal of ρ. Namely L(ρ̂Nt ) converges weakly to L(ρt) in P
(
P
(
RD × RD

))
.

Definition C.4. Fix ϕ ∈ C2
c

(
RD × RD

)
, define functional Fϕ : P

(
C
(
[0, T ];RD

)
× C

(
[0, T ];RD

))
→ R:

Fϕ(ρt) := ⟨ϕ(θt, ωt), ρ(dθ,dω)⟩ − ⟨φ(θ0, ω0), ρ(dθ,dω)⟩

−
∫ t

0

⟨(ωs − γ1(θs −Mβ [µs])) · ∇θϕ, ρ(dθ,dω)⟩ds

−
∫ t

0

⟨(−m(θs −Mβ [µs])− γ2ωs) · ∇ωϕ, ρ(dθ,dω)⟩ds

− (m+ 1)D

2

∫ t

0

σ2(s)ds

(13)

for all ρ ∈ P
(
C
(
[0, T ];RD

)
× C

(
[0, T ];RD

))
and θ, ω ∈ C

(
[0, T ];RD

)
, where µ(θ) =

∫
RD ρ(θ,dω).

Lemma C.5. Let J satisfy Assumption 4.1 and ρ0 ∈ P4(RD × RD). For all N ≥ 2, assume

that
{(

Θ
(i,N)
t ,Ω

(i,N)
t

)
t∈[0,T ]

}N

i=1

is the unique solution to Equation (8) with ρ⊗N
0 -distributed initial data{(

Θ
(i,N)
0 ,Ω

(i,N)
0

)}N

i=1
. There exists a constant C > 0, such that

E
[∣∣Fϕ(ρ̂

N )
∣∣2] ≤ C

N
,

where ρ̂N = 1
N

∑N
i=1 δ(Θ(i,N),Ω(i,N)) is the empirical measure.

Proof. Using the definition of Fϕ, one has

Fϕ(ρ̂
N ) =

1

N

N∑
i=1

ϕ(Θ
(i,N)
t ,Ω

(i,N)
t )− 1

N

N∑
i=1

ϕ(Θ
(i,N)
0 ,Ω

(i,N)
0 )

− 1

N

N∑
i=1

∫ t

0

(
Ω(i,N)

s − γ1

(
Θ

(i,N)
0 −Mβ [µ̂

N
s ]
))

· ∇θϕ(Θ
(i,N)
s ,Ω(i,N)

s )ds

− 1

N

N∑
i=1

∫ t

0

(
−m

(
Θ(i,N)

s −Mβ [µ̂
N
s ]
)
− γ2Ω

(i,N)
s

)
· ∇ωϕ(Θ

(i,N)
s ,Ω(i,N)

s )ds

− (m+ 1)D

2

∫ t

0

σ2(s)ds.
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One the other hand, the Itô-Doeblin formula gives

ϕ
(
Θ

(i,N)
t ,Ω

(i,N)
t

)
− ϕ

(
Θ

(i,N)
0 ,Ω

(i,N)
0

)
=

∫ t

0

(
Ω(i,N)

s − γ1

(
Θ(i,N)

s −Mβ [µ̂
N
s ]
))

· ∇θϕ(Θ
(i,N)
s ,Ω(i,N)

s )ds

+

∫ t

0

(
−m

(
Θ(i,N)

s −Mβ [µ̂
N
s ]
)
− γ2Ω

(i,N)
s

)
· ∇ωϕ(Θ

(i,N)
s ,Ω(i,N)

s )ds

+

∫ t

0

σ(s)dW i
θ,s +

√
m

∫ t

0

σ(s)dW i
ω,s

+
(m+ 1)D

2

∫ t

0

σ2(s)ds.

Then one gets

Fϕ(ρ̂
N ) =

1

N

N∑
i=1

(∫ t

0

σ(s)dW i
θ,s +

√
m

∫ t

0

σ(s)dW i
ω,s

)
.

Finally, we can compute

E
[∣∣Fϕ(ρ̂

N )
∣∣2] = 1

N2

N∑
i=1

E
[∣∣∣∣∫ t

0

σ(s)dW i
θ,s +

√
m

∫ t

0

σ(s)dW i
ω,s

∣∣∣∣]2
≤T σ

2(m+ 1)

N2
,

where we use the assumption that the σ(t) we choose has an upper bound.

Proof of Theorem 4.4. Now suppose that we have a convergent subsequence of {ρ̂N}N∈N, which is denoted by the sequence
itself for simplicity and has ρt as the limit. We want to prove that ρ is a solution of (3). For any ϕ ∈ C2

c

(
RD × RD

)
, using

the convergence result in (12), we have

lim
N→∞

E
[∣∣〈ϕ(θ, ω), ρ̂Nt (dθ,dω)

〉
− ⟨ϕ(θ, ω), ρt(dθ,dω)⟩

∣∣] = 0,

and
lim

N→∞
E
[∣∣〈ϕ(θ, ω), ρ̂N0 (dθ,dω)

〉
− ⟨ϕ(θ, ω), ρ0(dθ,dω)⟩

∣∣] = 0.

Further, we notice that∥∥∥∥∫ t

0

〈(
θ −Mβ [µ̂

N
s ]
)
· ∇θϕ, ρ̂

N
s (dθ,dω)

〉
ds−

∫ t

0

⟨(θ −Mβ [µs]) · ∇θϕ, ρs(dθ,dω)⟩ds
∥∥∥∥

≤
∫ t

0

∥∥〈(θ −Mβ [µ̂
N
s ]
)
· ∇θϕ, ρ̂

N
s (dθ,dω)− ρs(dθ,dω)

〉∥∥ds
+

∫ t

0

∥∥〈(Mβ [µs]−Mβ [µ̂
N
s ]
)
· ∇θϕ, ρs(dθ,dω)

〉∥∥ds
:=

∫ t

0

∥∥IN1 (s)
∥∥ds+ ∫ t

0

∥∥IN2 (s)
∥∥ds.

