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Abstract

Deep neural networks have proved to be powerful function approximators. The
large hypothesis space they implicitly model allows them to fit very complicated
black-box functions to the training data. However, often the data generating
process is characterized by a concise and relatively simple functional form. This
is especially true in natural sciences, where elegant physical laws govern the
behaviour of the quantities of interest. In this work, we address this dichotomy
from the perspective of Symbolic Regression (SR). In particular, we apply a
fully-convolutional seq2seq model to map numerical data to the corresponding
symbolic equations. We demonstrate the effectiveness of our approach on a large
set of mathematical expressions by providing both a qualitative and a quantitative
analysis of our results. Additionally, we release our new equation-generator Python
library in order to facilitate benchmarking and stimulate new research on SR1.

SR refers to the task of learning a mapping from a set of numerical input-output pairs {xi,yi}Mi=1,
where xi ∈ Rd and y ∈ Rq, to the corresponding symbolic expression f , implicitly defined by the
mathematical relation y = f(x). While standard regression methods aim at fitting the training data as
closely as possible, SR targets the underlying symbolic expression. Having access to such a compact
representation of the data is of high interest for researchers in many scientific disciplines since it
could lead to a deeper understanding of the physical system under consideration.

However, SR is hard. The space of mathematical expressions grows exponentially with the length
of the equation, allowing current search methods to retrieve only limited-sized expressions. The
strong combinatorial nature of SR has motivated the application of evolutionary algorithms and
specifically genetic programming (GP) [Koza, 1993, Schmidt and Lipson, 2009] techniques. Despite
their relatively good performances in several settings, including SR, these methods do not scale well
to larger problems and are very sensitive to hyperparameter choices. A more recent line of research
[Sahoo et al., 2018, Udrescu and Tegmark, 2020, Petersen, 2020] has started exploring the application
of Deep Learning (DL) approaches to tackle the aforementioned combinatorial challenge. Despite
some encouraging results, the performance of these approaches cannot improve with more data and
compute. Specifically, solving more equations at training time does not change how the model works
at test time, as the algorithms are hand-designed to work on one equation at the time.

Instead, in this work we propose a method that learns to do symbolic regression, and benefits from
both data and compute [Sutton, 2019]. We adapt the convolutional seq2seq model proposed by
Gehring et al. [2017] in the context of Natural Language Processing (NLP) to directly map numerical
input-output pairs {xi,yi}Mi=1 to the corresponding symbolic expression f . We qualitatively show
that our model can recover the exact form of the symbolic expression describing the data and provides

1https://github.com/SymposiumOrganization/EQLearner
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better generalization performances than a fully-connected deep neural network trained to map each
xi into the corresponding yi.

1 Methodology

Our methodology is based on three core ideas. Primarily, we want to create a model that captures
correlations across different symbolic expressions and does not need to be retrained for each new
SR task. To this extent, we create programmatically a dataset, D = {Yi fi}Ni=1, comprising N pairs
of symbolic functions, fi, and the corresponding numerical evaluations, Yi = fi(Xi), on a fixed
grid of M support points, Xi = X = {xj}Mj=1. This method allows us to create arbitrarily large and
diverse datasets to train and evaluate our model in a supervised fashion. As a result, our model takes
as input a set of M numerical points, Yi, and outputs a string corresponding to the mathematical
expression generating the data. The second idea stems from the observation that using a numerical
loss, such as the RMSE, measuring the distance between the predicted equation and the ground truth
one, often leads to numerical issues and overfitting. Indeed, given a model with enough capacity
and an arbitrary underlying equation, training data points can often be approximated by multiple
functions, with a different structure than the true one, up to a very small error. To cope with this
aspect, we base our models on a loss function measuring how far our prediction stands from the true
expression entirely at a symbolic level. We use the Cross Entropy Loss between the predicted tokens
and the ground-truth ones as our objective function. The third idea, similarly to Petersen [2020] is to
defer to a second independent step, the computation of the numerical constants. This design choice
is motivated by the consideration that using tokenized values for representing numerical values is
not possible. On the other end, it is simple to fit numerical constants with non-linear optimizers (e.g.
BFGS Fletcher [1987]), given a symbolic skeleton. An illustration of the aforementioned ideas and
an overview of our approach are shown in Fig. 1.
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Figure 1: At each forward pass, a set of M numerical data points, Yi = fi(Xi), described by a
mathematical expression, f , are passed through an encoder. The encoder is responsible for processing
the data and passing the resulting representation to the decoder. Finally, the decoder generates a
sequence of integer tokens, each corresponding with a different symbol, making up the final output
expression. In a second and independent step, we fit the numerical constants with a non-linear
optimizer (BFGS).