For
∥∥IN1 (s)

∥∥, we have

E
[
∥IN1 (s)∥

]
=E

[∥∥〈θ · ∇θϕ, ρ
N
s (dθ,dω)− ρs(dθ,dω)

〉∥∥]+ E
[∥∥〈(Mβ [µ

N
s ]
)
· ∇θϕ, ρ

N
s (dθ,dω)− ρs(dθ,dω)

〉∥∥]
≤E

[∥∥〈θ · ∇θϕ, ρ
N
s (dθ,dω)− ρs(dθ,dω)

〉∥∥]+K
1
2E
[∥∥〈∇θϕ, ρ

N
s (dθ,dω)− ρs(dθ,dω)

〉∥∥] .
(14)

Since ϕ has a compact support, applying (12) leads to limN→∞ E
[
∥IN1 (s)∥

]
= 0. Moreover, by the uniform boundedness

of E
[
IN1 (s)

]
= 0 and applying the domained convergence theorem implies

lim
N→∞

∫ t

0

E
[
∥IN1 (s)∥

]
ds = 0.
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As for IN2 , we know that∥∥〈(Mβ(µs)−Mβ(µ̂
N
s )) · ∇ϕ(x), µs(dx)

〉∥∥ ≤ ∥∇ϕ∥∞∥Mβ(µs)−Mβ(µ̂
N
s )∥ .

Hence by Equation (12), we have limN→∞ E
[
∥IN2 (s)∥

]
= 0. Again, by the dominated convergence theorem, we have

lim
N→∞

∫ t

0

E
[
∥IN2 (s)∥

]
ds = 0.

Thus we can get the boundedness

lim
N→∞

E
[∣∣∣∣∫ t

0

〈(
θ −Mβ [µ̂

N
s ]
)
· ∇θϕ, ρ

N
s (dθ,dω)

〉
ds−

∫ t

0

⟨(θ −Mβ [µ̂s]) · ∇θϕ, ρs(dθ,dω)⟩ds
∣∣∣∣] = 0.

Similarly, we can also have

lim
N→∞

E
[∣∣∣∣∫ t

0

〈(
θ −Mβ [µ̂

N
s ]
)
· ∇ωϕ, ρ

N
s (dθ,dω)

〉
ds−

∫ t

0

⟨(θ −Mβ [µ̂s]) · ∇ωϕ, ρs(dθ,dω)⟩ds
∣∣∣∣] = 0.

Combining the above results, we get
E
[∣∣Fϕ(ρ̂

N )− Fϕ(ρ)
∣∣] = 0,

which is a direct result of (12) and the dominated convergence theorem. We can deduce

E [|Fϕ(ρ)|] ≤E
[∣∣Fϕ(ρ̂

N )− Fϕ(ρ)
∣∣]+ E

[∣∣Fϕ(ρ̂
N )
∣∣]

≤ E
[∣∣Fϕ(ρ̂

N )− Fϕ(ρ)
∣∣]+√C

N
→ 0, as N → ∞.

Thus Fϕ(ρt) = 0 almost surely, which implies that ρt is a solution to the corresponding Fokker-Planck equation. Combined
with the uniqueness of the solution, proved in Lemma C.7, we complete the proof.

Lemma C.6. ∀T > 0, let ft ∈ C
(
[0, T ];RD

)
and ρ0 ∈ P2(RD × RD). The following linear PDE

∂tρt = −∇θ ((ω − γ1(θ − ft)) ρt) +∇ω (m(θ − ft) + γ2ωρt) +
σ(t)2m

2
∆ωρt +

σ(t)2

2
∆θρt

has a unique solution ρt ∈ C
(
[0, T ];P2(RD × RD)

)
.

Proof. The existence is obvious, which can be obtained as the law of the solution to the associated linear SDE. To show the
uniqueness, let us fix t0 ∈ [0, T ] and ϕ ∈ C∞

c

(
RD × RD

)
, we then can solve the following backward PDE:

∂tht = − (ω − γ1(θ − ft)) · ∇θht + (m(θ − ft) + γ2ω) · ∇ωht −
σ(t)2

2
(m∆ωht +∆θht) ,

where (t, θ, ω) ∈ [0, t0]× RD × RD with terminal condition ht0 = ϕ. It has a classical solution:

ht = E
[
ϕ(Θ

t,(θ,ω)
t0 ,Ω

t,(θ,ω)
t0 )

]
,

where
(
Θ

t,(θ,ω)
s ,Ω

t,(θ,ω)
s

)
0≤t≤s≤t0

is the strong solution to the following linear SDE:

dΘt,(θ,ω)
s =

(
Ωt,(θ,ω)

s − γ1(Θ
t,(θ,ω)
s − fs)

)
ds+ σ(s)dWθ,s,

dΩt,(θ,ω)
s = −

(
m(Θt,(θ,ω)

s − fs) + γ2Ω
t,(θ,ω)
s

)
ds+ σ(s)

√
mdWω,s

with terminal condition
(
Θ

t,(θ,ω)
t ,Ω

t,(θ,ω)
t

)
= (θ, ω).
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Now, suppose ρ1 and ρ2 are two weak solutions of the PDE with the same initial condition ρ10 = ρ20. Let δρ = ρ1 − ρ2. To
show uniqueness, we need to demonstrate that δρt = 0 for all t ∈ [0, T ].

Using the backward PDE solution ht as a test function, we have:

⟨ht0 , δρt0⟩ =
∫ t0

0

⟨∂shs, δρs⟩+ ⟨hs, ∂sδρs⟩ds.

By substituting the equation for ∂shs from the backward PDE and integrating by parts, we get

⟨ht0 , δρt0⟩ = 0.

The arbitrariness of ψ ∈ C∞
c (RD × RD) implies δρt0 = 0, and thus ρ1 = ρ2.

Lemma C.7. Assume that ρ1, ρ2 ∈ C
(
[0, T ];P2

(
RD × RD

))
are two weak solutions to Equation (3) with the same initial

data ρ0. Then it holds that

sup
t∈[0,T ]

W2

(
ρ1t , ρ

2
t

)
= 0,

where W2 is the 2-Wasserstein distance.

Proof. Given ρ1 and ρ2, let us first consider the following two coupled linear SDEs:

dΘ̄i
t =

(
Ω̄i

t − γ1
(
Θ̄i

t −Mβ [µ
i
t]
))

dt+ σ(t)dWθ,t,

dΩ̄i
t = −

(
m
(
Θ̄i

t −Mβ [µ
i
t]
)
+ γ2Ω̄

i
t

)
ds+ σ(t)

√
mdWω,t,

for i = 1, 2, where (Θ̄i
t, Ω̄

i
t) are driven by independent Brownian motions Wθ,s and Wω,s, with the same initial condition

(Θi,t
0 ,Ω

i,t
0 ) ∼ ρ0.

Let ρ̃it denote the law of (Θi
t,Ω

i
t) for i = 1, 2. By construction, the laws ρ̃it satisfy the same Fokker-Planck equation:

∂tρ̃
i
t = −∇θ ·

[(
ω − γ1(θ −Mβ [µ

i
t])
)
ρ̃it
]
+∇ω ·

[(
m(θ −Mβ [µ

i
t]) + γ2ω

)
ρ̃it
]

+
σ(t)2m

2
∆ωρ̃

i
t +

σ(t)2

2
∆θρ̃

i
t,

in the weak sense, with initial condition ρ̃i0 = ρ0. Since both ρit solve this Fokker-Planck equation and we assumed
ρ10 = ρ20 = ρ0, by the uniqueness of solutions to this PDE in the last lemma, we have ρ̃it = ρt for i = 1, 2. As a result,
(Θ1,t

t ,Ω1,t
t ) and (Θ2,t

t ,Ω2,t
t ) both solve Equation (2). By Theorem 4.3, we have

sup
t∈[0,T ]

E
[∣∣∣Θ1,t

t −Θ2,t
t

∣∣∣2 + ∣∣∣Ω1,t
t − Ω2,t

t

∣∣∣2] = 0.

This implies:

sup
t∈[0,T ]

W2

(
ρ̃1t , ρ̃

2
t

)
≤ sup

t∈[0,T ]

E
[∣∣∣Θ̄1,t

t − Θ̄2,t
t

∣∣∣2 + ∣∣∣Ω̄1,t
t − Ω̄2,t

t

∣∣∣2] = 0.

D. Global Convergence in the Mean Field Law
Lemma D.1. Let E[ρt] be the energy functional defined in (4). Under Assumption 4.1,

d

dt
E[ρt] ≤ −γE[ρt] + λ

√
E[ρt]∥Mβ [µt]− θ̃∥+ σ2(t)D(m+ 1)

2
,

where γ = min{γ1, γ2} and λ = max{m, γ1} are positive numbers.
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Proof. From the definition of weak solution of Fokker-Planck equation (3), we define ϕ(θ, ω) = 1
2∥θ − θ̃∥2 + 1

2m∥ω∥2,
then

d

dt
E[ρt] =

d

dt

∫
ϕ(θ, ω)dρt

=

∫
⟨ω − γ1(θ −Mβ [µt]), θ − θ̃⟩dρt +

∫
⟨−m(θ −Mβ [µt])− γ2ω,

1

m
ω⟩dρt +

σ2D(m+ 1)

2

=

∫
⟨ω,Mβ [µt]− θ̃⟩dρt − γ1

∫
⟨θ −Mβ [µt], θ − θ̃⟩dρt −

γ2
m

∫
⟨ω, ω⟩dρt +

σ2D(m+ 1)

2

=

∫
⟨ω,Mβ [µt]− θ̃⟩dρt − γ1

∫
⟨θ − θ̃, θ − θ̃⟩dρt

− γ1

∫
⟨θ̃ −Mβ [µt], θ − θ̃⟩dρt −

γ2
m

∫
⟨ω, ω⟩dρt +

σ2D(m+ 1)

2

≤∥ω∥∥Mβ [µt]− θ̃∥+ γ1∥θ − θ̃∥∥Mβ [µt]− θ̃∥ − γ1∥θ − θ̃∥2 − γ2
m

∥ω∥2 + σ2D(m+ 1)

2

≤− γE[ρt] + λ
√
E[ρt]∥Mβ [µt]− θ̃∥+ σ2D(m+ 1)

2
,

(15)

where in the last equility we take γ = min{γ1, γ2} and λ = max{m, γ1}.

Next, we will show that ∥Mβ [µt]− θ̃∥ can be bounded by a suitable scalar multiple of
√
E[ρt], we can apply Gronwall’s

inequality to bound the energy function.

Lemma D.2. Under Assumption 4.1, ∀r > 0, we define Jr := supθ∈Bθ,r(θ̃)
J (θ). Then ∀r ∈ [0, R0] and q > 0 such that

(q + Jr − J)µ ≤ δJ , we have

∥Mβ [µ]− θ̃∥ ≤ (q + Jr − J)µ

η
+

exp(−βq)
ρ(Bθ,r(θ̃))

∫
∥θ − θ̃∥dρ(θ, ω).