The ideas exposed above present a number of advantages over existing SR approaches. First and
foremost, it is possible to generate an arbitrarily large dataset of equations to train our model. This is
in contrast with previous methods that have to be retrained from scratch for each new expression.
Furthermore, it is very easy to impose specific inductive biases into the learning process by oppor-
tunely customizing the dictionary used for generating the symbolic equations. In contrast, previous
works had to introduce specific design choices to make learning certain types of equations possible.
Sahoo et al. [2018], for instance, had to modify their end-to-end architecture to include division
activation functions and adapting the training strategy accordingly to avoid numerical instabilities.
Udrescu and Tegmark [2020] instead, manually check whether a set of data is characterized by
multiplicative separability in order to recursively restrict the search space for their algorithm. Our
approach also differs from the technique proposed by Petersen [2020], since in their case, the network
is not conditoned on the numerical input data and it is trained indirectly with the REINFORCE
algorithm [Williams, 1992] using the RMSE loss as the reward function.
Seq2Seq Modelling. We choose to implement our approach by opportunely adapting the archi-
tecture proposed by Gehring et al. [2017] to the SR setting. This model is fully-convolutional and
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incorporates gated recurrent units, residual connections and attention. CNNs are easier to parallelize
during training than RNN-based models, thus allowing full exploitation of GPU hardware, resulting
in significant run-time gains.

2 Experimental Results

We evaluate our approach on a dataset, D = {Yi fi}Ni=1, of N = 50.000 equations created with our
library. Each function, fi contains randomly generated numerical constants and we instantiate the
input of our model, Yi, by evaluating fi on a fixed set of M = 30 equally-spaced support points,
X, into the interval [0.1, 3.1]. Our seq2seq model is trained to map each Yi into an expression, gi,
which has the same skeleton as fi but does not contain any numerical constants. The final function
fi can then be retrieved by running the BFGS optimizer on the family of equations spanned by gi
(see Fig. 1). Since every function contains different constants, all the elements of the dataset are
characterized by different numerical inputs Yi. On the other hand, multiple instances of the same
symbolic skeleton might be present. Further details about the dataset can be found in the Appendix.

Visualizations. Fig. 2 shows a comparison between our model and a three-layer fully-connected
neural network with 100 units per layer, trained to approximate three different nonlinear functions. For
each plot, the green region indicates the training domain, whereas the red area shows the extrapolation
region. This example shows that our network (orange) successfully retrieves the underlying symbolic
equation (green), while the fully-connected neural network (blue) fails to extrapolate outside the
interval. Note that the equations shown in this example appear in the training set with different
internal and external constants than those used here.

Figure 2: Comparison of the performance of our seq2seq model (orange) and a fully-connected neural
network (blue) on the approximation of three different functions (green): (left) y = sin(x); (middle)
y = log(x3 + x2 + x+ 1); (right) y = sin(x3)

Fig. 3 illustrates the behaviour of our model when equations comprising out-of-dictionary symbols
are used as input. These equations include tokens that our network has never seen during training
(e.g. “cos”, “cosh” and the division operator “/”).