Proof. Let r̃ = (q+Jr−J)µ

η ≥ (Jr−J)µ

η ≥ r, we have

∥Mβ [µ]− θ̃∥ ≤
∫
Bθ,r̃(θ̃)

∥θ − θ̃∥ wβ(θ)

∥wβ(θ)∥L1(ρ)
dρ+

∫
Bc

θ,r̃(θ̃)

∥θ − θ̃∥ wβ(θ)

∥wβ(θ)∥L1(ρ)
dρ

≤ r̃ +

∫
Bc

θ,r̃(θ̃)

∥θ − θ̃∥ wβ(θ)

∥wβ(θ)∥L1(ρ)
dρ.

(16)

By Markov’s inequality, we have ∥wβ∥L1(ρ) ≥ aρ({(θ, ω) : exp(−βJ (θ) ≥ a)}). By choosing a = exp(−βJr), we have

∥wβ∥L1(ρ) ≥ exp(−βJr)ρ ({(θ, ω) : exp(−βJ (θ) ≥ exp(−βJr))})
= exp(−βJr)ρ ({(θ, ω) : J(θ) ≤ Jr)})
≥ exp(−βJr)ρ(Bθ,r(θ̃)),

where the second inequality comes from the definition of Jr. Thus for the second term in (16), we obtain∫
Bc

θ,r̃(θ̃)

∥θ − θ̃∥ wβ(θ)

∥wβ(θ)∥L1(ρ)
dρ ≤ 1

exp(−βJr)ρ(Bθ,r(θ̃))

∫
Bc

θ,r̃(θ̃)

∥θ − θ̃∥wβ(θ)dρ

≤
exp(−β(infBc

θ,r̃(θ̃)
J(θ)− Jr))

ρ(Bθ,r(θ̃)

∫
Bc

θ,r̃(θ̃)

∥θ − θ̃∥dρ

≤
exp(−β(infBc

θ,r̃(θ̃)
J(θ)− Jr))

ρ(Bθ,r(θ̃))

∫
∥θ − θ̃∥dρ.
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We also notice
inf

Bc
θ,r̃(θ̃)

J(θ)− Jr ≥ min{δJ + J, (ηr̃)1/µ + J} − Jr ≥ (ηr̃)1/µ − Jr + J = q,

where the first inequality comes from Assumption 4.1 and the second inequality comes from the definition of r̃ and q,
r̃ = (q+Jr−J)µ

η ≤ δJ
η . Combining the above inequality and the definition of r̃, we have

∥Mβ [µ]− θ̃∥ ≤ (q + Jr − J)µ

η
+

exp(−α(infBc
θ,r̃(θ̃)

J(θ)− Jr))

ρ(Bθ,r(θ̃))

∫
∥θ − θ̃∥dρ

≤ (q + Jr − J)µ

η
+

exp(−βq)
ρ(Bθ,r(θ̃))

∫
∥θ − θ̃∥dρ.

Then we will establish a lower bound for ρt(Bθ,r(θ̃)). Notice that ρt(Bθ,r(θ̃)) = ρt

(
{(θ, ω) : ∥θ − θ̃∥2 ≤ r2}

)
≥

ρt

(
{(θ, ω) : ∥θ − θ̃∥2 +m−1∥ω∥2 ≤ r2}

)
:= ρt(Br(θ̃, 0)). We first define the mollifier ϕr(θ, ω) as follows

ϕr(θ, ω) =

 exp

(
1− r2

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)
, if ∥θ − θ̃∥2 +m−1∥ω∥2 ≤ r2,

0, else.

We have Im(ϕr) ∈ [0, 1], ϕr ∈ C∞
c . First, we compute the first-order and second-order derivatives as

∇θϕr = −2r2
θ − θ̃(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2ϕr,

∇ωϕr = −2r2
m−1ω(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2ϕr,

and

∆θϕr =− 2r2
D
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
− 2

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)(
−2(θ − θ̃) · (θ − θ̃)

)
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)4 ϕr

+ 4r4
∥θ − θ̃∥2(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)4ϕr

=2r2
∥θ − θ̃∥2(−2r2 + 4∥θ − θ̃∥2 + 4m−1∥ω∥2)−D

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)4 ϕr,

∆ωϕr =− 2r2
D
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
m−1 − 2

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)
(−m−1ω) · (m−1ω)(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)4 ϕr

+ 4r4
m−2ω2(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)4ϕr

=2r2
m−2∥ω∥2(−2r2 + 4∥θ − θ̃∥2 + 4m−1∥ω∥2)−D

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
m−1(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)4 ϕr.
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Lemma D.3. Let T > 0, r > 0. Choose parameters σ ≥ σ(t) ≥ σ > 0. Assume ρ ∈ C([0, T ],P(R2D)) weakly solves the
Fokker-Planck equation (3) with initial condition ρ0. Then, ∀t ∈ [0, T ], we have

ρt(Bθ,r(θ̃)) ≥
(∫

ϕr(θ, ω)dρ0(θ, ω)

)
exp(−pt),

where

p := max

{
4λ(

√
kr +B)

√
k

(1− k)
2
r

+
2σ2(k +D)

(1− k)4r2
,
8(B + r)2λ2

(2k − 1)σ2

}
,

for any B > 0 with supt∈[0,T ] ∥Mβ [µt] − θ̃∥ ≤ B and for any k ∈ ( 12 , 1) satisfying (−1 + 2k)k ≥ 2D(1 − k)2 and
λ = max{γ1,m}.