Figure 3: Performance of our seq2seq model (orange) on the approximation of three different equa-
tions (green) comprising out-of-dictionary symbols: (left) y = cos(x2); (middle) y = cosh(log(x));
(right) y = 1/x2
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Our model outputs expressions with known symbols whose numerical values resemble those associ-
ated with the ground-truth equations. In the left panel, the output of our model is “y = sin(x2 + 1)”,
which captures the sinusoidal nature of the ground-truth function. In the middle, our network outputs
“y = log(x)2 + 1”, whereas for the equation to the right, its output is “y = log(x)4 + 1”. In both
cases, the network’s output diverges at x = 0, in accordance with the ground-truth. In one case
(middle), the prediction follows the same trend as the ground truth as x→∞, while for the other
(right), the network fails to model the decreasing trend of the underlying function in the extrapolation
region. We argue that this behaviour results from the lack of training examples characterized by such
decreasing trend and could thus be resolved by enlarging and diversifying our training set.

Quantitative Analysis. Here, we propose a novel approach to evaluate SR models, with a particular
emphasis on generalization. We consider two test sets of 1.000 equations each. The first test set
includes skeleton expressions appearing in the training set with different numerical constants. The
second dataset includes more complex novel symbolic expressions that our model has never seen
during training. For each function fi, we feed the network with the corresponding evaluation points
f(X) = Yi, where X is a vector of 30 equally spaced points into the interval I = [0.1, 3.1].
Then, the resulting output expression is evaluated on a set of 30 points into the extrapolation region
E = [3.1, 6.1]. Finally, the RMSE is calculated between prediction and ground-truth on E . We
compare its performances with a 3-layer feed-forward neural network (FFNN3 for short) trained on
I and tested on E . Fig. 4 illustrates the extrapolation performance of the two methods.

Figure 4: RMSE cumulative histograms for (left) first and (right) second test sets. Our model is
shown in blue, while FFNN3 in red.

As shown above, our model outperforms the neural network on both datasets. The conventional
feed-forward model must be trained separately for each new expression disregarding information of
previously seen equations. Our model can instead leverage knowledge from the entire training set.

3 Discussion

This work proposes a novel approach to perform SR tasks in an end-to-end manner, i.e., from numbers
directly to symbolic expressions. The results show that our seq2seq model, originally proposed in
the context of NLP applications, can also be effective in the domain of SR. We also introduce a
new library to programmatically generate datasets of equations and facilitate benchmarking. Future
work will be mainly focused on four research lines: 1) Extending our method to handle multivariate
equations and not relying on fixed support points introduces scalability issues. To cope with them, a
possible approach could be to cast our method into a set-to-sequence framework and leverage recent
advances in this domain [Choy et al., 2019, 2020]. 2) Recursively refining the network’s output
according to the signal obtained from a suitable combination of symbolic and numerical losses could
improve predictive performances. A Reinforcement Learning approach could be helpful to this extent;
3) Leveraging more recent advances in the NLP literature, such as Transformers [Vaswani et al.,
2017], could also provide additional benefits. 4) Exploiting our freedom to generate arbitrarily large
datasets will likely improve the performance of our method.
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4 Appendix

4.1 Expression generation

By the term “expression”, we refer to a finite sequence of symbols with a well-defined meaning from
a mathematical point of view. Syntactically meaningful expressions are generated programmatically
by our developed library. Tables 1 shows all the symbols making up the vocabulary we used in our
experiments.
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Symbol Integer Id
x 1

sin 2
exp 3
log 4
pow 5

+ 6
/ 7
* 8
( 9
) 10
e 11

Symbol Integer Id
Start 12
End 13

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22

Table 1: Symbols available for expression generation and their corresponding integer tokens

It is important to note that there might be multiple ways to write the same mathematical expression.
Consider, for example, “sin(x)+cos(x)2+cos(x)”: one can reverse the order of the terms in the sum
(e.g. “cos(x)2 + sin(x) + cos(x)”) or group some terms together (e.g. “sin(x) + cos(x)(cos(x) +
1)”) and the resulting equations will have exactly the same mathematical information content.
Furthermore, one can exploit trigonometric identities and rewrite the original equation as “sin(x) +
1− sin(x)2 + cos(x)”. These one-to-many relationships hinder our neural network performance by
introducing ambiguities into the mapping between numbers and symbols. To counteract this issue,
when generating a batch of expressions used for training, we adopt the following additional rules:

1. We generate expressions that cannot be simplified by summation (i.e. library won’t generate
“2 sin(x) + 3 sin(x)” , while it may “5 sin(x)”).