Proof. By the properties of the mollifier ϕr, we have µt(Bθ,r(θ̃)) ≥ ρt(Br(θ̃, 0)) ≥
∫
ϕr(θ, ω)dρt(θ, ω). Using properties

of the weak solution ρt, we have

d

dt

∫
ϕr(θ, ω)dρt(θ, ω) =

∫ 〈
ω − γ1(θ −Mβ [µt]),−2r2

θ − θ̃(
r2 − (∥θ − θ̃∥2 + ∥ω∥2)

)2ϕr
〉
dρt

+

∫ 〈
−m(θ −Mβ [µt])− γ2ω,−2r2

m−1ω(
r2 − (∥θ − θ̃∥2 + ∥ω∥2)

)2ϕr
〉
dρt

+
σ2

2

∫
(m∆ωϕr +∆θϕr) dρt

=

∫ (
γ⟨θ −Mβ [µt], θ − θ̃⟩+

〈
γ2ω,m

−1ω
〉
+
〈
ω, θ̃ −Mβ [µt]

〉)
2 r2(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2ϕrdρt + σ2

2

∫
(m∆ωϕr +∆θϕr) dρt

:=

∫
T1(θ, ω)dρt +

∫
T2(θ, ω)dρt.

Since ϕr vanishes outside of Dr := {(θ, ω) : ∥θ− θ̃∥2 +m−1∥ω∥2 ≤ r2}, we restrict our attention to the open ball Dr. To
obtain the lower bound, we introduce the following subsets

K1 :=
{
(θ, ω) : ∥θ − θ̃∥2 +m−1∥ω∥2 > kr2

}
,

K2 :=
{
(θ, ω) : −

(
γ1⟨θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [ρt]⟩

)
(r2 − ∥θ − θ̃∥ −m−1∥ω∥2)2

> k̃
σ2

2
r2(∥θ − θ̃∥2 +m−1∥ω∥2)

}
,

(17)

where k̃ = 2k − 1 ∈ (0, 1). We divide the integral region into three domains.
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Domain Ωr ∩Kc
1: We have ∥θ − θ̃∥2 +m−1∥ω∥2 ≤ kr2 in this domain and we can get

T1(θ, ω) =
(
⟨γ1(θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩

) 2r2(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2ϕr
≥−

(
γ1∥θ −Mβ [µt]∥∥θ − θ̃∥+ ∥ω∥∥θ̃ −Mβ [µt]∥

) 2r2(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2ϕr
≥−

(
γ1∥θ − θ̃∥+ ∥ω∥

) 2(
√
kr +B)r2(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2ϕr

≥−
(
γ1∥θ − θ̃∥+ ∥ω∥

) 2(
√
kr +B)r2

(r2 − kr2)
2 ϕr

≥− λ
(
∥θ − θ̃∥+m−1∥ω∥

) 2(
√
kr +B)

(1− k)
2
r2

ϕr

≥− 2λ
√
kr

2(
√
kr +B)

(1− k)
2
r2

ϕr = −4λ(
√
kr +B)

√
k

(1− k)
2
r

ϕr := −p1ϕr,

where the first inequality comes from Cauchy-Schwarz inequality and the positiveness of ∥ω∥2, the second inequality comes
from the boundedness of ∥θ −Mβ [µt]∥ ≤ ∥θ − θ̃∥ + ∥θ̃ −Mβ [µt]∥ ≤

√
kr + B, the third inequality comes from the

defintion of domain Kc
1 , and the fourth inequality comes from the definition of λ.

For T2, we have

T2(θ, ω) =σ
2r2

(∥θ − θ̃∥2 +m−1∥ω∥2)(−2r2 + 4∥θ − θ̃∥2 + 4m−1∥ω∥2)(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)4 ϕr

− σ2r2
2D(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2ϕr

≥− σ2r2
2r2(∥θ − θ̃∥2 +m−1∥ω∥2)(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)4ϕr
− σ2r2

2D(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2ϕr
≥− σ2r2

2kr4

(r2 − kr2)
4ϕr − σ2r2

2D

(r2 − kr2)
2ϕr

=− σ2 2k

(1− k)4r2
ϕr − σ2 2D

(1− k)
2
r2
ϕr

≥− 2σ2(k +D)

(1− k)4r2
ϕr := −p2ϕr,

(18)

where the first inequlaity uses the positiveness of ∥θ − θ̃∥2 and ∥ω∥2, the second inequality uses the properties of Kc
1 , and

the third inequality use 1− k ∈ (0, 12 ).
Domain Ωr ∩K1 ∩Kc

2

In this domian, we have ∥θ − θ̃∥2 +m−1∥ω∥2 > kr2 and

−
(
γ1⟨θ −Mβ [ρt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [ρt]⟩

)
(r2−∥θ−θ̃∥−m−1∥ω∥2)2 ≤ k̃

σ2

2
r2(∥θ−θ̃∥2+m−1∥ω∥2).

(19)
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Our goal is to show T1(θ, ω) + T2(θ, ω) ≥ 0 in this subset. We first compute

T1(θ, ω) + T2(θ, ω)

2r2ϕr

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)4
=
(
⟨γ(θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩

)(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
+ σ2m−1∥ω∥2(−r2 + 2∥θ − θ̃∥2 + 2m−1∥ω∥2)

− σ2D

2

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
+ σ2∥θ − θ̃∥2(−r2 + 2∥θ − θ̃∥2 + 2m−1∥ω∥2)

− σ2D

2

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
.

To prove the positiveness, we need to prove

−
(
⟨γ(θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩

)(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
+ σ2D

(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
≤ σ2(m−1∥ω∥2 + ∥θ − θ̃∥2)(−r2 + 2∥θ − θ̃∥2 + 2m−1∥ω∥2).