2. We generate exclusively fully-expanded equations, where no elements are collected (e.g.
“sin(x)(sin(x) + 1)” is not generated, while “sin(x)2 + sin(x)” is).

3. We keep order consistent by alphabetically sorting operands of summations and multiplica-
tions.

4.2 Training dataset
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Figure 5: Several instances of the expres-
sion y = sin(x2) corresponding to various
internal constant samples.

In this section, we provide some additional details about
our training dataset. Table 2 shows four data instances
extracted form the dataset. We generate the data starting
from an expression, fi, containing numerical constants.
We evaluate such expression on a fixed set of numerical
support points, X, to obtain the input of our model, Yi.
The goal of the network is to predict the symbolic skele-
ton, gi, associated with the original expression fi. Note
that there might be several instances of the same sym-
bolic skeletons, each associated with different evaluation
points. This aspect is illustrated in Fig. 5, were multiple
instances of the same symbolic skeleton (sin(x3)) are
shown. Overall, our training set contains 50.000 numeri-
cally different inputs Yi and ∼ 17.000 unique symbolic
skeletons, gi.
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Input Output
Equation with constants (fi) Support (X) Evaluation Points (Yi) Symbolic Equation (gi)
5.4x2 + 3.2 log(1.4x) 0.1, 0.2, ..., 2.9, 3 −6.24,−3.86, ..., 46.71, 49.49 x2 + log(x)
exp(1.4 sin(0.9x3)) 0.1, 0.2, ..., 2.9, 3 1, 1.01, ..., 3.01, 1.06 exp(sin(x3)
4.3x6 + 1.1x5 + 0.32x4 0.1, 0.2, ..., 2.9, 3 0, 0.01, ..., 2309, 2837 x6 + x5 + x4

2.1x2 + 0.8 log(1.6x) 0.1, 0.2, ..., 2.9, 3 −1.45, 0.83, ..., 17.66, 18.89 x2 + log(x)

Table 2: The network is fed with a 30-dimension vector, Yi of evaluation points. The symbolic
skeleton, gi, is the target output. The first and last row represent two training point with same
symbolic skeleton but with different evaluation points. In total we have 50.000 evaluation inputs and
∼ 17.000 unique symbolic equations.

4.3 Additional Results

In this section, we report further experimental results not included in the main body of the manuscript
due to space constraints. First, we show how the BFGS optmizer acts in combination with our seq2seq
neural network to successfully retrieve the constants present in the original expression. Then, we
report additional results related to the quantitative analysis performed in section 2.

Visualizations Fig. 6 provides three examples where the combination of our model and the BFGS
optimizer manages to retrieve the exact expression of three equations with internal and external
constants.

Figure 6: (left) y = 1.5 sin(2 log(x)); (middle) 1.33x3 + 2x2 + 0.44x; (right) 2 sin(x + 0.2)2 +
1.2 log(x3)

In all the above examples, the neural network outputs the correct symbolic skeleton and the BFGS
optimizer successfully finds the numerical constants.

Quantitative Analysis Table 3 shows the percentage of expressions for which the RMSE extrapo-
lation error is below three threshold levels for our seq2seq model and FFNN3.

First Dataset Second Dataset
0.05 Error 0.1 Error 0.2 Error 0.05 Error 0.1 Error 0.2 Error

SeqToSeq Model 15.3% 22.34% 37.09% 8.70% 14.31% 27.60%
FFNN3 8.80% 15.80% 26.30% 4.43% 10.34% 19.09%

Table 3: For each dataset, performances are divided into three categories: percentage of equation
under (i) 0.05 RMSE, (ii) 0.1 RMSE and (iii) 0.2 RMSE.

As expected, for both models the percentages increase as the threshold grows. However, the seq2seq
model consistently outperforms FFNN3 on both datasets.
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