For the first term, we have

−
(
⟨γ(θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩

)(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
≤k̃ σ

2

2
r2(∥θ − θ̃∥2 +m−1∥ω∥2])

=(2k − 1)
σ2

2
r2(∥θ − θ̃∥2 +m−1∥ω∥2)

≤(2∥θ − θ̃∥2 + 2m−1∥ω∥2 − r2)
σ2

2
(∥θ − θ̃∥2 +m−1∥ω∥2),

where the first inequality comes from the positiveness of the norm and the second inequality comes from Equation
(19). By the definition k̃ = 2k − 1, we have the equality in the fourth line and the last inequality comes from kr2 ≤
∥θ − θ̃∥2 +m−1∥ω∥2. For the second term, we have

σ2D
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
≤ σ2D (1− k)

2
r4

≤ σ2

2
(2k − 1)r2kr2

≤ σ2

2
(2∥θ − θ̃∥2 + 2m−1∥ω∥2 − r2)(∥θ − θ̃∥2 +m−1∥ω∥2),

where in the second inequality we use (−1 + 2k)k ≥ 2D(1− k)2. Hence, we have the positiveness of T1(θ, ω) + T2(θ, ω).

Domain Ωr ∩K1 ∩K2

In this subset, we have ∥θ − θ̃∥2 +m−1∥ω∥2 > kr2 and

−
(
γ1⟨θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [ρt]⟩

)
(r2 − ∥θ − θ̃∥ −m−1∥ω∥2)2

> k̃
σ2

2
r2(∥θ − θ̃∥2 +m−1∥ω∥2).

(20)
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In this subset, we have

γ1⟨θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩
≥γ1⟨θ −Mβ [µt], θ − θ̃⟩+ ⟨ω, θ̃ −Mβ [µt]⟩
≥ − γ1∥θ −Mβ [µt]∥∥θ − θ̃∥ − ∥ω∥∥θ̃ −Mβ [µt]∥
≥ − λ(∥θ̃ −Mβ [µt]∥+ ∥θ − θ̃∥)(∥θ − θ̃∥+m−1∥ω∥),

(21)

where the last inequality comes from the definition of λ. From the inequality (20), we have

(∥θ − θ̃∥+m−1∥ω∥)2
(r2 − ∥θ − θ̃∥2 −m−1∥ω∥2)2

≤ 2
∥θ − θ̃∥2 +m−1∥ω∥2

(r2 − ∥θ − θ̃∥2 −m−1∥ω∥2)2

< − 4

k̃σ2r2

(
γ1⟨θ −Mβ [ρt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [ρt]⟩

)
.

(22)

Then we are ready to prove

⟨γ1(θ −Mβ [µ]), θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
≥ −λ (∥θ̃ −Mβ [µt]∥+ ∥θ̃ − θ∥)(∥θ − θ̃∥+m−1∥ω∥)(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2

≥ λ
4

k̃σ2r2

(
γ1⟨θ −Mβ [ρt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [ρt]⟩

)
(∥θ̃ −Mβ [µt]∥+ ∥θ̃ − θ∥)

∥θ − θ̃∥+m−1∥ω∥

≥ −λ2 4

k̃σ2r2

(∥θ̃ −Mβ [µt]∥+ ∥θ̃ − θ∥)2
(
∥θ − θ̃∥+m−1∥ω∥

)
∥θ − θ̃∥+m−1∥ω∥

≥ −λ2 4

k̃σ2r2
(∥θ̃ −Mβ [µt]∥+ ∥θ̃ − θ∥)2

≥ −λ2 4(B + r)2

k̃σ2r2
a,

where the first and third inequalities are derived from the inequality (21), and the second one is a consequence of (22).
Utilizing Cauchy–Schwarz inequality and the definition specified in λ, we have the third and fourth inequalities.

Given this we have

T1(θ, ω) =
⟨γ1θ −Mβ [µt], θ − θ̃⟩+ ⟨γ2ω,m−1ω⟩+ ⟨ω, θ̃ −Mβ [µt]⟩(

r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)
)2 2r2ϕr

≥ −8(B + r)2λ2

k̃σ2
ϕr = −8(B + r)2λ2

(2k − 1)σ2
ϕr := −p3ϕr.

For T2, it is positive whenever

(∥θ − θ̃∥2 +m−1∥ω∥2)(−2r2 + 4∥θ − θ̃∥+ 4m−1∥ω∥2) ≥ 2D
(
r2 − (∥θ − θ̃∥2 +m−1∥ω∥2)

)2
,
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we have
(∥θ − θ̃∥2 +m−1∥ω∥2)(−2r2 + 4∥θ − θ̃∥+ 4m−1∥ω∥2)

≥(∥θ − θ̃∥2 +m−1∥ω∥2)(−2r2 + 4kr2)

≥(∥θ − θ̃∥2 +m−1∥ω∥2)(−1 + 2k)2r2

≥(∥θ − θ̃∥2 +m−1∥ω∥2)2D (1− k)2

k
2r2

≥r22D(1− k)22r2

=2D(r2 − kr2)2

≥2D(r2 − (∥θ − θ̃∥2 +m−1∥ω∥2))2.
This is safiesifed for all ∥θ − θ̃∥2 +m−1∥ω∥2 ≥ kr2.

Concluding the proof: Using the evolution of ϕr, we now get

d

dt

∫
ϕr(θ, ω)dρt(θ, ω) =

∫
K1∩Kc

2∩Ωr

T1(θ, ω) + T2(θ, ω)dρt(θ, ω)

+

∫
K1∩K2∩Ωr

T1(θ, ω) + T2(θ, ω)dρt(θ, ω) +

∫
Kc

1∩Ωr

T1(θ, ω) + T2(θ, ω)dρt(θ, ω)

≥−max{p1 + p2, p3}
∫
ϕr(θ, ω)dρt(θ, ω) = −p

∫
ϕr(θ, ω)dρt(θ, ω).

Proof of Theorem 4.5. We choose parameters β such that

β > β0 :=
1

qϵ

(
log

(
4
√
2E[ρ0]

c(τ, λ)
√
ϵ
+

p

(1− τ)λ
log

(
E[ρ0]

ϵ

)
− log ρ0(B rϵ

2
(θ̃, 0))

))
,

where we introduce

c(τ, λ) =
τγ

λ
, qϵ =

1

2
min

{(
c(τ, λ)

√
ϵη

2

)1/µ

, δJ

}
, and rϵ = max

x∈[0,R0]
{ max
(θ,ω)∈Bs(θ̃,0)

J(θ) ≤ qϵ + J},

and define the time horizon Tβ ≥ 0, which may depend on β, by

Tβ = sup{t ≥ 0 : E[µt′ ] > ϵ and ∥Mβ [µt′ ]− θ̃∥ < C(t′) for all t′ ∈ [0, t]}

with C(t) = c(τ, λ)
√
E(ρt). First we want to prove Tβ > 0, which follows from the continunity of the mappings t→ E[ρt]

and t → ∥Mβ [µt] − θ̃∥ since E[ρ0] > 0 and ∥Mβ [µ0] − θ̃∥ < C(0). While the former holds by assumption, the latter
follows by

∥Mβ [µ0]− θ̃∥ ≤ (qϵ + Jrϵ − J)µ

η
+

exp(−βqϵ)
ρ(Bθ,rϵ(θ̃))

∫
∥θ − θ̃∥dρ0(θ, ω)

≤ (qϵ + Jrϵ − J)µ

η
+

exp(−βqϵ)
ρ(Brϵ(θ̃, 0))

∫
∥θ − θ̃∥dρ0(θ, ω)

≤ c(τ, λ)
√
ϵ

2
+

exp(−βqϵ)
ρ(Brϵ(θ̃, 0))

√
2E[ρ0]

≤ c(τ, λ)
√
ϵ ≤ c(τ, λ)

√
E[ρ0] = C(0),

where we use the definition of β in the first inequality of the last line. Recall the Lemma D.1, up to time Tβ

d

dt
E[ρt] ≤ −γE[ρt] + λ

√
E[ρt]∥Mβ [µt]− θ̃∥+ σ2(t)D(m+ 1)

2

≤ − (1− τ) γE[ρt] +
σ2(t)D(m+ 1)

2
.
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Thus we have

d

dt
(exp ((1− τ)γt)E[ρt]) =(1− τ)γ (exp ((1− τ)γt)E[ρt]) + exp ((1− τ)γt)

d

dt
E[ρt]

≤ exp ((1− τ)γt)
σ2(t)D(m+ 1)

2
.

Therefore we have

(exp ((1− τ)γt)E[ρt])− E[ρ0] ≤
∫ t

0

exp ((1− τ)λs)σ2(s)ds

=
σ2
1(1− exp ((−2σ2 + λ(1− τ))t)

2σ2 − λ(1− τ)
.

We can get the boundedness for E[ρt], for 2σ2 − λ(1− τ) < 0 by the chosen of τ and λ, then we have

E[ρt] ≤ exp (−(1− τ)tλ)E[ρ0].

Accordingly, we note that E(ρt) is decreasing in t, which implies the decay of the function C(t) as well. Hence, recalling
the definition of Tβ , we may bound maxt∈[0,Tβ ] ∥Mβ [ρt′ ]− θ̃∥ ≤ maxt∈[0,Tβ ] C(t) ≤ C(0). We now conclude by showing
mint∈[0,Tβ ]E(ρt) ≤ ϵ with Tβ ≤ T ∗. For this, we distinguish the following three cases.
Case Tβ ≥ T ∗: If Tβ ≥ T ∗, we can use the definition of T ∗ = 1

(1−τ)λ log(E[ρ0]
ϵ ) and the time evolution bound of E[ρt] to

conclude that E[ρT∗ ] ≤ ϵ. Hence, by definition of Tβ , we find E[ρTβ
] ≤ ϵ and Tβ = T ∗.

Case Tβ < T ∗ and E[ρTβ
] ≤ ϵ: Nothing need to discussed in this case.

Case Tβ < T ∗ andE[ρTβ
] > ϵ: We shall prove that this case will never occur.

∥Mβ [µTβ
]− θ̃∥ ≤ (qϵ + Jrϵ − J)µ

η
+

exp(−βqϵ)
ρ(Bθ,rϵ(θ̃))

∫
∥θ − θ̃∥dρTβ

(θ, ω)

<
c(τ, λ)

√
E[ρTβ

]

2
+

exp(−βqϵ)
ρ(Bθ,rϵ(θ̃))

√
E[µTβ

].

Since, we have maxt∈[0,Tβ ] ∥Mβ [µt′ ]− θ̃∥ = B = C(0) guarantees that there exist a p > 0 with

ρTβ
(Bθ,rϵ(θ̃)) ≥

(∫
ϕrϵ(θ, ω)dρ0(θ, ω)

)
exp(−pTβ) ≥

1

2
ρ0

(
B rϵ

2
(θ̃, 0))

)
exp(−pT ∗), (23)

where we used (θ̃, 0) ∈ supp(ρ0) for bounding the initial mass ρ0 and the fact that ϕr is bounded from below on B rϵ
2
(θ̃, 0))

by 1/2. With this, we can conclude that

∥Mβ [µTβ
]− θ̃∥ < c(τ, λ)

√
E[ρTβ

]

2
+

2 exp(−βqϵ)
ρ(B rϵ

2
(θ̃, 0)) exp(−pT ∗)

√
E[ρTβ

]

≤ c(τ, λ)
√
E[ρTβ

] = C(Tβ),

where the first inequality in the last line holds by the choice of β. This establishes the desired contradiction, against the
consequence of the continuity of the mappings t→ E[ρt] and t→ ∥Mβ [µt]− θ̃∥.

E. Simulation Details
E.1. Linear-quadratic-Gaussian Control Problem

We begin by considering a classical LQG control problem, where the state dynamics is governed by:

dxt = 2αtdt+
√
2dWt,

incorporating t ∈ [0, T ] and x0 = x. The cost functional is given by J(αt) = E
[∫ T

0
∥αr∥2dt+ g(XT )

]
. Here, the state

process xt is a d-dimensional vector, while the action process αt is a d-dimensional vector-valued function. The value
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function u can be defined as

u(t,x) = inf
α

E

[∫ T

t

f(t,xt,αt, t)dt+ g(xT ) |xt = x

]
.

By solving the Hamilton–Jacobi–Bellman equation for u, one can derive an explicit solution with the terminal condition
u(T, x) = g(x), given by

u(t,x) = − ln
(
E
[
exp

(
−g
(
x+

√
2WT−t

))])
.

E.2. Ginzburg-Landau Model

In this model, superconducting electrons are described by a “macroscopic” wavefunction, φ(z), with Landau free energy
µ
4

∫ 1

0
|1− φ(z)2|2dz. In order to add fluctuations (local variations in the wavefunction) to this model, Ginzburg suggested

adding a term proportional to |∇zφ(z)|2, which can be interpolated as the kinetic energy term in quantum mechanics or the
lowest order fluctuation term allowed by the symmetry of the order parameter. Adding this term to the free energy, we have
the Ginzburg-Landau theory in zero field,

U [φ] =
λ

2

∫ 1

0

|∇zφ(z)|2dz +
µ

4

∫ 1

0

|1− φ(z)2|2dz.

Upon discretizing the space into d+ 1 points, the potential is defined as

U(φ) = U(x1, · · · , xd) :=
[
λ

2

d+1∑
i=1

(
xi − xi−1

h

)2

+
µ

4

d∑
i=1

(1− x2i )
2

]
h,

where xi = φ( i
d+1 ) for i = 0, · · · , d+ 1 and x0 = xd+1 = 0. The dynamics is given by

dxt = b(xt, αt)dt+
√
2dWt,

where the drift term is defined as
b(x, a) = −∇xU(x) + 2αω.

Here the potential is defined as

U(φ) = U(x1, · · · , xd) :=
[
λ

2

d+1∑
i=1

(
xi − xi−1

h

)2

+
µ

4

d∑
i=1

(1− x2i )
2

]
h,

and α is a scalar-valued function, represents the strength of the external field and the vector ω is a d-dimensional vector
represents the domian of the external field applied, the i-th element takes the value of 1 if the condition i

d+1 ∈ [0.25, 0.6] is
satisfied, and 0 under other circumstances. The cost functional is defined

J [α] = E

[∫ T

0

1

d
∥xt∥2 + ∥α∥dt+ 10

d
∥xT ∥2

]
.

E.3. Systemic Risk Mean Field Control

We describe this problem as a network of N banks, where xi denotes the logarithm of the cash reserves of the i-th bank.
The following model introduces borrowing and lending between banks, given by:

dxt = [κ(x̄t − xt) +αt]dt+ σdWt,

where x̄t = 1
n

∑n
i=1 x

i
t represents the average logarithm of the cash reserves across all banks. The control of the

representative bank, i.e., the amount lent or borrowed at time t is denoted by αt. Based on the Almgren-Chriss linear price
impact model, the running cost and terminal cost are given by:

f(x, x̄, α) =
1

2
α2 − qα(x̄− x) +

η

2
(x̄− x)2, g(x, x̄) =

c

2
(x̄− x)2,

where η and c balance the individual bank’s behavior with the average behavior of the other banks. q weights the contribution
of the components and helps to determine the sign of the control (i.e., whether to borrow or lend). Specifically, if the
logarithmic cash reserve of an individual bank is smaller than the empirical mean, the bank will seek to borrow, choosing
αt > 0, and vice versa. We test the performance of our method with parameters c = 2, k = 0.6, and η = 2.

33



Consensus Based Stochastic Optimal Control

Multi-Agent Robotic Systems

To formulate the original path planning problem as a stochastic optimal control problem, we consider n agents with states
following the stochastic dynamics for t ∈ [0, 1]:

dxi
t = 10αi

tdt+ dWi
t,

where represents the feedback control policy implemented as a neural network with parameters θ, and are independent
Wiener processes modeling noise. The environment contains K circular obstacles centered at yj with radius rj . These are
incorporated through the running cost:

f(t,x,α) =

n∑
i=1

|αi|2 +
n∑

i=1

K∑
j=1

s(|xi − yj |, rj),

where s(d, r)-smooth penalty function defined piecewise as:

s(d, r) =


1 if d ≤ r,

0.5 + 0.5 cos
(
π d−r

0.2r

)
if r < d ≤ 1.2r,

0 otherwise.

The terminal cost at final timeis given by the squared Euclidean distance between each agent’s final position and its
designated target.

F. Neural Network Structure
In this subsection, we briefly illustrate the network structure used to model the action function. For the LQG and Ginzburg-
Landau model problems, we employ traditional fully connected neural networks with a depth of 5 layers and a width of 5d,
where d represents the dimension of the problem. In the mean-field control problem, we use the cylindrical type mean field
neural network structure proposed in (Pham & Warin, 2024), where the control α(t,x) is parameterized as

αi(t,x; θ) = Ψ

[
xi,

1

n

n∑
i=1

ψ(xi; θ2); θ1

]
,

where θ = {θ1, θ2}. The advantage of this type of network is its extendibility, i.e, as demonstrated in the numerical results,
control policies trained on a small number of agents N can be effectively applied to problems with different values of n.
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